1
|
Syed ZA, Gomez RA, Borziak K, Asif A, Cong AS, O'Grady PM, Kim BY, Suvorov A, Petrov DA, Lüpold S, Wengert P, McDonough-Goldstein C, Ahmed-Braimah YH, Dorus S, Pitnick S. Genomics of a sexually selected sperm ornament and female preference in Drosophila. Nat Ecol Evol 2024:10.1038/s41559-024-02587-2. [PMID: 39578595 DOI: 10.1038/s41559-024-02587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Our understanding of animal ornaments and the mating preferences driving their exaggeration is limited by knowledge of their genetics. Post-copulatory sexual selection is credited with the rapid evolution of female sperm-storage organ morphology and corresponding sperm quality traits across diverse taxa. In Drosophila, the mechanisms by which longer flagella convey an advantage in the competition among sperm for limited storage space in the female, and by which female sperm-storage organ morphology biases fertilization in favour of longer sperm have been resolved. However, the evolutionary genetics underlying this model post-copulatory ornament and preference system have remained elusive. Here we combined comparative analyses of 149 Drosophila species, a genome-wide association study in Drosophila melanogaster and molecular evolutionary analysis of ~9,400 genes to elucidate how sperm and female sperm-storage organ length co-evolved into one of nature's most extreme ornaments and preferences. Our results reveal a diverse repertoire of pleiotropic genes linking sperm length and seminal receptacle length expression to central nervous system development and sensory biology. Sperm length development appears condition-dependent and is governed by conserved hormonal (insulin/insulin-like growth factor) and developmental (including Notch and Fruitless) pathways. Central developmental pathway genes, including Notch, also comprised the majority of a restricted set of genes contributing to both intraspecific and interspecific variation in sperm length. Our findings support 'good genes' models of female preference evolution.
Collapse
Affiliation(s)
- Zeeshan A Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - R Antonio Gomez
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Amaar Asif
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Abelard S Cong
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter Wengert
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | - Yasir H Ahmed-Braimah
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
2
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
3
|
Merrill RM, Arenas-Castro H, Feller AF, Harenčár J, Rossi M, Streisfeld MA, Kay KM. Genetics and the Evolution of Prezygotic Isolation. Cold Spring Harb Perspect Biol 2024; 16:a041439. [PMID: 37848246 PMCID: PMC10835618 DOI: 10.1101/cshperspect.a041439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.
Collapse
Affiliation(s)
- Richard M Merrill
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anna F Feller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
| | - Julia Harenčár
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Matteo Rossi
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
4
|
Han CS, Lee B, Moon J. Activity-aggression behavioural syndromes exist in males but not in females of the field cricket Teleogryllus emma. Ecol Evol 2023; 13:e10642. [PMID: 37859828 PMCID: PMC10582681 DOI: 10.1002/ece3.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Previous studies on sex differences in behaviour have largely focused on differences in average behaviours between sexes. However, males and females can diverge not only in average behaviours but also in the direction of behavioural correlations at the individual level (i.e. behavioural syndromes). Behavioural syndromes, with their potential to constrain the independent evolution of behaviours, may play a role in shaping sex-specific responses to selection and contributing to the development of sex differences in behaviour. Despite the pivotal role of behavioural syndromes in the evolution of sexual dimorphism in behaviour, robust empirical evidence of sex differences in behavioural syndromes based on repeated measurements of behaviours is scarce. In this study, we conducted repeated measurements of activity and aggression in male and female field crickets Teleogryllus emma, providing evidence of sex differences in the existence of behavioural syndromes. Males exhibited a significantly positive behavioural syndrome between activity and aggression, whereas females, in contrast, did not show any aggressive behaviour, resulting in the absence of such a syndrome. The sex differences in the existence of the activity-aggression behavioural syndromes in this species could be attributed to differences in selection. Selection favouring more active and aggressive males may have shaped a positive activity-aggression behavioural syndrome in males, whereas the absence of selection favouring female aggression may have resulted in the absence of aggression and the related behavioural syndrome in females. However, given the plasticity of behaviour with changes in age or the environment, further research is needed to explore how sex differences in the existence of activity-aggression behavioural syndromes change across contexts. Furthermore, understanding the genetic underpinning of sex differences in a behavioural syndrome would be pivotal to assess the role of behavioural syndromes in the evolution of sexual dimorphism in behaviours.
Collapse
Affiliation(s)
- Chang S. Han
- Department of BiologyKyung Hee UniversitySeoulKorea
| | - Byeongho Lee
- Department of BiologyKyung Hee UniversitySeoulKorea
| | | |
Collapse
|
5
|
DuVal EH, Fitzpatrick CL, Hobson EA, Servedio MR. Inferred Attractiveness: A generalized mechanism for sexual selection that can maintain variation in traits and preferences over time. PLoS Biol 2023; 21:e3002269. [PMID: 37788233 PMCID: PMC10547189 DOI: 10.1371/journal.pbio.3002269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/22/2023] [Indexed: 10/05/2023] Open
Abstract
Sexual selection by mate choice is a powerful force that can lead to evolutionary change, and models of why females choose particular mates are central to understanding its effects. Predominant mate choice theories assume preferences are determined solely by genetic inheritance, an assumption still lacking widespread support. Moreover, preferences often vary among individuals or populations, fail to correspond with conspicuous male traits, or change with context, patterns not predicted by dominant models. Here, we propose a new model that explains this mate choice complexity with one general hypothesized mechanism, "Inferred Attractiveness." In this model, females acquire mating preferences by observing others' choices and use context-dependent information to infer which traits are attractive. They learn to prefer the feature of a chosen male that most distinguishes him from other available males. Over generations, this process produces repeated population-level switches in preference and maintains male trait variation. When viability selection is strong, Inferred Attractiveness produces population-wide adaptive preferences superficially resembling "good genes." However, it results in widespread preference variation or nonadaptive preferences under other predictable circumstances. By casting the female brain as the central selective agent, Inferred Attractiveness captures novel and dynamic aspects of sexual selection and reconciles inconsistencies between mate choice theory and observed behavior.
Collapse
Affiliation(s)
- Emily H. DuVal
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Courtney L. Fitzpatrick
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
7
|
Peters L, Huisman J, Kruuk LEB, Pemberton JM, Johnston SE. Genomic analysis reveals a polygenic architecture of antler morphology in wild red deer (Cervus elaphus). Mol Ecol 2021; 31:1281-1298. [PMID: 34878674 DOI: 10.1111/mec.16314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Sexually selected traits show large variation and rapid evolution across the animal kingdom, yet genetic variation often persists within populations despite apparent directional selection. A key step in solving this long-standing paradox is to determine the genetic architecture of sexually selected traits to understand evolutionary drivers and constraints at the genomic level. Antlers are a form of sexual weaponry in male red deer (Cervus elaphus). On the island of Rum, Scotland, males with larger antlers have increased breeding success, yet there has been no evidence of any response to selection at the genetic level. To try and understand the mechanisms underlying this observation, we investigate the genetic architecture of ten antler traits and their principal components using genomic data from >38,000 SNPs. We estimate the heritabilities and genetic correlations of the antler traits using a genomic relatedness approach. We then use genome-wide association and haplotype-based regional heritability to identify regions of the genome underlying antler morphology, and an empirical Bayes approach to estimate the underlying distributions of allele effect sizes. We show that antler morphology is highly repeatable over an individual's lifetime, heritable and has a polygenic architecture and that almost all antler traits are positively genetically correlated with some loci identified as having pleiotropic effects. Our findings suggest that a large mutational target and genetic covariances among antler traits, in part maintained by pleiotropy, are likely to contribute to the maintenance of genetic variation in antler morphology in this population.
Collapse
Affiliation(s)
- Lucy Peters
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jisca Huisman
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Loeske E B Kruuk
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Anderson NK, Schuppe ER, Gururaja KV, Mangiamele LA, Martinez JCC, Priti H, May RV, Preininger D, Fuxjager MJ. A Common Endocrine Signature Marks the Convergent Evolution of an Elaborate Dance Display in Frogs. Am Nat 2021; 198:522-539. [PMID: 34559606 DOI: 10.1086/716213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractUnrelated species often evolve similar phenotypic solutions to the same environmental problem, a phenomenon known as convergent evolution. But how do these common traits arise? We address this question from a physiological perspective by assessing how convergence of an elaborate gestural display in frogs (foot-flagging) is linked to changes in the androgenic hormone systems that underlie it. We show that the emergence of this rare display in unrelated anuran taxa is marked by a robust increase in the expression of androgen receptor (AR) messenger RNA in the musculature that actuates leg and foot movements, but we find no evidence of changes in the abundance of AR expression in these frogs' central nervous systems. Meanwhile, the magnitude of the evolutionary change in muscular AR and its association with the origin of foot-flagging differ among clades, suggesting that these variables evolve together in a mosaic fashion. Finally, while gestural displays do differ between species, variation in the complexity of a foot-flagging routine does not predict differences in muscular AR. Altogether, these findings suggest that androgen-muscle interactions provide a conduit for convergence in sexual display behavior, potentially providing a path of least resistance for the evolution of motor performance.
Collapse
|
9
|
McGlothlin JW, Cox RM, Brodie ED. Sex-Specific Selection and the Evolution of Between-Sex Genetic Covariance. J Hered 2020; 110:422-432. [PMID: 31095325 DOI: 10.1093/jhered/esz031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
Because the sexes share a genome, traits expressed in males are usually genetically correlated with the same traits expressed in females. On short timescales, between-sex genetic correlations (rmf) for shared traits may constrain the evolution of sexual dimorphism by preventing males and females from responding independently to sex-specific selection. However, over longer timescales, rmf may evolve, thereby facilitating the evolution of dimorphism. Although it has been suggested that sexually antagonistic selection may reduce rmf, we lack a general theory for the evolution of rmf and its multivariate analog, the between-sex genetic covariance matrix (B). Here, we derive a simple analytical model for the within-generation change in B due to sex-specific directional selection. We present a single-trait example demonstrating that sex-specific directional selection may either increase or decrease between-sex genetic covariance, depending on the relative strength of selection in each sex and on the current value of rmf. Although sexually antagonistic selection can reduce between-sex covariance, it will only do so when selection is much stronger in one sex than in the other. Counterintuitively, sexually antagonistic selection that is equal in strength in the 2 sexes will maintain positive between-sex covariance. Selection acting in the same direction on both sexes is predicted to reduce between-sex covariance in many cases. We illustrate our model numerically using empirical measures of sex-specific selection and between-sex genetic covariance from 2 populations of sexually dimorphic brown anole lizards (Anolis sagrei) and discuss its importance for understanding the resolution of intralocus sexual conflict.
Collapse
Affiliation(s)
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Edmund D Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA
| |
Collapse
|
10
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
11
|
Dong X, Li J, Zhang Y, Han D, Hua G, Wang J, Deng X, Wu C. Genomic Analysis Reveals Pleiotropic Alleles at EDN3 and BMP7 Involved in Chicken Comb Color and Egg Production. Front Genet 2019; 10:612. [PMID: 31316551 PMCID: PMC6611142 DOI: 10.3389/fgene.2019.00612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Artificial selection is often associated with numerous changes in seemingly unrelated phenotypic traits. The genetic mechanisms of correlated phenotypes probably involve pleiotropy or linkage of genes related to such phenotypes. Dongxiang blue-shelled chicken, an indigenous chicken breed of China, has segregated significantly for the dermal hyperpigmentation phenotype. Two lines of the chicken have been divergently selected with respect to comb color for over 20 generations. The red comb line chicken produces significantly higher number of eggs than the dark comb line chicken. The objective of this study was to explore potential mechanisms involved in the relationship between comb color and egg production among chickens. Based on the genome-wide association study results, we identified a genomic region on chromosome 20 involving EDN3 and BMP7, which is associated with hyperpigmentation of chicken comb. Further analyses by selection signatures in the two divergent lines revealed that several candidate genes, including EDN3, BMP7, BPIFB3, and PCK1, closely located on chromosome 20 are involved in the development of neural crest cell and reproductive system. The two genes EDN3 and BMP7 have known roles in regulating both ovarian function and melanogenesis, indicating the pleiotropic effect on hyperpigmentation and egg production in blue-shelled chickens. Association analysis for egg production confirmed the pleiotropic effect of selected loci identified by selection signatures. The study provides insights into phenotypic evolution due to genetic variation across the genome. The information might be useful in the current breeding efforts to develop improved breeds for egg production.
Collapse
Affiliation(s)
- Xianggui Dong
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guoying Hua
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Jiankui Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Blankers T, Berdan EL, Hennig RM, Mayer F. Physical linkage and mate preference generate linkage disequilibrium for behavioral isolation in two parapatric crickets. Evolution 2019; 73:777-791. [PMID: 30820950 PMCID: PMC6593781 DOI: 10.1111/evo.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Abstract
Behavioral isolation is a potent barrier to gene flow and a source of striking diversity in the animal kingdom. However, it remains unclear if the linkage disequilibrium (LD) between sex‐specific traits required for behavioral isolation results mostly from physical linkage between signal and preference loci or from directional mate preferences. Here, we test this in the field crickets Gryllus rubens and G. texensis. These closely related species diverged with gene flow and have strongly differentiated songs and preference functions for the mate calling song rhythm. We map quantitative trait loci for signal and preference traits (pQTL) as well as for gene expression associated with these traits (eQTL). We find strong, positive genetic covariance between song traits and between song and preference. Our results show that this is in part explained by incomplete physical linkage: although both linked pQTL and eQTL couple male and female traits, major effect loci for different traits were never on the same chromosome. We suggest that the finely tuned, highly divergent preference functions are likely an additional source of LD between male and female traits in this system. Furthermore, pleiotropy of gene expression presents an underappreciated mechanism to link sexually dimorphic phenotypes.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.,Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma L Berdan
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Matthias Hennig
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frieder Mayer
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
13
|
Groot AT, van Wijk M, Villacis-Perez E, Kuperus P, Schöfl G, van Veldhuizen D, Heckel DG. Within-population variability in a moth sex pheromone blend, part 2: selection towards fixation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182050. [PMID: 31032049 PMCID: PMC6458377 DOI: 10.1098/rsos.182050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
To understand how variation in sexual communication systems evolves, the genetic architecture underlying sexual signals and responses needs to be identified. Especially in animals where mating signals are important for mate recognition, and signals and responses are governed by independently assorting genes, it is difficult to envision how signals and preferences can (co)evolve. Moths are a prime example of such animals. In the noctuid moth Heliothis virescens, we found within-population variation in the female pheromone. In previous selection experiments followed by quantitative trait locus (QTL) analysis and expression analysis of candidate desaturase genes, we developed a model involving a trans-acting repressor of the delta-11-desaturase. In our current study with new selection lines, we fixed the most extreme phenotype and found a single underlying mutation: a premature stop codon in the first coding exon of delta-11-desaturase, which we could trace back to its origin in the laboratory. Interestingly, we found no pleiotropic effects of this knock-out mutation on the male physiological or behavioural response, or on growth or fertility. This finding is in contrast to Drosophila melanogaster, where a single desaturase gene affects both female pheromone production and male behavioural response, but similar to other Lepidoptera where these traits are under independent genetic control. To our knowledge, this is the first time that a single point mutation has been identified that underlies the phenotypic variation in the pheromone signal of a moth.
Collapse
Affiliation(s)
- Astrid T. Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gerhard Schöfl
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Dennis van Veldhuizen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David G. Heckel
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| |
Collapse
|
14
|
Affiliation(s)
- Erik I. Svensson
- Evolutionary Ecology Unit, Department of Biology Lund University Lund Sweden
| |
Collapse
|
15
|
Bonel N, Noël E, Janicke T, Sartori K, Chapuis E, Ségard A, Meconcelli S, Pélissié B, Sarda V, David P. Asymmetric evolutionary responses to sex-specific selection in a hermaphrodite. Evolution 2018; 72:2181-2201. [PMID: 30109706 DOI: 10.1111/evo.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
Sex allocation theory predicts that simultaneous hermaphrodites evolve to an evolutionary stable resource allocation, whereby any increase in investment to male reproduction leads to a disproportionate cost on female reproduction and vice versa. However, empirical evidence for sexual trade-offs in hermaphroditic animals is still limited. Here, we tested how male and female reproductive traits evolved under conditions of reduced selection on either male or female reproduction for 40 generations in a hermaphroditic snail. This selection favors a reinvestment of resources from the sex function under relaxed selection toward the other function. We found no such evolutionary response. Instead, juvenile survival and male reproductive success significantly decreased in lines where selection on the male function (i.e., sexual selection) was relaxed, while relaxing selection on the female function had no effect. Our results suggest that most polymorphisms under selection in these lines were not sex-antagonistic. Rather, they were deleterious mutations affecting juvenile survival (thus reducing both male and female fitness) with strong pleiotropic effects on male success in a sexual selection context. These mutations accumulated when sexual selection was relaxed, which supports the idea that sexual selection in hermaphrodites contributes to purge the mutation load from the genome as in separate-sex organisms.
Collapse
Affiliation(s)
- Nicolás Bonel
- Laboratorio de Zoología de Invertebrados I, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICN, Bahía Blanca, CONICET, Argentina.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Elsa Noël
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France.,Institute for Population Genetics, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Tim Janicke
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France.,School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | - Kevin Sartori
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Elodie Chapuis
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France.,IRD, UMR186 Intéractions Plantes-Microrganismes-Environement, 911, Avenue Agropolis, BP 64501 34394 Montpellier Cedex 05, France.,CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
| | - Adeline Ségard
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Stefania Meconcelli
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France.,Department of Life Sciences and Systems Biology, Università di Torino, Turin, Italy
| | - Benjamin Pélissié
- University of Wisconsin Madison, Department of Entomology, 1630 Linden Dr, Madison, Wisconsin 53706
| | - Violette Sarda
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| |
Collapse
|
16
|
The Genetics of a Behavioral Speciation Phenotype in an Island System. Genes (Basel) 2018; 9:genes9070346. [PMID: 29996514 PMCID: PMC6070818 DOI: 10.3390/genes9070346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Mating behavior divergence can make significant contributions to reproductive isolation and speciation in various biogeographic contexts. However, whether the genetic architecture underlying mating behavior divergence is related to the biogeographic history and the tempo and mode of speciation remains poorly understood. Here, we use quantitative trait locus (QTL) mapping to infer the number, distribution, and effect size of mating song rhythm variations in the crickets Laupala eukolea and Laupala cerasina, which occur on different islands (Maui and Hawaii). We then compare these results with a similar study of an independently evolving species pair that diverged within the same island. Finally, we annotate the L. cerasina transcriptome and test whether the QTL fall in functionally enriched genomic regions. We document a polygenic architecture behind the song rhythm divergence in the inter-island species pair that is remarkably similar to that previously found for an intra-island species pair in the same genus. Importantly, the QTL regions were significantly enriched for potential homologs of the genes involved in pathways that may be modulating the cricket song rhythm. These clusters of loci could constrain the spatial genomic distribution of the genetic variation underlying the cricket song variation and harbor several candidate genes that merit further study.
Collapse
|
17
|
Artificial selection reveals sex differences in the genetic basis of sexual attractiveness. Proc Natl Acad Sci U S A 2018; 115:5498-5503. [PMID: 29735676 DOI: 10.1073/pnas.1720368115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutual mate choice occurs when males and females base mating decisions on shared traits. Despite increased awareness, the extent to which mutual choice drives phenotypic change remains poorly understood. When preferences in both sexes target the same traits, it is unclear how evolution will proceed and whether responses to sexual selection from male choice will match or oppose responses to female choice. Answering this question is challenging, as it requires understanding, genetic relationships between the traits targeted by choice, mating success, and, ultimately, fitness for both sexes. Addressing this, we applied artificial selection to the cuticular hydrocarbons of the fly Drosophila serrata that are targeted by mutual choice and tracked evolutionary changes in males and females alongside changes in mating success. After 10 generations, significant trait evolution occurred in both sexes, but intriguingly there were major sex differences in the associated fitness consequences. Sexually selected trait evolution in males led to a genetically based increase in male mating success. By contrast, although trait evolution also occurred in females, there was no change in mating success. Our results suggest that phenotypic sexual selection on females from male choice is environmentally, rather than genetically, generated. Thus, compared with female choice, male choice is at best a weak driver of signal trait evolution in this species. Instead, the evolution of apparent female ornamentation seems more likely due to a correlated response to sexual selection on males and possibly other forms of natural selection.
Collapse
|
18
|
Kodama M, Hard JJ, Naish KA. Mapping of quantitative trait loci for temporal growth and age at maturity in coho salmon: Evidence for genotype-by-sex interactions. Mar Genomics 2018; 38:33-44. [DOI: 10.1016/j.margen.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/01/2017] [Accepted: 07/22/2017] [Indexed: 11/26/2022]
|
19
|
Tibbetts EA, Mullen SP, Dale J. Signal function drives phenotypic and genetic diversity: the effects of signalling individual identity, quality or behavioural strategy. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0347. [PMID: 28533463 DOI: 10.1098/rstb.2016.0347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/01/2023] Open
Abstract
Animal coloration is influenced by selection pressures associated with communication. During communication, signallers display traits that inform receivers and modify receiver behaviour in ways that benefit signallers. Here, we discuss how selection on signallers to convey different kinds of information influences animal phenotypes and genotypes. Specifically, we address the phenotypic and genetic consequences of communicating three different kinds of information: individual identity, behavioural strategy and quality. Previous work has shown signals that convey different kinds of information differ in terms of the (i) type of selection acting on signallers (e.g. directional, stabilizing, or negative frequency dependent), and (ii) developmental basis of signals (i.e. heritability, genetic architecture). These differences result in signals that convey different information having consistently different phenotypic properties, including the amount, modality and continuity of intraspecific variation. Understanding how communication influences animal phenotypes may allow researchers to quickly identify putative functions of colour variation prior to experimentation. Signals that convey different information will also have divergent evolutionary consequences. For example, signalling individual identity can increase genetic diversity, signalling quality may decrease diversity, and signalling strategy can constrain adaptation and contribute to speciation. Considering recent advances in genomic resources, our framework highlights new opportunities to resolve the evolutionary consequences of selection on communication across diverse taxa and signal types.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
| | - Sean P Mullen
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - James Dale
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
20
|
Reichert MS, Höbel G. Phenotypic integration and the evolution of signal repertoires: A case study of treefrog acoustic communication. Ecol Evol 2018; 8:3410-3429. [PMID: 29607035 PMCID: PMC5869261 DOI: 10.1002/ece3.3927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species' repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor, Hyla cinerea, and Dendropsophus ebraccatus. We recorded male calls and calculated standardized phenotypic variance-covariance (P) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition levels in H. versicolor. Our findings suggest new directions in animal communication research in which the complex relationships among the traits of multiple signals are a key consideration for understanding signal evolution.
Collapse
Affiliation(s)
- Michael S. Reichert
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Gerlinde Höbel
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| |
Collapse
|
21
|
Miller JM, Festa-Bianchet M, Coltman DW. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium ® HD SNP BeadChip. PeerJ 2018; 6:e4364. [PMID: 29473002 PMCID: PMC5817937 DOI: 10.7717/peerj.4364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the genetic basis of fitness-related traits is a major goal of molecular ecology. Traits subject to sexual selection are particularly interesting, as non-random mate choice should deplete genetic variation and thereby their evolutionary benefits. We examined the genetic basis of three sexually selected morphometric traits in bighorn sheep (Ovis canadensis): horn length, horn base circumference, and body mass. These traits are of specific concern in bighorn sheep as artificial selection through trophy hunting opposes sexual selection. Specifically, horn size determines trophy status and, in most North American jurisdictions, if an individual can be legally harvested. Using between 7,994–9,552 phenotypic measures from the long-term individual-based study at Ram Mountain (Alberta, Canada), we first showed that all three traits are heritable (h2 = 0.15–0.23). We then conducted a genome-wide association study (GWAS) utilizing a set of 3,777 SNPs typed in 76 individuals using the Ovine Infinium® HD SNP BeadChip. We found suggestive association for body mass at a single locus (OAR9_91647990). The absence of strong associations with SNPs suggests that the traits are likely polygenic. These results represent a step forward for characterizing the genetic architecture of fitness related traits in sexually dimorphic ungulates.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Current affiliation: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Bailey NW, Moran PA, Hennig RM. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Mittleman BE, Manzano-Winkler B, Hall JB, Korunes KL, Noor MAF. The large X-effect on secondary sexual characters and the genetics of variation in sex comb tooth number in Drosophila subobscura. Ecol Evol 2016; 7:533-540. [PMID: 28116050 PMCID: PMC5243774 DOI: 10.1002/ece3.2634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023] Open
Abstract
Genetic studies of secondary sexual traits provide insights into whether and how selection drove their divergence among populations, and these studies often focus on the fraction of variation attributable to genes on the X-chromosome. However, such studies may sometimes misinterpret the amount of variation attributable to the X-chromosome if using only simple reciprocal F1 crosses, or they may presume sexual selection has affected the observed phenotypic variation. We examined the genetics of a secondary sexual trait, male sex comb size, in Drosophila subobscura. This species bears unusually large sex combs for its species group, and therefore, this trait may be a good candidate for having been affected by natural or sexual selection. We observed significant heritable variation in number of teeth of the distal sex comb across strains. While reciprocal F1 crosses seemed to implicate a disproportionate X-chromosome effect, further examination in the F2 progeny showed that transgressive autosomal effects inflated the estimate of variation associated with the X-chromosome in the F1. Instead, the X-chromosome appears to confer the smallest contribution of all major chromosomes to the observed phenotypic variation. Further, we failed to detect effects on copulation latency or duration associated with the observed phenotypic variation. Overall, this study presents an examination of the genetics underlying segregating phenotypic variation within species and illustrates two common pitfalls associated with some past studies of the genetic basis of secondary sexual traits.
Collapse
|
24
|
Roulin AC, Bourgeois Y, Stiefel U, Walser JC, Ebert D. A Photoreceptor Contributes to the Natural Variation of Diapause Induction inDaphnia magna. Mol Biol Evol 2016; 33:3194-3204. [DOI: 10.1093/molbev/msw200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
The Tangled Evolutionary Legacies of Range Expansion and Hybridization. Trends Ecol Evol 2016; 31:677-688. [DOI: 10.1016/j.tree.2016.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023]
|
26
|
Yoshikawa T, Ohkubo Y, Karino K, Hasegawa E. Male guppies change courtship behaviour in response to their own quality relative to that of a rival male. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Castillo DM, Delph LF. Male-female genotype interactions maintain variation in traits important for sexual interactions and reproductive isolation. Evolution 2016; 70:1667-73. [PMID: 27271732 DOI: 10.1111/evo.12964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Prezygotic reproductive isolation can evolve quickly when sexual selection drives divergence in traits important for sexual interactions between populations. It has been hypothesized that standing variation for male/female traits and preferences facilitates this rapid evolution and that variation in these traits is maintained by male-female genotype interactions in which specific female genotypes prefer specific male traits. This hypothesis can also explain patterns of speciation when ecological divergence is lacking, but this remains untested because it requires information about sexual interactions in ancestral lineages. Using a set of ancestral genotypes that previously had been identified as evolving reproductive isolation, we specifically asked whether there is segregating variation in female preference and whether segregating variation in sexual interactions is a product of male-female genotype interactions. Our results provide evidence for segregating variation in female preference and further that male-female genotype interactions are important for maintaining variation that selection can act on and that can lead to reproductive isolation.
Collapse
Affiliation(s)
- Dean M Castillo
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana, 47405.
| | - Lynda F Delph
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana, 47405
| |
Collapse
|
28
|
Genetic Architecture of Conspicuous Red Ornaments in Female Threespine Stickleback. G3-GENES GENOMES GENETICS 2015; 6:579-88. [PMID: 26715094 PMCID: PMC4777121 DOI: 10.1534/g3.115.024505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Explaining the presence of conspicuous female ornaments that take the form of male-typical traits has been a longstanding challenge in evolutionary biology. Such female ornaments have been proposed to evolve via both adaptive and nonadaptive evolutionary processes. Determining the genetic underpinnings of female ornaments is important for elucidating the mechanisms by which such female traits arise and persist in natural populations, but detailed information about their genetic basis is still scarce. In this study, we investigated the genetic architecture of two ornaments, the orange-red throat and pelvic spine, in the threespine stickleback (Gasterosteus aculeatus). Throat coloration is male-specific in ancestral marine populations but has evolved in females in some derived stream populations, whereas sexual dimorphism in pelvic spine coloration is variable among populations. We find that ornaments share a common genetic architecture between the sexes. At least three independent genomic regions contribute to red throat coloration, and harbor candidate genes related to pigment production and pigment cell differentiation. One of these regions is also associated with spine coloration, indicating that both ornaments might be mediated partly via pleiotropic genetic mechanisms.
Collapse
|
29
|
Kardos M, Husby A, McFarlane SE, Qvarnström A, Ellegren H. Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour 2015; 16:727-41. [PMID: 26649993 DOI: 10.1111/1755-0998.12498] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
Abstract
Dissecting the genetic basis of phenotypic variation in natural populations is a long-standing goal in evolutionary biology. One open question is whether quantitative traits are determined only by large numbers of genes with small effects, or whether variation also exists in large-effect loci. We conducted genomewide association analyses of forehead patch size (a sexually selected trait) on 81 whole-genome-resequenced male collared flycatchers with extreme phenotypes, and on 415 males sampled independent of patch size and genotyped with a 50K SNP chip. No SNPs were genomewide statistically significantly associated with patch size. Simulation-based power analyses suggest that the power to detect large-effect loci responsible for 10% of phenotypic variance was <0.5 in the genome resequencing analysis, and <0.1 in the SNP chip analysis. Reducing the recombination by two-thirds relative to collared flycatchers modestly increased power. Tripling sample size increased power to >0.8 for resequencing of extreme phenotypes (N = 243), but power remained <0.2 for the 50K SNP chip analysis (N = 1245). At least 1 million SNPs were necessary to achieve power >0.8 when analysing 415 randomly sampled phenotypes. However, power of the 50K SNP chip to detect large-effect loci was nearly 0.8 in simulations with a small effective population size of 1500. These results suggest that reliably detecting large-effect trait loci in large natural populations will often require thousands of individuals and near complete sampling of the genome. Encouragingly, far fewer individuals and loci will often be sufficient to reliably detect large-effect loci in small populations with widespread strong linkage disequilibrium.
Collapse
Affiliation(s)
- Marty Kardos
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Arild Husby
- Department of Biosciences, University of Helsinki, PO Box 65, Helsinki, 00014, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - S Eryn McFarlane
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| |
Collapse
|
30
|
Castillo DM, Burger MK, Lively CM, Delph LF. Experimental evolution: Assortative mating and sexual selection, independent of local adaptation, lead to reproductive isolation in the nematodeCaenorhabditis remanei. Evolution 2015; 69:3141-55. [DOI: 10.1111/evo.12815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Dean M. Castillo
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
| | - Melissa K. Burger
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
- Current Address: Department of Natural Resources Science; University of Rhode Island; Kingston Rhode Island 02881
| | - Curtis M. Lively
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
| | - Lynda F. Delph
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
| |
Collapse
|
31
|
Fowler-Finn KD, Kilmer JT, Hallett AC, Rodríguez RL. Variation in signal-preference genetic correlations in Enchenopa treehoppers (Hemiptera: Membracidae). Ecol Evol 2015; 5:2774-86. [PMID: 26306166 PMCID: PMC4541985 DOI: 10.1002/ece3.1567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 11/29/2022] Open
Abstract
Fisherian selection is a within-population process that promotes signal–preference coevolution and speciation due to signal–preference genetic correlations. The importance of the contribution of Fisherian selection to speciation depends in part on the answer to two outstanding questions: What explains differences in the strength of signal–preference genetic correlations? And, how does the magnitude of within-species signal–preference covariation compare to species differences in signals and preferences? To address these questions, we tested for signal–preference genetic correlations in two members of the Enchenopa binotata complex, a clade of plant-feeding insects wherein speciation involves the colonization of novel host plants and signal–preference divergence. We used a full-sibling, split-family rearing experiment to estimate genetic correlations and to analyze the underlying patterns of variation in signals and preferences. Genetic correlations were weak or zero, but exploration of the underlying patterns of variation in signals and preferences revealed some full-sib families that varied by as much as 50% of the distance between similar species in the E. binotata complex. This result was stronger in the species that showed greater amounts of genetic variation in signals and preferences. We argue that some forms of weak signal–preference genetic correlation may have important evolutionary consequences.
Collapse
Affiliation(s)
- Kasey D Fowler-Finn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee Milwaukee, Wisconsin ; Department of Biology, Saint Louis University Saint Louis, Missouri
| | - Joseph T Kilmer
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee Milwaukee, Wisconsin
| | - Allysa C Hallett
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee Milwaukee, Wisconsin
| | - Rafael L Rodríguez
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee Milwaukee, Wisconsin
| |
Collapse
|
32
|
Noh S, Henry CS. Speciation is not necessarily easier in species with sexually monomorphic mating signals. J Evol Biol 2015; 28:1925-39. [PMID: 26230311 DOI: 10.1111/jeb.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
Should we have different expectations regarding the likelihood and pace of speciation by sexual selection when considering species with sexually monomorphic mating signals? Two conditions that can facilitate rapid species divergence are Felsenstein's one-allele mechanism and a genetic architecture that includes a genetic association between signal and preference loci. In sexually monomorphic species, the former can manifest in the form of mate choice based on phenotype matching. The latter can be promoted by selection acting upon genetic loci for divergent signals and preferences expressed simultaneously in each individual, rather than acting separately on signal loci in males and preference loci in females. Both sexes in the Chrysoperla carnea group of green lacewings (Insecta, Neuroptera, Chrysopidae) produce sexually monomorphic species-specific mating signals. We hybridized the two species C. agilis and C. carnea to test for evidence of these speciation-facilitating conditions. Hybrid signals were more complex than the parents and we observed a dominant influence of C. carnea. We found a dominant influence of C. agilis on preferences in the form of hybrid discrimination against C. carnea. Preferences in hybrids followed patterns predicting preference loci that determine mate choice rather than a one-allele mechanism. The genetic association between signal and preference we detected in the segregating hybrid crosses indicates that speciation in these species with sexually monomorphic mating signals can have occurred rapidly. However, we need additional evidence to determine whether such genetic associations form more readily in sexually monomorphic species compared to dimorphic species and consequently facilitate speciation.
Collapse
Affiliation(s)
- S Noh
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - C S Henry
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
33
|
Veltsos P, Gregson E, Morrissey B, Slate J, Hoikkala A, Butlin RK, Ritchie MG. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana. Heredity (Edinb) 2015. [PMID: 26198076 DOI: 10.1038/hdy.2015.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.
Collapse
Affiliation(s)
- P Veltsos
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - E Gregson
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - B Morrissey
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - J Slate
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R K Butlin
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK.,Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - M G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
34
|
Blankers T, Lübke AK, Hennig RM. Phenotypic variation and covariation indicate high evolvability of acoustic communication in crickets. J Evol Biol 2015; 28:1656-69. [DOI: 10.1111/jeb.12686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Affiliation(s)
- T. Blankers
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
- Museum für Naturkunde Berlin; Leibniz Institute for Evolution and Biodiversity Science; Berlin Germany
| | - A. K. Lübke
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| | - R. M. Hennig
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
35
|
Castillo DM, Moyle LC. Intraspecific sperm competition genes enforce post-mating species barriers in Drosophila. Proc Biol Sci 2015; 281:rspb.2014.2050. [PMID: 25355478 DOI: 10.1098/rspb.2014.2050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sexual selection and sexual conflict are considered important drivers of speciation, based on both theoretical models and empirical correlations between sexually selected traits and diversification. However, whether reproductive isolation between species evolves directly as a consequence of intrapopulation sexual dynamics remains empirically unresolved, in part because knowledge of the genetic mechanisms (if any) connecting these processes is limited. Here, we provide evidence of a direct mechanistic link between intraspecies sexual selection and reproductive isolation. We examined genes with known roles in intraspecific sperm competition (ISC) in D. melanogaster and assayed their impact on conspecific sperm precedence (CSP). We found that two such genes (Acp36DE and CG9997) contribute to both offensive sperm competition and CSP; null/knockdown lines both had lower competitive ability against D. melanogaster conspecifics and were no longer able to displace heterospecific D. simulans sperm in competitive matings. In comparison, Sex Peptide (Acp70A)-another locus essential for ISC-does not contribute to CSP. These data indicate that two loci important for sperm competitive interactions have an additional role in similar interactions that enforce post-mating reproductive isolation between species, and show that sexual selection and sexual isolation can act on the same molecular targets in a gene-specific manner.
Collapse
Affiliation(s)
- Dean M Castillo
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
36
|
Wilkinson GS, Breden F, Mank JE, Ritchie MG, Higginson AD, Radwan J, Jaquiery J, Salzburger W, Arriero E, Barribeau SM, Phillips PC, Renn SCP, Rowe L. The locus of sexual selection: moving sexual selection studies into the post-genomics era. J Evol Biol 2015; 28:739-55. [PMID: 25789690 DOI: 10.1111/jeb.12621] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology.
Collapse
Affiliation(s)
- G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Pitchers W, Wolf JB, Tregenza T, Hunt J, Dworkin I. Evolutionary rates for multivariate traits: the role of selection and genetic variation. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130252. [PMID: 25002697 DOI: 10.1098/rstb.2013.0252] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates.
Collapse
Affiliation(s)
- William Pitchers
- Department of Zoology, Program in Ecology Evolutionary Biology and Behavior, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA College of Life and Environmental Sciences, Centre for Ecology and Conservation, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Jason B Wolf
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Tregenza
- College of Life and Environmental Sciences, Centre for Ecology and Conservation, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ, UK
| | - John Hunt
- College of Life and Environmental Sciences, Centre for Ecology and Conservation, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Ian Dworkin
- Department of Zoology, Program in Ecology Evolutionary Biology and Behavior, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
39
|
Chenoweth SF, Gosden TP. Variation and selection on preference functions: a comment on Edward. Behav Ecol 2015. [DOI: 10.1093/beheco/aru233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Ding B, Daugherty DW, Husemann M, Chen M, Howe AE, Danley PD. Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa. PLoS One 2014; 9:e114798. [PMID: 25494046 PMCID: PMC4262453 DOI: 10.1371/journal.pone.0114798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022] Open
Abstract
The traits involved in sexual selection, such as male secondary sexual characteristics and female mate choice, often co-evolve which can promote population differentiation. However, the genetic architecture of these phenotypes can influence their evolvability and thereby affect the divergence of species. The extraordinary diversity of East African cichlid fishes is often attributed to strong sexual selection and thus this system provides an excellent model to test predictions regarding the genetic architecture of sexually selected traits that contribute to reproductive isolation. In particular, theory predicts that rapid speciation is facilitated when male sexual traits and female mating preferences are controlled by a limited number of linked genes. However, few studies have examined the genetic basis of male secondary sexual traits and female mating preferences in cichlids and none have investigated the genetic architecture of both jointly. In this study, we artificially hybridized a pair of behaviorally isolated cichlid fishes from Lake Malawi and quantified both melanistic color pattern and female mate choice. We investigated the genetic architecture of both phenotypes using quantitative genetic analyses. Our results suggest that 1) many non-additively acting genetic factors influence melanistic color patterns, 2) female mate choice may be controlled by a minimum of 1-2 non-additive genetic factors, and 3) F2 female mate choice is not influenced by male courting effort. Furthermore, a joint analysis of color pattern and female mate choice indicates that the genes underlying these two traits are unlikely to be physically linked. These results suggest that reproductive isolation may evolve rapidly owing to the few genetic factors underlying female mate choice. Hence, female mate choice likely played an important role in the unparalleled speciation of East African cichlid fish.
Collapse
Affiliation(s)
- Baoqing Ding
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Daniel W. Daugherty
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Martin Husemann
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Ming Chen
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Aimee E. Howe
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Patrick D. Danley
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| |
Collapse
|
41
|
Greenfield MD, Alem S, Limousin D, Bailey NW. The dilemma of Fisherian sexual selection: Mate choice for indirect benefits despite rarity and overall weakness of trait-preference genetic correlation. Evolution 2014; 68:3524-36. [DOI: 10.1111/evo.12542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 10/02/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Michael D. Greenfield
- Institut de recherche sur la biologie de l'insecte (IRBI); CNRS UMR 7261, Université François; Rabelais de Tours, Parc de Grandmont 37200 Tours France
| | - Sylvain Alem
- Research Centre for Psychology; School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS United Kingdom
| | - Denis Limousin
- UPMC Univ Paris 06; UMR 1272, Physiologie de l’Insecte Signalisation et Communication; F-78026 Versailles France
- INRA; UMR 1272, Physiologie de l’Insecte Signalisation et Communication, F-78026; Versailles France
| | - Nathan W. Bailey
- Centre for Biological Diversity; School of Biology; University of St. Andrews; Fife KY16 9TH United Kingdom
| |
Collapse
|
42
|
Kawajiri M, Yoshida K, Fujimoto S, Mokodongan DF, Ravinet M, Kirkpatrick M, Yamahira K, Kitano J. Ontogenetic stage-specific quantitative trait loci contribute to divergence in developmental trajectories of sexually dimorphic fins between medaka populations. Mol Ecol 2014; 23:5258-75. [PMID: 25251151 DOI: 10.1111/mec.12933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022]
Abstract
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age-specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex-specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex- and age-specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.
Collapse
Affiliation(s)
- Maiko Kawajiri
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gosden TP, Rundle HD, Chenoweth SF. Testing the correlated response hypothesis for the evolution and maintenance of male mating preferences in Drosophila serrata. J Evol Biol 2014; 27:2106-12. [DOI: 10.1111/jeb.12461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 11/29/2022]
Affiliation(s)
- T. P. Gosden
- School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
- Section for Evolutionary Ecology; Department of Biology; Lund University; Lund Sweden
| | - H. D. Rundle
- Department of Biology; University of Ottawa; Ottawa ON Canada
| | - S. F. Chenoweth
- School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
| |
Collapse
|
44
|
Steiger S, Stökl J. The Role of Sexual Selection in the Evolution of Chemical Signals in Insects. INSECTS 2014; 5:423-38. [PMID: 26462692 PMCID: PMC4592599 DOI: 10.3390/insects5020423] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Chemical communication is the most ancient and widespread form of communication. Yet we are only beginning to grasp the complexity of chemical signals and the role they play in sexual selection. Focusing on insects, we review here the recent progress in the field of olfactory-based sexual selection. We will show that there is mounting empirical evidence that sexual selection affects the evolution of chemical traits, but form and strength of selection differ between species. Studies indicate that some chemical signals are expressed in relation to an individual's condition and depend, for example, on age, immunocompetence, fertility, body size or degree of inbreeding. Males or females might benefit by choosing based on those traits, gaining resources or "good genes". Other chemical traits appear to reliably reflect an individual's underlying genotype and are suitable to choose a mating partner that matches best the own genotype.
Collapse
Affiliation(s)
- Sandra Steiger
- Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Johannes Stökl
- Institute of Zoology, University of Regensburg, Universitätstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
45
|
Symes LB. Community composition affects the shape of mate response functions. Evolution 2014; 68:2005-13. [PMID: 24689891 DOI: 10.1111/evo.12415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
The evolution of mate preferences can be critical for the evolution of reproductive isolation and speciation. Heterospecific interference may carry substantial fitness costs and result in preferences where females are most responsive to the mean conspecific trait with low response to traits that differ from this value. However, when male traits are unbounded by heterospecifics, there may not be selection against females that respond to extreme trait values in the unbounded direction. To test how heterospecifics affected the shape of female response functions, I presented female Oecanthus tree crickets with synthetic calls representing a range of male calls, then measured female phonotaxis to construct response functions. The species with the fastest pulse rates in the community consistently responded to pulse rates faster than those produced by their males, whereas in the intermediate and slowest pulse rate species there was no significant difference between the male trait and the female response. This work suggests that species with the most extreme signal in the community respond to a greater range of signals, potentially resulting in a higher probability of hybridization during secondary contact, and revealing interactions between mate recognition and other aspects of sexual selection.
Collapse
Affiliation(s)
- Laurel B Symes
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755.
| |
Collapse
|
46
|
Welch AM, Smith MJ, Gerhardt HC. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor. Evolution 2014; 68:1629-39. [PMID: 24621402 DOI: 10.1111/evo.12397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls.
Collapse
Affiliation(s)
- Allison M Welch
- Department of Biology, College of Charleston, South Carolina, 29424.
| | | | | |
Collapse
|
47
|
Groot AT, Schöfl G, Inglis O, Donnerhacke S, Classen A, Schmalz A, Santangelo RG, Emerson J, Gould F, Schal C, Heckel DG. Within-population variability in a moth sex pheromone blend: genetic basis and behavioural consequences. Proc Biol Sci 2014; 281:20133054. [PMID: 24500170 PMCID: PMC3924083 DOI: 10.1098/rspb.2013.3054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/14/2014] [Indexed: 11/12/2022] Open
Abstract
Evolutionary diversification of sexual communication systems in moths is perplexing because signal and response are under stabilizing selection in many species, and this is expected to constrain evolutionary change. In the moth Heliothis virescens, we consistently found high phenotypic variability in the female sex pheromone blend within each of four geographically distant populations. Here, we assess the heritability, genetic basis and behavioural consequences of this variation. Artificial selection with field-collected moths dramatically increased the relative amount of the saturated compound 16:Ald and decreased its unsaturated counterpart Z11-16:Ald, the major sex pheromone component (high line). In a cross between the high- and low-selected lines, one quantitative trait locus (QTL) explained 11-21% of the phenotypic variance in the 16:Ald/Z11-16:Ald ratio. Because changes in activity of desaturase enzymes could affect this ratio, we measured their expression levels in pheromone glands and mapped desaturase genes onto our linkage map. A delta-11-desaturase had lower expression in females producing less Z11-16:Ald; however, this gene mapped to a different chromosome than the QTL. A model in which the QTL is a trans-acting repressor of delta-11 desaturase expression explains many features of the data. Selection favouring heterozygotes which produce more unsaturated components could maintain a polymorphism at this locus.
Collapse
Affiliation(s)
- Astrid T. Groot
- IBED, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
- Department Entomology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695-7613, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Gerhard Schöfl
- Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11A, Jena 07745, Germany
| | - Ollie Inglis
- Department Entomology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695-7613, USA
| | - Susanne Donnerhacke
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| | - Alice Classen
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| | - Antje Schmalz
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| | - Richard G. Santangelo
- Department Entomology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695-7613, USA
| | - Jennifer Emerson
- Department Entomology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695-7613, USA
| | - Fred Gould
- Department Entomology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695-7613, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Coby Schal
- Department Entomology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695-7613, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - David G. Heckel
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| |
Collapse
|
48
|
Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 2013; 502:93-5. [PMID: 23965625 DOI: 10.1038/nature12489] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/18/2013] [Indexed: 11/09/2022]
Abstract
Sexual selection, through intra-male competition or female choice, is assumed to be a source of strong and sustained directional selection in the wild. In the presence of such strong directional selection, alleles enhancing a particular trait are predicted to become fixed within a population, leading to a decrease in the underlying genetic variation. However, there is often considerable genetic variation underlying sexually selected traits in wild populations, and consequently, this phenomenon has become a long-discussed issue in the field of evolutionary biology. In wild Soay sheep, large horns confer an advantage in strong intra-sexual competition, yet males show an inherited polymorphism for horn type and have substantial genetic variation in their horn size. Here we show that most genetic variation in this trait is maintained by a trade-off between natural and sexual selection at a single gene, relaxin-like receptor 2 (RXFP2). We found that an allele conferring larger horns, Ho(+), is associated with higher reproductive success, whereas a smaller horn allele, Ho(P), confers increased survival, resulting in a net effect of overdominance (that is, heterozygote advantage) for fitness at RXFP2. The nature of this trade-off is simple relative to commonly proposed explanations for the maintenance of sexually selected traits, such as genic capture ('good genes') and sexually antagonistic selection. Our results demonstrate that by identifying the genetic architecture of trait variation, we can determine the principal mechanisms maintaining genetic variation in traits under strong selection and explain apparently counter-evolutionary observations.
Collapse
Affiliation(s)
- Susan E Johnston
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Additive genetic architecture underlying a rapidly evolving sexual signaling phenotype in the Hawaiian cricket genus Laupala. Behav Genet 2013; 43:445-54. [PMID: 23907616 DOI: 10.1007/s10519-013-9601-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/11/2013] [Indexed: 12/25/2022]
Abstract
Complex, quantitative traits are often the function of the coordinated action of many physically independent genetic factors. Interactive properties of multilocus genotypes, such as epistasis, are thought to be pervasive components of the genetic architecture of complex phenotypes. Here, we utilize a panel of interspecific backcross introgression lines to evaluate the genetic architecture of song variation, a quantitative sexual signaling phenotype, in the Hawaiian swordtail cricket genus Laupala. Allelic effects across five quantitative trait loci are consistent with a purely additive model of gene action, where alleles at multiple loci are found to have fully independent and discrete effects with respect to the sexual signaling phenotype. Whereas a more complex genetic architecture featuring non-additive dominance and epistasis components may constrain potential evolutionary trajectories and reduce the rate of evolutionary change, the polygenic, additive genetic architecture observed for sexual signaling in Laupala should respond rapidly to directional selection pressures and freely move throughout phenotypic space. This classic type I genetic architecture may facilitate the explosive radiation of song variation observed across the Laupala genus.
Collapse
|
50
|
Fowler-Finn KD, Rodríguez RL. Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Anim Behav 2013. [DOI: 10.1016/j.anbehav.2012.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|