1
|
Byers JE, Pringle JM. Variation in Oceanographic Resistance of the World's Coastlines to Invasion by Species With Planktonic Dispersal. Ecol Lett 2024; 27:e14520. [PMID: 39354906 DOI: 10.1111/ele.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high-resolution global ocean model to isolate the role of ocean currents on the persistence of a larval-producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade-offs between dispersal traits vary globally.
Collapse
Affiliation(s)
- James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - James M Pringle
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
2
|
Yang Z, Zhang L, Zhang W, Tian X, Lai W, Lin D, Feng Y, Jiang W, Zhang Z, Zhang Z. Identification of the principal neuropeptide MIP and its action pathway in larval settlement of the echiuran worm Urechis unicinctus. BMC Genomics 2024; 25:337. [PMID: 38641568 PMCID: PMC11027379 DOI: 10.1186/s12864-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Xinhua Tian
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenyuan Lai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Peniston JH, Burgess SC. Larval and Adult Traits Coevolve in Response to Asymmetric Coastal Currents to Shape Marine Dispersal Kernels. Am Nat 2024; 203:E63-E77. [PMID: 38306287 DOI: 10.1086/728003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractDispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal.
Collapse
|
4
|
Arango CP, Brenneis G. Epimorphic development in tropical shallow-water Nymphonidae (Arthropoda: Pycnogonida) revealed by fluorescence imaging. ZOOLOGICAL LETTERS 2024; 10:1. [PMID: 38167377 PMCID: PMC10759633 DOI: 10.1186/s40851-023-00223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Extant lineages of sea spiders (Pycnogonida) exhibit different types of development. Most commonly, pycnogonids hatch as a minute, feeding protonymphon larva with subsequent anamorphic development. However, especially in cold water habitats at higher latitudes and in the deep sea, some taxa have large, lecithotrophic larvae, or even undergo extended embryonic development with significantly advanced postlarval hatching stages. Similar biogeographic trends are observed in other marine invertebrates, often referred to as "Thorson's rule". RESULTS To expand our knowledge on the developmental diversity in the most speciose pycnogonid genus Nymphon, we studied the developmental stages of the two tropical representatives N. floridanum and N. micronesicum., We compared classical scanning electron microscopy with fluorescence-based approaches to determine which imaging strategy is better suited for the ethanol-fixed material available. Both species show epimorphic development and hatch as an advanced, lecithotrophic postlarval instar possessing the anlagen of all body segments. Leg pairs 1-3 show a considerable degree of differentiation at hatching, but their proximal regions remain coiled and hidden under the cuticle of the hatching instar. The adult palp and oviger are not anteceded by three-articled larval limbs, but differentiate directly from non-articulated limb buds during postembryonic development. CONCLUSIONS Fluorescence imaging yielded more reliable morphological data than classical scanning electron microscopy, being the method of choice for maximal information gain from rare and fragile sea spider samples fixed in high-percentage ethanol. The discovery of epimorphic development with lecithotrophic postlarval instars in two small Nymphon species from tropical shallow-water habitats challenges the notion that this developmental pathway represents an exclusive cold-water adaptation in Nymphonidae. Instead, close phylogenetic affinities to the likewise more direct-developing Callipallenidae hint at a common evolutionary origin of this trait in the clade Nymphonoidea (Callipallenidae + Nymphonidae). The lack of functional palpal and ovigeral larval limbs in callipallenids and postlarval hatchers among nymphonids may be a derived character of Nymphonoidea. To further test this hypothesis, a stable and well-resolved phylogenetic backbone for Nymphonoidea is key.
Collapse
Affiliation(s)
- Claudia P Arango
- Queensland Museum, Biodiversity Program, PO Box 3300, South Brisbane, QLD, 4101, Australia
| | - Georg Brenneis
- Department Evolutionary Biology, Unit Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Watson GJ, Kohler S, Collins JJ, Richir J, Arduini D, Calabrese C, Schaefer M. Can the global marine aquarium trade (MAT) be a model for sustainable coral reef fisheries? SCIENCE ADVANCES 2023; 9:eadh4942. [PMID: 38055813 DOI: 10.1126/sciadv.adh4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Globally, 6 million coral reef fishers provide ~25% of emergent countries' catch, but species have low value. The marine aquarium trade (MAT) targets high-value biodiversity, but missing data amplify draconian governance and demand for international prohibition. To stimulate sustainability and reef conservation investment, we generate a fiscal baseline using the first global analysis of numbers, diversity, and biomass of MAT-traded organisms. Each year, ~55 million organisms worth US$2.15 billion at retail are traded comparable with major fisheries, e.g., tuna. A sustainable MAT also requires overexploitation assessments. We identify 25 species/genera with "Extremely High" risk ratios and place the Indonesian and Sulu-Celebes Seas in the highest exploitation category. Despite predicted hobbyist number increases, unabated reef degradation and low governance will transform the MAT into an aquaculture-dominated industry decoupled from communities (i.e., culture located in importing countries). A "MAT-positive" future requires evidence-based management/governance, consumer education, and sustainable practice incentivization but can address the biodiversity and social and economic inequality crises.
Collapse
Affiliation(s)
- Gordon J Watson
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Shanelle Kohler
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Jacob-Joe Collins
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Daniele Arduini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Claudio Calabrese
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Martin Schaefer
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
6
|
Pringle JM. Are Coastal Marine Larvae Dispersed Less Than Would Be Expected by Ocean Currents? THE BIOLOGICAL BULLETIN 2023; 245:129-138. [PMID: 39316744 DOI: 10.1086/732015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AbstractThe distance that offspring disperse from their parents affects how a species responds to habitat disturbance, climate change, and interspecific interactions. For many benthic species, this dispersal is via planktonic larvae, but the distance these larvae disperse is difficult to observe directly. Dispersal distance has usually been estimated indirectly by combining an observed quantity (e.g., the rate of spread of an invasive organism or genetic similarity between locations) with a model that links that quantity to the dispersal of larvae. The estimates of dispersal distance based on the speed of spread of invasive organisms have led many researchers to conclude that the larvae of most of these organisms disperse much less than would be expected if they were being passively transported by the expected ocean currents (Shanks et al.; Shanks). I argue that the discrepancy is instead caused by the choice of model linking dispersal distance to invasion speed. Their model neglected the impact of life history, population growth, and oceanographic parameters on invasion speed. When dispersal distance is estimated from a more complete model of invasion speed, it is found that larval dispersal distance is not much less than would be expected for larvae drifting in the observed ocean currents.
Collapse
|
7
|
Jarvis GC, Marshall DJ. Fertilization Mode Covaries with Body Size. Am Nat 2023; 202:448-457. [PMID: 37792921 DOI: 10.1086/725864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe evolution of internal fertilization has occurred repeatedly and independently across the tree of life. As it has evolved, internal fertilization has reshaped sexual selection and the covariances among sexual traits, such as testes size, and gamete traits. But it is unclear whether fertilization mode also shows evolutionary associations with traits other than primary sex traits. Theory predicts that fertilization mode and body size should covary, but formal tests with phylogenetic control are lacking. We used a phylogenetically controlled approach to test the covariance between fertilization mode and adult body size (while accounting for latitude, offspring size, and offspring developmental mode) among 1,232 species of marine invertebrates from three phyla. Within all phyla, external fertilizers are consistently larger than internal fertilizers: the consequences of fertilization mode extend to traits that are only indirectly related to reproduction. We suspect that other traits may also coevolve with fertilization mode in ways that remain unexplored.
Collapse
|
8
|
Leach TS, Hofmann GE. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin, Strongylocentrotus purpuratus. Front Physiol 2023; 14:1230590. [PMID: 37601631 PMCID: PMC10436589 DOI: 10.3389/fphys.2023.1230590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism's reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ. Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus, were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014-2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.
Collapse
|
9
|
Richardson EL, Marshall DJ. Mapping the correlations and gaps in studies of complex life histories. Ecol Evol 2023; 13:e9809. [PMID: 36820248 PMCID: PMC9937794 DOI: 10.1002/ece3.9809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
For species with complex life histories, phenotypic correlations between life-history stages constrain both ecological and evolutionary trajectories. Studies that seek to understand correlations across the life history differ greatly in their experimental approach: some follow individuals ("individual longitudinal"), while others follow cohorts ("cohort longitudinal"). Cohort longitudinal studies risk confounding results through Simpson's Paradox, where correlations observed at the cohort level do not match that of the individual level. Individual longitudinal studies are laborious in comparison, but provide a more reliable test of correlations across life-history stages. Our understanding of the prevalence, strength, and direction of phenotypic correlations depends on the approaches that we use, but the relative representation of different approaches remains unknown. Using marine invertebrates as a model group, we used a formal, systematic literature map to screen 17,000+ papers studying complex life histories, and characterized the study type (i.e., cohort longitudinal, individual longitudinal, or single stage), as well as other factors. For 3315 experiments from 1716 articles, 67% focused on a single stage, 31% were cohort longitudinal and just 1.7% used an individual longitudinal approach. While life-history stages have been studied extensively, we suggest that the field prioritize individual longitudinal studies to understand the phenotypic correlations among stages.
Collapse
Affiliation(s)
- Emily L. Richardson
- Centre for Geometric Biology, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
10
|
Marshall DJ, Connallon T. Carry-over effects and fitness trade-offs in marine life histories: The costs of complexity for adaptation. Evol Appl 2023; 16:474-485. [PMID: 36793690 PMCID: PMC9923492 DOI: 10.1111/eva.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Most marine organisms have complex life histories, where the individual stages of a life cycle are often morphologically and ecologically distinct. Nevertheless, life-history stages share a single genome and are linked phenotypically (by "carry-over effects"). These commonalities across the life history couple the evolutionary dynamics of different stages and provide an arena for evolutionary constraints. The degree to which genetic and phenotypic links among stages hamper adaptation in any one stage remains unclear and yet adaptation is essential if marine organisms will adapt to future climates. Here, we use an extension of Fisher's geometric model to explore how both carry-over effects and genetic links among life-history stages affect the emergence of pleiotropic trade-offs between fitness components of different stages. We subsequently explore the evolutionary trajectories of adaptation of each stage to its optimum using a simple model of stage-specific viability selection with nonoverlapping generations. We show that fitness trade-offs between stages are likely to be common and that such trade-offs naturally emerge through either divergent selection or mutation. We also find that evolutionary conflicts among stages should escalate during adaptation, but carry-over effects can ameliorate this conflict. Carry-over effects also tip the evolutionary balance in favor of better survival in earlier life-history stages at the expense of poorer survival in later stages. This effect arises in our discrete-generation framework and is, therefore, unrelated to age-related declines in the efficacy of selection that arise in models with overlapping generations. Our results imply a vast scope for conflicting selection between life-history stages, with pervasive evolutionary constraints emerging from initially modest selection differences between stages. Organisms with complex life histories should also be more constrained in their capacity to adapt to global change than those with simple life histories.
Collapse
Affiliation(s)
- Dustin J. Marshall
- School of Biological Sciences, and Centre for Geometric BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Tim Connallon
- School of Biological Sciences, and Centre for Geometric BiologyMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
11
|
Davidson PL, Guo H, Swart JS, Massri AJ, Edgar A, Wang L, Berrio A, Devens HR, Koop D, Cisternas P, Zhang H, Zhang Y, Byrne M, Fan G, Wray GA. Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins. Nat Ecol Evol 2022; 6:1907-1920. [PMID: 36266460 DOI: 10.1038/s41559-022-01906-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.
Collapse
Affiliation(s)
| | - Haobing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jane S Swart
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - He Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Jarvis GC, White CR, Marshall DJ. Macroevolutionary patterns in marine hermaphroditism. Evolution 2022; 76:3014-3025. [PMID: 36199199 PMCID: PMC10091813 DOI: 10.1111/evo.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 01/22/2023]
Abstract
Most plants and many animals are hermaphroditic; whether the same forces are responsible for hermaphroditism in both groups is unclear. The well-established drivers of hermaphroditism in plants (e.g., seed dispersal potential, pollination mode) have analogues in animals (e.g., larval dispersal potential, fertilization mode), allowing us to test the generality of the proposed drivers of hermaphroditism across both groups. Here, we test these theories for 1153 species of marine invertebrates, from three phyla. Species with either internal fertilization, restricted offspring dispersal, or small body sizes are more likely to be hermaphroditic than species that are external fertilizers, planktonic developers, or larger. Plants and animals show different biogeographical patterns, however: animals are less likely to be hermaphroditic at higher latitudes-the opposite to the trend in plants. Overall, our results suggest that similar forces, namely, competition among offspring or gametes, shape the evolution of hermaphroditism across plants and three invertebrate phyla.
Collapse
Affiliation(s)
- George C. Jarvis
- School of Biological Sciences/Centre for Geometric BiologyMonash UniversityMelbourneVIC 3800Australia
| | - Craig R. White
- School of Biological Sciences/Centre for Geometric BiologyMonash UniversityMelbourneVIC 3800Australia
| | - Dustin J. Marshall
- School of Biological Sciences/Centre for Geometric BiologyMonash UniversityMelbourneVIC 3800Australia
| |
Collapse
|
13
|
Davidson PL, Byrne M, Wray GA. Evolutionary Changes in the Chromatin Landscape Contribute to Reorganization of a Developmental Gene Network During Rapid Life History Evolution in Sea Urchins. Mol Biol Evol 2022; 39:msac172. [PMID: 35946348 PMCID: PMC9435058 DOI: 10.1093/molbev/msac172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways. In this study we present a comparative analysis of regulatory element sequences and accessibility throughout embryogenesis in three sea urchin species with divergent life histories: a lecithotroph Heliocidaris erythrogramma, a closely related planktotroph H. tuberculata, and a distantly related planktotroph Lytechinus variegatus. We identified distinct epigenetic and mutational signatures of evolutionary modifications to the function of putative cis-regulatory elements in H. erythrogramma that have accumulated nonuniformly throughout the genome, suggesting selection, rather than drift, underlies many modifications associated with the derived life history. Specifically, regulatory elements composing the sea urchin developmental gene regulatory network are enriched for signatures of positive selection and accessibility changes which may function to alter binding affinity and access of developmental transcription factors to these sites. Furthermore, regulatory element changes often correlate with divergent expression patterns of genes involved in cell type specification, morphogenesis, and development of other derived traits, suggesting these evolutionary modifications have been consequential for phenotypic evolution in H. erythrogramma. Collectively, our results demonstrate that selective pressures imposed by changes in developmental life history rapidly reshape the cis-regulatory landscape of core developmental genes to generate novel traits and embryonic programs.
Collapse
Affiliation(s)
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
14
|
Bai S, Fan S, Liu D, Zhang Z, Zhang Z. Identification and expression analysis of receptors that mediate MIP regulating larval settlement in Urechis unicinctus. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110732. [PMID: 35278715 DOI: 10.1016/j.cbpb.2022.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Larval attachment and metamorphosis are important processes during the development of some marine invertebrates. Myoinhibitory peptides (MIPs), a class of small molecular neuropeptides, have been revealed to be involved in regulating the larval settlement. In this paper, we identified two types of MIP membrane receptors, G-protein coupled receptor SPR and MIP-gated ion channel receptors MGIC1 and MGIC2 based on sequence homology with other species in the transcriptome database of Echiuroidea Urechis unicinctus (Xenopneusta, Urechidae). The results of in situ hybridization showed that positive signals of these receptors were obviously located in the apex of the segmentation larvae, a critical stage of U. unicinctus larval settlement. Further, these receptors were determined on the membrane of HEK293 cells by immunohistochemistry. Also, we verified that U. unicinctus MIP can activate its SPR receptor based on the results of the significantly decreased cAMP concentration in HEK293 cells. Our data will provide scientific reference for elucidating mechanism of neuropeptide regulating the larval attachment and metamorphosis in marine invertebrates.
Collapse
Affiliation(s)
- Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shutong Fan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breesing Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
15
|
Kustra M, Carrier TJ. On the spread of microbes that manipulate reproduction in marine invertebrates. Am Nat 2022; 200:217-235. [DOI: 10.1086/720282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
ten Brink H, Seehausen O. Competition among small individuals hinders adaptive radiation despite ecological opportunity. Proc Biol Sci 2022; 289:20212655. [PMID: 35317672 PMCID: PMC8941390 DOI: 10.1098/rspb.2021.2655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 02/02/2023] Open
Abstract
Ontogenetic diet shifts, where individuals change their resource use during development, are the rule rather than the exception in the animal world. Here, we aim to understand how such changes in diet during development affect the conditions for an adaptive radiation in the presence of ecological opportunity. We use a size-structured consumer-resource model and the adaptive dynamics approach to study the ecological conditions for speciation. We assume that small individuals all feed on a shared resource. Large individuals, on the other hand, have access to multiple food sources on which they can specialize. We find that competition among small individuals can hinder an adaptive radiation to unfold, despite plenty of ecological opportunity for large individuals. When small individuals experience strong competition for food, they grow slowly and only a few individuals are recruited to the larger size classes. Hence, competition for food among large individuals is weak and there is therefore no disruptive selection. In addition, initial conditions determine if an adaptive radiation occurs or not. A consumer population initially dominated by small individuals will not radiate. On the other hand, a population initially dominated by large individuals may undergo adaptive radiation and diversify into multiple species.
Collapse
Affiliation(s)
- Hanna ten Brink
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and Biogeochemistry, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and Biogeochemistry, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Abstract
As analyses of developmental mechanisms extend to ever more species, it becomes important to understand not just what is conserved or altered during evolution, but why. Closely related species that exhibit extreme phenotypic divergence can be uniquely informative in this regard. A case in point is the sea urchin genus Heliocidaris, which contains species that recently evolved a life history involving nonfeeding larvae following nearly half a billion years of prior evolution with feeding larvae. The resulting shift in selective regimes produced rapid and surprisingly extensive changes in developmental mechanisms that are otherwise highly conserved among echinoderm species. The magnitude and extent of these changes challenges the notion that conservation of early development in echinoderms is largely due to internal constraints that prohibit modification and instead suggests that natural selection actively maintains stability of inherently malleable trait developmental mechanisms over immense time periods. Knowing how and why natural selection changed during the evolution of nonfeeding larvae can also reveal why developmental mechanisms do and do not change in particular ways.
Collapse
Affiliation(s)
- Gregory A Wray
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
18
|
Cheng BS, Blumenthal J, Chang AL, Barley J, Ferner MC, Nielsen KJ, Ruiz GM, Zabin CJ. Severe introduced predator impacts despite attempted functional eradication. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Woods HA, Moran AL. Reconsidering the Oxygen-Temperature Hypothesis of Polar Gigantism: Successes, Failures, and Nuance. Integr Comp Biol 2021; 60:1438-1453. [PMID: 32573680 DOI: 10.1093/icb/icaa088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
"Polar gigantism" describes a biogeographic pattern in which many ectotherms in polar seas are larger than their warmer-water relatives. Although many mechanisms have been proposed, one idea-the oxygen-temperature hypothesis-has received significant attention because it emerges from basic biophysical principles and is appealingly straightforward and testable. Low temperatures depress metabolic demand for oxygen more than supply of oxygen from the environment to the organism. This creates a greater ratio of oxygen supply to demand, releasing polar organisms from oxygen-based constraints on body size. Here we review evidence for and against the oxygen-temperature hypothesis. Some data suggest that larger-bodied taxa live closer to an oxygen limit, or that rising temperatures can challenge oxygen delivery systems; other data provide no evidence for interactions between body size, temperature, and oxygen sufficiency. We propose that these findings can be partially reconciled by recognizing that the oxygen-temperature hypothesis focuses primarily on passive movement of oxygen, implicitly ignoring other important processes including ventilation of respiratory surfaces or internal transport of oxygen by distribution systems. Thus, the hypothesis may apply most meaningfully to organisms with poorly developed physiological systems (eggs, embryos, egg masses, juveniles, or adults without mechanisms for ventilating internal or external surfaces). Finally, most tests of the oxygen-temperature hypothesis have involved short-term experiments. Many organisms can mount effective responses to physiological challenges over short time periods; however, the energetic cost of doing so may have impacts that appear only in the longer term. We therefore advocate a renewed focus on long-term studies of oxygen-temperature interactions.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
20
|
Caplins SA. Plasticity and artificial selection for developmental mode in a poecilogonous sea slug. Ecol Evol 2021; 11:14217-14230. [PMID: 34707850 PMCID: PMC8525145 DOI: 10.1002/ece3.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/12/2022] Open
Abstract
The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk-feeding (lecithotrophic) larvae during the summer, and more planktonic-feeding (planktotrophic) larvae in the winter. I found significant family-level variation in the reaction norms between 17 maternal families of A. willowi when reared in a split-brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg-mass type in A. willowi, but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.
Collapse
|
21
|
Mazzei R, Rubenstein DR. Larval ecology, dispersal, and the evolution of sociality in the sea. Ethology 2021. [DOI: 10.1111/eth.13195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Renata Mazzei
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
| |
Collapse
|
22
|
Reed AJ, Godbold JA, Solan M, Grange LJ. Reproductive traits and population dynamics of benthic invertebrates indicate episodic recruitment patterns across an Arctic polar front. Ecol Evol 2021; 11:6900-6912. [PMID: 34141264 PMCID: PMC8207403 DOI: 10.1002/ece3.7539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Climate-induced changes in the ocean and sea ice environment of the Arctic are beginning to generate major and rapid changes in Arctic ecosystems, but the effects of directional forcing on the persistence and distribution of species remain poorly understood. Here, we examine the reproductive traits and population dynamics of the bivalve Astarte crenata and sea star Ctenodiscus crispatus across a north-south transect that intersects the polar front in the Barents Sea. Both species present large oocytes indicative of short pelagic or direct development that do not differ in size-frequency between 74.5 and 81.3º latitude. However, despite gametogenic maturity, we found low frequencies of certain size classes within populations that may indicate periodic recruitment failure. We suggest that recruitment of A. crenata could occur periodically when conditions are favorable, while populations of C. crispatus are characterized by episodic recruitment failures. Pyloric caeca indices in C. crispatus show that food uptake is greatest at, and north of, the polar front, providing credence to the view that interannual variations in the quantity and quality of primary production and its flux to the seafloor, linked to the variable extent and thickness of sea ice, are likely to be strong determinants of physiological fitness. Our findings provide evidence that the distribution and long-term survival of species is not only a simple function of adaptive capacity to specific environmental changes, but will also be contingent on the frequency and occurrence of years where environmental conditions support reproduction and settlement.
Collapse
Affiliation(s)
- Adam J. Reed
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Jasmin A. Godbold
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Martin Solan
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | | |
Collapse
|
23
|
Avaca MS, Storero L, Martín P, Narvarte M. Influence of Maternal Size on Offspring Traits in a Marine Gastropod with Direct Development and without Sibling Interaction. THE BIOLOGICAL BULLETIN 2021; 240:95-104. [PMID: 33939943 DOI: 10.1086/713065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractIn most animal taxa, large mothers (or those with high nutritional status) produce large offspring, leading to a maternal size-offspring size correlation, that is, a positive correlation between maternal size and offspring size. Here, we used the natural variation in maternal size between three natural populations of Buccinanops deformis (a marine snail with direct development, nurse egg feeding, and a single embryo per egg capsule) to study maternal investment and offspring size. The main objectives were to compare offspring size and maternal investment traits within and between populations and to evaluate the relationship between maternal size and offspring size. Although not supported in every population, our results show that maternal size was positively correlated with offspring size, thus representing an example of the maternal size-offspring size correlation in a species in which there is no competition for food between capsule mates because only one embryo develops per capsule. These findings also suggest that in B. deformis larger mothers produce more offspring and provide their offspring with more resources, and that this between-population variation in offspring size is related to differences in the number of nurse eggs allocated per egg capsule and in egg capsule size. The ubiquity of the maternal size-offspring size correlation in B. deformis needs to be tested further across populations, because factors other than maternal size could influence offspring size variation in this marine gastropod.
Collapse
|
24
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
25
|
Gall ML, Holmes SP, Campbell H, Byrne M. Effects of marine heatwave conditions across the metamorphic transition to the juvenile sea urchin (Heliocidaris erythrogramma). MARINE POLLUTION BULLETIN 2021; 163:111914. [PMID: 33385800 DOI: 10.1016/j.marpolbul.2020.111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
For short development species, like the sea urchin Heliocidaris erythrogramma, the entire planktonic duration can be impacted by marine heatwaves (MHW). Developmental thermal tolerance of this species through metamorphosis was investigated over a broad range (7.6-28.0 °C), including temperatures across its distribution and MHW conditions. In controls (19.5-21.0 °C), 80% of individuals developed to metamorphosis at day 5, doubling to 10 days at 14.0 °C. The thermal range (14.4-21.2 °C) of metamorphosis on day 7 reflected the realised thermal niche with 25.9 °C the upper temperature for success (T40). By day 10, juvenile tolerance narrowed to the local range (16.2-19.0 °C), similar to levels tolerated by adults, indicating negative carryover effects across the metamorphic transition. Without phenotypic adjustment or adaptation, regional warming will be detrimental, although populations may be sustained by thermotolerant offspring. Our results show the importance of the metamorphic transition in understanding the cumulative sensitivity of species to MHW.
Collapse
Affiliation(s)
- Mailie L Gall
- School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Sebastian P Holmes
- School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Hamish Campbell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
26
|
Boulding E, Behrens Yamada S, Schooler S, Shanks A. Periodic invasions during El Niño events by the predatory lined shore crab (Pachygrapsus crassipes): forecasted effects of its establishment on direct-developing indigenous prey species (Littorinaspp.). CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coevolutionary arms races between shelled gastropods and their predators are more escalated near the equator. Therefore, temperate gastropods are predicted to be maladapted to highly specialized tropical shell-crushing crabs. The northern geographical limit of the lined shore crab (Pachygrapsus crassipes J.W. Randall, 1840) does not usually overlap with the southern limit of the Sitka periwinkle (Littorina sitkana Philippi, 1846), which lacks a pelagic larval stage. Large El Niño events increased the winter abundance and poleward transport of P. crassipes larvae from California (USA) in the Davidson Current. Temporary intertidal crab populations that included females with eggs were observed 1–4 years later, >1000 km north of its usual geographical range. Laboratory experiments showed that L. sitkana did not have a size refuge from adult P. crassipes. Moreover, consumption rates of adult L. sitkana by P. crassipes were 10-fold higher than those published for indigenous purple shore crabs (Hemigrapsus nudus (Dana, 1851)) with similar claw sizes. Additionally, the upper intertidal limit of invading P. crassipes was higher than that of H. nudus. Consequently, the invasion of P. crassipes reduced the width of L. sitkana‘s spatial refuge from predation. The permanent presence of this subtropical predator could reduce the intertidal distribution of this temperate gastropod, thereby causing contraction of its southern range limit.
Collapse
Affiliation(s)
- E.G. Boulding
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - S. Behrens Yamada
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - S.S. Schooler
- South Slough National Estuarine Research Reserve, P.O. Box 5417, Charleston, OR 97420, USA
| | - A.L. Shanks
- Oregon Institute of Marine Biology, P.O. Box 5389, Charleston, OR 97420, USA
| |
Collapse
|
27
|
Marshall DJ, Alvarez-Noriega M. Projecting marine developmental diversity and connectivity in future oceans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190450. [PMID: 33131447 DOI: 10.1098/rstb.2019.0450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Global change will alter the distribution of organisms around the planet. While many studies have explored how different species, groups and traits might be re-arranged, few have explored how dispersal is likely to change under future conditions. Dispersal drives ecological and evolutionary dynamics of populations, determining resilience, persistence and spread. In marine systems, dispersal shows clear biogeographical patterns and is extremely dependent on temperature, so simple projections can be made regarding how dispersal potentials are likely to change owing to global warming under future thermal regimes. We use two proxies for dispersal-developmental mode and developmental duration. Species with a larval phase are more dispersive than those that lack a larval phase, and species that spend longer developing in the plankton are more dispersive than those that spend less time in the plankton. Here, we explore how the distribution of different development modes is likely to change based on current distributions. Next, we estimate how the temperature-dependence of development itself depends on the temperature in which the species lives, and use this estimate to project how developmental durations are likely to change in the future. We find that species with feeding larvae are likely to become more prevalent, extending their distribution poleward at the expense of species with aplanktonic development. We predict that developmental durations are likely to decrease, particularly in high latitudes where durations may decline by more than 90%. Overall, we anticipate significant changes to dispersal in marine environments, with species in the polar seas experiencing the greatest change. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mariana Alvarez-Noriega
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Álvarez-Noriega M, Burgess SC, Byers JE, Pringle JM, Wares JP, Marshall DJ. Global biogeography of marine dispersal potential. Nat Ecol Evol 2020; 4:1196-1203. [DOI: 10.1038/s41559-020-1238-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
|
29
|
Wolfe K, Nguyen HD, Davey M, Byrne M. Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change. GLOBAL CHANGE BIOLOGY 2020; 26:3858-3879. [PMID: 32239581 DOI: 10.1111/gcb.15103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco-stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pHT using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid-intertidal habitat exhibited the greatest flux over the years (pHT 7.52-8.87), and over a single tidal cycle (1.11 pHT units), while the low-intertidal (pHT 7.82-8.30) and subtidal (pHT 7.87-8.30) were less variable. Temperature flux was also greatest in the mid-intertidal (8.0-34.5°C) and over a single tidal event (14°C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid-intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid-intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat-specific vulnerabilities and climate change refugia.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, Qld, Australia
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hong D Nguyen
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Madeline Davey
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Ten Brink H, Onstein RE, de Roos AM. Habitat deterioration promotes the evolution of direct development in metamorphosing species. Evolution 2020; 74:1826-1850. [PMID: 32524589 PMCID: PMC7496874 DOI: 10.1111/evo.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022]
Abstract
Although metamorphosis is widespread in the animal kingdom, several species have evolved life‐cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size‐structured consumer‐resource models in conjunction with the adaptive‐dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Fish Ecology & Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Renske E Onstein
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - André M de Roos
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Waters J, Emerson B, Arribas P, McCulloch G. Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends Ecol Evol 2020; 35:512-522. [DOI: 10.1016/j.tree.2020.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
|
32
|
Storch LS, Pringle JM. Where and how do localized perturbations affect stream and coastal ocean populations with nonlinear growth dynamics? THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-019-00446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Suzuki KS, Suzuki KW, Kumakura E, Sato K, Oe Y, Sato T, Sawada H, Masuda R, Nogata Y. Seasonal alternation of the ontogenetic development of the moon jellyfish Aurelia coerulea in Maizuru Bay, Japan. PLoS One 2019; 14:e0225513. [PMID: 31751435 PMCID: PMC6872181 DOI: 10.1371/journal.pone.0225513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/06/2019] [Indexed: 01/22/2023] Open
Abstract
Outbreaks of moon jellyfish Aurelia spp. are frequently reported from many parts of the world's coastal areas. Aurelia spp. canonically show a metagenetic life cycle in which planulae transform into sessile polyps, which can drastically increase in number through asexual reproduction. Therefore, their asexual reproduction has been recognized as one of the major causes of the outbreaks. Aurelia spp. also show direct development that lacks asexual reproduction during the polyp stage, which prevents us from understanding the mechanisms of its outbreaks. To clarify the seasonality of the metagenetic and direct-development life cycles of Aurelia sp. in Maizuru Bay, Japan, we conducted field observations and laboratory experiments throughout the year. Additionally, the two life cycle types were genetically analyzed to confirm that they belong to the single species Aurelia coerulea, which dominates in coastal waters in Japan. From July until October, Aurelia coerulea produced smaller eggs and planulae all of which developed into polyps. However, from December until May, larger eggs and planulae were produced and 90% of the planulae developed into planktonic ephyrae bypassing the sessile polyp stage. Our results demonstrated that a single species, A. coerulea, seasonally shifts between their two life cycle types at a water temperature threshold of 20°C in Maizuru Bay. The higher energy storage of larger planulae was suggested to enable the planulae to develop into ephyrae without external energy input through feeding during the polyp stage. The adaptive significances of the two life cycle types were also discussed.
Collapse
Affiliation(s)
- Kentaro S. Suzuki
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba, Japan
- * E-mail:
| | - Keita W. Suzuki
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto, Japan
| | | | | | - Yutaro Oe
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tasuku Sato
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hideki Sawada
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto, Japan
| | - Reiji Masuda
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto, Japan
| | - Yasuyuki Nogata
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba, Japan
| |
Collapse
|
34
|
Jossart Q, Sands CJ, Sewell MA. Dwarf brooder versus giant broadcaster: combining genetic and reproductive data to unravel cryptic diversity in an Antarctic brittle star. Heredity (Edinb) 2019; 123:622-633. [PMID: 31073238 PMCID: PMC6972741 DOI: 10.1038/s41437-019-0228-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Poecilogony, or multiple developmental modes in a single species, is exceedingly rare. Several species described as poecilogenous were later demonstrated to be multiple (cryptic) species with a different developmental mode. The Southern Ocean is known to harbor a high proportion of brooders (Thorson's Rule) but with an increasing number of counter examples over recent years. Here we evaluated poecilogony vs. crypticism in the brittle star Astrotoma agassizii across the Southern Ocean. This species was initially described from South America as a brooder before some pelagic stages were identified in Antarctica. Reproductive and mitochondrial data were combined to unravel geographic and genetic variation of developmental modes. Our results indicate that A. agassizii is composed of seven well-supported and deeply divergent clades (I: Antarctica and South Georgia; II: South Georgia and Sub-Antarctic locations including Kerguelen, Patagonian shelf, and New Zealand; III-VI-VII: Patagonian shelf, IV-V: South Georgia). Two of these clades demonstrated strong size dimorphism when in sympatry and can be linked to differing developmental modes (Clade V: dwarf brooder vs. Clade I: giant broadcaster). Based on their restricted geographic distributions and on previous studies, it is likely that Clades III-VI-VII are brooders. Clade II is composed of different morphological species, A. agassizii and A. drachi, the latter originally used as the outgroup. By integrating morphology, reproductive, and molecular data we conclude that the variation identified in A. agassizii is best described as crypticism rather than poecilogony.
Collapse
Affiliation(s)
- Quentin Jossart
- University of Auckland, Auckland, New Zealand.
- British Antarctic Survey, Cambridge, UK.
- Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
35
|
Ewers‐Saucedo C, Pappalardo P. Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles. Ecol Evol 2019; 9:11434-11447. [PMID: 31641484 PMCID: PMC6802071 DOI: 10.1002/ece3.5645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023] Open
Abstract
Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life history of thoracican barnacles within a strict phylogenetic framework. We collected environmental and larval trait data for 170 species from the literature, and utilized a complete thoracican synthesis tree to account for phylogenetic nonindependence. In accordance with Thorson's rule, the fraction of species with planktonic-feeding larvae declined with water depth and increased with water temperature, while the fraction of brooding species exhibited the reverse pattern. Species with planktonic-nonfeeding larvae were overall rare, following no apparent trend. In agreement with the "size advantage" hypothesis proposed by Strathmann in 1977, egg and larval size were closely correlated. Settlement-competent cypris larvae were larger in cold water, indicative of advantages for large juveniles when growth is slowed. Planktonic larval duration, on the other hand, was uncorrelated to environmental variables. We conclude that different selective pressures appear to shape the evolution of larval life history in barnacles.
Collapse
|
36
|
Davidson PL, Thompson JW, Foster MW, Moseley MA, Byrne M, Wray GA. A comparative analysis of egg provisioning using mass spectrometry during rapid life history evolution in sea urchins. Evol Dev 2019; 21:188-204. [PMID: 31102332 PMCID: PMC7232848 DOI: 10.1111/ede.12289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development-an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography-tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular-level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low-density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB-like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.
Collapse
Affiliation(s)
| | - J. Will Thompson
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Matthew W. Foster
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - M. Arthur Moseley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
37
|
ten Brink H, de Roos AM, Dieckmann U. The Evolutionary Ecology of Metamorphosis. Am Nat 2019; 193:E116-E131. [DOI: 10.1086/701779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Fenberg PB, Rivadeneira MM. On the importance of habitat continuity for delimiting biogeographic regions and shaping richness gradients. Ecol Lett 2019; 22:664-673. [PMID: 30734458 DOI: 10.1111/ele.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
The formation and maintenance of biogeographic regions and the latitudinal gradient of species richness are thought to be influenced, in part, by the spatial distribution of physical habitat (habitat continuity). But the importance of habitat continuity in relation to other variables for shaping richness gradients and delimiting biogeographic regions has not been well established. Here, we show that habitat continuity is a top predictor of biogeographic structure and the richness gradient of eastern Pacific rocky shore gastropods (spanning c. 23 000 km, from 43°S to 48°N). Rocky shore habitat continuity is generally low within tropical/subtropical regions (compared to extratropical regions), but particularly at biogeographic boundaries where steep richness gradients occur. Regions of high rocky shore habitat continuity are located towards the centres of biogeographic regions where species turnover tends to be relatively low. Our study highlights the importance of habitat continuity to help explain patterns and processes shaping the biogeographic organisation of species.
Collapse
Affiliation(s)
- Phillip B Fenberg
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, SO14 3ZH, UK.,Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Marcelo M Rivadeneira
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile.,Departamento de Biología Marina, Universidad Católica del Norte, Av. Larrondo 1281, Coquimbo, Chile.,Departamento de Biología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
39
|
Pettersen AK, White CR, Bryson-Richardson RJ, Marshall DJ. Linking life-history theory and metabolic theory explains the offspring size-temperature relationship. Ecol Lett 2019; 22:518-526. [PMID: 30618178 DOI: 10.1111/ele.13213] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Temperature often affects maternal investment in offspring. Across and within species, mothers in colder environments generally produce larger offspring than mothers in warmer environments, but the underlying drivers of this relationship remain unresolved. We formally evaluated the ubiquity of the temperature-offspring size relationship and found strong support for a negative relationship across a wide variety of ectotherms. We then tested an explanation for this relationship that formally links life-history and metabolic theories. We estimated the costs of development across temperatures using a series of laboratory experiments on model organisms, and a meta-analysis across 72 species of ectotherms spanning five phyla. We found that both metabolic and developmental rates increase with temperature, but developmental rate is more temperature sensitive than metabolic rate, such that the overall costs of development decrease with temperature. Hence, within a species' natural temperature range, development at relatively cooler temperatures requires mothers to produce larger, better provisioned offspring.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | - Craig R White
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | | | - Dustin J Marshall
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
An Antarctic flock under the Thorson's rule: Diversity and larval development of Antarctic Velutinidae (Mollusca: Gastropoda). Mol Phylogenet Evol 2018; 132:1-13. [PMID: 30502396 DOI: 10.1016/j.ympev.2018.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
In most marine gastropods, the duration of the larval phase is a key feature, strongly influencing species distribution and persistence. Antarctic lineages, in agreement with Thorson's rule, generally show a short pelagic developmental phase (or lack it completely), with very few exceptions. Among them is the ascidian-feeding gastropod family Velutinidae, a quite understudied group. Based on a multilocus (COI, 16S, 28S and ITS2) dataset for 182 specimens collected in Antarctica and other regions worldwide, we investigated the actual Antarctic velutinid diversity, inferred their larval development, tested species genetic connectivity and produced a first phylogenetic framework of the family. We identified 15 Antarctic Molecular Operational Taxonomic Units (MOTUs), some of which represented undescribed species, which show two different types of larval shell, indicating different duration of the Pelagic Larval Phase (PLD). Antarctic velutinids stand as an independent lineage, sister to the rest of the family, with extensive hidden diversity likely produced by rapid radiation. Our phylogenetic framework indicates that this Antarctic flock underwent repeated events of pelagic phase shortening, in agreement with Thorson's rule, yielding species with restricted geographic ranges.
Collapse
|
41
|
Moore JM, Carvajal JI, Rouse GW, Wilson NG. The Antarctic Circumpolar Current isolates and connects: Structured circumpolarity in the sea star Glabraster antarctica. Ecol Evol 2018; 8:10621-10633. [PMID: 30464833 PMCID: PMC6238125 DOI: 10.1002/ece3.4551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Abstract
AIM The Antarctic Circumpolar Current (ACC) connects benthic populations by transporting larvae around the continent, but also isolates faunas north and south of the Antarctic Convergence. We test circumpolar panmixia and dispersal across the Antarctic Convergence barrier in the benthic sea star Glabraster antarctica. LOCATION The Southern Ocean and south Atlantic Ocean, with comprehensive sampling including the Magellanic region, Scotia Arc, Antarctic Peninsula, Ross Sea, and East Antarctica. METHODS The cytochrome c oxidase subunit I (COI) gene (n = 285) and the internal transcribed spacer region 2 (ITS2; n = 33) were sequenced. We calculated haplotype networks for each genetic marker and estimated population connectivity and the geographic distribution of genetic structure using ΦST for COI data. RESULTS Glabraster antarctica is a single circum-Antarctic species with instances of gene flow between distant locations. Despite the homogenizing potential of the ACC, population structure is high (ΦST = 0.5236), and some subpopulations are genetically isolated. Genetic breaks in the Magellanic region do not align with the Antarctic Convergence, in contrast with prior studies. Connectivity patterns in East Antarctic sites are not uniform, with some regional isolation and some surprising affinities to the distant Magellanic and Scotia Arc regions. MAIN CONCLUSIONS Despite gene flow over extraordinary distances, there is strong phylogeographic structuring and genetic barriers evident between geographically proximate regions (e.g., Shag Rocks and South Georgia). Circumpolar panmixia is rejected, although some subpopulations show a circumpolar distribution. Stepping-stone dispersal occurs within the Scotia Arc but does not appear to facilitate connectivity across the Antarctic Convergence. The patterns of genetic connectivity in Antarctica are complex and should be considered in protected area planning for Antarctica.
Collapse
Affiliation(s)
- Jenna M. Moore
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
| | - Jose I. Carvajal
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
- Western Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Greg W. Rouse
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
| | - Nerida G. Wilson
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
- Western Australian MuseumWelshpoolWestern AustraliaAustralia
- University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
42
|
Conklin EE, Neuheimer AB, Toonen RJ. Modeled larval connectivity of a multi-species reef fish and invertebrate assemblage off the coast of Moloka'i, Hawai'i. PeerJ 2018; 6:e5688. [PMID: 30280049 PMCID: PMC6166622 DOI: 10.7717/peerj.5688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/04/2018] [Indexed: 01/13/2023] Open
Abstract
We use a novel individual-based model (IBM) to simulate larval dispersal around the island of Moloka‘i in the Hawaiian Archipelago. Our model uses ocean current output from the Massachusetts Institute of Technology general circulation model (MITgcm) as well as biological data on four invertebrate and seven fish species of management relevance to produce connectivity maps among sites around the island of Moloka‘i. These 11 species span the range of life history characteristics of Hawaiian coral reef species and show different spatial and temporal patterns of connectivity as a result. As expected, the longer the pelagic larval duration (PLD), the greater the proportion of larvae that disperse longer distances, but regardless of PLD (3–270 d) most successful dispersal occurs either over short distances within an island (<30 km) or to adjacent islands (50–125 km). Again, regardless of PLD, around the island of Moloka‘i, connectivity tends to be greatest among sites along the same coastline and exchange between northward, southward, eastward and westward-facing shores is limited. Using a graph-theoretic approach to visualize the data, we highlight that the eastern side of the island tends to show the greatest out-degree and betweenness centrality, which indicate important larval sources and connectivity pathways for the rest of the island. The marine protected area surrounding Kalaupapa National Historical Park emerges as a potential source for between-island larval connections, and the west coast of the Park is one of the few regions on Moloka‘i that acts as a net larval source across all species. Using this IBM and visualization approach reveals patterns of exchange between habitat regions and highlights critical larval sources and multi-generational pathways to indicate priority areas for marine resource managers.
Collapse
Affiliation(s)
- Emily E Conklin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i
| | - Anna B Neuheimer
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i
| |
Collapse
|
43
|
Ibáñez CM, Rezende EL, Sepúlveda RD, Avaria‐Llautureo J, Hernández CE, Sellanes J, Poulin E, Pardo‐Gandarillas MC. Thorson's rule, life‐history evolution, and diversification of benthic octopuses (Cephalopoda: Octopodoidea). Evolution 2018; 72:1829-1839. [DOI: 10.1111/evo.13559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Christian M. Ibáñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida Universidad Andres Bello República 440 Santiago Chile
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Roger D. Sepúlveda
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias Universidad de Austral de Chile Casilla 567 Valdivia Chile
| | - Jorge Avaria‐Llautureo
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Barrio Universitario S/N Concepción Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Facultad de Ciencias, Universidad Católica de la Santísima Concepción Concepción Chile
| | - Cristián E. Hernández
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Barrio Universitario S/N Concepción Chile
| | - Javier Sellanes
- Departamento de Biología Marina y Núcleo Milenio ‘Ecología y Manejo Sustentable de Islas Oceánicas’, Facultad de Ciencias del Mar Universidad Católica del Norte Larrondo 1281 Coquimbo Chile
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias Universidad de Chile Las Palmeras 3425, Ñuñoa Santiago Chile
| | - M. Cecilia Pardo‐Gandarillas
- Departamento de Ciencias Ecológicas, Facultad de Ciencias Universidad de Chile Las Palmeras 3425, Ñuñoa Santiago Chile
| |
Collapse
|
44
|
Marshall DJ, Pettersen AK, Cameron H. A global synthesis of offspring size variation, its eco‐evolutionary causes and consequences. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13099] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Hayley Cameron
- Centre for Geometric BiologyMonash University Melbourne Vic. Australia
| |
Collapse
|
45
|
Allen RM, Metaxas A, Snelgrove PVR. Applying Movement Ecology to Marine Animals with Complex Life Cycles. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:19-42. [PMID: 28813201 DOI: 10.1146/annurev-marine-121916-063134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.
Collapse
Affiliation(s)
- Richard M Allen
- Department of Ocean Sciences and Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada;
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna Metaxas
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul V R Snelgrove
- Department of Ocean Sciences and Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada;
| |
Collapse
|
46
|
Foo SA, Deaker D, Byrne M. Cherchez la femme - impact of ocean acidification on the egg jelly coat and attractants for sperm. J Exp Biol 2018; 221:jeb.177188. [DOI: 10.1242/jeb.177188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 01/03/2023]
Abstract
The impact of ocean acidification on marine invertebrate eggs and consequences for sperm chemotaxis are unknown. In the sea urchins Heliocidaris tuberculata and H. erythrogramma, with small (93µm) and large (393µm) eggs, respectively, we documented the effect of decreased pH on the egg jelly coat, an extracellular matrix that increases target size for sperm and contains sperm attracting molecules. In near future conditions (pH 7.8, 7.6) the jelly coat of H. tuberculata decreased by 11 and 21%, reducing egg target size by 9 and 17%, respectively. In contrast, the egg jelly coat of H. erythrogramma was not affected. The reduction in the jelly coat has implications for sperm chemotaxis in H. tuberculata. In the presence of decreased pH and egg chemicals, the sperm of this species increased their velocity, motility and linearity, behaviour that was opposite to that seen for sperm exposed to egg chemicals in ambient conditions. Egg chemistry appears to cause a reduction in sperm velocity where attractants guide them in the direction of the egg. Investigation of the effects of decreased pH on sperm isolated from egg chemistry does not provide an integrative assessment of the effects of ocean acidification on sperm function. Differences in the sensitivity of the jelly coat of the two species is likely associated with egg evolution in H. erythrogramma. We highlight important unappreciated impacts of ocean acidification on marine gamete functionality, and insights into potential winners and losers in a changing ocean, pointing to the advantage conveyed by evolution of large eggs.
Collapse
Affiliation(s)
- Shawna A. Foo
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Dione Deaker
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Monro K, Marshall DJ. Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm. Proc Biol Sci 2017; 283:rspb.2016.0671. [PMID: 27412273 DOI: 10.1098/rspb.2016.0671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023] Open
Abstract
Gamete dimorphism (anisogamy) defines the sexes in most multicellular organisms. Theoretical explanations for its maintenance usually emphasize the size-related selection pressures of sperm competition and zygote survival, assuming that fertilization of all eggs precludes selection for phenotypes that enhance fertility. In external fertilizers, however, fertilization is often incomplete due to sperm limitation, and the risk of polyspermy weakens the advantage of high sperm numbers that is predicted to limit sperm size, allowing alternative selection pressures to target free-swimming sperm. We asked whether egg size and ejaculate size mediate selection on the free-swimming sperm of Galeolaria caespitosa, a marine tubeworm with external fertilization, by comparing relationships between sperm morphology and male fertility across manipulations of egg size and sperm density. Our results suggest that selection pressures exerted by these factors may aid the maintenance of anisogamy in external fertilizers by limiting the adaptive value of larger sperm in the absence of competition. In doing so, our study offers a more complete explanation for the stability of anisogamy across the range of sperm environments typical of this mating system and identifies new potential for the sexes to coevolve via mutual selection pressures exerted by gametes at fertilization.
Collapse
Affiliation(s)
- Keyne Monro
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
48
|
Lange R, Marshall D. Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Sci Rep 2017; 7:6281. [PMID: 28740139 PMCID: PMC5524789 DOI: 10.1038/s41598-017-06373-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Stressors associated with global change will be experienced simultaneously and may act synergistically, so attempts to estimate the capacity of marine systems to cope with global change requires a multi-stressor approach. Because recent evidence suggests that stressor effects can be context-dependent, estimates of how stressors are experienced in ecologically realistic settings will be particularly valuable. To enhance our understanding of the interplay between environmental effects and the impact of multiple stressors from both natural and anthropogenic sources, we conducted a field experiment. We explored the impact of multiple, functionally varied stressors from both natural and anthropogenic sources experienced during early life history in a common sessile marine invertebrate, Bugula neritina. Natural spatial environmental variation induced differences in conspecific densities, allowing us to test for density-driven context-dependence of stressor effects. We indeed found density-dependent effects. Under high conspecific density, individual survival increased, which offset part of the negative effects of experiencing stressors. Experiencing multiple stressors early in life history translated to a decreased survival in the field, albeit the effects were not as drastic as we expected: our results are congruent with antagonistic stressor effects. We speculate that when individual stressors are more subtle, stressor synergies become less common.
Collapse
Affiliation(s)
- Rolanda Lange
- Centre for Geometric Biology/School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Dustin Marshall
- Centre for Geometric Biology/School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
49
|
Bracewell SA, Johnston EL, Clark GF. Latitudinal variation in the competition‐colonisation trade‐off reveals rate‐mediated mechanisms of coexistence. Ecol Lett 2017. [DOI: 10.1111/ele.12791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sally A. Bracewell
- Applied Marine and Estuarine Ecology Lab Evolution and Ecology Research Centre University of New South Wales Sydney2052 NSW Australia
| | - Emma L. Johnston
- Applied Marine and Estuarine Ecology Lab Evolution and Ecology Research Centre University of New South Wales Sydney2052 NSW Australia
| | - Graeme F. Clark
- Applied Marine and Estuarine Ecology Lab Evolution and Ecology Research Centre University of New South Wales Sydney2052 NSW Australia
| |
Collapse
|
50
|
Montgomery EM, Hamel JF, Mercier A. Patterns and Drivers of Egg Pigment Intensity and Colour Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata. ADVANCES IN MARINE BIOLOGY 2016; 76:41-104. [PMID: 28065296 DOI: 10.1016/bs.amb.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Egg pigmentation is proposed to serve numerous ecological, physiological, and adaptive functions in egg-laying animals. Despite the predominance and taxonomic diversity of egg layers, syntheses reviewing the putative functions and drivers of egg pigmentation have been relatively narrow in scope, centring almost exclusively on birds. Nonvertebrate and aquatic species are essentially overlooked, yet many of them produce maternally provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. We explore the ways in which these colour patterns correlate with behavioural, morphological, geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that has close phylogenetic ties with chordates and representatives in nearly all marine environments. Results of multivariate analyses show that intensely pigmented eggs are characteristic of pelagic or external development whereas pale eggs are commonly brooded internally. Of the five egg colours catalogued, orange and yellow are the most common. Yellow eggs are a primitive character, associated with all types of development (predominant in internal brooders), whereas green eggs are always pelagic, occur in the most derived orders of each class and are restricted to the Indo-Pacific Ocean. Orange eggs are geographically ubiquitous and may represent a 'universal' egg pigment that functions well under a diversity of environmental conditions. Finally, green occurs chiefly in the classes Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea, and brown in Holothuroidea. By examining an unprecedented combination of egg colours/intensities and reproductive strategies, this phylum-wide study sheds new light on the role and drivers of egg pigmentation, drawing parallels with theories developed from the study of more derived vertebrate taxa. The primary use of pigments (of any colour) to protect externally developing eggs from oxidative damage and predation is supported by the comparatively pale colour of equally large, internally brooded eggs. Secondarily, geographic location drives the evolution of egg colour diversity, presumably through the selection of better-adapted, more costly pigments in response to ecological pressure.
Collapse
Affiliation(s)
| | - J-F Hamel
- Society for Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Phillips, NL, Canada
| | - A Mercier
- Memorial University, St. John's, NL, Canada
| |
Collapse
|