1
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
2
|
Pereira-Moura L, Viana CG, Juen L, Couceiro SRM. Dark diversity of Odonata in Amazonian streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176556. [PMID: 39341233 DOI: 10.1016/j.scitotenv.2024.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The biological diversity of a region may not be fully sampled due to the low abundance or rarity of species, or the absence of species determined by their niche specificity. Investigating these species is essential for understanding the unrealized ecological potential in different habitats, identifying gaps in local and regional communities, and gaining a better understanding of the impacts of environmental changes. Therefore, to expand knowledge about the diversity of Odonata in Eastern Amazonia considering the absent species, we tested the hypotheses that: 1) Environmental variables will influence dark diversity, with greater explanation by canopy cover where sites with lower canopy cover will have higher dark diversity values, and; 2) Functional traits associated with better species dispersal will be correlated with low dark diversity of Odonata, such as larger and wider wings for example. For this, adult Odonata specimens were sampled, while structural habitat characteristics and physical and chemical water variables were measured in 128 first- to third-order streams in the Eastern Amazon. Morphological and behavioral data were recorded for each specimen. Generalized linear models were applied to predict the effects of habitat structural characteristics and physical and chemical water variables on the dark diversity of Odonata. Additionally, we assessed which functional traits contribute most to the variation of dark diversity within these communities. Habitat structural features and physical and chemical water variables had no effect on dark diversity. Morphological traits, such as body conformation, with species having narrower wings, longer hind wings, narrower thoraxes, and shorter abdomens, comprised most of the dark diversity. The dispersal limitations of some Odonata species strongly suggest the role of space and time in nature planning and management.
Collapse
Affiliation(s)
- Lucas Pereira-Moura
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BioNorte, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil; Laboratorio de Ecologia e Taxonomia de Invertebrados Aquaticos-LETIA, Instituto de Ciências e Technologia das Águas, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil.
| | - Carolina Gomes Viana
- Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil
| | - Leandro Juen
- Laboratório de Ecologia e Conservação-LABECO, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Rua Antônio Côrrea, 1, Belém, Pará, Brasil
| | - Sheyla Regina Marques Couceiro
- Laboratorio de Ecologia e Taxonomia de Invertebrados Aquaticos-LETIA, Instituto de Ciências e Technologia das Águas, Universidade Federal do Oeste do Pará-UFOPA, Campus Tapajós, Vera Paz, sn, block 11, sala 03, Salé, Santarém, Pará, Brasil
| |
Collapse
|
3
|
Liao N, Pan L, Zhao H, Yang S, Qin X, Huang J, Li X, Dong K, Shi X, Hou Q, Chen Q, Wang P, Jiang G, Li N. Species pool and soil properties in mangrove habitats influence the species-immigration process of diazotrophic communities across southern China. mSystems 2024; 9:e0030724. [PMID: 38980055 PMCID: PMC11334429 DOI: 10.1128/msystems.00307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Microbial immigration is an ecological process in natural environments; however, the ecological trade-off mechanisms that govern the balance between species extinction and migration are still lacking. In this study, we investigated the mechanisms underlying the migration of diazotrophic communities from soil to leaves across six natural mangrove habitats in southern China. The results showed that the diazotrophic alpha and beta diversity exhibited significant regional and locational variations. The diazotrophic species pool gradually increased from the leaves to nonrhizosphere soil at each site, exhibiting a vertical distribution pattern. Mantel test analyses suggested that climate factors, particularly mean annual temperature, significantly influenced the structure of the diazotrophic community. The diazotrophic community assembly was mainly governed by dispersal limitation in soil and root samples, whereas dispersal limitation and ecological drift were dominant in leaves. Partial least squares path modeling revealed that the species pool and soil properties, particularly the oxidation-reduction potential and pH, were closely linked to the species-immigration ratio of diazotrophic communities. Our study provides novel insights for understanding the ecological trait diversity patterns and spread pathways of functional microbial communities between below- and aboveground habitats in natural ecosystems.IMPORTANCEEnvironmental selection plays key roles in microbial transmission. In this study, we have provided a comprehensive framework to elucidate the driving patterns of the ecological trade-offs in diazotrophic communities across large-scale mangrove habitats. Our research revealed that Bradyrhizobium japonicum, Marinobacterium lutimaris, and Agrobacterium tumefaciens were more abundant in root-associated soil than in leaves by internal and external pathways. The nonrhizospheric and rhizospheric soil samples harbored the most core amplicon sequence variants, indicating that these dominant diazotrophs could adapt to broader ecological niches. Correlation analysis indicated that the diversities of the diazotrophic community were regulated by biotic and abiotic factors. Furthermore, this study found a lower species immigration ratio in the soil than in the leaves. Both species pool and soil properties regulate the species-immigration mechanisms of the diazotrophic community. These results suggest that substantial species immigration is a widespread ecological process, leading to alterations in local community diversity across diverse host environments.
Collapse
Affiliation(s)
- Nengjian Liao
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lianghao Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Shu Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | | | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon-si, Gyeonggi-do, South Korea
| | - Xiaofang Shi
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
4
|
Xu L, Li X, Tang X, Kou Y, Li C, Li J, Yao M, Zhang B, Wang L, Xu H, You C, Li H, Liu S, Zhang L, Liu Y, Huang X, Tu L, Tan B, Xu Z. Consistent community assembly but contingent species pool effects drive β-diversity patterns of multiple microbial groups in desert biocrust systems. Mol Ecol 2024; 33:e17386. [PMID: 38751195 DOI: 10.1111/mec.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community β-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar β-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating β-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired β-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of β-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community β-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community β-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on β-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating β-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.
Collapse
Affiliation(s)
- Lin Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiangzhen Li
- Engineering Research Centre of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Tang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaonan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Jiabao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Minjie Yao
- Engineering Research Centre of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingchang Zhang
- Shanxi Normal University, School of Geographical Sciences, Taiyuan, China
| | - Lixia Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chengming You
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Han Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sining Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lihua Tu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Tan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Passy SI, Larson CA, Mruzek JL, Budnick WR, Leboucher T. A new perspective on the spatial, environmental, and metacommunity controls of local biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171618. [PMID: 38467253 DOI: 10.1016/j.scitotenv.2024.171618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Influential ecological research in the 1980s, elucidating that local biodiversity (LB) is a function of local ecological factors and the size of the regional species pool (γ-diversity), has prompted numerous investigations on the local and regional origins of LB. These investigations, however, have been mostly limited to single scales and target groups and centered exclusively on γ-diversity. Here we developed a unified framework including scale, environmental factors (heterogeneity and ambient levels), and metacommunity properties (intraspecific spatial aggregation, regional evenness, and γ-diversity) as hierarchical predictors of LB. We tested this framework with variance partitioning and structural equation modeling using subcontinental data on stream diatoms, insects, and fish as well as local physicochemistry, climate, and land use. Pure aggregation + regional evenness outperformed pure γ-diversity in explaining LB across groups. The covariance of the environment with aggregation + regional evenness rather than with γ-diversity generally explained a much greater proportion of the variance in diatom and insect LB, especially at smaller scales. Thus, disregarding aggregation and regional evenness, as commonly done, may lead to gross underestimation of the pure metacommunity effects and the indirect environmental effects on LB. We examined the shape of the local-regional species richness relationship, which has been widely used to infer local vs. regional effects on LB. We showed that this shape has an ecological basis, but its interpretation is not straightforward. Therefore, we advocate that the variance partitioning analysis under the proposed framework is adopted instead. In diatoms, metacommunity properties had the greatest total effects on LB, while in insects and fish, it was the environment, suggesting that larger organisms are more strongly controlled by the environment. Broader use of our framework may lead to novel biogeographical insights into the drivers of LB and improved projections of its trends along current and future environmental gradients.
Collapse
Affiliation(s)
- Sophia I Passy
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| | - Chad A Larson
- Washington State Department of Ecology, Environmental Assessment Program, Lacey, WA, USA.
| | - Joseph L Mruzek
- Forestry and Environmental Conservation Department, Clemson University, Clemson, SC, USA.
| | - William R Budnick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - Thibault Leboucher
- Laboratory for Continental Environments, National Scientific Research Center, University of Lorraine, Metz, France.
| |
Collapse
|
6
|
Khattar G, Peres-Neto PR. The Geography of Metacommunities: Landscape Characteristics Drive Geographic Variation in the Assembly Process through Selecting Species Pool Attributes. Am Nat 2024; 203:E142-E156. [PMID: 38635361 DOI: 10.1086/729423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractThe nonrandom association between landscape characteristics and the dominant life history strategies observed in species pools is a typical pattern in nature. Here, we argue that these associations determine predictable changes in the relative importance of assembly mechanisms along broadscale geographic gradients (i.e., the geographic context of metacommunity dynamics). To demonstrate that, we employed simulation models in which groups of species with the same initial distribution of niche breadths and dispersal abilities interacted across a wide range of landscapes with contrasting characteristics. By assessing the traits of dominant species in the species pool in each landscape type, we determined how different landscape characteristics select for different life history strategies at the metacommunity level. We analyzed the simulated data using the same analytical approaches used in the study of empirical metacommunities to derive predictions about the causal relationships between landscape characteristics and dominant life histories in species pools, as well as their reciprocal influence on empirical inferences regarding the assembly process. We provide empirical support for these predictions by contrasting the assembly of moth metacommunities in a tropical versus a temperate mountainous landscape. Together, our model framework and empirical analyses demonstrate how the geographic context of metacommunities influences our understanding of community assembly across broadscale ecological gradients.
Collapse
|
7
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Davison J, Gerz M, Hiiesalu I, Moora M, Semchenko M, Zobel M. Niche types and community assembly. Ecol Lett 2024; 27:e14327. [PMID: 37819920 DOI: 10.1111/ele.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Studies of niche differentiation and biodiversity often focus on a few niche dimensions due to the methodological challenge of describing hyperdimensional niche space. However, this may limit our understanding of community assembly processes. We used the full spectrum of realized niche types to study arbuscular mycorrhizal fungal communities: distinguishing abiotic and biotic, and condition and resource, axes. Estimates of differentiation in relation to different niche types were only moderately correlated. However, coexisting taxon niches were consistently less differentiated than expected, based on a regional null model, indicating the importance of habitat filtering at that scale. Nonetheless, resource niches were relatively more differentiated than condition niches, which is consistent with the effect of a resource niche-based coexistence mechanism. Considering niche types, and in particular distinguishing resource and condition niches, provides a more complete understanding of community assembly, compared with studying individual niche axes or the full niche.
Collapse
Affiliation(s)
- John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maret Gerz
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Peng Z, Yang Y, Liu Y, Bu L, Qi J, Gao H, Chen S, Pan H, Chen B, Liang C, Li X, An Y, Wang S, Wei G, Jiao S. The neglected roles of adjacent natural ecosystems in maintaining bacterial diversity in agroecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16996. [PMID: 37916454 DOI: 10.1111/gcb.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.
Collapse
Affiliation(s)
- Ziheng Peng
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yu Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lianyan Bu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiejun Qi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hang Gao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Pan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunling Liang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomeng Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining An
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Gehong Wei
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Deng N, Caixia L, Ma F, Song Q, Tian Y. Understory vegetation diversity patterns of Platycladus orientalis and Pinus elliottii communities in Central and Southern China. Open Life Sci 2023; 18:20220791. [PMID: 38152580 PMCID: PMC10752000 DOI: 10.1515/biol-2022-0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/29/2023] Open
Abstract
As a vital component of arbor forests, understory vegetation serves as an essential buffer zone for storing carbon due to its strong capacity for community regeneration. This study aimed to identify the diversity pattern and construction mechanism of Platycladus orientalis and Pinus elliottii understory vegetation based on large-scale sample surveys. The Bayesian Information Criterion value of species abundance distribution (SAD) indicated that the Zipf and Zipf-Mandelbrot models were the best-fitting models. The SAD and gambin fitting results suggested that the Pi. elliottii community had a more balanced structure, with most species being relatively abundant. The multiple regression tree model detected four and six indicator species in P. orientalis and Pi. elliottii communities, respectively. The α-diversity index increased with a rise in altitude and showed a wavy curve with latitude. Linear regression between the β diversity and environmental and geographic distance indicated that the P. orientalis and Pi. elliottii understory communities tended to be dominated by different ecological processes. The partition of β diversity indicated that both communities were dominated by turnover processes, which were caused by environmental classification or spatial constraints. This study helped to understand the diversity maintenance in the P. orientalis and Pi. elliottii understory vegetation communities, and will benefit for diversity restoration and conservation of pure conifer forests.
Collapse
Affiliation(s)
- Nan Deng
- Hunan Academy of Forestry, No. 658 Shaoshan Road, Changsha, 410004, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Liu Caixia
- Hunan Academy of Forestry, No. 658 Shaoshan Road, Changsha, 410004, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Fengfeng Ma
- Hunan Academy of Forestry, No. 658 Shaoshan Road, Changsha, 410004, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Qingan Song
- Hunan Academy of Forestry, No. 658 Shaoshan Road, Changsha, 410004, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Yuxin Tian
- Hunan Academy of Forestry, No. 658 Shaoshan Road, Changsha, 410004, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| |
Collapse
|
11
|
Schönbeck L, Arteaga M, Mirza H, Coleman M, Mitchell D, Huang X, Ortiz H, Santiago LS. Plant physiological indicators for optimizing conservation outcomes. CONSERVATION PHYSIOLOGY 2023; 11:coad073. [PMID: 37711583 PMCID: PMC10498484 DOI: 10.1093/conphys/coad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address the application of plant physiology to conservation biology by distinguishing between two physiological approaches that together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that these measurements can serve as important additional information to more commonly used phenological and morphological parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications in the context of changing temperature, water and nutrient supply.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marc Arteaga
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Humera Mirza
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mitchell Coleman
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Tejon Ranch Conservancy, Frazier Park, CA 93225, USA
| | - Denise Mitchell
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinyi Huang
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Haile Ortiz
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092. Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
12
|
Guo F, Ye Y, Zhu K, Lin S, Wang Y, Dong Z, Yao R, Li H, Wang W, Liao Z, Guo B, Yan X. Genetic Diversity, Population Structure, and Environmental Adaptation Signatures of Chinese Coastal Hard-Shell Mussel Mytilus coruscus Revealed by Whole-Genome Sequencing. Int J Mol Sci 2023; 24:13641. [PMID: 37686445 PMCID: PMC10488143 DOI: 10.3390/ijms241713641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The hard-shell mussel (Mytilus coruscus) is widespread in the temperate coastal areas of the northwest Pacific and holds a significant position in the shellfish aquaculture market in China. However, the natural resources of this species have been declining, and population genetic studies of M. coruscus are also lacking. In this study, we conducted whole-genome resequencing (WGR) of M. coruscus from eight different latitudes along the Chinese coast and identified a total of 25,859,986 single nucleotide polymorphism (SNP) markers. Our findings indicated that the genetic diversity of M. coruscus from the Zhoushan region was lower compared with populations from other regions. Furthermore, we observed that the evolutionary tree clustered into two primary branches, and the Zhangzhou (ZZ) population was in a separate branch. The ZZ population was partly isolated from populations in other regions, but the distribution of branches was not geographically homogeneous, and a nested pattern emerged, consistent with the population differentiation index (FST) results. To investigate the selection characteristics, we utilized the northern M. coruscus populations (Dalian and Qingdao) and the central populations (Zhoushan and Xiangshan) as reference populations and the southern ZZ population as the target population. Our selection scan analysis identified several genes associated with thermal responses, including Hsp70 and CYP450. These genes may play important roles in the adaptation of M. coruscus to different living environments. Overall, our study provides a comprehensive understanding of the genomic diversity of coastal M. coruscus in China and is a valuable resource for future studies on genetic breeding and the evolutionary adaptation of this species.
Collapse
Affiliation(s)
- Feng Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yuxia Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhenyu Dong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Xiaojun Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| |
Collapse
|
13
|
Brown JJ, Jandová A, Jeffs CT, Higgie M, Nováková E, Lewis OT, Hrček J. Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Appl Environ Microbiol 2023; 89:e0009923. [PMID: 37154737 DOI: 10.1128/aem.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Collapse
Affiliation(s)
- Joel J Brown
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anna Jandová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Varenne A, Richardson LE, Radford AN, Rossi F, Lecaillon G, Gudefin A, Bérenger L, Abadie E, Boissery P, Lenfant P, Simpson SD. Immersion Time Determines Performance of Artificial Habitats in Commercial Harbours by Changing Biodiversity of Colonising Invertebrate Assemblages. DIVERSITY 2023. [DOI: 10.3390/d15040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In highly modified coastal environments, such as commercial harbours, the installation of artificial habitats has garnered support as a means of enhancing local biological recruitment and connectivity. The success of these measures depends largely on the patterns of species colonisation. Using post-installation monitoring data, we compared the composition of assemblages of invertebrates colonising artificial habitats that were immersed for different periods (~6 vs. ~18 months) in three commercial harbours along the French Mediterranean coast. The artificial habitats were colonised by taxonomically diverse invertebrate assemblages of ecological and economic importance, including molluscs, crustaceans, and echinoids. Composition differed significantly with the immersion time of the artificial habitats, with total abundance, species richness, and evenness being significantly higher after ~18 than after ~6 months of immersion, indicating that long periods are necessary to enrich these new habitats with economically and ecologically important species. These results can inform restoration protocols and emphasise the value of post-installation monitoring programs.
Collapse
Affiliation(s)
- Alix Varenne
- Centre National de Recherche Scientifique (CNRS), Université Côte d’Azur, ECOSEAS UMR 7035, Parc Valrose, 06108 Nice, France
- Ecocean SAS, 1342 Avenue du Toulouse, 34070 Montpellier, France
| | - Laura E. Richardson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
- School of Ocean Sciences, Bangor University, Askew St, Menai Bridge LL59 5AB, UK
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Francesca Rossi
- Centre National de Recherche Scientifique (CNRS), Université Côte d’Azur, ECOSEAS UMR 7035, Parc Valrose, 06108 Nice, France
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn—National Institute of Marine Biology, Ecology and Biotechnologies, Genoa Marine Centre, Villa del Principe, Piazza del Principe 4, 16126 Genoa, Italy
| | | | - Anaïs Gudefin
- Ecocean SAS, 1342 Avenue du Toulouse, 34070 Montpellier, France
| | | | - Etienne Abadie
- Ecocean SAS, 1342 Avenue du Toulouse, 34070 Montpellier, France
| | - Pierre Boissery
- Agence de l’Eau Rhône Méditerranée Corse—Délégation Paca Corse, Immeuble Le Noailles, 62 La Canebière, 13001 Marseille, France
| | - Philippe Lenfant
- Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Stephen D. Simpson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
15
|
Sobczyk R, Serigstad B, Pabis K. High polychaete diversity in the Gulf of Guinea (West African continental margin): The influence of local and intermediate scale ecological factors on a background of regional patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160046. [PMID: 36356769 DOI: 10.1016/j.scitotenv.2022.160046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The Tropical East Atlantic is one of the least studied areas in the world's oceans, and thus a blank spot on the map of marine studies. Shaped by dynamic currents and shifting water masses, it is a key region in discussions about marine ecology, biodiversity, and zoogeography, while facing numerous, poorly understood, and unmonitored threats associated with climate change, acidification, and pollution. Polychaete diversity was assessed along four transects along the Ghana coast, from shallow to deep bottoms and distributed along the whole upwelling marine ecoregion. Despite high sampling effort, steep species accumulation curves demonstrated the necessity of further sampling in the region. We observed zonation of fauna by depth, and a decrease in species richness from 25 m to 1000 m depth. Polychaete communities were influenced by sediment type, presence of oxygen minimum zones, and local disturbances caused by elevated barium concentrations. Similar evenness along the depth gradient reflected the importance of rare species in the community structure. Differences in phylogenetic diversity, as reflected by taxonomic distinctness, were small, which suggested high ecosystem stability. The highly variable species richness at small scale (meters) showed the importance of ecological factors giving rise to microhabitat diversity, although we also noticed intermediate scale (50-300 km) differences affecting community structure. About 44 % of the species were rare (i.e. recorded only in three or fewer samples), highlighting the level of patchiness, while one fifth was distributed on all transects, therefore along the whole upwelling ecoregion, demonstrating the influence of the regional species pool on local communities at particular stations. Our study yielded 253 species, increasing the number of polychaetes known from this region by at least 50 %. This casts doubt on previous findings regarding Atlantic bioregionalization, biodiversity estimates and endemism, which appear to have been more pronouncedly affected by sampling bias than previously thought.
Collapse
Affiliation(s)
- Robert Sobczyk
- Department of Invertebrates Zoology and Hydrobiology, University of Lodz, Lodz, Poland.
| | - Bjorn Serigstad
- Center for Development Cooperation in Fisheries, Institute of Marine Research, Bergen, Norway
| | - Krzysztof Pabis
- Department of Invertebrates Zoology and Hydrobiology, University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Zobel M, Moora M, Pärtel M, Semchenko M, Tedersoo L, Öpik M, Davison J. The multiscale feedback theory of biodiversity. Trends Ecol Evol 2023; 38:171-182. [PMID: 36182404 DOI: 10.1016/j.tree.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023]
Abstract
Plants and their environments engage in feedback loops that not only affect individuals, but also scale up to the ecosystem level. Community-level negative feedback facilitates local diversity, while the ability of plants to engineer ecosystem-wide conditions for their own benefit enhances local dominance. Here, we suggest that local and regional processes influencing diversity are inherently correlated: community-level negative feedback predominates among large species pools formed under historically common conditions; ecosystem-level positive feedback is most apparent in historically restricted habitats. Given enough time and space, evolutionary processes should lead to transitions between systems dominated by positive and negative feedbacks: species-poor systems should become richer due to diversification of dominants and adaptation of subordinates; however, new monodominants may emerge due to migration or new adaptations.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Biology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Wetherington MT, Nagy K, Dér L, Ábrahám Á, Noorlag J, Galajda P, Keymer JE. Ecological succession and the competition-colonization trade-off in microbial communities. BMC Biol 2022; 20:262. [PMID: 36447225 PMCID: PMC9710175 DOI: 10.1186/s12915-022-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.
Collapse
Affiliation(s)
- Miles T. Wetherington
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.5386.8000000041936877XSchool of Applied and Engineering Physics, Cornell University, Ithaca, USA
| | - Krisztina Nagy
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - László Dér
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Ágnes Ábrahám
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Janneke Noorlag
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Peter Galajda
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Juan E. Keymer
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.7870.80000 0001 2157 0406Institute of Physics, School of Physics, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| |
Collapse
|
18
|
Mateo RG, Arellano G, Gómez-Rubio V, Tello JS, Fuentes AF, Cayola L, Loza MI, Cala V, Macía MJ. Insights on biodiversity drivers to predict species richness in tropical forests at the local scale. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
De Vitis M, Havens K, Barak RS, Egerton-Warburton L, Ernst AR, Evans M, Fant JB, Foxx AJ, Hadley K, Jabcon J, O’Shaughnessey J, Ramakrishna S, Sollenberger D, Taddeo S, Urbina-Casanova R, Woolridge C, Xu L, Zeldin J, Kramer AT. Why are some plant species missing from restorations? A diagnostic tool for temperate grassland ecosystems. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.1028295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The U.N. Decade on Ecosystem Restoration aims to accelerate actions to prevent, halt, and reverse the degradation of ecosystems, and re-establish ecosystem functioning and species diversity. The practice of ecological restoration has made great progress in recent decades, as has recognition of the importance of species diversity to maintaining the long-term stability and functioning of restored ecosystems. Restorations may also focus on specific species to fulfill needed functions, such as supporting dependent wildlife or mitigating extinction risk. Yet even in the most carefully planned and managed restoration, target species may fail to germinate, establish, or persist. To support the successful reintroduction of ecologically and culturally important plant species with an emphasis on temperate grasslands, we developed a tool to diagnose common causes of missing species, focusing on four major categories of filters, or factors: genetic, biotic, abiotic, and planning & land management. Through a review of the scientific literature, we propose a series of diagnostic tests to identify potential causes of failure to restore target species, and treatments that could improve future outcomes. This practical diagnostic tool is meant to strengthen collaboration between restoration practitioners and researchers on diagnosing and treating causes of missing species in order to effectively restore them.
Collapse
|
20
|
Frishkoff LO, Lertzman-Lepofsky G, Mahler DL. Evolutionary opportunity and the limits of community similarity in replicate radiations of island lizards. Ecol Lett 2022; 25:2384-2396. [PMID: 36192673 DOI: 10.1111/ele.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.
Collapse
|
21
|
Mao W, Sun Z, Forrestel EJ, Griffin‐Nolan R, Chen A, Smith MD. Using local and regional trait hypervolumes to study the effects of environmental factors on community assembly. Ecosphere 2022. [DOI: 10.1002/ecs2.4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Wei Mao
- College of Ecology and Environment Hainan University Haikou China
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Zhibin Sun
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado USA
| | | | | | - Anping Chen
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Melinda D. Smith
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| |
Collapse
|
22
|
Norris GS, Gerwing TG, Hamilton DJ, Barbeau MA. Using successional drivers to understand spatiotemporal dynamics in intertidal mudflat communities. Ecosphere 2022. [DOI: 10.1002/ecs2.4268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gregory S. Norris
- Biology Department University of New Brunswick Fredericton New Brunswick Canada
| | - Travis G. Gerwing
- Biology Department University of Victoria Victoria British Columbia Canada
| | - Diana J. Hamilton
- Biology Department Mount Allison University Sackville New Brunswick Canada
| | - Myriam A. Barbeau
- Biology Department University of New Brunswick Fredericton New Brunswick Canada
| |
Collapse
|
23
|
Remeš V, Harmáčková L, Matysioková B, Rubáčová L, Remešová E. Vegetation complexity and pool size predict species richness of forest birds. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.964180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disentangling regional and local drivers of species richness in communities is a long-term focus of ecology. Regional species pools affect local communities by providing their constituent species. Additionally, the amount and variety of resources enhance diversity locally. Here, we investigated whether the same ecological factor (vegetation complexity) shapes both regional and local species richness and thus drives local diversity both indirectly (via pool size) and directly (via facilitating the coexistence of species). We studied passerine birds of woodlands and forests in eastern Australia. We quantified regional species pool size and sampled local bird communities at 63 transects spanning 3,000 km. We estimated canopy height both regionally using satellite imagery and locally using vegetation sampling in the field. We studied how species pool size changed with regional canopy height and water availability, and how local species richness changed with pool size and local canopy height. Local species richness increased with both local canopy height and the size of the regional species pool. Pool size, in turn, increased with regional canopy height, which itself increased with water availability. Moreover, local species richness expressed as a proportion of the regional pool also increased with local canopy height. In sum, vegetation complexity indexed by canopy height had a doubly positive effect on local species richness: indirectly by promoting a large regional species pool and directly by facilitating the coexistence of disproportionately many species locally. Regional pools were larger in tall forests probably due to the legacy of extensive moist forests that once covered most of Australia, thus providing a sizeable potential for speciation, diversification, and species persistence. Local species richness was greater in tall, more productive forests with more vegetation layers likely due to more and varied resources (i.e., more potential niches), allowing the coexistence of more individuals and species of consumers.
Collapse
|
24
|
Jones DG, Kobelt J, Ross JM, Powell THQ, Prior KM. Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect. J Anim Ecol 2022; 91:2037-2049. [PMID: 35945806 DOI: 10.1111/1365-2656.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range-expanding species may experience high niche opportunities. Here, we investigated if oak gall wasp communities follow a latitudinal diversity gradient (LDG) and if lower diversity communities provide weaker interactions at the poles for a range-expanding community member, Neuroterus saltatorius. We performed systematic surveys of gall wasps on a dominant oak, Quercus garryana, throughout most of its range, from northern California to Vancouver Island, British Columbia. On 540 trees at 18 sites, we identified 23 oak gall wasp morphotypes in three guilds (leaf detachable, leaf integral, and stem galls). We performed regressions between oak gall wasp diversity, latitude, and other abiotic (e.g. temperature) and habitat (e.g. oak patch size) factors to reveal if gall wasp communities followed an LDG. To uncover patterns in local interactions, we first performed partial correlations of gall wasp morphotype occurrences on trees within regions). We then performed regressions between abundances of co-occurring gall wasps on trees to reveal if interactions are putatively competitive or antagonistic. Q. garryana-gall wasp communities followed an LDG, with lower diversity at higher latitudes, particularly with a loss of detachable leaf gall morphotypes. Detachable leaf gall wasps, including the range-expanding species, co-occurred most on trees, with weak co-occurrences on trees in the northern expanded region. Abundances of N. saltatorius and detachable and integral leaf galls co-occurring on trees were negatively related, suggesting antagonistic interactions. Overall, we found that LDGs create communities with weaker associations at the poles that might facilitate ecological release in a range-expanding community member. Given the ubiquity of LDGs in nature, poleward range-expanding species are likely moving into low diversity communities. Yet, understanding if latitudinal diversity pattern provides weak biotic interactions for range-expanding species is not well explored. Our large-scale study documenting diversity in a related community of phytophagous insects that co-occur on a host plant reveals that LDGs create high niche opportunities for a range-expanding community member. Biogeographical patterns in diversity and species interactions are likely important mechanisms contributing to altered biotic interactions under range-expansions.
Collapse
Affiliation(s)
- Dylan G Jones
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Julia Kobelt
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Jenna M Ross
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| |
Collapse
|
25
|
Thompson ME, Halstead BJ, Donnelly MA. Riparian buffers provide refugia during secondary forest succession. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michelle E. Thompson
- Department of Biological Sciences Florida International University Miami Florida USA
| | - Brian J. Halstead
- U.S. Geological Survey Western Ecological Research Center Dixon California USA
| | - Maureen A. Donnelly
- Department of Biological Sciences Florida International University Miami Florida USA
| |
Collapse
|
26
|
Graco‐Roza C, Aarnio S, Abrego N, Acosta ATR, Alahuhta J, Altman J, Angiolini C, Aroviita J, Attorre F, Baastrup‐Spohr L, Barrera‐Alba JJ, Belmaker J, Biurrun I, Bonari G, Bruelheide H, Burrascano S, Carboni M, Cardoso P, Carvalho JC, Castaldelli G, Christensen M, Correa G, Dembicz I, Dengler J, Dolezal J, Domingos P, Erös T, Ferreira CEL, Filibeck G, Floeter SR, Friedlander AM, Gammal J, Gavioli A, Gossner MM, Granot I, Guarino R, Gustafsson C, Hayden B, He S, Heilmann‐Clausen J, Heino J, Hunter JT, Huszar VLM, Janišová M, Jyrkänkallio‐Mikkola J, Kahilainen KK, Kemppinen J, Kozub Ł, Kruk C, Kulbiki M, Kuzemko A, Christiaan le Roux P, Lehikoinen A, Teixeira de Lima D, Lopez‐Urrutia A, Lukács BA, Luoto M, Mammola S, Marinho MM, Menezes LS, Milardi M, Miranda M, Moser GAO, Mueller J, Niittynen P, Norkko A, Nowak A, Ometto JP, Ovaskainen O, Overbeck GE, Pacheco FS, Pajunen V, Palpurina S, Picazo F, Prieto JAC, Rodil IF, Sabatini FM, Salingré S, De Sanctis M, Segura AM, da Silva LHS, Stevanovic ZD, Swacha G, Teittinen A, Tolonen KT, Tsiripidis I, Virta L, Wang B, Wang J, Weisser W, Xu Y, Soininen J. Distance decay 2.0 - A global synthesis of taxonomic and functional turnover in ecological communities. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2022; 31:1399-1421. [PMID: 35915625 PMCID: PMC9322010 DOI: 10.1111/geb.13513] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 05/05/2023]
Abstract
Aim Understanding the variation in community composition and species abundances (i.e., β-diversity) is at the heart of community ecology. A common approach to examine β-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location Global. Time period 1990 to present. Major taxa studied From diatoms to mammals. Method We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
Collapse
|
27
|
Liu P, Hu S, He Z, Feng C, Dong G, An S, Liu R, Xu F, Chen Y, Ying X. Towards Strain-Level Complexity: Sequencing Depth Required for Comprehensive Single-Nucleotide Polymorphism Analysis of the Human Gut Microbiome. Front Microbiol 2022; 13:828254. [PMID: 35602026 PMCID: PMC9119422 DOI: 10.3389/fmicb.2022.828254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal bacteria strains play crucial roles in maintaining host health. Researchers have increasingly recognized the importance of strain-level analysis in metagenomic studies. Many analysis tools and several cutting-edge sequencing techniques like single cell sequencing have been proposed to decipher strains in metagenomes. However, strain-level complexity is far from being well characterized up to date. As the indicator of strain-level complexity, metagenomic single-nucleotide polymorphisms (SNPs) have been utilized to disentangle conspecific strains. Lots of SNP-based tools have been developed to identify strains in metagenomes. However, the sufficient sequencing depth for SNP and strain-level analysis remains unclear. We conducted ultra-deep sequencing of the human gut microbiome and constructed an unbiased framework to perform reliable SNP analysis. SNP profiles of the human gut metagenome by ultra-deep sequencing were obtained. SNPs identified from conventional and ultra-deep sequencing data were thoroughly compared and the relationship between SNP identification and sequencing depth were investigated. The results show that the commonly used shallow-depth sequencing is incapable to support a systematic metagenomic SNP discovery. In contrast, ultra-deep sequencing could detect more functionally important SNPs, which leads to reliable downstream analyses and novel discoveries. We also constructed a machine learning model to provide guidance for researchers to determine the optimal sequencing depth for their projects (SNPsnp, https://github.com/labomics/SNPsnp). To conclude, the SNP profiles based on ultra-deep sequencing data extend current knowledge on metagenomics and highlights the importance of evaluating sequencing depth before starting SNP analysis. This study provides new ideas and references for future strain-level investigations.
Collapse
Affiliation(s)
- Pu Liu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shuofeng Hu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhen He
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chao Feng
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guohua Dong
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Sijing An
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Runyan Liu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fang Xu
- Yongkang First People’s Hospital, Yongkang, China
| | - Yaowen Chen
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaomin Ying
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Green MD, Anderson KE, Herbst DB, Spasojevic M. Rethinking biodiversity patterns and processes in stream ecosystems. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew D. Green
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California U.S.A
| | - Kurt E. Anderson
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California U.S.A
| | - David B. Herbst
- Sierra Nevada Aquatic Research Laboratory University of California Mammoth Lakes California U.S.A
- Institute of Marine Sciences, University of California Santa Cruz California U.S.A
| | - Marko Spasojevic
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California U.S.A
| |
Collapse
|
29
|
Sweet FST, Apfelbeck B, Hanusch M, Garland Monteagudo C, Weisser WW. Data from public and governmental databases show that a large proportion of the regional animal species pool occur in cities in Germany. JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cities have been shown to be biodiverse, but it is unclear what fraction of a regional species pool can live within city borders and how this differs between taxa. Among animals, most research has focused on a few well-studied taxa, such as birds or butterflies. For other species, progress is limited by the paucity of data. We used species occurrence data for 11 taxa and 23 German cities from the Global Biodiversity Information Facility (GBIF) and the different German states, in a 50-km buffer around the city centre, to investigate what proportion of species of the regional species pools also occur in cities. While data could be obtained for all cities from GBIF, state databases only provided data for a subset of cities. Sample coverage of data from GBIF was higher across all taxa than of the state databases. For each database and taxon, we analysed (i) all cities where the number of occurrences of a taxon was >50 and (ii) only those cities where additionally sample coverage was >0.85. Across all taxa studied on average, 44.9 ± 7.2% (GBIF) and 40.8 ± 9.6% (German states) of the species of the regional species pool were also found in cities. When all cities were considered together, more than 76% of all species occurred within city borders. Our results show that German cities harbour a large part of the regional diversity of different taxa when city borders rather than the city centre is considered. This opens up ample opportunities for conservation and for fostering human–nature relationships.
Collapse
Affiliation(s)
- Fabio S T Sweet
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany
| | - Beate Apfelbeck
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany
- Department of Environment and Biodiversity, Paris-Lodron-Universität Salzburg, Hellbrunnerstraße 34, Salzburg 5020, Austria
| | - Maximilian Hanusch
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany
- Department of Environment and Biodiversity, Paris-Lodron-Universität Salzburg, Hellbrunnerstraße 34, Salzburg 5020, Austria
| | - Cynthia Garland Monteagudo
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany
| |
Collapse
|
30
|
Val P, Lyons NJ, Gasparini N, Willenbring JK, Albert JS. Landscape Evolution as a Diversification Driver in Freshwater Fishes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.788328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The exceptional concentration of vertebrate diversity in continental freshwaters has been termed the “freshwater fish paradox,” with > 15,000 fish species representing more than 20% of all vertebrate species compressed into tiny fractions of the Earth’s land surface area (<0.5%) or total aquatic habitat volume (<0.001%). This study asks if the fish species richness of the world’s river basins is explainable in terms of river captures using topographic metrics as proxies. The River Capture Hypothesis posits that drainage-network rearrangements have accelerated biotic diversification through their combined effects on dispersal, speciation, and extinction. Yet rates of river capture are poorly constrained at the basin scale worldwide. Here we assess correlations between fish species density (data for 14,953 obligate freshwater fish species) and basin-wide metrics of landscape evolution (data for 3,119 river basins), including: topography (elevation, average relief, slope, drainage area) and climate (average rainfall and air temperature). We assess the results in the context of both static landscapes (e.g., species-area and habitat heterogeneity relationships) and transient landscapes (e.g., river capture, tectonic activity, landscape disequilibrium). We also relax assumptions of functional neutrality of basins (tropical vs. extratropical, tectonically stable vs. active terrains). We found a disproportionate number of freshwater species in large, lowland river basins of tropical South America, Africa, and Southeast Asia, under predictable conditions of large geographic area, tropical climate, low topographic relief, and high habitat volume (i.e., high rainfall rates). However, our results show that these conditions are only necessary, but not fully sufficient, to explain the basins with the highest diversity. Basins with highest diversity are all located on tectonically stable regions, places where river capture is predicted to be most conducive to the formation of high fish species richness over evolutionary timescales. Our results are consistent with predictions of several landscape evolution models, including the River Capture Hypothesis, Mega Capture Hypothesis, and Intermediate Capture Rate Hypothesis, and support conclusions of numerical modeling studies indicating landscape transience as a mechanistic driver of net diversification in riverine and riparian organisms with widespread continental distributions.
Collapse
|
31
|
Murphy SJ, Smith AB. What can community ecologists learn from species distribution models? Ecosphere 2021. [DOI: 10.1002/ecs2.3864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Stephen J. Murphy
- Center for Conservation and Sustainable Development Missouri Botanical Garden 4344 Shaw Boulevard Saint Louis Missouri 63110 USA
- Department of Evolution, Ecology, and Organismal Biology The Ohio State University 318 West 12th Avenue Columbus Ohio 43201 USA
| | - Adam B. Smith
- Center for Conservation and Sustainable Development Missouri Botanical Garden 4344 Shaw Boulevard Saint Louis Missouri 63110 USA
| |
Collapse
|
32
|
Sydenham MAK, Venter ZS, Reitan T, Rasmussen C, Skrindo AB, Skoog DIJ, Hanevik K, Hegland SJ, Dupont YL, Nielsen A, Chipperfield J, Rusch GM. MetaComNet: A random forest‐based framework for making spatial predictions of plant–pollinator interactions. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Trond Reitan
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
| | | | | | - Daniel I. J. Skoog
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | - Kaj‐Andreas Hanevik
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | - Stein Joar Hegland
- Department of Environmental Sciences Western University of Applied Sciences Sogndal Norway
| | - Yoko L. Dupont
- Department of Ecoscience Aarhus University Rønde Denmark
| | - Anders Nielsen
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
- Department of Landscape and Biodiversity Norwegian Institute of Bioeconomy Research (NIBIO) Ås Norway
| | | | | |
Collapse
|
33
|
Gamma diversity and under-sampling together generate patterns in beta-diversity. Sci Rep 2021; 11:21420. [PMID: 34728781 PMCID: PMC8563776 DOI: 10.1038/s41598-021-99830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Beta diversity represents how species in the regional pool segregate among local communities and hence forms a link between local and regional species diversities. Therefore, the magnitude of beta diversity and its variation across geographic gradients can provide insights into mechanisms of community assembly. Along with limits on local or regional level diversities, effects of local abundance that lead to under-sampling of the regional species pool are important determinants of estimated beta diversity. We explore the effects of regional species pools, abundance distributions, and local abundance to show that patterns in beta diversity as well as the mean of species abundance distribution have distinct outcomes, depending on limits on species pools and under-sampling. We highlight the effect of under-sampling in some established relationships between gamma diversity and beta diversity using graphical methods. We then use empirical data on ant communities across an elevational gradient in the Eastern Himalayas to demonstrate a shift from effect of reduction in species pool to under-sampling at mid-elevations. Our results show that multiple processes with contrasting effects simultaneously affect patterns in beta diversity across geographic gradients.
Collapse
|
34
|
Frog community composition-environment relationships vary over time: Are snapshot studies of metacommunity dynamics useful? Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Predator survival analysis of a Prey-Predator system with prey species pool. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Qiao X, Zhang N, Zhang C, Zhang Z, Zhao X, Gadow K. Unravelling biodiversity–productivity relationships across a large temperate forest region. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuetao Qiao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Naili Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Zhonghui Zhang
- Jilin Provincial Academy of Forestry Sciences Changchun China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Klaus Gadow
- Faculty of Forestry and Forest Ecology Georg‐August‐University Göttingen Göttingen Germany
- Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa
| |
Collapse
|
37
|
Riva F, Mammola S. Rarity facets of biodiversity: Integrating Zeta diversity and Dark diversity to understand the nature of commonness and rarity. Ecol Evol 2021; 11:13912-13919. [PMID: 34707827 PMCID: PMC8525081 DOI: 10.1002/ece3.8096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Measuring commonness and rarity is pivotal to ecology and conservation. Zeta diversity, the average number of species shared by multiple sets of assemblages, and Dark diversity, the number of species that could occur in an assemblage but are missing, have been recently proposed to capture two aspects of the commonness-rarity spectrum. Despite a shared focus on commonness and rarity, thus far, Zeta and Dark diversities have been assessed separately. Here, we review these two frameworks and suggest their integration into a unified paradigm of the "rarity facets of biodiversity." This can be achieved by partitioning Alpha and Beta diversities into five components (the Zeta, Eta, Theta, Iota, and Kappa rarity facets) defined based on the commonness and rarity of species. Each facet is assessed in traditional and multiassemblage fashions to bridge conceptual differences between Dark diversity and Zeta diversity. We discuss applications of the rarity facets including comparing the taxonomic, functional, and phylogenetic diversity of rare and common species, or measuring species' prevalence in different facets as a metric of species rarity. The rarity facets integrate two emergent paradigms in biodiversity science to better understand the ecology of commonness and rarity, an important endeavor in a time of widespread changes in biodiversity across the Earth.
Collapse
Affiliation(s)
- Federico Riva
- Geomatics and Landscape Ecology LaboratoryDepartment of BiologyCarleton UniversityOttawaONCanada
- InsectariumMontreal Space for LifeMontrealQCCanada
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
- Molecular Ecology Group (MEG)Water Research Institute (IRSA)National Research Council (CNR)PallanzaItaly
| |
Collapse
|
38
|
Krasnov BR, Shenbrot GI, Khokhlova IS. Dark diversity of flea assemblages of small mammalian hosts: effects of environment, host traits and host phylogeny. Int J Parasitol 2021; 52:157-167. [PMID: 34560075 DOI: 10.1016/j.ijpara.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
An assemblage of species in a locality comprises two components, namely (i) species that are present (realised diversity) and (ii) species from the regional pool that may potentially inhabit this locality due to suitable ecological conditions, but that are absent (dark diversity). We investigated factors affecting the dark diversity of component communities of fleas parasitic on small mammals in the northern Palearctic at two scales. First, we considered the dark diversity of flea assemblages of the same host (for 13 host species) across regions and tested for the effects of environmental factors and the number of available host species on the dark diversity of within-region flea assemblages. Second, we considered the dark diversity of fleas across host species within a region (for 20 regions) and asked whether within-host dark diversity is associated with host phylogeny and/or traits. We found that the dark diversity of flea assemblages harboured by small mammals varied substantially (i) within the same host species across space (in 12 of 13 host species) and (ii) between host species within a region (in eight of 20 regions). The size of the dark diversity of flea assemblages of the same host across regions was generally affected by environmental factors (mainly by the amount of green vegetation), whereas the size of the dark diversity of flea assemblages of a host species within a region was affected by host traits (mainly by the degree of host sociality and the structure of its shelter and, to a lesser degree, by its geographic range size) but was not associated with host phylogenetic affinities. We conclude that application of the dark diversity concept to parasite communities across space or hosts allows a better understanding of the factors affecting the species richness and composition of these communities.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
39
|
Hagan JG, Vanschoenwinkel B, Gamfeldt L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol Lett 2021; 24:2537-2548. [PMID: 34532926 DOI: 10.1111/ele.13874] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023]
Abstract
Our current, empirical understanding of the relationship between biodiversity and ecosystem function is based on two information sources. First, controlled experiments which show generally positive relationships. Second, observational field data which show variable relationships. This latter source coupled with a lack of observed declines in local biodiversity has led to the argument that biodiversity-ecosystem functioning relationships may be uninformative for conservation and management. We review ecological theory and re-analyse several biodiversity datasets to argue that ecosystem function correlations with local diversity in observational field data are often difficult to interpret in the context of biodiversity-ecosystem function research. This occurs because biotic interactions filter species during community assembly which means that there can be a high biodiversity effect on functioning even with low observed local diversity. Our review indicates that we should not necessarily expect any specific relationship between local biodiversity and ecosystem function in observational field data. Rather, linking predictions from biodiversity-ecosystem function theory and experiments to observational field data requires considering the pool of species available during colonisation: the local species pool. We suggest that, even without local biodiversity declines, biodiversity loss at regional scales-which determines local species pools-may still negatively affect ecosystem functioning.
Collapse
Affiliation(s)
- James G Hagan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Bram Vanschoenwinkel
- Community Ecology Laboratory, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Centre for Environment Management, University of the Free State, Bloemfontein, South Africa
| | - Lars Gamfeldt
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.,Centre for Sea and Society, Gothenburg, Sweden
| |
Collapse
|
40
|
Gibert C, Shenbrot GI, Stanko M, Khokhlova IS, Krasnov BR. Dispersal-based versus niche-based processes as drivers of flea species composition on small mammalian hosts: inferences from species occurrences at large and small scales. Oecologia 2021; 197:471-484. [PMID: 34477961 DOI: 10.1007/s00442-021-05027-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Biological communities may be assembled by both niche-based and dispersal-based (= historic) processes with the relative importance of these processes in community assembly being scale- and context-dependent. To infer whether (a) niche-based or dispersal-based processes play the main role in the assembly of flea communities parasitic on small mammals and whether (b) the main processes of flea community assembly are scale-dependent, we applied a novel permutation-based algorithm (PER-SIMPER) and the dispersal-niche continuum index (DNCI), to data on the species incidence of fleas and their hosts at two spatial scales. At the larger (continental) scale, we analysed flea communities in four biogeographic realms across adjacent continental sections. At the smaller (local) scale, we considered flea communities across two main regions (lowlands and mountains) and seven habitat types within Slovakia. Our analyses demonstrated that species composition of fleas and their small mammalian hosts depended predominantly on historical processes (dispersal) at both scale. This was true for the majority of biogeographic realms at continental scale (except the Nearctic) and both regions at local scale. Nevertheless, strong niche-based assembly mechanism was found in the Nearctic assemblages. At local scale, the intensity of dispersal processes was weaker and niche-driven processes were stronger between habitats within a region than between mountain and lowland regions. We provide historical and ecological explanations for these patterns. We conclude that the assembly of compound flea communities is governed, to a great extent, by the dispersal processes acting on their hosts and, to a lesser extent, by the niche-based processes.
Collapse
Affiliation(s)
- Corentin Gibert
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM, UMR 7262 CNRS INEE), Université de Poitiers, Poitiers, France. .,Laboratoire de la Préhistoire à L'actuel: Culture, Environnement et Anthropologie (PACEA, UMR 5199 CNRS INEE), University of Bordeaux, Bordeaux, France.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Michal Stanko
- Institute of Parasitology and Institute of Zoology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
41
|
Garcia GS, Dias MS, Longo GO. Trade-off between number and length of remote videos for rapid assessments of reef fish assemblages. JOURNAL OF FISH BIOLOGY 2021; 99:896-904. [PMID: 33973243 DOI: 10.1111/jfb.14776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Remote underwater videos are widely employed to assess the structure and composition of reef fish assemblages but the sampling effort employed on each survey differs considerably, indicating that both the number of assessments and video length could be optimized. We searched for this optimal sampling effort in remote video samples to conduct rapid assessments of community composition and discussed the relation between number of replicates and video length, and how it impacts the method's efficiency to characterize species assemblages. Remote video recordings from tropical reefs in northeastern Brazil were used to investigate how fish species richness and composition builds across time and number of assays. Videos as short as 5 min successfully recorded species richness, requiring about five repetitions to record most species that compose 80% of the total biomass. Recording species composition required even less time in these reefs, setting a minimum of 3 min with the same five videos. By comparing the detected richness per analysed time unit, we found several shorter videos recorded for more species than a few longer videos, indicating that increasing the sampling coverage in the reef area might be better than just extending the video length for rapid assessments.
Collapse
Affiliation(s)
- Gabriel S Garcia
- Marine Ecology Laboratory, Department of Oceanography and Limnology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Aquatic Macroecology and Biogeography Laboratory, Ecology Department, Universidade de Brasília, Brasilia, Brazil
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília, Brasilia, Brazil
| | - Murilo S Dias
- Aquatic Macroecology and Biogeography Laboratory, Ecology Department, Universidade de Brasília, Brasilia, Brazil
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília, Brasilia, Brazil
| | - Guilherme O Longo
- Marine Ecology Laboratory, Department of Oceanography and Limnology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
42
|
Watson DF, Houseman GR, Jameson ML, Jensen WE, Reichenborn MM, Morphew AR, Kjaer EL. Plant community responses to grassland restoration efforts across a large-scale precipitation gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02381. [PMID: 34028912 DOI: 10.1002/eap.2381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/28/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Identifying how plant species diversity varies across environmental gradients remains a controversial topic in plant community ecology because of complex interactions among putative factors. This is especially true for grasslands where habitat loss has limited opportunities for systematic study across broad spatial scales. Here we overcome these limitations by examining restored plant community responses to a large-scale precipitation gradient under two common Conservation Reserve Program (CRP) restoration approaches. The two restoration strategies examined were CP2, which seeds a relatively low number of species, and CP25, which seeds a higher number of species. We sampled plant communities on 55 CRP fields distributed along a broad precipitation gradient (410-1,170 mm mean annual precipitation) spanning 650 km within the grassland biome of North America. Mean annual precipitation (MAP) was the most important predicator of plant species richness and had a positive, linear response across the gradient. To a lesser degree, restoration practices also played a role in determining community diversity. The linear increase in species richness across the precipitation gradient reflects the species pool increase from short to tallgrass prairie communities and explained most of the richness variation. These findings provide insight into the diversity constraints and fundamental drivers of change across a large-scale gradient representing a wide variety of grassland habitats. Across a broad environmental gradient, initial planting differences between restoration practices had lower effects on plant diversity than expected. This suggests that new strategies are needed to effectively establish diverse plant communities on large-scale restorations such as these.
Collapse
Affiliation(s)
- D Fraser Watson
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260, USA
| | - Gregory R Houseman
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260, USA
| | - Mary Liz Jameson
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260, USA
| | - William E Jensen
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, Kansas, 66801, USA
| | - Molly M Reichenborn
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260, USA
| | - Alex R Morphew
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260, USA
| | - Esben L Kjaer
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260, USA
| |
Collapse
|
43
|
Lisner A, Ottaviani G, Klimešová J, Mudrák O, Martínková J, Lepš J. The species richness–productivity relationship varies among regions and productivity estimates, but not with spatial resolution. OIKOS 2021. [DOI: 10.1111/oik.08306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Aleš Lisner
- Dept of Botany, Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | | | - Jitka Klimešová
- Inst. of Botany of the Czech Academy of Sciences Třeboň Czech Republic
- Dept of Botany, Faculty of Sciences, Charles Univ. Prague Czech Republic
| | - Ondřej Mudrák
- Inst. of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Jana Martínková
- Inst. of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Jan Lepš
- Dept of Botany, Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
- Inst. Entomology, Biol. Res. Center of the Czech Academy of Sciences České Budějovice Czech Republic
| |
Collapse
|
44
|
Sobral-Souza T, Santos JP, Maldaner ME, Lima-Ribeiro MS, Ribeiro MC. EcoLand: A multiscale niche modelling framework to improve predictions on biodiversity and conservation. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
45
|
Barthelemy E, Fortunel C, Jaunatre M, Munoz F. Imprints of Past Habitat Area Reduction on Extant Taxonomic, Functional, and Phylogenetic Composition. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Past environmental changes have shaped the evolutionary and ecological diversity of extant organisms. Specifically, climatic fluctuations have made environmental conditions alternatively common or rare over time. Accordingly, most taxa have undergone restriction of their distribution to local refugia during habitat contraction, from which they could expand when suitable habitat became more common. Assessing how past restrictions in refugia have shaped species distributions and genetic diversity has motivated much research in evolutionary biology and biogeography. But there is still lack of clear synthesis on whether and how the taxonomic, functional and phylogenetic composition of extant multispecies assemblages retains the imprint of past restriction in refugia. We devised an original eco-evolutionary model to investigate the temporal dynamics of a regional species pool inhabiting a given habitat today, and which have experienced habitat reduction in the past. The model includes three components: (i) a demographic component driving stochastic changes in population sizes and extinctions due to habitat availability, (ii) a mutation and speciation component representing how divergent genotypes emerge and define new species over time, and (iii) a trait evolution component representing how trait values have changed across descendants over time. We used this model to simulate dynamics of multispecies assemblages that occupied a restricted refugia in the past and could expand their distribution subsequently. We characterized the past restriction in refugia in terms of two parameters representing the ending time of past refugia, and the extent of habitat restriction in the refugia. We characterized extant patterns of taxonomic, functional and phylogenetic diversity depending on these parameters. We found that extant relative abundances reflect the lasting influence of more recent refugia on demographic dynamics, while phylogenetic composition reflects the influence of more ancient habitat change. Extant functional diversity depends on the interplay between diversification dynamics and trait evolution, offering new options to jointly infer current trait adaptation and past trait evolution dynamics.
Collapse
|
46
|
Valdez JW, Brunbjerg AK, Fløjgaard C, Dalby L, Clausen KK, Pärtel M, Pfeifer N, Hollaus M, Wimmer MH, Ejrnæs R, Moeslund JE. Relationships between macro-fungal dark diversity and habitat parameters using LiDAR. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Salgueiro PA, Valerio F, Silva C, Mira A, Rabaça JE, Santos SM. Multispecies landscape functional connectivity enhances local bird species' diversity in a highly fragmented landscape. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112066. [PMID: 33561758 DOI: 10.1016/j.jenvman.2021.112066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/23/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Local species assemblages are likely the result of habitat and landscape filtering. However, there is still limited knowledge on how landscape functional connectivity complements habitat attributes in mediating local species assemblages in real-world fragmented landscapes. In this study, we set up a non-manipulative experimental design in a standard production forest to demonstrate how functional connectivity determines the spatial distribution of a bird community. We test single- and multispecies spatially explicit, landscape functional connectivity models framed within the circuit theory, considering also patch attributes describing habitat size and quality, to weight their effects on species occurrence and community assemblage. We found that single-species functional connectivity effects contributed positively for occurrence of each species. However, they rarely provided competing alternatives in predicting community parameters when compared to multispecies connectivity models. Incorporating multispecies connectivity showed more consistent effects for all community parameters, than single-species models, since the overlap between species' dispersal abilities in the landscape shows poor agreement. Habitat size and quality, though less important, were also determinant in explaining community parameters while possibly relating to the provision of suitable nesting and foraging conditions. Both habitat and landscape filters concur to govern community assembly, though likely influencing different processes: while landscape connectivity determines which species can reach a patch, habitat quality determines which species settle in the patch. Our results also suggest that surrogating multispecies connectivity from single species has potential to source bias by assuming species perceive landscape and its barriers similarly. Inference on this issue must be gathered from as much species as possible.
Collapse
Affiliation(s)
- Pedro A Salgueiro
- UBC - Conservation Biology Lab, Portugal; LabOr - Laboratory of Ornithology, Portugal; Department of Biology, University of Évora. Mitra, 7002-554, Évora, Portugal.
| | - Francesco Valerio
- UBC - Conservation Biology Lab, Portugal; CIBIO-UE - Research Center in Biodiversity and Genetic Resources, Pole of Évora, Portugal; Department of Biology, University of Évora. Mitra, 7002-554, Évora, Portugal.
| | - Carmo Silva
- UBC - Conservation Biology Lab, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, USA; Department of Biology, University of Évora. Mitra, 7002-554, Évora, Portugal.
| | - António Mira
- UBC - Conservation Biology Lab, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, USA; Department of Biology, University of Évora. Mitra, 7002-554, Évora, Portugal.
| | - João E Rabaça
- LabOr - Laboratory of Ornithology, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, USA; Department of Biology, University of Évora. Mitra, 7002-554, Évora, Portugal.
| | - Sara M Santos
- UBC - Conservation Biology Lab, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, USA; Department of Biology, University of Évora. Mitra, 7002-554, Évora, Portugal.
| |
Collapse
|
48
|
Gorczynski D, Hsieh C, Luciano JT, Ahumada J, Espinosa S, Johnson S, Rovero F, Santos F, Andrianarisoa MH, Astaiza JH, Jansen PA, Kayijamahe C, Moreira Lima MG, Salvador J, Beaudrot L. Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proc Biol Sci 2021; 288:20202098. [PMID: 33593187 PMCID: PMC7934904 DOI: 10.1098/rspb.2020.2098] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
A variety of factors can affect the biodiversity of tropical mammal communities, but their relative importance and directionality remain uncertain. Previous global investigations of mammal functional diversity have relied on range maps instead of observational data to determine community composition. We test the effects of species pools, habitat heterogeneity, primary productivity and human disturbance on the functional diversity (dispersion and richness) of mammal communities using the largest standardized tropical forest camera trap monitoring system, the Tropical Ecology Assessment and Monitoring (TEAM) Network. We use occupancy values derived from the camera trap data to calculate occupancy-weighted functional diversity and use Bayesian generalized linear regression to determine the effects of multiple predictors. Mammal community functional dispersion increased with primary productivity, while functional richness decreased with human-induced local extinctions and was significantly lower in Madagascar than other tropical regions. The significant positive relationship between functional dispersion and productivity was evident only when functional dispersion was weighted by species' occupancies. Thus, observational data from standardized monitoring can reveal the drivers of mammal communities in ways that are not readily apparent from range map-based studies. The positive association between occupancy-weighted functional dispersion of tropical forest mammal communities and primary productivity suggests that unique functional traits may be more beneficial in more productive ecosystems and may allow species to persist at higher abundances.
Collapse
Affiliation(s)
- Daniel Gorczynski
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| | - Chia Hsieh
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| | - Jadelys Tonos Luciano
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| | - Jorge Ahumada
- Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Santiago Espinosa
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, SLP, México
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Steig Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity Section, MUSE-Museo delle Scienze, Trento, Italy
| | - Fernanda Santos
- Department of Mastozoology, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | | | | | - Patrick A. Jansen
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | | | - Marcela Guimarães Moreira Lima
- Biogeography of Conservation and Macroecology Laboratory, Institute of Biological Sciences, Universidade Federal do Pará, Pará, Brazil
| | - Julia Salvador
- Wildlife Conservation Society, Mariana de Jesús E7-248 y Pradera, Quito, Ecuador
| | - Lydia Beaudrot
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| |
Collapse
|
49
|
Alba C, Levy R, Hufft R. Combining botanical collections and ecological data to better describe plant community diversity. PLoS One 2021; 16:e0244982. [PMID: 33411770 PMCID: PMC7790410 DOI: 10.1371/journal.pone.0244982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022] Open
Abstract
In this age of rapid biodiversity loss, we must continue to refine our approaches to describing variation in life on Earth. Combining knowledge and research tools from multiple disciplines is one way to better describe complex natural systems. Understanding plant community diversity requires documenting both pattern and process. We must first know which species exist, and where (i.e., taxonomic and biogeographic patterns), before we can determine why they exist there (i.e., ecological and evolutionary processes). Floristic botanists often use collections-based approaches to elucidate biodiversity patterns, while plant ecologists use hypothesis-driven statistical approaches to describe underlying processes. Because of these different disciplinary histories and research goals, floristic botanists and plant ecologists often remain siloed in their work. Here, using a case study from an urban greenway in Colorado, USA, we illustrate that the collections-based, opportunistic sampling of floristic botanists is highly complementary to the transect- or plot-based sampling of plant ecologists. We found that floristic sampling captured a community species pool four times larger than that captured using ecological transects, with rarefaction and non-parametric species estimation indicating that it would be prohibitive to capture the "true" community species pool if constrained to sampling within transects. We further illustrate that the discrepancy in species pool size between approaches led to a different interpretation of the greenway's ecological condition in some cases (e.g., transects missed uncommon cultivated species escaping from nearby gardens) but not others (e.g., plant species distributions among functional groups were similar between species pools). Finally, we show that while using transects to estimate plant relative abundances necessarily trades off with a fuller assessment of the species pool, it is an indispensable indicator of ecosystem health, as evidenced by three non-native grasses contributing to 50% of plant cover along the highly modified urban greenway. We suggest that actively fostering collaborations between floristic botanists and ecologists can create new insights into the maintenance of species diversity at the community scale.
Collapse
Affiliation(s)
- Christina Alba
- Research & Conservation Department, Denver Botanic Gardens, Denver, Colorado, United States of America
| | - Richard Levy
- Research & Conservation Department, Denver Botanic Gardens, Denver, Colorado, United States of America
| | - Rebecca Hufft
- Research & Conservation Department, Denver Botanic Gardens, Denver, Colorado, United States of America
| |
Collapse
|
50
|
Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects. Sci Rep 2020; 10:21374. [PMID: 33288770 PMCID: PMC7721902 DOI: 10.1038/s41598-020-78090-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Habitats along linear infrastructure, such as roads and electrical transmission lines, can have high local biodiversity. To determine whether these habitats also contribute to landscape-scale biodiversity, we estimated species richness, evenness and phylogenetic diversity of plant, butterfly and bumblebee communities in 32 km2 landscapes with or without power line corridors, and with contrasting areas of road verges. Landscapes with power line corridors had on average six more plant species than landscapes without power lines, but there was no such effect for butterflies and bumblebees. Plant communities displayed considerable evenness in species abundances both in landscapes with and without power lines and high and low road verge densities. We hypothesize that the higher number of plant species in landscapes with power line corridors is due to these landscapes having a higher extinction debt than the landscapes without power line corridors, such that plant diversity is declining slower in landscapes with power lines. This calls for targeted conservation actions in semi-natural grasslands within landscapes with power line corridors to maintain biodiversity and prevent imminent population extinctions.
Collapse
|