1
|
Grafakou A, Mosterd C, Beck MH, Kelleher P, McDonnell B, de Waal PP, van Rijswijck IMH, van Peij NNME, Cambillau C, Mahony J, van Sinderen D. Discovery of antiphage systems in the lactococcal plasmidome. Nucleic Acids Res 2024; 52:9760-9776. [PMID: 39119896 PMCID: PMC11381338 DOI: 10.1093/nar/gkae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Matthias H Beck
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Brian McDonnell
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Paul P de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Irma M H van Rijswijck
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Noël N M E van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255 Marseille, France
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
2
|
Stante M, Weiland-Bräuer N, Repnik U, Werner A, Bramkamp M, Chibani CM, Schmitz RA. Four Novel Caudoviricetes Bacteriophages Isolated from Baltic Sea Water Infect Colonizers of Aurelia aurita. Viruses 2023; 15:1525. [PMID: 37515211 PMCID: PMC10383413 DOI: 10.3390/v15071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages targeting bacteria that are part of the A. aurita-associated microbiota. Four phages (Pseudomonas phage BSwM KMM1, Citrobacter phages BSwM KMM2-BSwM KMM4) were isolated from the Baltic Sea water column and characterized. Phages KMM2/3/4 infected representatives of Citrobacter, Shigella, and Escherichia (Enterobacteriaceae), whereas KMM1 showed a remarkably broad host range, infecting Gram-negative Pseudomonas as well as Gram-positive Staphylococcus. All phages showed an up to 99% adsorption to host cells within 5 min, short latent periods (around 30 min), large burst sizes (mean of 128 pfu/cell), and high efficiency of plating (EOP > 0.5), demonstrating decent virulence, efficiency, and infectivity. Transmission electron microscopy and viral genome analysis revealed that all phages are novel species and belong to the class of Caudoviricetes harboring a tail and linear double-stranded DNA (formerly known as Siphovirus-like (KMM3) and Myovirus-like (KMM1/2/4) bacteriophages) with genome sizes between 50 and 138 kbp. In the future, these isolates will allow manipulation of the A. aurita-associated microbiota and provide new insights into phage impact on the multicellular host.
Collapse
Affiliation(s)
- Melissa Stante
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Urska Repnik
- Central Microscopy Facility, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany;
| | - Almut Werner
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
- Central Microscopy Facility, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany;
| | - Cynthia M. Chibani
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| |
Collapse
|
3
|
Jolicoeur AP, Lemay ML, Beaubien E, Bélanger J, Bergeron C, Bourque-Leblanc F, Doré L, Dupuis MÈ, Fleury A, Garneau JE, Labrie SJ, Labrie S, Lacasse G, Lamontagne-Drolet M, Lessard-Hurtubise R, Martel B, Menasria R, Morin-Pelchat R, Pageau G, Samson JE, Rousseau GM, Tremblay DM, Duquenne M, Lamoureux M, Moineau S. Longitudinal Study of Lactococcus Phages in a Canadian Cheese Factory. Appl Environ Microbiol 2023; 89:e0042123. [PMID: 37074184 PMCID: PMC10231144 DOI: 10.1128/aem.00421-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial Lactococcus strains as hosts. A multiplex PCR assay assigned 97% of these phage isolates to the Skunavirus genus, 2% to the P335 group, and 1% to the Ceduovirus genus. DNA restriction profiles and a multilocus sequence typing (MLST) scheme distinguished at least 241 unique lactococcal phages from these isolates. While most phages were isolated only once, 93 of them (out of 241, 39%) were isolated multiple times. Phage GL7 was isolated 132 times from 2006 to 2020, demonstrating that phages can persist in a cheese factory for long periods of time. Phylogenetic analysis of MLST sequences showed that phages could be clustered based on their bacterial hosts rather than their year of isolation. Host range analysis showed that Skunavirus phages exhibited a very narrow host range, whereas some Ceduovirus and P335 phages had a broader host range. Overall, the host range information was useful in improving the starter culture rotation by identifying phage-unrelated strains and helped mitigating the risk of fermentation failure due to virulent phages. IMPORTANCE Although lactococcal phages have been observed in cheese production settings for almost a century, few longitudinal studies have been performed. This 20-year study describes the close monitoring of dairy lactococcal phages in a cheddar cheese factory. Routine monitoring was conducted by factory staff, and when whey samples were found to inhibit industrial starter cultures under laboratory conditions, they were sent to an academic research laboratory for phage isolation and characterization. This led to a collection of at least 241 unique lactococcal phages, which were characterized through PCR typing and MLST profiling. Phages of the Skunavirus genus were by far the most dominant. Most phages lysed a small subset of the Lactococcus strains. These findings guided the industrial partner in adapting the starter culture schedule by using phage-unrelated strains in starter cultures and removing some strains from the starter rotation. This phage control strategy could be adapted for other large-scale bacterial fermentation processes.
Collapse
Affiliation(s)
- Alice P. Jolicoeur
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Marie-Laurence Lemay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Elyse Beaubien
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Jessy Bélanger
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Claudia Bergeron
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Françoise Bourque-Leblanc
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Laurie Doré
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Marie-Ève Dupuis
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Audrey Fleury
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Josiane E. Garneau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Simon J. Labrie
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Steve Labrie
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Geneviève Lacasse
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Marianne Lamontagne-Drolet
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Roxanne Lessard-Hurtubise
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Bruno Martel
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Rym Menasria
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Rachel Morin-Pelchat
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Gabrielle Pageau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Julie E. Samson
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Geneviève M. Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Denise M. Tremblay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec, Canada
| | | | | | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
4
|
Queiroz LL, Lacorte GA, Isidorio WR, Landgraf M, de Melo Franco BDG, Pinto UM, Hoffmann C. High Level of Interaction between Phages and Bacteria in an Artisanal Raw Milk Cheese Microbial Community. mSystems 2023; 8:e0056422. [PMID: 36475872 PMCID: PMC9948729 DOI: 10.1128/msystems.00564-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial starter cultures are used in the production of many cheeses around the world, such as Parmigiano-Reggiano, in Italy, Époisses, in France, and Canastra, in Brazil, providing many of the unique features of these cheeses. Bacteriophages (phages) are ubiquitous and well known to modulate the structure of bacterial communities, and recent data indicate that cheeses contain a high abundance of naturally occurring phages. Here, we analyze the viral and bacterial metagenomes of Canastra cheese: a traditional artisanal Brazilian cheese produced using an endogenous starter culture and raw milk. Over 1,200 viral operational taxonomic units were recovered using both isolated viral-like particles and complete metagenomic DNA. Common viral families identified included Siphoviridae and Myoviridae, with 40% of putative phage genomes unidentified at the family level of classification. We observed very high phage diversity, which varied greatly across different cheese producers, with 28% of phage genomes detected in only one producer. Several metagenome-assembled genomes were recovered for lactic acid-producing bacteria, as well as nonstarter bacterial species, and we identified several phage-bacterium interactions, at the strain level of resolution, varying across distinct cheese producers. We postulate that at least one bacterial strain detected could be endogenous and unique to the Canastra cheese-producing region in Brazil and that its growth seems to be modulated by autochthonous phages present in this artisanal production system. This phage-host relationship is likely to influence the fermentation dynamics and ultimately the sensorial profile of these cheeses, with implications for other similar cheese production systems around the world. IMPORTANCE Our work demonstrated a dynamic yet stable microbial ecosystem during cheese production using an endogenous starter culture. This was observed across several distinct producers and was marked by genomic evidence of continued phage-bacterium interactions, such as the presence of bacterial defense mechanisms. Furthermore, we provide evidence of unique microbial signatures for each individual cheese producer studied in the region, a fact that may have profound consequences on product traceability. This was the first effort to describe and understand the bacteriophage composition and ecological dynamics within the Brazilian Canastra cheese production system. The study of this prototypical backslopping production system provides a solid background for further mechanistic studies of the production of many cheeses around the world.
Collapse
Affiliation(s)
- Luciano Lopes Queiroz
- Microbiology Graduate Program, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Augusto Lacorte
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Instituto Federal de Minas Gerais, Bambuí, Minas Gerais, Brazil
| | - William Ricardo Isidorio
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mariza Landgraf
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Bernadette Dora Gombossy de Melo Franco
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Christian Hoffmann
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
A truncated anti-CRISPR protein prevents spacer acquisition but not interference. Nat Commun 2022; 13:2802. [PMID: 35589712 PMCID: PMC9120153 DOI: 10.1038/s41467-022-30310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
CRISPR-Cas systems in prokaryotic cells provide an adaptive immunity against invading nucleic acids. For example, phage infection leads to addition of new immunity (spacer acquisition) and DNA cleavage (interference) in the bacterial model species Streptococcus thermophilus, which primarily relies on Cas9-containing CRISPR-Cas systems. Phages can counteract this defense system through mutations in the targeted protospacers or by encoding anti-CRISPR proteins (ACRs) that block Cas9 interference activity. Here, we show that S. thermophilus can block ACR-containing phages when the CRISPR immunity specifically targets the acr gene. This in turn selects for phage mutants carrying a deletion within the acr gene. Remarkably, a truncated acrIIA allele, found in a wild-type virulent streptococcal phage, does not block the interference activity of Cas9 but still prevents the acquisition of new immunities, thereby providing an example of an ACR specifically inhibiting spacer acquisition. Phages can use ACR proteins that inhibit the adaptive immunity activities of bacterial CRISPR-Cas systems. Here, Philippe et al. show that these systems can block ACR-containing phages by targeting the acr gene, and this can select for phage mutants carrying a deletion within acr that does not block DNA cleavage (interference) but prevents the addition of new immunity (spacer acquisition).
Collapse
|
6
|
Yuan L, Fan L, Zhao H, Mgomi FC, Ni H, He G. RNA-seq reveals the phage-resistant mechanisms displayed by Lactiplantibacillus plantarum ZJU-1 isolated from Chinese traditional sourdough. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021; 10:602. [PMID: 33809159 PMCID: PMC8000492 DOI: 10.3390/foods10030602] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral populations, among which lactic acid bacteria (LAB) are majority components with a prominent role during manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors. Cooperative and competitive interactions between distinct members of the microbiota may occur, with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic details of these interactions, and their functional consequences, are largely unknown. Acquiring such knowledge is important if we are to predict when fermentations will be successful and understand the causes of technological failures. The experimental use of "synthetic" microbial communities might help throw light on the dynamics of different cheese microbiota components and the interplay between them. Although synthetic communities cannot reproduce entirely the natural microbial diversity in cheese, they could help reveal basic principles governing the interactions between microbial types and perhaps allow multi-species microbial communities to be developed as functional starters. By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might be expected to be more resilient and efficient than conventional starters in the development of unique sensorial properties.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.R.); (L.V.); (A.B.F.)
| | | | | | | |
Collapse
|
8
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
9
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
10
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
11
|
Spinelli S, Tremblay D, Moineau S, Cambillau C, Goulet A. Structural Insights into Lactococcal Siphophage p2 Baseplate Activation Mechanism. Viruses 2020; 12:v12080878. [PMID: 32796652 PMCID: PMC7472080 DOI: 10.3390/v12080878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Virulent phages infecting L. lactis, an industry-relevant bacterium, pose a significant risk to the quality of the fermented milk products. Phages of the Skunavirus genus are by far the most isolated lactococcal phages in the cheese environments and phage p2 is the model siphophage for this viral genus. The baseplate of phage p2, which is used to recognize its host, was previously shown to display two conformations by X-ray crystallography, a rested state and an activated state ready to bind to the host. The baseplate became only activated and opened in the presence of Ca2+. However, such an activated state was not previously observed in the virion. Here, using nanobodies binding to the baseplate, we report on the negative staining electron microscopy structure of the activated form of the baseplate directly observed in the p2 virion, that is compatible with the activated baseplate crystal structure. Analyses of this new structure also established the presence of a second distal tail (Dit) hexamer as a component of the baseplate, the topology of which differs largely from the first one. We also observed an uncoupling between the baseplate activation and the tail tip protein (Tal) opening, suggesting an infection mechanism more complex than previously expected.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille CEDEX 09, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille CEDEX 09, France
| | - Denise Tremblay
- Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada; (D.T.); (S.M.)
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada; (D.T.); (S.M.)
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille CEDEX 09, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille CEDEX 09, France
- Correspondence: (C.C.); (A.G.)
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille CEDEX 09, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille CEDEX 09, France
- Correspondence: (C.C.); (A.G.)
| |
Collapse
|
12
|
Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun 2020; 88:e00926-19. [PMID: 32094257 PMCID: PMC7309606 DOI: 10.1128/iai.00926-19] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
13
|
Feyereisen M, Mahony J, Neve H, Franz CMAP, Noben JP, O’Sullivan T, Boer V, van Sinderen D. Biodiversity and Classification of Phages Infecting Lactobacillus brevis. Front Microbiol 2019; 10:2396. [PMID: 31681247 PMCID: PMC6805780 DOI: 10.3389/fmicb.2019.02396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus brevis is a lactic acid bacterium that is known as a food and beverage spoilage organism, and more specifically as a beer-spoiler. Phages of L. brevis have been described, but very limited data is available regarding temperate phages of L. brevis. Temperate phages may exert benefits to the host, while they may also be employed to combat beer spoilage. The current study reports on the incidence of prophage sequences present in nineteen distinct L. brevis genomes. Prophage induction was evaluated using mitomycin C exposure followed by genome targeted-PCR, electron microscopy and structural proteome analysis. The morphological and genome sequence analyses revealed significant diversity among L. brevis prophages, which appear to be dominated by members of the Myoviridae phage family. Based on this analysis, we propose a classification of L. brevis phages into five groups.
Collapse
Affiliation(s)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, Kiel, Germany
| | - Charles M. A. P. Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, Kiel, Germany
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tadhg O’Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, Netherlands
| | - Viktor Boer
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, Netherlands
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
|
15
|
|
16
|
Cell Wall Glycans Mediate Recognition of the Dairy Bacterium Streptococcus thermophilus by Bacteriophages. Appl Environ Microbiol 2018; 84:AEM.01847-18. [PMID: 30242010 PMCID: PMC6238053 DOI: 10.1128/aem.01847-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 01/21/2023] Open
Abstract
Streptococcus thermophilus is widely used in starter cultures for cheese and yoghurt production. During dairy fermentations, infections of bacteria with bacteriophages result in acidification failures and a lower quality of the final products. An understanding of the molecular factors involved in phage-host interactions, in particular, the phage receptors in dairy bacteria, is a crucial step for developing better strategies to prevent phage infections in dairy plants. Receptors on the cell surfaces of bacterial hosts are essential during the infection cycle of bacteriophages. To date, the phage receptors of the industrial relevant dairy starter bacterium Streptococcus thermophilus remain elusive. Thus, we set out to identify cell surface structures that are involved in host recognition by dairy streptococcal phages. Five industrial S. thermophilus strains sensitive to different phages (pac type, cos type, and the new type 987), were selected to generate spontaneous bacteriophage-insensitive mutants (BIMs). Of these, approximately 50% were deselected as clustered regularly interspaced short palindromic repeat (CRISPR) mutants, while the other pool was further characterized to identify receptor mutants. On the basis of genome sequencing data, phage resistance in putative receptor mutants was attributed to nucleotide changes in genes encoding glycan biosynthetic pathways. Superresolution structured illumination microscopy was used to visualize the interactions between S. thermophilus and its phages. The phages were either regularly distributed along the cells or located at division sites of the cells. The cell wall structures mediating the latter type of phage adherence were further analyzed via phenotypic and biochemical assays. Altogether, our data suggested that phage adsorption to S. thermophilus is mediated by glycans associated with the bacterial cell surface. Specifically, the pac-type phage CHPC951 adsorbed to polysaccharides anchored to peptidoglycan, while the 987-type phage CHPC926 recognized exocellular polysaccharides associated with the cell surface. IMPORTANCEStreptococcus thermophilus is widely used in starter cultures for cheese and yoghurt production. During dairy fermentations, infections of bacteria with bacteriophages result in acidification failures and a lower quality of the final products. An understanding of the molecular factors involved in phage-host interactions, in particular, the phage receptors in dairy bacteria, is a crucial step for developing better strategies to prevent phage infections in dairy plants.
Collapse
|
17
|
Aucouturier A, Chain F, Langella P, Bidnenko E. Characterization of a Prophage-Free Derivative Strain of Lactococcus lactis ssp. lactis IL1403 Reveals the Importance of Prophages for Phenotypic Plasticity of the Host. Front Microbiol 2018; 9:2032. [PMID: 30233519 PMCID: PMC6127208 DOI: 10.3389/fmicb.2018.02032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Lactococcus lactis is a lactic acid bacterium of major importance for the dairy industry and for human health. Recent sequencing surveys of this species have provided evidence that all lactococcal genomes contain prophages and prophage-like elements. The prophage-related sequences encompass up to 10% of the bacterial chromosomes and thus contribute significantly to the genetic diversity of lactococci. However, the impact of these resident prophages on the physiology of L. lactis is presently unknown. The genome of the first sequenced prototype strain, L. lactis ssp. lactis IL1403, contains six prophage-like elements which together represent 6.7% of the IL1403 chromosome. Diverse prophage genes other than those encoding phage repressors have been shown to be expressed in lysogenic conditions, suggesting that prophage genes are indeed able to modulate the physiology of their host. To elucidate the effect of resident prophages on the behavior of L. lactis in different growth conditions, we constructed and characterized, for the first time, a derivative strain of IL1403 that is prophage-free. This strain provides unique experimental opportunities for the study of different aspects of lactococcal physiology using the well-defined genetic background of IL1403. Here, we show that resident prophages modify the growth and survival of the host strain to a considerable extent in different conditions, including in the gastrointestinal environment. They also may affect cellular autolytic properties and the host cells' susceptibility to virulent bacteriophages and antimicrobial agents. It thus appears that prophages contribute significantly to lactococcal cell physiology and might play an important role in the adaptation of L. lactis to cultivation and environmental conditions.
Collapse
Affiliation(s)
- Anne Aucouturier
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florian Chain
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
18
|
Vinogradov E, Sadovskaya I, Courtin P, Kulakauskas S, Grard T, Mahony J, van Sinderen D, Chapot-Chartier MP. Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403. Carbohydr Res 2018; 462:39-44. [DOI: 10.1016/j.carres.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
19
|
Mahony J, Cambillau C, van Sinderen D. Host recognition by lactic acid bacterial phages. FEMS Microbiol Rev 2018; 41:S16-S26. [PMID: 28830088 DOI: 10.1093/femsre/fux019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage infection of lactic acid bacteria (LAB) is one of the most significant causes of inconsistencies in the manufacture of fermented foods, affecting production schedules and organoleptic properties of the final product. Consequently, LAB phages, and particularly those infecting Lactococcus lactis, have been the focus of intensive research efforts. During the past decade, multidisciplinary scientific approaches have uncovered molecular details on the exquisite process of how a lactococcal phage recognises and binds to its host. Such approaches have incorporated genomic/molecular analyses and their partnership with phage structural analysis and host cell wall biochemical studies are discussed in this review, which will also provide our views on future directions of this research field.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.,APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, 13288 Marseille, France.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Marseille, 13288 Marseille, France
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.,APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
20
|
Mehta RS, Abu-Ali GS, Drew DA, Lloyd-Price J, Subramanian A, Lochhead P, Joshi AD, Ivey KL, Khalili H, Brown GT, DuLong C, Song M, Nguyen LH, Mallick H, Rimm EB, Izard J, Huttenhower C, Chan AT. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol 2018; 3:347-355. [PMID: 29335554 PMCID: PMC6016839 DOI: 10.1038/s41564-017-0096-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022]
Abstract
Characterizing the stability of the gut microbiome is important to exploit it as a therapeutic target and diagnostic biomarker. We metagenomically and metatranscriptomically sequenced the faecal microbiomes of 308 participants in the Health Professionals Follow-Up Study. Participants provided four stool samples-one pair collected 24-72 h apart and a second pair ~6 months later. Within-person taxonomic and functional variation was consistently lower than between-person variation over time. In contrast, metatranscriptomic profiles were comparably variable within and between subjects due to higher within-subject longitudinal variation. Metagenomic instability accounted for ~74% of corresponding metatranscriptomic instability. The rest was probably attributable to sources such as regulation. Among the pathways that were differentially regulated, most were consistently over- or under-transcribed at each time point. Together, these results suggest that a single measurement of the faecal microbiome can provide long-term information regarding organismal composition and functional potential, but repeated or short-term measures may be necessary for dynamic features identified by metatranscriptomics.
Collapse
Affiliation(s)
- Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Galeb S Abu-Ali
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Ayshwarya Subramanian
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Paul Lochhead
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kerry L Ivey
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, Australia
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gordon T Brown
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Casey DuLong
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Himel Mallick
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Curtis Huttenhower
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Broad Institute, Cambridge, MA, USA.
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Abstract
Lactic acid bacteria (LAB) ferment plants, fish, meats and milk and turn them into tasty food products with increased shelf life; other LAB help digesting food and create a healthy environment in the intestine. The economic and societal importance of these relatively simple and small bacteria is immense. In this review we hope to show that their adaptations to nutrient-rich environments provides fascinating and often puzzling behaviours that give rise to many fundamental evolutionary biological questions in need of a systems biology approach. We will provide examples of such questions, compare the (metabolic) behaviour of LAB to that of other model organisms, and provide the latest insights, if available.
Collapse
Affiliation(s)
- Bas Teusink
- Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, O
- 2 Building, Section Systems Bioinformatics, Location Code 2E51, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands.,Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands
| | - Douwe Molenaar
- Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, O
- 2 Building, Section Systems Bioinformatics, Location Code 2E51, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands.,Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands
| |
Collapse
|
22
|
Yamaguchi Y, Usuki S, Kanai Y, Yamatoya K, Suzuki N, Katsumata KI, Terashima C, Suzuki T, Fujishima A, Sakai H, Kudo A, Nakata K. Selective Inactivation of Bacteriophage in the Presence of Bacteria by Use of Ground Rh-Doped SrTiO 3 Photocatalyst and Visible Light. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31393-31400. [PMID: 28872820 DOI: 10.1021/acsami.7b07786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteriophage (denoted as phage) infection in the bacterial fermentation industry is a major problem, leading to the loss of fermented products such as alcohol and lactic acid. Currently, the prevention of phage infection is limited to biological approaches, which are difficult to apply in an industrial setting. Herein, we report an alternative chemical approach using ground Rh-doped SrTiO3 (denoted as g-STO:Rh) as a visible-light-driven photocatalyst. The g-STO:Rh showed selective inactivation of phage without bactericidal activity when irradiated with visible light (λ > 440 nm). After inactivation, the color of g-STO:Rh changed from gray to purple, suggesting that the Rh valence state partially changed from 3+ to 4+ induced by photocatalysis, as confirmed by diffuse reflectance spectroscopy. To study the effect of the Rh4+ ion on phage inactivation under visible-light irradiation, the survival rate of phage for g-STO:Rh was compared to that for ground Rh,Sb-codoped SrTiO3 (denoted as g-STO:Rh,Sb), where the change of Rh valence state from 3+ to 4+ is almost suppressed under visible-light irradiation due to charge compensation by the Sb5+ ion. Only g-STO:Rh effectively inactivated phage, which indicated that Rh4+ ion induced by photocatalysis particularly contributed to phage inactivation under visible-light irradiation. These results suggested that g-STO:Rh has potential as an antiphage material in bacterial fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | | |
Collapse
|
23
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
24
|
Eraclio G, Fortina MG, Labrie SJ, Tremblay DM, Moineau S. Characterization of prophages of Lactococcus garvieae. Sci Rep 2017; 7:1856. [PMID: 28500301 PMCID: PMC5431838 DOI: 10.1038/s41598-017-02038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
This report describes the morphological characterization and genome analysis of an induced prophage (PLg-TB25) from a dairy strain of Lactococcus garvieae. The phage belongs to the Siphoviridae family and its morphology is typical of other lactococcal phages. A general analysis of its genome did not reveal similarities with other lactococcal phage genomes, confirming its novelty. However, similarities were found between genes of its morphogenesis cluster and genes of Gram-positive bacteria, suggesting that this phage genome resulted from recombination events that took place in a heterogeneous microbial environment. An in silico search for other prophages in 16 L. garvieae genomes available in public databases, uncovered eight seemingly complete prophages in strains isolated from dairy and fish niches. Genome analyses of these prophages revealed three novel L. garvieae phages. The remaining prophages had homology to phages of Lactococcus lactis (P335 group) suggesting a close relationship between these lactococcal species. The similarity in GC content of L. garvieae prophages to the genomes of L. lactis phages further supports the hypothesis that these phages likely originated from the same ancestor.
Collapse
Affiliation(s)
- Giovanni Eraclio
- Department of Food, Environmental and Nutritional Sciences, Division of Food Microbiology and Bioprocesses, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Maria G Fortina
- Department of Food, Environmental and Nutritional Sciences, Division of Food Microbiology and Bioprocesses, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Simon J Labrie
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Denise M Tremblay
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Sylvain Moineau
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada. .,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
25
|
Samtlebe M, Wagner N, Neve H, Heller KJ, Hinrichs J, Atamer Z. Reduction of Lactococcus lactis phage contamination in whey by means of membrane filtration: Impact of phage morphology and of bacterial host cells functioning as “phage fishing tool”. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Dieterle ME, Spinelli S, Sadovskaya I, Piuri M, Cambillau C. Evolved distal tail carbohydrate binding modules of L
actobacillus
phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages. Mol Microbiol 2017; 104:608-620. [DOI: 10.1111/mmi.13649] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Maria-Eugenia Dieterle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, IQUIBICEN-CONICET; Buenos Aires Argentina
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université (AMU), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université (AMU), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
| | - Irina Sadovskaya
- Université Lille Nord de France, F-59000 Lille, France, Université du Littoral-Côte d'Opale, LR2B/UMT 08, Bassin Napoléon; Boulogne-sur-Mer Cedex BP 120, F-62327 France
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université (AMU), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
| |
Collapse
|
27
|
Walsh AM, Crispie F, Claesson MJ, Cotter PD. Translating Omics to Food Microbiology. Annu Rev Food Sci Technol 2017; 8:113-134. [DOI: 10.1146/annurev-food-030216-025729] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Marcus J. Claesson
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species. Appl Environ Microbiol 2017; 83:AEM.02748-16. [PMID: 28039135 PMCID: PMC5311409 DOI: 10.1128/aem.02748-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCEStreptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations.
Collapse
|
29
|
Cui Y. Engineered phages for electronics. Biosens Bioelectron 2016; 85:964-976. [DOI: 10.1016/j.bios.2016.05.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 11/26/2022]
|
30
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
31
|
Millen AM, Romero DA. Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution. J Gen Virol 2016; 97:1998-2007. [PMID: 27389474 PMCID: PMC5156332 DOI: 10.1099/jgv.0.000499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lactococcus lactis is an industrial starter culture used for the production of fermented dairy products. Pip (phage infection protein) bacteriophage-insensitive mutant (BIM) L. lactis DGCC11032 was isolated following challenge of parental strain DGCC7271 with C2viruses. Over a period of industrial use, phages infecting DGCC11032 were isolated from industrial whey samples and identified as C2viruses. Although Pip is reported to be the receptor for many C2viruses including species type phage c2, a similar cell-membrane-associated protein, YjaE, was recently reported as the receptor for C2virus bIL67. Characterization of DGCC7271 BIMs following challenge with phage capable of infecting DGCC11032 identified mutations in yjaE, confirming YjaE to be necessary for infection. DGCC7271 YjaE mutants remained sensitive to the phages used to generate pip variant DGCC11032, indicating a distinction in host phage determinants. We will refer to C2viruses requiring Pip as c2-type andC2viruses that require YjaE as bIL67-type. Genomic comparisons of two c2-type phages unable to infect pip mutant DGCC11032 and four bIL67-type phages isolated on DGCC11032 confirmed the segregation of each group based on resemblance to prototypical phages c2 and bIL67, respectively. The distinguishing feature is linked to three contiguous late-expressed genes: l14-15-16 (c2) and ORF34-35-36 (bIL67). Phage recombinants in which the c2-like l14-15-16 homologue gene set was exchanged with corresponding bIL67 genes ORF34-35-36 were capable of infecting a pip mutated host. Together, these results correlate the phage genes corresponding to l14-15-16 (c2) and ORF34-35-36 (bIL67) to host lactococcal phage determinants Pip and YjaE, respectively.
Collapse
Affiliation(s)
- Anne M Millen
- DuPont Nutrition and Health, Madison, Wisconsin, USA
| | | |
Collapse
|
32
|
Li X, Koç C, Kühner P, Stierhof YD, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G. An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Sci Rep 2016; 6:26455. [PMID: 27212064 PMCID: PMC4876445 DOI: 10.1038/srep26455] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/28/2016] [Indexed: 01/26/2023] Open
Abstract
Despite the importance of phages in driving horizontal gene transfer (HGT) among pathogenic bacteria, the underlying molecular mechanisms mediating phage adsorption to S. aureus are still unclear. Phage ϕ11 is a siphovirus with a high transducing efficiency. Here, we show that the tail protein Gp45 localized within the ϕ11 baseplate. Phage ϕ11 was efficiently neutralized by anti-Gp45 serum, and its adsorption to host cells was inhibited by recombinant Gp45 in a dose-dependent manner. Flow cytometry analysis demonstrated that biotin-labelled Gp45 efficiently stained the wild-type S. aureus cell but not the double knockout mutant ΔtarM/S, which lacks both α- and β-O-GlcNAc residues on its wall teichoic acids (WTAs). Additionally, adsorption assays indicate that GlcNAc residues on WTAs and O-acetyl groups at the 6-position of muramic acid residues in peptidoglycan are essential components of the ϕ11 receptor. The elucidation of Gp45-involved molecular interactions not only broadens our understanding of siphovirus-mediated HGT, but also lays the groundwork for the development of sensitive affinity-based diagnostics and therapeutics for S. aureus infection.
Collapse
Affiliation(s)
- Xuehua Li
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Cengiz Koç
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Petra Kühner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Mark C Enright
- School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany.,Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.,German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 6098, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Guoqing Xia
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Germany.,Institute of Inflammation &Repair, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|