1
|
Chetri S. Escherichia coli: An arduous voyage from commensal to Antibiotic-resistance. Microb Pathog 2025; 198:107173. [PMID: 39608506 DOI: 10.1016/j.micpath.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Escherichia coli (E. coli), a normal intestinal microbiota is one of the most common pathogen known for infecting urinary tract, wound, lungs, bone marrow, blood system and brain. Irrational and overuse of commercially available antibiotics is the most imperative reason behind the emergence of the life threatening infections caused due to antibiotic resistant pathogens. The World Health Organization (WHO) identified antimicrobial resistance (AMR) as one of the 10 biggest public health threats of our time. This harmless commensal can acquire a range of mobile genetic elements harbouring genes coding for virulence factors becoming highly versatile human pathogens causing severe intestinal and extra intestinal diseases. Although, E. coli has been the most widely studied micro-organism, it never ceases to astound us with its ability to open up new research avenues and reveal cutting-edge survival mechanisms in diverse environments that impact human and surrounding environment. This review aims to summarize and highlight persistent research gaps in the field, including: (i) the transfer of resistant genes among bacterial species in diverse environments, such as those associated with humans and animals; (ii) the development of resistance mechanisms against various classes of antibiotics, including quinolones, tetracyclines, etc., in addition to β-lactams; and (iii) the relationship between resistance and virulence factors for understanding how virulence factors and resistance interact to gain a better grasp of how resistance mechanisms impact an organism's capacity to spread illness and interact with the host's defences. Moreover, this review aims to offer a thorough overview, exploring the history and factors contributing to antimicrobial resistance (AMR), the different reported pathotypes, and their links to virulence in both humans and animals. It will also examine their prevalence in various contexts, including food, environmental, and clinical settings. The objective is to deliver a more informative and current analysis, highlighting the evolution from microbiota (historical context) to sophisticated diseases caused by highly successful pathogens. Developing more potent tactics to counteract antibiotic resistance in E. coli requires filling in these gaps. By bridging these gaps, we can strengthen our capacity to manage and prevent resistance, which will eventually enhance public health and patient outcomes.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Tamilnadu, India.
| |
Collapse
|
2
|
Jácome R. Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain. J Mol Evol 2024; 92:799-814. [PMID: 39297932 DOI: 10.1007/s00239-024-10207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Many polymerases and other proteins are endowed with a catalytic domain belonging to the nucleotidyltransferase fold, which has also been deemed the non-canonical palm domain, in which three conserved acidic residues coordinate two divalent metal ions. Tertiary structure-based evolutionary analyses provide valuable information when the phylogenetic signal contained in the primary structure is blurry or has been lost, as is the case with these proteins. Pairwise structural comparisons of proteins with a nucleotidyltransferase fold were performed in the PDBefold web server: the RMSD, the number of superimposed residues, and the Qscore were obtained. The structural alignment score (RMSD × 100/number of superimposed residues) and the 1-Qscore were calculated, and distance matrices were constructed, from which a dendogram and a phylogenetic network were drawn for each score. The dendograms and the phylogenetic networks display well-defined clades, reflecting high levels of structural conservation within each clade, not mirrored by primary sequence. The conserved structural core between all these proteins consists of the catalytic nucleotidyltransferase fold, which is surrounded by different functional domains. Hence, many of the clades include proteins that bind different substrates or partake in non-related functions. Enzymes endowed with a nucleotidyltransferase fold are present in all domains of life, and participate in essential cellular and viral functions, which suggests that this domain is very ancient. Despite the loss of evolutionary traces in their primary structure, tertiary structure-based analyses allow us to delve into the evolution and functional diversification of the NT fold.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
3
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
4
|
Dulya O, Mikryukov V, Shchepkin DV, Pent M, Tamm H, Guazzini M, Panagos P, Jones A, Orgiazzi A, Marroni F, Bahram M, Tedersoo L. A trait-based ecological perspective on the soil microbial antibiotic-related genetic machinery. ENVIRONMENT INTERNATIONAL 2024; 190:108917. [PMID: 39089094 DOI: 10.1016/j.envint.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The development of monitoring protocols is hindered by the great diversity of resistance factors, while the "streetlight effect" denies the possibility of discovering novel drugs based on existing databases. In this study, we address these challenges using high-throughput environmental screening viewed from a trait-based ecological perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with antibiotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthesizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the properties of chemical structures dictate the distribution of the genes responsible for their synthesis across environments. With this understanding, we propose general principles to facilitate the discovery of antibiotics, including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their dissemination.
Collapse
Affiliation(s)
- Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Daniil V Shchepkin
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia.
| | - Heidi Tamm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia.
| | - Massimo Guazzini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy.
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy.
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy; European Dynamics, Brussels B-1000, Belgium.
| | - Fabio Marroni
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden; Department of Agroecology, Aarhus University, Forsøgsvej 1 4200, Slagelse, Denmark.
| | - Leho Tedersoo
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| |
Collapse
|
5
|
Sun S, Cao L, Wu J, Sun B, El-Newehy M, Moydeen Abdulhameed M, Mo X, Yang X, Zheng H. A novel antibiotic: the antimicrobial effects of CFBSA and its application on electronspun wound dressing. Biomed Mater 2024; 19:055010. [PMID: 38917818 DOI: 10.1088/1748-605x/ad5ba4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
N-chloro-N-fluorobenzenesulfonylamide (CFBSA), was a novel chlorinating reagent, which exhibits potential antibacterial activities. In this study, CFBSA was confirmed as a wide-broad antimicrobial and bactericidal drug against different gram-negative bacteria, gram-positive bacteria and fungi, while it was found to have low cytotoxicity for eukaryotic cells. In addition, microorganism morphology assay and oxidative stress test was used to determine the antimicrobial mechanisms of CFBSA. According to the results, CFBSA probably had a target on cell membrane and killed microorganism by disrupting its cell membrane. Then, CFBSA was first combined with poly(L-lactide-co-caprolactone) (PLCL)/SF via electrospinning and applied in wound dressings. The characterization of different PLCL/SF of CFBSA-loaded nanofibrous mats was investigated by SEM, water contact angle, Fourier transform infrared spectroscopy, cell compatibility and antimicrobial test. CFBSA-loaded PLCL/SF nanofibrous mats showed excellent antimicrobial activities. In order to balance of the biocompatibility and antibacterial efficiency, SP-2.5 was selected as the ideal loading concentration for further application of CFBSA-loaded PLCL/SF. In conclusion, the electrospun CFBSA-loaded PLCL/SF nanofibrous mat with its broad-spectrum antimicrobial and bactericidal activity and good biocompatibility showed enormous potential for wound dressing.
Collapse
Affiliation(s)
- Shu Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lei Cao
- Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xianjin Yang
- Key Lab for Advanced Material & Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200231, People's Republic of China
| | - Hao Zheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
6
|
Luo S, Kang X, Luo X, Li C, Wang G. Study on the inhibitory effect of quercetin combined with gentamicin on the formation of Pseudomonas aeruginosa and its bioenvelope. Microb Pathog 2023; 182:106274. [PMID: 37516213 DOI: 10.1016/j.micpath.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE The potential effects of quercetin and gentamicin combination on the bacteriostatic activity and biofilm formation of Pseudomonas aeruginosa (PA) were examined, and the findings provided a theoretical basis for the development of quercetin as a new biofilm inhibitor. METHODS The minimum inhibitory concentration (MIC) of eight PAs was determined by microdilution method and the partial inhibitory concentration index (FICI) of the combined drug was analyzed by micro-dilution method. Thereafter, the lowest film inhibitory concentration (MBIC) of quercetin and gentamicin alone and in combination was evaluated by crystal violet staining. Finally, scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) were used to decipher the inhibitory effect of the combination on biofilm formation. OUTCOME The antibacterial activity of quercetin alone was relatively weak, but after combination with gentamicin, the antibacterial activity was significantly enhanced, as evident by FICI of 0.28 and 0.53 and manifested as synergistic or additive effect, which indicated that quercetin can enhance gentamicin antibacterial activity. The results of crystal violet staining revealed that quercetin and gentamicin alone exhibited a similar biofilm formation inhibitory effect, but the inhibitory effect was substantially weaker, and the antibiofilm activity was stronger and exhibited a dose-dependent response after the combination of the two with 1/2FICI. The results of scanning electron microscopy and laser confocal microscopy also showed that the treatment of PA biofilm after combining quercetin and gentamicin with 1/2FICI could completely destroy the spatial structure of the complete biofilm, significantly reduce the thickness of bacteria, and markedly reduce the proportion of viable bacteria in the membrane. CONCLUSION The combination of quercetin and gentamicin can effectively inhibit the formation of PA as well as its biofilm, and exhibit synergistic and additive effects.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofeng Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Caixia Li
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
7
|
Wu T, Guo SZ, Zhu HZ, Yan L, Liu ZP, Li DF, Jiang CY, Corvini PFX, Shen XH, Liu SJ. The sulfonamide-resistance dihydropteroate synthase gene is crucial for efficient biodegradation of sulfamethoxazole by Paenarthrobacter species. Appl Microbiol Biotechnol 2023; 107:5813-5827. [PMID: 37439835 DOI: 10.1007/s00253-023-12679-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Sulfonamide antibiotics (SAs) are serious pollutants to ecosystems and environments. Previous studies showed that microbial degradation of SAs such as sulfamethoxazole (SMX) proceeds via a sad-encoded oxidative pathway, while the sulfonamide-resistant dihydropteroate synthase gene, sul, is responsible for SA resistance. However, the co-occurrence of sad and sul genes, as well as how the sul gene affects SMX degradation, was not explored. In this study, two SMX-degrading bacterial strains, SD-1 and SD-2, were cultivated from an SMX-degrading enrichment. Both strains were Paenarthrobacter species and were phylogenetically identical; however, they showed different SMX degradation activities. Specifically, strain SD-1 utilized SMX as the sole carbon and energy source for growth and was a highly efficient SMX degrader, while SD-2 did could not use SMX as a sole carbon or energy source and showed limited SMX degradation when an additional carbon source was supplied. Genome annotation, growth, enzymatic activity tests, and metabolite detection revealed that strains SD-1 and SD-2 shared a sad-encoded oxidative pathway for SMX degradation and a pathway of protocatechuate degradation. A new sulfonamide-resistant dihydropteroate synthase gene, sul918, was identified in strain SD-1, but not in SD-2. Moreover, the lack of sul918 resulted in low SMX degradation activity in strain SD-2. Genome data mining revealed the co-occurrence of sad and sul genes in efficient SMX-degrading Paenarthrobacter strains. We propose that the co-occurrence of sulfonamide-resistant dihydropteroate synthase and sad genes is crucial for efficient SMX biodegradation. KEY POINTS: • Two sulfamethoxazole-degrading strains with distinct degrading activity, Paenarthrobacter sp. SD-1 and Paenarthrobacter sp. SD-2, were isolated and identified. • Strains SD-1 and SD-2 shared a sad-encoded oxidative pathway for SMX degradation. • A new plasmid-borne SMX resistance gene (sul918) of strain SD-1 plays a crucial role in SMX degradation efficiency.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng-Zhi Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xi-Hui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Yang Z, Lou Y, Yan X, Pan H, Wang H, Yang Q, Sun Y, Zhuge Y. The Microbiome and Antibiotic Resistome in Soil under Biodegradable Composite Carbon Source Amendment. J Xenobiot 2023; 13:424-438. [PMID: 37606424 PMCID: PMC10443276 DOI: 10.3390/jox13030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
The decomposition of biodegradable composite carbon sources generates a large amount of biodegradable microplastics, which may not only furnish microbial denitrification, but might also pose potential environmental risks. In the present study, the effects of different dosages of a biodegradable composite carbon source on the microbial communities, the nitrogen metabolic pathways and the antibiotic resistome were explored through Illumina MiSeq sequencing analysis and metagenomic analysis. The results of partial least-square discriminant analysis (PLS-DA) and analysis of similarity (ANOSIM) demonstrated that the response of the bacterial community to a biodegradable composite carbon source was more obvious than the fungal community. The application of biodegradable microplastics diminished the complexity of the microbial communities to some extent and obviously stimulated denitrification. Antibiotics resistance gene (ARG) dispersal was not evidently accelerated after the addition of biodegradable composite carbon source. Lysobacter, Methylobacillus, Phyllobacterium, Sinorhizobium, Sphingomonas from Proteobacteria and Actinomadura, Agromyces, Gaiella and Micromonospora from Actinobacteria were the major ARG hosts. Overall, the addition of a biodegradable composite carbon source shaped microbial communities and their antibiotic resistance profiles in this study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China; (Z.Y.); (Y.L.); (X.Y.); (H.P.); (H.W.); (Q.Y.); (Y.S.)
| |
Collapse
|
9
|
Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, Alhamdi HWS, Ahmad S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:881. [PMID: 37375828 DOI: 10.3390/ph16060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Shreekar Pant
- Centre for Biodiversity Studies, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - M A Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mouna Jeridi
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| |
Collapse
|
10
|
Farhat N, Khan AU. Therapeutic approaches to combat the global antibiotic resistance challenge. Future Microbiol 2022; 17:1515-1529. [DOI: 10.2217/fmb-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a major concern for healthcare workers due to the emergence of new variants of resistant markers, especially carbapenemases. Combinational antibiotic therapy is one of the best and easiest approaches to handle the current situation of AMR. Although some antibiotic combinations are already in clinical use, they remain to be studied in detail. This review focuses on therapeutic options for AMR mechanisms of resistance in bacteria that can be overcome by combinational therapy and testing methods for synergy. The integration of diverse approaches may provide information that is imperative in mitigating the threat of AMR.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Guillén-Chable F, Avila Castro LA, Rodríguez-Escamilla Z, Martínez-Núñez MA. Insights into coastal microbial antibiotic resistome through a meta-transcriptomic approach in Yucatan. Front Microbiol 2022; 13:972267. [PMID: 36325016 PMCID: PMC9618888 DOI: 10.3389/fmicb.2022.972267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Antibiotic resistance (AR) is one of the greatest human and clinical challenges associated with different pathogenic organisms. However, in recent years it has also become an environmental problem due to the widespread use of antibiotics in humans and livestock activities. The ability to resist antibiotics comes from antibiotic resistance genes (ARGs) and our understanding of their presence in coastal environments is still limited. Therefore, the objective of the present study was to explore the presence and possible differences in the microbial resistome of four sites from the Yucatan coast through the evaluation of the composition and abundance of ARGs using a high-throughput analysis of metatranscriptomic sequences. In total, 3,498 ARGs were uncovered, which participate in the resistance to tetracycline, macrolide, rifamycin, fluoroquinolone, phenicol, aminoglycoside, cephalosporin, and other antibiotics. The molecular mechanisms of these ARGs were mainly efflux pump, antibiotic target alteration and antibiotic target replacement. In the same way, ARGs were detected in the samples but showing dissimilar enrichment levels. With respect to the sampling sites, the ARGs were present in all the samples collected, either from preserved or contaminated areas. Importantly, sediments of the preserved area of Dzilam presented the second highest level of ARGs detected, probably as a consequence of the antibiotics dragged to the coast by submarine groundwater discharge. In general, the resistance to a single antibiotic was greater than multiresistance, both at the level of gene and organisms; and multiresistance in organisms is acquired mainly by recruiting different monoresistance genes. To our knowledge, this is the first study that describes and compares the resistome of different samples of the Yucatan coast. This study contributes to generating information about the current state of antibiotic resistance on the Yucatan coasts for a better understanding of ARGs dissemination and could facilitate the management of ARGs pollution in the environment.
Collapse
Affiliation(s)
- Francisco Guillén-Chable
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI)-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Sisal, Yucatán, Mexico
| | - Luis Alejandro Avila Castro
- Escuela Nacional de Estudios Superiores-Mérida, Universidad Nacional Autónoma de México (UNAM), Ucú, Yucatán, Mexico
| | - Zuemy Rodríguez-Escamilla
- Escuela Nacional de Estudios Superiores-Mérida, Universidad Nacional Autónoma de México (UNAM), Ucú, Yucatán, Mexico
- Zuemy Rodríguez-Escamilla,
| | - Mario Alberto Martínez-Núñez
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI)-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Sisal, Yucatán, Mexico
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mérida, Yucatán, Mexico
- *Correspondence: Mario Alberto Martínez-Núñez,
| |
Collapse
|
12
|
Shi X, Xia Y, Wei W, Ni BJ. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: Roles and mechanisms. WATER RESEARCH 2022; 224:119060. [PMID: 36096030 DOI: 10.1016/j.watres.2022.119060] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 05/28/2023]
Abstract
The global spread of antibiotic resistance genes (ARGs) has wreaked havoc with the treatment efficiency of antibiotics and, ultimately, anti-microbial chemotherapy, and has been conventionally attributed to the abuse and misuse of antibiotics. However, the ancient ARGs have alterative functions in bacterial physiology and thus they could be co-regulated by non-antibiotic conditions. Recent research has demonstrated that many non-antibiotic chemicals such as microplastics, metallic nanoparticles and non-antibiotic drugs, as well as some non-antibiotic conditions, can accelerate the dissemination of ARGs. These results suggested that the role of antibiotics might have been previously overestimated whereas the effects of non-antibiotic conditions were possibly ignored. Thus, in an attempt to fully understand the fate and behavior of ARGs in the eco-system, it is urgent to critically highlight the role and mechanisms of non-antibiotic chemicals and related environmental factors in the spread of ARGs. To this end, this timely review assessed the evolution of ARGs, especially its function alteration, summarized the non-antibiotic chemicals promoting the spread of ARGs, evaluated the non-antibiotic conditions related to ARG dissemination and analyzed the molecular mechanisms related to spread of ARGs induced by the non-antibiotic factors. Finally, this review then provided several critical perspectives for future research.
Collapse
Affiliation(s)
- Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
13
|
Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng OT, Lakshminarayanan R, Verma NK, Gautam HK. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology 2022; 20:375. [PMID: 35953826 PMCID: PMC9371964 DOI: 10.1186/s12951-022-01573-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of “post-antibiotic era”. It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, New Delhi, 110007, India.,Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India
| | - Diksha Jha
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, New Delhi, India
| | - Shailendra Singh Gaurav
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Oon-Tek Ng
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Singapore, 169856, Singapore. .,Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore. .,Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore. .,National Skin Centre, Singapore, 308205, Singapore.
| | - Hemant K Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.
| |
Collapse
|
14
|
Abstract
Antibiotic resistance is a global health challenge, involving the transfer of bacteria and genes between humans, animals and the environment. Although multiple barriers restrict the flow of both bacteria and genes, pathogens recurrently acquire new resistance factors from other species, thereby reducing our ability to prevent and treat bacterial infections. Evolutionary events that lead to the emergence of new resistance factors in pathogens are rare and challenging to predict, but may be associated with vast ramifications. Transmission events of already widespread resistant strains are, on the other hand, common, quantifiable and more predictable, but the consequences of each event are limited. Quantifying the pathways and identifying the drivers of and bottlenecks for environmental evolution and transmission of antibiotic resistance are key components to understand and manage the resistance crisis as a whole. In this Review, we present our current understanding of the roles of the environment, including antibiotic pollution, in resistance evolution, in transmission and as a mere reflection of the regional antibiotic resistance situation in the clinic. We provide a perspective on current evidence, describe risk scenarios, discuss methods for surveillance and the assessment of potential drivers, and finally identify some actions to mitigate risks.
Collapse
Affiliation(s)
- D G Joakim Larsson
- Centre for Antibiotic Resistance Research at University of Gothenburg, Gothenburg, Sweden.
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research at University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Wei W, Qiao J, Jiang X, Cai L, Hu X, He J, Chen M, Yang M, Cui T. Dehydroquinate Synthase Directly Binds to Streptomycin and Regulates Susceptibility of Mycobacterium bovis to Streptomycin in a Non-canonical Mode. Front Microbiol 2022; 13:818881. [PMID: 35516432 PMCID: PMC9063660 DOI: 10.3389/fmicb.2022.818881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance (AMR) represents one of the main challenges in Tuberculosis (TB) treatment. Investigating the genes involved in AMR and the underlying mechanisms holds promise for developing alternative treatment strategies. The results indicate that dehydroquinate synthase (DHQS) regulates the susceptibility of Mycobacterium bovis BCG to first-line anti-TB drug streptomycin. Perturbation of the expression of aroB encoding DHQS affects the susceptibility of M. bovis BCG to streptomycin. Purified DHQS impairs in vitro antibacterial activity of streptomycin, but did not hydrolyze or modify streptomycin. DHQS directly binds to streptomycin while retaining its own catalytic activity. Computationally modeled structure analysis of DHQS–streptomycin complex reveals that DHQS binds to streptomycin without disturbing native substrate binding. In addition, streptomycin treatment significantly induces the expression of DHQS, thus resulting in DHQS-mediated susceptibility. Our findings uncover the additional function of DHQS in AMR and provide an insight into a non-canonical resistance mechanism by which protein hijacks antibiotic to reduce the interaction between antibiotic and its target with normal protein function retained.
Collapse
Affiliation(s)
- Wenping Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Qiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Luxia Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomin Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Min Yang,
| | - Tao Cui
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Tao Cui,
| |
Collapse
|
16
|
Cave R, Cole J, Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. ENVIRONMENT INTERNATIONAL 2021; 157:106836. [PMID: 34479136 PMCID: PMC8443212 DOI: 10.1016/j.envint.2021.106836] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistant (AMR) bacteria present one of the biggest threats to public health; this must not be forgotten while global attention is focussed on the COVID-19 pandemic. Resistant bacteria have been demonstrated to be transmittable to humans in many different environments, including public settings in urban built environments where high-density human activity can be found, including public transport, sports arenas and schools. However, in comparison to healthcare settings and agriculture, there is very little surveillance of AMR in the built environment outside of healthcare settings and wastewater. In this review, we analyse the existing literature to aid our understanding of what surveillance has been conducted within different public settings and identify what this tells us about the prevalence of AMR. We highlight the challenges that have been reported; and make recommendations for future studies that will help to fill knowledge gaps present in the literature.
Collapse
Affiliation(s)
- Rory Cave
- School of Biomedical Sciences, University of West London, United Kingdom
| | - Jennifer Cole
- Royal Holloway University of London, Department of Health Studies, United Kingdom
| | | |
Collapse
|
17
|
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9:microorganisms9102041. [PMID: 34683362 PMCID: PMC8541629 DOI: 10.3390/microorganisms9102041] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence of drug- resistant pathogens raises an urgent need to identify and isolate new bioactive compounds from medicinal plants using standardized modern analytical procedures. Medicinal plant-derived compounds could provide novel straightforward approaches against pathogenic bacteria. This review explores the antimicrobial activity of plant-derived components, their possible mechanisms of action, as well as their chemical potential. The focus is put on the current challenges and future perspectives surrounding medicinal plants antimicrobial activity. There are some inherent challenges regarding medicinal plant extracts and their antimicrobial efficacy. Appropriate and optimized extraction methodology plant species dependent leads to upgraded and selective extracted compounds. Antimicrobial susceptibility tests for the determination of the antimicrobial activity of plant extracts may show variations in obtained results. Moreover, there are several difficulties and problems that need to be overcome for the development of new antimicrobials from plant extracts, while efforts have been made to enhance the antimicrobial activity of chemical compounds. Research on the mechanisms of action, interplay with other substances, and the pharmacokinetic and/or pharmacodynamic profile of the medicinal plant extracts should be given high priority to characterize them as potential antimicrobial agents.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); (E.S.)
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 1011 Lausanne, Switzerland
- Correspondence: (N.V.); (E.S.)
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece;
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
18
|
RNA-seq-based transcriptome analysis of a cefquinome-treated, highly resistant, and virulent MRSA strain. Microb Pathog 2021; 160:105201. [PMID: 34547409 DOI: 10.1016/j.micpath.2021.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains of animal origin that are resistant to several antibiotics is of great concern. Cefquinome is a fourth-generation cephalosporin developed specifically for veterinary use. The mechanism of MRSA resistance to cefquinome is still not established. Therefore, we designed this study to evaluate the effect of cefquinome on the transcriptome of MRSA1679a, a strain that was isolated from a chicken. The transcriptome analysis indicated that multiple efflux pumps (QacA, NorB, Bcr, and ABCb) were upregulated in MRSA1679a as a resistance mechanism to expel cefquinome. Additionally, penicillin-binding protein 1A was overexpressed, which conferred resistance to cefquinome, a β-lactam antibiotic. Adhesion and the biofilm-forming capacity of the MRSA strain was also enhanced in addition to overexpression of many stress-related genes. Genes related to carbohydrate metabolism, secretion systems, and transport activity were also significantly upregulated in MRSA1679a. In conclusion, global transcription was triggered to overcome the stress induced by cefquinome, and the MRSA1679a showed a great genetic potential to survive in this challenging environment. This study provides a profound understanding of MRSA1679a as a potentially important pathogen and identifies key resistance characteristics of MRSA against cefquinome. Studies should be aimed to demonstrate multidrug resistance mechanisms of virulent strains by exposing to different antibiotic combinations.
Collapse
|
19
|
Proteomic Analysis of Antibiotic Susceptibility in Enterobacteriaceae. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2296:381-392. [PMID: 33977460 DOI: 10.1007/978-1-0716-1358-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mass spectrometry is a sensitive and specific analytical technique that is capable of providing qualitative and quantitative data to resolve the protein elements of biochemical pathways that are altered by antibiotics. Here we present methods to study antibiotic susceptibility by changes in protein abundance, as exemplified by Klebsiella pneumoniae, a Gram-negative pathogen that colonizes mucosal surfaces of the human gastrointestinal and respiratory tracts. Cultured bacteria are exposed to antibiotics, the total proteomes of collected cell pellets are converted to complex peptide mixtures by filter-aided sample preparation (FASP), and the peptides are further processed by an optimized desalting procedure. A mixture of peptides from Klebsiella pneumoniae proteomes are analyzed by high-resolution mass spectrometry (MS) that is coupled to sensitive and comprehensive nano-liquid chromatography (nano-LC). The generic method described here for the identification and quantification of the proteome will provide a snapshot of differential protein abundances resulting from antimicrobial sensitivities, which can be used to model directed perturbations of the global system and to select targets of specific interest for further study.
Collapse
|
20
|
De Simeis D, Serra S. Actinomycetes: A Never-Ending Source of Bioactive Compounds-An Overview on Antibiotics Production. Antibiotics (Basel) 2021; 10:antibiotics10050483. [PMID: 33922100 PMCID: PMC8143475 DOI: 10.3390/antibiotics10050483] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The discovery of penicillin by Sir Alexander Fleming in 1928 provided us with access to a new class of compounds useful at fighting bacterial infections: antibiotics. Ever since, a number of studies were carried out to find new molecules with the same activity. Microorganisms belonging to Actinobacteria phylum, the Actinomycetes, were the most important sources of antibiotics. Bioactive compounds isolated from this order were also an important inspiration reservoir for pharmaceutical chemists who realized the synthesis of new molecules with antibiotic activity. According to the World Health Organization (WHO), antibiotic resistance is currently one of the biggest threats to global health, food security, and development. The world urgently needs to adopt measures to reduce this risk by finding new antibiotics and changing the way they are used. In this review, we describe the primary role of Actinomycetes in the history of antibiotics. Antibiotics produced by these microorganisms, their bioactivities, and how their chemical structures have inspired generations of scientists working in the synthesis of new drugs are described thoroughly.
Collapse
|
21
|
Waglechner N, Culp EJ, Wright GD. Ancient Antibiotics, Ancient Resistance. EcoSal Plus 2021; 9:eESP-0027-2020. [PMID: 33734062 PMCID: PMC11163840 DOI: 10.1128/ecosalplus.esp-0027-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.
Collapse
Affiliation(s)
- Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Elizabeth J. Culp
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
22
|
Chen Z, Xi X, Lu Y, Hu H, Dong Z, Ma C, Wang L, Zhou M, Chen T, Du S, Lu Y. In vitro activities of a novel antimicrobial peptide isolated from phyllomedusa tomopterna. Microb Pathog 2021; 153:104795. [PMID: 33582221 DOI: 10.1016/j.micpath.2021.104795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Because of the abuse of antibiotics, clinical strains began to become more drug-resistant. Their evolution has long surpassed the speed of us looking for a new generation of antibacterial drugs. Therefore, it is urgent to discover a new antimicrobial substance to alleviate the pressure on conventional antibiotics. Antimicrobial peptides (AMP) are known for their significant activity towards a broad spectrum of bacteria, protozoa, yeasts, filamentous fungi. Here, we report a novel AMP named Dermaseptin-TO. Results demonstrate that Dermaseptin-TO can quickly exhibit antimicrobial activity to bacteria and yeast in a dose-related way. The highest minimum inhibit concentration (MIC) was observed in the E.faecalis group (128 μM). Also, haemolytic outcomes showed no more than 10.65% of red blood cells were affected when in the same concentrations or below. Besides, Dermaseptin-TO also showed anticancer activity at a higher concentration. From the above, evidence proved that Phyllomedusine frog skin secretion is still a rich source that contains novel AMP and Dermaseptin-TO is competent to become an antimicrobial agent, its anticancer activity may broaden the way in basic cancer research. Also, following the same templates in molecular cloning may acquire new AMP classes with potent antimicrobial effects that could widen drug design in new anti-infective drugs.
Collapse
Affiliation(s)
- Ziqi Chen
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 100029, China
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast BT9 7BL, Northern Ireland, UK
| | - Yueyang Lu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast BT9 7BL, Northern Ireland, UK
| | - Haiyan Hu
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 100029, China
| | - Ziyi Dong
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 100029, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast BT9 7BL, Northern Ireland, UK
| | - Shouying Du
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 100029, China.
| | - Yang Lu
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 100029, China.
| |
Collapse
|
23
|
Abstract
Apramycin is an aminoglycoside antibiotic with the potential to be developed to combat multidrug-resistant pathogens. Its unique structure evades the clinically widespread mechanisms of aminoglycoside resistance that currently compromise the efficacy of other members in this drug class. Of the aminoglycoside-modifying enzymes that chemically alter these antibiotics, only AAC(3)-IVa has been demonstrated to confer resistance to apramycin through N-acetylation. Knowledge of other modification mechanisms is important to successfully develop apramycin for clinical use. Here, we show that ApmA is structurally unique among the previously described aminoglycoside-modifying enzymes and capable of conferring a high level of resistance to apramycin. In vitro experiments indicated ApmA to be an N-acetyltransferase, but in contrast to AAC(3)-IVa, ApmA has a unique regiospecificity of the acetyl transfer to the N2' position of apramycin. Crystallographic analysis of ApmA conclusively showed that this enzyme is an acetyltransferase from the left-handed β-helix protein superfamily (LβH) with a conserved active site architecture. The success of apramycin will be dependent on consideration of the impact of this potential form of clinical resistance.IMPORTANCE Apramycin is an aminoglycoside antibiotic that has been traditionally used in veterinary medicine. Recently, it has become an attractive candidate to repurpose in the fight against multidrug-resistant pathogens prioritized by the World Health Organization. Its atypical structure circumvents most of the clinically relevant mechanisms of resistance that impact this class of antibiotics. Prior to repurposing apramycin, it is important to understand the resistance mechanisms that could be a liability. Our study characterizes the most recently identified apramycin resistance element, apmA We show ApmA does not belong to the protein families typically associated with aminoglycoside resistance and is responsible for modifying a different site on the molecule. The data presented will be critical in the development of apramycin derivatives that will evade apmA in the event it becomes prevalent in the clinic.
Collapse
|
24
|
Imchen M, Kumavath R. Metagenomic insights into the antibiotic resistome of mangrove sediments and their association to socioeconomic status. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115795. [PMID: 33068846 DOI: 10.1016/j.envpol.2020.115795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Mangrove sediments are prone to anthropogenic activities that could enrich antibiotics resistance genes (ARGs). The emergence and dissemination of ARGs are of serious concern to public health worldwide. Therefore, a comprehensive resistome analysis of global mangrove sediment is of paramount importance. In this study, we have implemented a deep machine learning approach to analyze the resistome of mangrove sediments from Brazil, China, Saudi Arabia, India, and Malaysia. Geography (RANOSIM = 39.26%; p < 0.005) as well as human intervention (RANOSIM = 16.92%; p < 0.005) influenced the ARG diversity. ARG diversity was also inversely correlated to the human development index (HDI) of the host country (R = -0.53; p < 0.05) rather than antibiotics consumption (p > 0.05). Several genes including multidrug efflux pumps were significantly (p < 0.05) enriched in the sites with human intervention. Resistome was consistently dominated by rpoB2 (19.26 ± 0.01%), multidrug ABC transporter (10.40 ± 0.23%), macB (8.84 ± 0.36n%), tetA (4.13 ± 0.35%), mexF (3.26 ± 0.19%), CpxR (2.93 ± 0.2%), bcrA (2.38 ± 0.24%), acrB (2.37 ± 0.18%), mexW (2.19 ± 0.17%), and vanR (1.99 ± 0.11%). Besides, mobile ARGs such as vanA, tet(48), mcr, and tetX were also detected in the mangrove sediments. Comparative analysis against terrestrial and ocean resistomes showed that the ocean ecosystem harbored the lowest ARG diversity (Chao1 = 71.12) followed by mangroves (Chao1 = 258.07) and terrestrial ecosystem (Chao1 = 294.07). ARG subtypes such as abeS and qacG were detected exclusively in ocean datasets. Likewise, rpoB2, multidrug ABC transporter, and macB, detected in mangrove and terrestrial datasets, were not detected in the ocean datasets. This study shows that the socioeconomic factors strongly determine the antibiotic resistome in the mangrove. Direct anthropogenic intervention in the mangrove environment also enriches antibiotic resistome.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala, 671320, India.
| |
Collapse
|
25
|
Kojic M, Jovcic B, Miljkovic M, Novovic K, Begovic J, Studholme DJ. Large-scale chromosome flip-flop reversible inversion mediates phenotypic switching of expression of antibiotic resistance in lactococci. Microbiol Res 2020; 241:126583. [PMID: 32919223 DOI: 10.1016/j.micres.2020.126583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 11/26/2022]
Abstract
Bacteria can gain resistance to antimicrobials by acquiring and expressing genetic elements that encode resistance determinants such as efflux pumps and drug-modifying enzymes, thus hampering treatment of infection. Previously we showed that acquisition of spectinomycin resistance in a lactococcal strain was correlated with a reversible genomic inversion, but the precise location and the genes affected were unknown. Here we use long-read whole-genome sequencing to precisely define the genomic inversion and we use quantitative PCR to identify associated changes in gene expression levels. The boundaries of the inversion fall within two identical copies of a prophage-like sequence, located on the left and right replichores; this suggests possible mechanisms for inversion through homologous recombination or prophage activity. The inversion is asymmetrical in respect of the axis between the origin and terminus of the replication and modulates the expression of a SAM-dependent methyltransferase, whose heterologous expression confers resistance to spectinomycin in lactococci and that is up-regulated on exposure to spectinomycin. This study provides one of the first examples of phase variation via large-scale chromosomal inversions that confers a switch in antimicrobial resistance in bacteria and the first outside of Staphylococcus aureus.
Collapse
Affiliation(s)
- Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Branko Jovcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Miljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Novovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Begovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
26
|
Transferable Extended-Spectrum β-Lactamase (ESBL) Plasmids in Enterobacteriaceae from Irrigation Water. Microorganisms 2020; 8:microorganisms8070978. [PMID: 32629840 PMCID: PMC7409067 DOI: 10.3390/microorganisms8070978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae are classified as serious threats to human health by the U.S. Centers for Disease Control and Prevention. Water used for irrigation of fresh produce can transmit such resistant bacteria directly to edible plant parts. We screened ESBL-producing Escherichia coli, Enterobacter cloacae, and Citrobacter freundii isolated from irrigation water for their potential to transmit resistance to antibiotic-susceptible E. coli. All strains were genome-sequenced and tested in vitro for transmission of resistance to third-generation cephalosporins on solid agar as well as in liquid culture. Of the 19 screened isolates, five ESBL-producing E. coli were able to transfer resistance with different efficiency to susceptible recipient E. coli. Transconjugant strains were sequenced for detection of transferred antibiotic resistance genes (ARGs) and compared to the known ARG pattern of their respective donors. Additionally, phenotypic resistance patterns were obtained for both transconjugant and corresponding donor strains, confirming ESBL-producing phenotypes of all obtained transconjugants.
Collapse
|
27
|
Abstract
The human gut is home to a myriad of organisms. While some are harmless commensals, others are transient, pathogenic flora. The gut microbiome is composed of diverse bacterial flora, and apart from playing a major role in protecting from various infectious and non-infectious diseases, it plays an important role in resistance to antimicrobials. The collection of genes or genetic material that confers antimicrobial resistance constitutes the gut resistome, and it may involve the pathogens or commensals of the intestinal tract. The diversity of this gut resistome is influenced by various environmental factors including the diet and antibiotic exposure. This review highlights the recent concepts pertaining to the human gut resistome, factors affecting it, how it impacts human health and diseases, methods to study the resistome and potential therapeutic approaches.
Collapse
Affiliation(s)
- Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
28
|
Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci 2020; 29:654-669. [PMID: 31899563 DOI: 10.1002/pro.3819] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Vancomycin and related glycopeptides are drugs of last resort for the treatment of severe infections caused by Gram-positive bacteria such as Enterococcus species, Staphylococcus aureus, and Clostridium difficile. Vancomycin was long considered immune to resistance due to its bactericidal activity based on binding to the bacterial cell envelope rather than to a protein target as is the case for most antibiotics. However, two types of complex resistance mechanisms, each comprised of a multi-enzyme pathway, emerged and are now widely disseminated in pathogenic species, thus threatening the clinical efficiency of vancomycin. Vancomycin forms an intricate network of hydrogen bonds with the d-Ala-d-Ala region of Lipid II, interfering with the peptidoglycan layer maturation process. Resistance to vancomycin involves degradation of this natural precursor and its replacement with d-Ala-d-lac or d-Ala-d-Ser alternatives to which vancomycin has low affinity. Through extensive research over 30 years after the initial discovery of vancomycin resistance, remarkable progress has been made in molecular understanding of the enzymatic cascades responsible. Progress has been driven by structural studies of the key components of the resistance mechanisms which provided important molecular understanding such as, for example, the ability of this cascade to discriminate between vancomycin sensitive and resistant peptidoglycan precursors. Important structural insights have been also made into the molecular evolution of vancomycin resistance enzymes. Altogether this molecular data can accelerate inhibitor discovery and optimization efforts to reverse vancomycin resistance. Here, we overview our current understanding of this complex resistance mechanism with a focus on the structural and molecular aspects.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID).,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Kim DW, Thawng CN, Lee K, Wellington EMH, Cha CJ. A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. ENVIRONMENT INTERNATIONAL 2019; 127:206-215. [PMID: 30928844 DOI: 10.1016/j.envint.2019.03.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/19/2023]
Abstract
Sulfonamide-degrading bacteria have been discovered in various environments, suggesting the presence of novel resistance mechanisms via drug inactivation. In this study, Microbacterium sp. CJ77 capable of utilizing various sulfonamides as a sole carbon source was isolated from a composting facility. Genome and proteome analyses revealed that a gene cluster containing a flavin-dependent monooxygenase and a flavin reductase was highly up-regulated in response to sulfonamides. Biochemical analysis showed that the two-component monooxygenase system was key enzymes for the initial cleavage of sulfonamides. Co-expression of the two-component system in Escherichia coli conferred decreased susceptibility to sulfamethoxazole, indicating that the genes encoding drug-inactivating enzymes are potential resistance determinants. Comparative genomic analysis revealed that the gene cluster containing sulfonamide monooxygenase (renamed as sulX) and flavin reductase (sulR) was highly conserved in a genomic island shared among sulfonamide-degrading actinobacteria, all of which also contained sul1-carrying class 1 integrons. These results suggest that the sulfonamide metabolism may have evolved in sulfonamide-resistant bacteria which had already acquired the class 1 integron under sulfonamide selection pressures. Furthermore, the presence of multiple insertion sequence elements and putative composite transposon structures containing the sulX gene cluster indicated potential mobilization. This is the first study to report that sulX responsible for both sulfonamide degradation and resistance is prevalent in sulfonamide-degrading actinobacteria and its genetic signatures indicate horizontal gene transfer of the novel resistance gene.
Collapse
Affiliation(s)
- Dae-Wi Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Cung Nawl Thawng
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | | | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea.
| |
Collapse
|
30
|
Exploring bacterial resistome and resistance dessemination: an approach of whole genome sequencing. Future Med Chem 2019; 11:247-260. [PMID: 30801197 DOI: 10.4155/fmc-2018-0201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
For several decades antibiotics are used to combat against pathogenic bacteria, but their misuse and overuse have caused the emergence of resistant bacteria. The scarcities of effective antibiotics along with unavailability of alternative solutions have exacerbated bacterial infections and mortality rate. This review provides the concept of bacterial resistome and mechanisms of resistance. It has also described the utility of whole genome sequencing in identifying resistance and its dissemination in association with available bioinformatics tools and databases. Moreover, the whole genome sequencing methodology described in this review will help to select effective antibiotics, maintain unparalleled surveillance of resistance and provide early diagnosis during resistance outbreaks. The provided information could be used to control infection caused by resistant microorganisms.
Collapse
|
31
|
Sprigg K, Pietrangeli CE. Bacterial Antibiotic Resistance: on the Cusp of a Post-antibiotic World. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2019. [DOI: 10.1007/s40506-019-0181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Pines G, Oh EJ, Bassalo MC, Choudhury A, Garst AD, Fankhauser RG, Eckert CA, Gill RT. Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations Conferring Resistance to the Antimalarial Drug Fosmidomycin in E. coli. ACS Synth Biol 2018; 7:2824-2832. [PMID: 30462485 DOI: 10.1021/acssynbio.8b00219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sequence to activity mapping technologies are rapidly developing, enabling the generation and isolation of mutations conferring novel phenotypes. Here we used the CRISPR enabled trackable genome engineering (CREATE) technology to investigate the inhibition of the essential ispC gene in its native genomic context in Escherichia coli. We created a full saturation library of 33 sites proximal to the ligand binding pocket and challenged this library with the antimalarial drug fosmidomycin, which targets the ispC gene product, DXR. This selection is especially challenging since it is relatively weak in E. coli, with multiple naturally occurring pathways for resistance. We identified several previously unreported mutations that confer fosmidomycin resistance, in highly conserved sites that also exist in pathogens including the malaria-inducing Plasmodium falciparum. This approach may have implications for the isolation of resistance-conferring mutations and may affect the design of future generations of fosmidomycin-based drugs.
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Eun Joong Oh
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Marcelo C. Bassalo
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 347 UCB, Boulder, Colorado 80309, United States
| | - Alaksh Choudhury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Andrew D. Garst
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
| | - Reilly G. Fankhauser
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Ryan T. Gill
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
33
|
Al-Naqshbandi AA, Chawsheen MA, Abdulqader HH. Prevalence and antimicrobial susceptibility of bacterial pathogens isolated from urine specimens received in rizgary hospital - Erbil. J Infect Public Health 2018; 12:330-336. [PMID: 30522892 DOI: 10.1016/j.jiph.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Urinary tract infection (UTI) is a common health-associated problem worldwide. Like other medical conditions, UTI patients may suffer from poor treatment outcomes due to the emergence of antimicrobial resistance. Determining patterns of antimicrobial susceptibility in uropathogens will guide physicians to choose the best antibiotics for treating affected patients. In this project we aimed to evaluate the frequencies of pathogens associated with UTI and their antimicrobial susceptibility patterns. METHODS This study was conducted on 2692 urine samples of patients visited Rizgary Teaching Hospital in Erbil city. Aerobic bacterial growth identification and antimicrobial susceptibility tests were performed using VITEK®2 compact system. RESULTS Our data show that more than 20% of all studied samples were negative for bacterial growth; only 16.72% of them were pathogenic bacteria in which 82.44% of them were Gram negative bacteria (GNB) and the rest were Gram positive bacteria (GPB). Escherichia coli was the most frequent, and Acinetobacter baumannii was the most resistant GNB. Staphylococcus haemolyticus was the most frequent, and Enterococcus faecalis was the most resistant GPB. In general GNB were highly resistant to Ticarcillin and Cefepime, and GPB were also resistant to Ticarcillin, and Tigecycline antibiotics. CONCLUSIONS The amount of negative culture growth indicates that symptoms only based diagnosis for UTI detection is unreliable. E. coli is the most UTI related pathogen, E. faecalis and A. baumannii were among highly antibiotic resistant bacteria. Finally, since many of GNG and GPB isolates were resistant to several antibiotics, there might be a high possibility for multi drug resistant among local population in Erbil.
Collapse
Affiliation(s)
| | | | - Haval H Abdulqader
- Laboratory Department, Rizgary Teaching Hospital, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
34
|
Banerjee SK, Farber JM. Trend and Pattern of Antimicrobial Resistance in Molluscan Vibrio Species Sourced to Canadian Estuaries. Antimicrob Agents Chemother 2018; 62:e00799-18. [PMID: 30082294 PMCID: PMC6153815 DOI: 10.1128/aac.00799-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) in foodborne bacteria is a growing concern worldwide. AMR surveillance is a key element in understanding the implications resulting from the use of antibiotics for therapeutic as well as prophylactic needs. The emergence and spread of AMR in foodborne human pathogens are indirect health hazards. This surveillance study reports the trend and pattern of AMR detected in Vibrio species isolated from molluscs harvested in Canada between 2006 and 2012 against 19 commonly used antibiotics. Five common antibiotics, ampicillin, cephalothin, erythromycin, kanamycin, and streptomycin, predominantly contributed to AMR, including multidrug resistance (MDR) in the molluscan Vibrio spp. isolated in 2006. A prospective follow-up analysis of these drugs showed a declining trend in the frequency of MDR/AMR Vibrio spp. in subsequent years until 2012. The observed decline appears to have been influenced by the specific downturn in resistance to the aminoglycosides, kanamycin, and streptomycin. Frequently observed MDR/AMR Vibrio spp. in seafood is a potential health concern associated with seafood consumption. Our surveillance study provides an indication of the antibiotics that challenged the marine bacteria, sourced to Canadian estuaries, during and/or prior to the study period.
Collapse
Affiliation(s)
- Swapan K Banerjee
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jeffrey M Farber
- Department of Food Science, Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Parulekar RS, Sonawane KD. Insights into the antibiotic resistance and inhibition mechanism of aminoglycoside phosphotransferase from
Bacillus cereus
: In silico and in vitro perspective. J Cell Biochem 2018; 119:9444-9461. [DOI: 10.1002/jcb.27261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023]
Affiliation(s)
| | - Kailas Dashrath Sonawane
- Department of Microbiology Shivaji University Kolhapur Maharashtra India
- Structural Bioinformatics Unit, Department of Biochemistry Shivaji University Kolhapur Maharashtra India
| |
Collapse
|
36
|
The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nat Commun 2018; 9:112. [PMID: 29317655 PMCID: PMC5760710 DOI: 10.1038/s41467-017-02680-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
The production of antibiotics by microbes in the environment and their use in medicine and agriculture select for existing and emerging resistance. To address this inevitability, prudent development of antibiotic drugs requires careful consideration of resistance evolution. Here, we identify the molecular basis for expanded substrate specificity in MphI, a macrolide kinase (Mph) that does not confer resistance to erythromycin, in contrast to other known Mphs. Using a combination of phylogenetics, drug-resistance phenotypes, and in vitro enzyme assays, we find that MphI and MphK phosphorylate erythromycin poorly resulting in an antibiotic-sensitive phenotype. Using likelihood reconstruction of ancestral sequences and site-saturation combinatorial mutagenesis, supported by Mph crystal structures, we determine that two non-obvious mutations in combination expand the substrate range. This approach should be applicable for studying the functional evolution of any antibiotic resistance enzyme and for evaluating the evolvability of resistance enzymes to new generations of antibiotic scaffolds. New antibiotics with reduced potential for resistance are urgently needed. Here, the authors use a multidisciplinary approach to characterize substrate discrimination in macrolide resistance kinases and present a strategy for the prediction of mutations that expand the substrate range of antibiotic-inactivating enzymes.
Collapse
|
37
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Bell G, MacLean C. The Search for 'Evolution-Proof' Antibiotics. Trends Microbiol 2017; 26:471-483. [PMID: 29191398 DOI: 10.1016/j.tim.2017.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023]
Abstract
The effectiveness of antibiotics has been widely compromised by the evolution of resistance among pathogenic bacteria. It would be restored by the development of antibiotics to which bacteria cannot evolve resistance. We first discuss two kinds of 'evolution-proof' antibiotic. The first comprises literally evolution-proof antibiotics to which bacteria cannot become resistant by mutation or horizontal gene transfer. The second category comprises agents to which resistance may arise, but so rarely that it does not become epidemic. The likelihood that resistance to a novel agent will spread is evaluated here by a simple model that includes biological and therapeutic parameters governing the evolution of resistance within hosts and the transmission of resistant strains between hosts. This model leads to the conclusion that epidemic spread is unlikely if the frequency of mutations that confer resistance falls below a defined minimum value, and it identifies potential targets for intervention to prevent the evolution of resistance. Whether or not evolution-proof antibiotics are ever found, searching for them is likely to improve the deployment of new and existing agents by advancing our understanding of how resistance evolves.
Collapse
Affiliation(s)
- Graham Bell
- Biology Department, McGill University, Avenue Docteur Penfield, Montreal, Quebec H3A 1B1, Canada; Zoology Department, Oxford University, South Parks Road, Oxford OX1 3PS, UK.
| | - Craig MacLean
- Zoology Department, Oxford University, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
39
|
Abstract
Antibiotic natural products are ancient and so is resistance. Consequently, environmental bacteria harbor numerous and varied antibiotic resistance elements. Nevertheless, despite long histories of antibiotic production and exposure, environmental bacteria are not resistant to all known antibiotics. This means that there are barriers to the acquisition of a complete resistance armamentarium. The sources, distribution, and movement of resistance mechanisms in different microbes and bacterial populations are mosaic features that act as barriers to slow this movement, thus moderating the emergence of bacterial pan-resistance. This is highly relevant to understanding the emergence of resistance in pathogenic bacteria that can inform better antibiotic management practices and influence new drug discovery.
Collapse
Affiliation(s)
- Nicholas Waglechner
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 4K1, Canada
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 4K1, Canada.
| |
Collapse
|
40
|
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn Rev 2017; 11:57-72. [PMID: 28989242 PMCID: PMC5628525 DOI: 10.4103/phrev.phrev_21_17] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of penicillin nearly 90 years ago revolutionized the treatment of bacterial disease. Since that time, numerous other antibiotics have been discovered from bacteria and fungi, or developed by chemical synthesis and have become effective chemotherapeutic options. However, the misuse of antibiotics has lessened the efficacy of many commonly used antibiotics. The emergence of resistant strains of bacteria has seriously limited our ability to treat bacterial illness, and new antibiotics are desperately needed. Since the discovery of penicillin, most antibiotic development has focused on the discovery of new antibiotics derived from microbial sources, or on the synthesis of new compounds using existing antibiotic scaffolds to the detriment of other lines of discovery. Both of these methods have been fruitful. However, for a number of reasons discussed in this review, these strategies are unlikely to provide the same wealth of new antibiotics in the future. Indeed, the number of newly developed antibiotics has decreased dramatically in recent years. Instead, a reexamination of traditional medicines has become more common and has already provided several new antibiotics. Traditional medicine plants are likely to provide further new antibiotics in the future. However, the use of plant extracts or pure natural compounds in combination with conventional antibiotics may hold greater promise for rapidly providing affordable treatment options. Indeed, some combinational antibiotic therapies are already clinically available. This study reviews the recent literature on combinational antibiotic therapies to highlight their potential and to guide future research in this field.
Collapse
Affiliation(s)
- Matthew J. Cheesman
- School of Parmacy and Pharmacology, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
- Menzies Health Institute Queensland, Quality Use of Medicines Network, Queensland 4222, Australia
| | - Aishwarya Ilanko
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - Baxter Blonk
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - Ian E. Cock
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
41
|
Yılmaz Ç, Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 2017; 133:43-62. [DOI: 10.1016/j.bcp.2016.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 02/03/2023]
|
42
|
Cowger TA, Yang Y, Rink DE, Todd T, Chen H, Shen Y, Yan Y, Xie J. Protein-Adsorbed Magnetic-Nanoparticle-Mediated Assay for Rapid Detection of Bacterial Antibiotic Resistance. Bioconjug Chem 2017; 28:890-896. [PMID: 28192992 DOI: 10.1021/acs.bioconjchem.7b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotic susceptibility tests have been used for years as a crucial diagnostic tool against antibiotic-resistant bacteria. However, due to a lack of biomarkers specific to resistant types, these approaches are often time-consuming, inaccurate, and inflexible in drug selections. Here, we present a novel susceptibility test method named protein-adsorbed nanoparticle-mediated matrix-assisted laser desorption-ionization mass spectrometry, or PANMS. Briefly, we adsorb five different proteins (β-casein, α-lactalbumin, human serum albumin, fibrinogen, and avidin) onto the surface of Fe3O4. Upon interaction with bacteria surface, proteins were displaced from the nanoparticle surface, the amounts of which were quantified by matrix-assisted laser desorption ionization mass spectrometry. We find that the protein displacement profile was different distinctive among different bacteria strains and, in particular, between wild-type and drug-resistant strains. More excitingly, we observe bacteria resistant to drugs of the same mechanisms share similar displacement profiles on a linear discriminant analysis (LDA) map. This suggests the possibility of using PANMS to identify the type of mechanism behind antibiotic resistance, which was confirmed in a blind test. Given that PANMS is free of drug incubation and the whole procedure takes less than 50 min, it holds great potential as a high-throughput, low-cost, and accurate drug susceptibility test in the clinic.
Collapse
Affiliation(s)
- Taku A Cowger
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Yaping Yang
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - David E Rink
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Trever Todd
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Hongmin Chen
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Ye Shen
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Yajun Yan
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| | - Jin Xie
- Department of Chemistry and Bio-Imaging Research Center, ‡College of Engineering, and §Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Zhang G, Leclercq SO, Tian J, Wang C, Yahara K, Ai G, Liu S, Feng J. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT(3")-II, is horizontally transferred among Acinetobacter spp. by homologous recombination. PLoS Genet 2017; 13:e1006602. [PMID: 28152054 PMCID: PMC5313234 DOI: 10.1371/journal.pgen.1006602] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/16/2017] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
The emergence and spread of antibiotic resistance among Acinetobacter spp. have been investigated extensively. Most studies focused on the multiple antibiotic resistance genes located on plasmids or genomic resistance islands. On the other hand, the mechanisms controlling intrinsic resistance are still not well understood. In this study, we identified the novel subclass of aminoglycoside nucleotidyltransferase ANT(3")-II in Acinetobacter spp., which comprised numerous variants distributed among three main clades. All members of this subclass can inactivate streptomycin and spectinomycin. The three ant(3")-II genes, encoding for the three ANT(3")-II clades, are widely distributed in the genus Acinetobacter and always located in the same conserved genomic region. According to their prevalence, these genes are intrinsic in Acinetobacter baumannii, Acinetobacter pittii, and Acinetobacter gyllenbergii. We also demonstrated that the ant(3")-II genes are located in a homologous recombination hotspot and were recurrently transferred among Acinetobacter species. In conclusion, our findings demonstrated a novel mechanism of natural resistance in Acinetobacter spp., identified a novel subclass of aminoglycoside nucleotidyltransferase and provided new insight into the evolutionary history of intrinsic resistance genes. The level of interest in intrinsic resistance genes has increased recently, and one of reasons is that their mobilization could lead to emergence of resistant pathogens. Insertion sequences (ISs) or plasmids can capture intrinsic resistance genes and disseminate them in bacterial populations. In this study, we identified a novel subclass of aminoglycoside nucleotidyltransferases which are intrinsic in A. baumannii and other Acinetobacter species. The genes encoding the aminoglycoside nucleotidyltransferase were frequently horizontally transferred between different Acinetobacter species by homologous recombination. This work reports a novel mechanism of natural resistance in Acinetobacter and an overlooked pathway for the dissemination of resistance among species in this genus.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sébastien Olivier Leclercq
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Koji Yahara
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Gillings MR, Paulsen IT, Tetu SG. Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 2016; 1388:92-107. [DOI: 10.1111/nyas.13268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
45
|
Padiadpu J, Baloni P, Anand K, Munshi M, Thakur C, Mohan A, Singh A, Chandra N. Identifying and Tackling Emergent Vulnerability in Drug-Resistant Mycobacteria. ACS Infect Dis 2016; 2:592-607. [PMID: 27759382 DOI: 10.1021/acsinfecdis.6b00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The global mechanisms and associated molecular alterations that occur in drug-resistant mycobacteria are poorly understood. To address this, we obtain genomics data and then construct a genome-scale response network in isoniazid-resistant Mycobacterium smegmatis and apply a network-mining algorithm. Through this, we decipher global alterations in an unbiased manner and identify emergent vulnerabilities in resistant bacilli, of which redox response was prominent. Using phenotypic profiling, we find that resistant bacilli exhibit collateral sensitivity to several compounds that block antioxidant responses. We find that nanogram/milliliter concentrations of ebselen, vancomycin, and phenylarsine oxide, in combination with isoniazid, are highly effective against Mycobacterium tuberculosis H37Rv and three clinical drug-resistant strains. Dynamic measurements of cytoplasmic redox potential revealed a surprisingly diminished capacity of clinical drug-resistant strains to counteract oxidative stress, providing a mechanistic basis for efficient and synergistic mycobactericidal activity of the drug combinations. Ebselen and vancomycin appear to be promising repurposable drugs.
Collapse
Affiliation(s)
- Jyothi Padiadpu
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Priyanka Baloni
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Kushi Anand
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - MohamedHusen Munshi
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Chandrani Thakur
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Abhilash Mohan
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Amit Singh
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
46
|
van Opijnen T, Dedrick S, Bento J. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome. PLoS Pathog 2016; 12:e1005869. [PMID: 27607357 PMCID: PMC5015961 DOI: 10.1371/journal.ppat.1005869] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022] Open
Abstract
The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.
Collapse
Affiliation(s)
- Tim van Opijnen
- Boston College, Biology Department, Chestnut Hill, Massachusetts, United States of America
| | - Sandra Dedrick
- Boston College, Biology Department, Chestnut Hill, Massachusetts, United States of America
| | - José Bento
- Boston College, Computer Science Department, Massachusetts, United States of America
| |
Collapse
|
47
|
Identification of Novel Cryptic Aminoglycoside Phosphotransferases in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:6983-6985. [PMID: 27550349 DOI: 10.1128/aac.01620-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ. Recent Developments in Antimicrobial Polymers: A Review. MATERIALS 2016; 9:ma9070599. [PMID: 28773721 PMCID: PMC5456892 DOI: 10.3390/ma9070599] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed.
Collapse
Affiliation(s)
- Madson R E Santos
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Ana C Fonseca
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Patrícia V Mendonça
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Rita Branco
- CEMUC, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal.
| | - Arménio C Serra
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Paula V Morais
- CEMUC, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal.
| | - Jorge F J Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| |
Collapse
|
49
|
Draft Genome Sequences of Listeria monocytogenes Serotype 4b Strains 944 and 2993 and Serotype 1/2c Strains 198 and 2932. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00482-16. [PMID: 27257200 PMCID: PMC4891646 DOI: 10.1128/genomea.00482-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis among humans and animals. The draft genome sequences of L. monocytogenes serotype 4b strains 944 and 2993 and serotype 1/2c strains 198 and 2932 are reported here.
Collapse
|
50
|
Stogios PJ, Cox G, Spanogiannopoulos P, Pillon MC, Waglechner N, Skarina T, Koteva K, Guarné A, Savchenko A, Wright GD. Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun 2016; 7:11343. [PMID: 27103605 PMCID: PMC4844700 DOI: 10.1038/ncomms11343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds.
Collapse
Affiliation(s)
- Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Georgina Cox
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Peter Spanogiannopoulos
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Monica C. Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Tatiana Skarina
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Kalinka Koteva
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|