1
|
Battivelli D, Fan Z, Hu H, Gross CT. How can ethology inform the neuroscience of fear, aggression and dominance? Nat Rev Neurosci 2024; 25:809-819. [PMID: 39402310 DOI: 10.1038/s41583-024-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
The study of behaviour is dominated by two approaches. On the one hand, ethologists aim to understand how behaviour promotes adaptation to natural contexts. On the other, neuroscientists aim to understand the molecular, cellular, circuit and psychological origins of behaviour. These two complementary approaches must be combined to arrive at a full understanding of behaviour in its natural setting. However, methodological limitations have restricted most neuroscientific research to the study of how discrete sensory stimuli elicit simple behavioural responses under controlled laboratory conditions that are only distantly related to those encountered in real life. Fortunately, the recent advent of neural monitoring and manipulation tools adapted for use in freely behaving animals has enabled neuroscientists to incorporate naturalistic behaviours into their studies and to begin to consider ethological questions. Here, we examine the promises and pitfalls of this trend by describing how investigations of rodent fear, aggression and dominance behaviours are changing to take advantage of an ethological appreciation of behaviour. We lay out current impediments to this approach and propose a framework for the evolution of the field that will allow us to take maximal advantage of an ethological approach to neuroscience and to increase its relevance for understanding human behaviour.
Collapse
Affiliation(s)
- Dorian Battivelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Zhengxiao Fan
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.
| |
Collapse
|
2
|
Ilan Y. Free Will as Defined by the Constrained Disorder Principle: a Restricted, Mandatory, Personalized, Regulated Process for Decision-Making. Integr Psychol Behav Sci 2024; 58:1843-1875. [PMID: 38900370 PMCID: PMC11638301 DOI: 10.1007/s12124-024-09853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The concept of free will has challenged physicists, biologists, philosophers, and other professionals for decades. The constrained disorder principle (CDP) is a fundamental law that defines systems according to their inherent variability. It provides mechanisms for adapting to dynamic environments. This work examines the CDP's perspective of free will concerning various free will theories. Per the CDP, systems lack intentions, and the "freedom" to select and act is built into their design. The "freedom" is embedded within the response range determined by the boundaries of the systems' variability. This built-in and self-generating mechanism enables systems to cope with perturbations. According to the CDP, neither dualism nor an unknown metaphysical apparatus dictates choices. Brain variability facilitates cognitive adaptation to complex, unpredictable situations across various environments. Human behaviors and decisions reflect an underlying physical variability in the brain and other organs for dealing with unpredictable noises. Choices are not predetermined but reflect the ongoing adaptation processes to dynamic prssu½res. Malfunctions and disease states are characterized by inappropriate variability, reflecting an inability to respond adequately to perturbations. Incorporating CDP-based interventions can overcome malfunctions and disease states and improve decision processes. CDP-based second-generation artificial intelligence platforms improve interventions and are being evaluated to augment personal development, wellness, and health.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
3
|
Ansai S, Hiraki-Kajiyama T, Ueda R, Seki T, Yokoi S, Katsumura T, Takeuchi H. The Medaka approach to evolutionary social neuroscience. Neurosci Res 2024:S0168-0102(24)00125-1. [PMID: 39481546 DOI: 10.1016/j.neures.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
Collapse
Affiliation(s)
- Satoshi Ansai
- Ushimado Marine Institute, Okayama University, 701-4303, Japan.
| | | | - Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Takahide Seki
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Saori Yokoi
- School of Pharmaceutical Sciences, Hokkaido University, 060-0808, Japan
| | | | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan.
| |
Collapse
|
4
|
Lee H, Boor SA, Hilbert ZA, Meisel JD, Park J, Wang Y, McKeown R, Fischer SEJ, Andersen EC, Kim DH. Genetic variants that modify neuroendocrine gene expression and foraging behavior of C. elegans. SCIENCE ADVANCES 2024; 10:eadk9481. [PMID: 38865452 PMCID: PMC11168454 DOI: 10.1126/sciadv.adk9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In Caenorhabditis elegans, the neuroendocrine transforming growth factor-β ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons. We identified common genetic variants in gap-2, encoding a Ras guanosine triphosphatase (GTPase)-activating protein homologous to mammalian synaptic Ras GTPase-activating protein, which modify daf-7 expression cell nonautonomously and promote exploratory foraging behavior in a partially DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.
Collapse
Affiliation(s)
- Harksun Lee
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zoë A. Hilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeseok Park
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sylvia E. J. Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Gnanadesikan GE, Tandon D, Bray EE, Kennedy BS, Tennenbaum SR, MacLean EL, vonHoldt BM. Transposons in the Williams-Beuren Syndrome Critical Region are Associated with Social Behavior in Assistance Dogs. Behav Genet 2024; 54:196-211. [PMID: 38091228 DOI: 10.1007/s10519-023-10166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/08/2023] [Indexed: 02/13/2024]
Abstract
A strong signature of selection in the domestic dog genome is found in a five-megabase region of chromosome six in which four structural variants derived from transposons have previously been associated with human-oriented social behavior, such as attentional bias to social stimuli and social interest in strangers. To explore these genetic associations in more phenotypic detail-as well as their role in training success in a specialized assistance dog program-we genotyped 1001 assistance dogs from Canine Companions for Independence®, including both successful graduates and dogs released from the training program for behaviors incompatible with their working role. We collected phenotypes on each dog using puppy-raiser questionnaires, trainer questionnaires, and both cognitive and behavioral tests. Using Bayesian mixed models, we found strong associations (95% credibility intervals excluding zero) between genotypes and certain behavioral measures, including separation-related problems, aggression when challenged or corrected, and reactivity to other dogs. Furthermore, we found moderate differences in the genotypes of dogs who graduated versus those who did not; insertions in GTF2I showed the strongest association with training success (β = 0.23, CI95% = - 0.04, 0.49), translating to an odds-ratio of 1.25 for one insertion. Our results provide insight into the role of each of these four transposons in canine sociability and may inform breeding and training practices for working dog organizations. Furthermore, the observed importance of the gene GTF2I supports the emerging consensus that variation in GTF2I genotypes and expression have important consequences for social behavior broadly.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA.
- Cognitive Science Program, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Anthropology, Emory University, Atlanta, GA, 30332, USA.
| | - Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, 95402, USA
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ, 85737, USA
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brenda S Kennedy
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, 95402, USA
| | - Stavi R Tennenbaum
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
- Cognitive Science Program, University of Arizona, Tucson, AZ, 85721, USA
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ, 85737, USA
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
6
|
Sullivan LF, Barker MS, Felix PC, Vuong RQ, White BH. Neuromodulation and the toolkit for behavioural evolution: can ecdysis shed light on an old problem? FEBS J 2024; 291:1049-1079. [PMID: 36223183 PMCID: PMC10166064 DOI: 10.1111/febs.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 05/10/2023]
Abstract
The geneticist Thomas Dobzhansky famously declared: 'Nothing in biology makes sense except in the light of evolution'. A key evolutionary adaptation of Metazoa is directed movement, which has been elaborated into a spectacularly varied number of behaviours in animal clades. The mechanisms by which animal behaviours have evolved, however, remain unresolved. This is due, in part, to the indirect control of behaviour by the genome, which provides the components for both building and operating the brain circuits that generate behaviour. These brain circuits are adapted to respond flexibly to environmental contingencies and physiological needs and can change as a function of experience. The resulting plasticity of behavioural expression makes it difficult to characterize homologous elements of behaviour and to track their evolution. Here, we evaluate progress in identifying the genetic substrates of behavioural evolution and suggest that examining adaptive changes in neuromodulatory signalling may be a particularly productive focus for future studies. We propose that the behavioural sequences used by ecdysozoans to moult are an attractive model for studying the role of neuromodulation in behavioural evolution.
Collapse
Affiliation(s)
- Luis F Sullivan
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Matthew S Barker
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Princess C Felix
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Richard Q Vuong
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Benjamin H White
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Louder MIM, Justen H, Kimmitt AA, Lawley KS, Turner LM, Dickman JD, Delmore KE. Gene regulation and speciation in a migratory divide between songbirds. Nat Commun 2024; 15:98. [PMID: 38167733 PMCID: PMC10761872 DOI: 10.1038/s41467-023-44352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.
Collapse
Affiliation(s)
| | - Hannah Justen
- Biology Department, Texas A&M University, College Station, TX, USA
| | | | - Koedi S Lawley
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kira E Delmore
- Biology Department, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Yeon J, Porwal C, McGrath PT, Sengupta P. Identification of a spontaneously arising variant affecting thermotaxis behavior in a recombinant inbred Caenorhabditis elegans line. G3 (BETHESDA, MD.) 2023; 13:jkad186. [PMID: 37572357 PMCID: PMC10542565 DOI: 10.1093/g3journal/jkad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Analyses of the contributions of genetic variants in wild strains to phenotypic differences have led to a more complete description of the pathways underlying cellular functions. Causal loci are typically identified via interbreeding of strains with distinct phenotypes in order to establish recombinant inbred lines (RILs). Since the generation of RILs requires growth for multiple generations, their genomes may contain not only different combinations of parental alleles but also genetic changes that arose de novo during the establishment of these lines. Here, we report that in the course of generating RILs between Caenorhabditis elegans strains that exhibit distinct thermotaxis behavioral phenotypes, we identified spontaneously arising variants in the ttx-1 locus. ttx-1 encodes the terminal selector factor for the AFD thermosensory neurons, and loss-of-function mutations in ttx-1 abolish thermotaxis behaviors. The identified genetic changes in ttx-1 in the RIL are predicted to decrease ttx-1 function in part via specifically affecting a subset of AFD-expressed ttx-1 isoforms. Introduction of the relevant missense mutation in the laboratory C. elegans strain via gene editing recapitulates the thermotaxis behavioral defects of the RIL. Our results suggest that spontaneously occurring genomic changes in RILs may complicate identification of loci contributing to phenotypic variation, but that these mutations may nevertheless lead to the identification of important causal molecules and mechanisms.
Collapse
Affiliation(s)
- Jihye Yeon
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Charmi Porwal
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
9
|
Lee H, Boor SA, Hilbert ZA, Meisel JD, Park J, Wang Y, McKeown R, Fischer SEJ, Andersen EC, Kim DH. Genetic Variants That Modify the Neuroendocrine Regulation of Foraging Behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556976. [PMID: 37745484 PMCID: PMC10515746 DOI: 10.1101/2023.09.09.556976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. The neuroendocrine TGF-beta ligand, DAF-7, regulates diverse behavioral responses of Caenorhabditis elegans to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons and identified common variants in gap-2, encoding a GTPase-Activating Protein homologous to mammalian SynGAP proteins, which modify daf-7 expression cell-non-autonomously and promote exploratory foraging behavior in a DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.
Collapse
Affiliation(s)
- Harksun Lee
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| | - Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, 02139, USA
| | - Zoë A. Hilbert
- Department of Biology, Massachusetts Institute of Technology; Cambridge, 02139, USA
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology; Cambridge, 02139, USA
| | - Jaeseok Park
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University; Evanston, 60208, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University; Evanston, 60208, USA
| | - Sylvia E. J. Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University; Evanston, 60208, USA
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School; Boston, 02115, USA
| |
Collapse
|
10
|
Xu J, Casanave R, Chitre AS, Wang Q, Nguyen KM, Blake C, Wagle M, Cheng R, Polesskaya O, Palmer AA, Guo S. Causal Genetic Loci for a Motivated Behavior Spectrum Harbor Psychiatric Risk Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556529. [PMID: 37732200 PMCID: PMC10508786 DOI: 10.1101/2023.09.06.556529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Behavioral diversity is critical for population fitness. Individual differences in risk-taking are observed across species, but underlying genetic mechanisms and conservation are largely unknown. We examined dark avoidance in larval zebrafish, a motivated behavior reflecting an approach-avoidance conflict. Brain-wide calcium imaging revealed significant neural activity differences between approach-inclined versus avoidance-inclined individuals. We used a population of ∼6,000 to perform the first genome-wide association study (GWAS) in zebrafish, which identified 34 genomic regions harboring many genes that are involved in synaptic transmission and human psychiatric diseases. We used CRISPR to study several causal genes: serotonin receptor-1b ( htr1b ), nitric oxide synthase-1 ( nos1 ), and stress-induced phosphoprotein-1 ( stip1 ). We further identified 52 conserved elements containing 66 GWAS significant variants. One encoded an exonic regulatory element that influenced tissue-specific nos1 expression. Together, these findings reveal new genetic loci and establish a powerful, scalable animal system to probe mechanisms underlying motivation, a critical dimension of psychiatric diseases.
Collapse
|
11
|
Ghosal S, Gebara E, Ramos-Fernández E, Chioino A, Grosse J, Guillot de Suduiraut I, Zanoletti O, Schneider B, Zorzano A, Astori S, Sandi C. Mitofusin-2 in nucleus accumbens D2-MSNs regulates social dominance and neuronal function. Cell Rep 2023; 42:112776. [PMID: 37440411 DOI: 10.1016/j.celrep.2023.112776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The nucleus accumbens (NAc) is a brain hub regulating motivated behaviors, including social competitiveness. Mitochondrial function in the NAc links anxiety with social competitiveness, and the mitochondrial fusion protein mitofusin 2 (Mfn2) in NAc neurons regulates anxiety-related behaviors. However, it remains unexplored whether accumbal Mfn2 levels also affect social behavior and whether Mfn2 actions in the emotional and social domain are driven by distinct cell types. Here, we found that subordinate-prone highly anxious rats show decreased accumbal Mfn2 levels and that Mfn2 overexpression promotes dominant behavior. In mice, selective Mfn2 downregulation in NAc dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) induced social subordination, accompanied by decreased accumbal mitochondrial functions and decreased excitability in D2-MSNs. Instead, D1-MSN-targeted Mfn2 downregulation affected competitive ability only transiently and likely because of an increase in anxiety-like behaviors. Our results assign dissociable cell-type specific roles to Mfn2 in the NAc in modulating social dominance and anxiety.
Collapse
Affiliation(s)
- Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elias Gebara
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Amanullah A, Arzoo S, Aslam A, Qureshi IW, Hussain M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. BIOLOGY 2023; 12:926. [PMID: 37508357 PMCID: PMC10376054 DOI: 10.3390/biology12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Drosophila melanogaster has long been used to demonstrate the effect of inbreeding, particularly in relation to reproductive fitness and stress tolerance. In comparison, less attention has been given to exploring the influence of inbreeding on the innate behavior of D. melanogaster. In this study, multiple replicates of six different types of crosses were set in pair conformation of the laboratory-maintained wild-type D. melanogaster. This resulted in progeny with six different levels of inbreeding coefficients. Larvae and adult flies of varied inbreeding coefficients were subjected to different behavioral assays. In addition to the expected inbreeding depression in the-egg to-adult viability, noticeable aberrations were observed in the crawling and phototaxis behaviors of larvae. Negative geotactic behavior as well as positive phototactic behavior of the flies were also found to be adversely affected with increasing levels of inbreeding. Interestingly, positively phototactic inbred flies demonstrated improved learning compared to outbred flies, potentially the consequence of purging. Flies with higher levels of inbreeding exhibited a delay in the manifestation of aggression and courtship. In summary, our findings demonstrate that inbreeding influences the innate behaviors in D. melanogaster, which in turn may affect the overall biological fitness of the flies.
Collapse
Affiliation(s)
- Anusha Amanullah
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Shabana Arzoo
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Ayesha Aslam
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Iffat Waqar Qureshi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| |
Collapse
|
13
|
Stratton JA, Nolte MJ, Payseur BA. Genetics of behavioural evolution in giant mice from Gough Island. Proc Biol Sci 2023; 290:20222603. [PMID: 37161324 PMCID: PMC10170209 DOI: 10.1098/rspb.2022.2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
The evolution of behaviour on islands is a pervasive phenomenon that contributed to Darwin's theory of natural selection. Island populations frequently show increased boldness and exploration compared with their mainland counterparts. Despite the generality of this pattern, the genetic basis of island-associated behaviours remains a mystery. To address this gap in knowledge, we genetically dissected behaviour in 613 F2s generated by crossing inbred mouse strains from Gough Island (where they live without predators or human commensals) and a mainland conspecific. We used open field and light/dark box tests to measure seven behaviours related to boldness and exploration in juveniles and adults. Across all assays, we identified a total of 41 quantitative trait loci (QTL) influencing boldness and exploration. QTL have moderate effects and are often unique to specific behaviours or ages. Function-valued trait mapping revealed changes in estimated effects of QTL during assays, providing a rare dynamic window into the genetics of behaviour often missed by standard approaches. The genomic locations of QTL are distinct from those found in laboratory strains of mice, indicating different genetic paths to the evolution of similar behaviours. We combine our mapping results with extensive phenotypic and genetic information available for laboratory mice to nominate candidate genes for the evolution of behaviour on islands.
Collapse
Affiliation(s)
- Jered A. Stratton
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark J. Nolte
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Davis SW, Kiaris H, Kaza V, Felder MR. Genetic Analysis of the Stereotypic Phenotype in Peromyscus maniculatus (deer mice). Behav Genet 2023; 53:53-62. [PMID: 36422733 DOI: 10.1007/s10519-022-10124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
Abstract
Peromyscus maniculatus, including the laboratory stock BW, have been used as a model organism for autism spectrum disorder and obsessive-compulsive disorder because of the high occurrence of stereotypy. Several studies have identified neurological and environmental components of the phenotype; however, the heritability of the phenotype has not been examined. This study characterizes the incidence and heritability of vertical jumping stereotypy (VS) and backflipping (BF) behavior in the BW stock of the Peromyscus Genetic Stock Center, which are indicative of autism spectrum disorders. In addition, interspecies crosses between P. maniculatus and P. polionotus were also performed to further dissect genetically stereotypic behavior. The inheritance pattern of VS suggests that multiple genes result in a quantitative trait with low VS being dominant over high VS. The inheritance pattern of BF suggests that fewer genes are involved, with one allele causing BF in a dominant fashion. An association analysis in BW could reveal the underlying genetic loci associated with stereotypy in P. maniculatus, especially for the BF behavior.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Vimala Kaza
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Michael R Felder
- Department of Biological Sciences, University of South Carolina, Columbia, USA. .,University of South Carolina, Columbia, SC, 29208, USA. .,Department of Biological Sciences, University of South Carolina, 715 Sumter St, CLS Room 401, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Paúl MJ, Rosauer D, Tarroso P, Velo‐Antón G, Carvalho SB. Environmental and topographic drivers of amphibian phylogenetic diversity and endemism in the Iberian Peninsula. Ecol Evol 2023; 13:e9666. [PMID: 36620407 PMCID: PMC9817204 DOI: 10.1002/ece3.9666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Understanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water-energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water-energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water-energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.
Collapse
Affiliation(s)
- Maria João Paúl
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Dan Rosauer
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity AnalysisThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Pedro Tarroso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Guillermo Velo‐Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97)Universidade de VigoVigoSpain
| | - Sílvia B. Carvalho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| |
Collapse
|
16
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Zhang W, Wang H, Brandt DYC, Hu B, Sheng J, Wang M, Luo H, Li Y, Guo S, Sheng B, Zeng Q, Peng K, Zhao D, Jian S, Wu D, Wang J, Zhao G, Ren J, Shi W, van Esch JHM, Klingunga S, Nielsen R, Hong Y. The genetic architecture of phenotypic diversity in the Betta fish ( Betta splendens). SCIENCE ADVANCES 2022; 8:eabm4955. [PMID: 36129976 PMCID: PMC9491723 DOI: 10.1126/sciadv.abm4955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/03/2022] [Indexed: 05/28/2023]
Abstract
The Betta fish displays a remarkable variety of phenotypes selected during domestication. However, the genetic basis underlying these traits remains largely unexplored. Here, we report a high-quality genome assembly and resequencing of 727 individuals representing diverse morphotypes of the Betta fish. We show that current breeds have a complex domestication history with extensive introgression with wild species. Using a genome-wide association study, we identify the genetic basis of multiple traits, including coloration patterns, the "Dumbo" phenotype with pectoral fin outgrowth, extraordinary enlargement of body size that we map to a major locus on chromosome 8, the sex determination locus that we map to dmrt1, and the long-fin phenotype that maps to the locus containing kcnj15. We also identify a polygenic signal related to aggression, involving multiple neural system-related genes such as esyt2, apbb2, and pank2. Our study provides a resource for developing the Betta fish as a genetic model for morphological and behavioral research in vertebrates.
Collapse
Affiliation(s)
- Wanchang Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hongru Wang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Débora Y. C. Brandt
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Beijuan Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Junqing Sheng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mengnan Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Haijiang Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yahui Li
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Shujie Guo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Sheng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Qi Zeng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Kou Peng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Junhua Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guang Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wentian Shi
- Faculty of Philosophy, University of Tübingen, Tübingen 72074, Germany
| | - Joep H. M. van Esch
- Biology and Medical Laboratory Research, Rotterdam University of Applied Sciences, Rotterdam 3015, Netherlands
| | - Sirawut Klingunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Globe Institute, University of Copenhagen, Copenhagen DK-1165, Denmark
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization, Nanchang University, Nanchang 330031, China
| |
Collapse
|
18
|
Abstract
The question of the heritability of behavior has been of long fascination to scientists and the broader public. It is now widely accepted that most behavioral variation has a genetic component, although the degree of genetic influence differs widely across behaviors. Starting with Mendel's remarkable discovery of "inheritance factors," it has become increasingly clear that specific genetic variants that influence behavior can be identified. This goal is not without its challenges: Unlike pea morphology, most natural behavioral variation has a complex genetic architecture. However, we can now apply powerful genome-wide approaches to connect variation in DNA to variation in behavior as well as analyses of behaviorally related variation in brain gene expression, which together have provided insights into both the genetic mechanisms underlying behavior and the dynamic relationship between genes and behavior, respectively, in a wide range of species and for a diversity of behaviors. Here, we focus on two systems to illustrate both of these approaches: the genetic basis of burrowing in deer mice and transcriptomic analyses of division of labor in honey bees. Finally, we discuss the troubled relationship between the field of behavioral genetics and eugenics, which reminds us that we must be cautious about how we discuss and contextualize the connections between genes and behavior, especially in humans.
Collapse
Affiliation(s)
- Hopi E. Hoekstra
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Gene E. Robinson
- Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
19
|
York RA, Brezovec LE, Coughlan J, Herbst S, Krieger A, Lee SY, Pratt B, Smart AD, Song E, Suvorov A, Matute DR, Tuthill JC, Clandinin TR. The evolutionary trajectory of drosophilid walking. Curr Biol 2022; 32:3005-3015.e6. [PMID: 35671756 PMCID: PMC9329251 DOI: 10.1016/j.cub.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/03/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Neural circuits must both execute the behavioral repertoire of individuals and account for behavioral variation across species. Understanding how this variation emerges over evolutionary time requires large-scale phylogenetic comparisons of behavioral repertoires. Here, we describe the evolution of walking in fruit flies by capturing high-resolution, unconstrained movement from 13 species and 15 strains of drosophilids. We find that walking can be captured in a universal behavior space, the structure of which is evolutionarily conserved. However, the occurrence of and transitions between specific movements have evolved rapidly, resulting in repeated convergent evolution in the temporal structure of locomotion. Moreover, a meta-analysis demonstrates that many behaviors evolve more rapidly than other traits. Thus, the architecture and physiology of locomotor circuits can execute precise individual movements in one species and simultaneously support rapid evolutionary changes in the temporal ordering of these modular elements across clades.
Collapse
Affiliation(s)
- Ryan A York
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Luke E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Jenn Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven Herbst
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Avery Krieger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Su-Yee Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Ashley D Smart
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Eugene Song
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Anton Suvorov
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Greenstein L, Steele C, Taylor CM. Host plant specificity of the monarch butterfly Danaus plexippus: A systematic review and meta-analysis. PLoS One 2022; 17:e0269701. [PMID: 35700160 PMCID: PMC9197062 DOI: 10.1371/journal.pone.0269701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
The preference-performance hypothesis explains host specificity in phytophagous insects, positing that host plants chosen by adults confer the greatest larval fitness. However, adults sometimes oviposit on plants supporting low larval success because the components of host specificity (adult preference, plant palatability, and larval survival) are non-binary and not necessarily correlated. Palatability (willingness to eat) is governed by chemical cues and physical barriers such as trichomes, while survival (ability to complete development) depends upon nutrition and toxicity. Absence of a correlation between the components of host specificity results in low-performance hosts supporting limited larval development. Most studies of specificity focus on oviposition behavior leaving the importance and basis of palatability and survival under-explored. We conducted a comprehensive review of 127 plant species that have been claimed or tested to be hosts for the monarch butterfly Danaus plexippus to classify them as non-hosts, low performance, or high performance. We performed a meta-analysis to test if performance status could be explained by properties of neurotoxic cardenolides or trichome density. We also conducted a no-choice larval feeding experiment to identify causes of low performance. We identified 34 high performance, 42 low performance, 33 non-hosts, and 18 species with unsubstantiated claims. Mean cardenolide concentration was greater in high- than low-performance hosts and a significant predictor of host status, suggesting possible evolutionary trade-offs in monarch specialization. Other cardenolide properties and trichome density were not significant predictors of host status. In the experiment, we found, of the 62% of larvae that attempted to eat low-performance hosts, only 3.5% survived to adult compared to 85% of those on the high-performance host, demonstrating that multiple factors affect larval host plant specificity. Our study is the first to classify all known host plants for monarchs and has conservation implications for this threatened species.
Collapse
Affiliation(s)
- Lewis Greenstein
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Christen Steele
- Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Caz M. Taylor
- Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
21
|
Moran RL, Jaggard JB, Roback EY, Kenzior A, Rohner N, Kowalko JE, Ornelas-García CP, McGaugh SE, Keene AC. Hybridization underlies localized trait evolution in cavefish. iScience 2022; 25:103778. [PMID: 35146393 PMCID: PMC8819016 DOI: 10.1016/j.isci.2022.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 11/04/2022] Open
Abstract
Introgressive hybridization may play an integral role in local adaptation and speciation (Taylor and Larson, 2019). In the Mexican tetra Astyanax mexicanus, cave populations have repeatedly evolved traits including eye loss, sleep loss, and albinism. Of the 30 caves inhabited by A. mexicanus, Chica cave is unique because it contains multiple pools inhabited by putative hybrids between surface and cave populations (Mitchell et al., 1977), providing an opportunity to investigate the impact of hybridization on complex trait evolution. We show that hybridization between cave and surface populations may contribute to localized variation in traits associated with cave evolution, including pigmentation, eye development, and sleep. We also uncover an example of convergent evolution in a circadian clock gene in multiple cavefish lineages and burrowing mammals, suggesting a shared genetic mechanism underlying circadian disruption in subterranean vertebrates. Our results provide insight into the role of hybridization in facilitating phenotypic evolution. Hybridization leads to a localized difference in sleep duration within a single cave Genomic analysis identifies coding differences in Cry1A across cave pools Changes in Cry1A appear to be conserved in cavefish and burrowing mammals
Collapse
|
22
|
Auer TO, Shahandeh MP, Benton R. Drosophila sechellia: A Genetic Model for Behavioral Evolution and Neuroecology. Annu Rev Genet 2021; 55:527-554. [PMID: 34530638 DOI: 10.1146/annurev-genet-071719-020719] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| |
Collapse
|
23
|
Wcislo WT. A Dual Role for Behavior in Evolution and Shaping Organismal Selective Environments. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012921-052523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that evolved behaviors play a determining role in facilitating and impeding the evolution of other traits has been discussed for more than 100 years with little consensus beyond an agreement that the ideas are theoretically plausible in accord with the Modern Synthesis. Many recent reviews of the genomic, epigenetic, and developmental mechanisms underpinning major behavioral transitions show how facultative expression of novel behaviors can lead to the evolution of obligate behaviors and structures that enhance behavioral function. Phylogenetic and genomic studies indicate that behavioral traits are generally evolutionarily more labile than other traits and that they help shape selective environments on the latter traits. Adaptive decision-making to encounter resources and avoid stress sources requires specific sensory inputs, which behaviorally shape selective environments by determining those features of the external world that are biologically relevant. These recent findings support the hypothesis of a dual role for behavior in evolution and are consistent with current evolutionary theory.
Collapse
Affiliation(s)
- William T. Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| |
Collapse
|
24
|
Abstract
The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.
Collapse
Affiliation(s)
- Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, California 94720, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
25
|
Thomas JT, Spady BL, Munday PL, Watson SA. The role of ligand-gated chloride channels in behavioural alterations at elevated CO2 in a cephalopod. J Exp Biol 2021; 224:269059. [PMID: 34100547 DOI: 10.1242/jeb.242335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 11/20/2022]
Abstract
Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poorly understood. We pharmacologically tested the role of GABA-, glutamate-, acetylcholine- and dopamine-gated chloride channels in CO2-induced behavioural changes in a cephalopod, the two-toned pygmy squid (Idiosepius pygmaeus). We exposed squid to ambient (∼450 µatm) or elevated (∼1000 µatm) CO2 for 7 days. Squid were treated with sham, the GABAA receptor antagonist gabazine or the non-specific GABAA receptor antagonist picrotoxin, before measurement of conspecific-directed behaviours and activity levels upon mirror exposure. Elevated CO2 increased conspecific-directed attraction and aggression, as well as activity levels. For some CO2-affected behaviours, both gabazine and picrotoxin had a different effect at elevated compared with ambient CO2, providing robust support for the GABA hypothesis within cephalopods. In another behavioural trait, picrotoxin but not gabazine had a different effect in elevated compared with ambient CO2, providing the first pharmacological evidence, in fish and marine invertebrates, for altered functioning of ligand-gated chloride channels, other than the GABAAR, underlying CO2-induced behavioural changes. For some other behaviours, both gabazine and picrotoxin had a similar effect in elevated and ambient CO2, suggesting altered function of ligand-gated chloride channels was not responsible for these CO2-induced changes. Multiple mechanisms may be involved, which could explain the variability in the CO2 and drug treatment effects across behaviours.
Collapse
Affiliation(s)
- Jodi T Thomas
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Blake L Spady
- Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA.,ReefSense Pty Ltd., Cranbrook, QLD 4814, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, QLD 4810, Australia
| |
Collapse
|
26
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
27
|
WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans. PLoS Comput Biol 2021; 17:e1008914. [PMID: 33905413 PMCID: PMC8078761 DOI: 10.1371/journal.pcbi.1008914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. Recent advances in machine learning have enabled the high-resolution estimation of bodypoint positions of freely behaving animals, but manual labeling can render these methods imprecise and impractical, especially in highly deformable animals such as the nematode C. elegans. Such animals also frequently coil, resulting in complicated shapes whose ambiguity presents difficulties for standard pose estimation methods. Efficiently solving coiled shapes in C. elegans, exhibited in a variety of important natural contexts, is the primary limiting factor for fully automated high-throughput behavior analysis. WormPose provides pose estimation that works across imaging conditions, naturally complements existing worm trackers, and harnesses the power of deep convolutional networks but with an image generator to automatically provide precise image-centerline pairings for training. We apply WormPose to on-food recordings, finding a near absence of deep δ-turns. We also show that incoherent body motions in the dwell state, which do not translate the worm, have been misidentified as an increase in reversal rate by previous, centroid-based methods. We expect that the combination of a body model and image synthesis demonstrated in WormPose will be both of general interest and important for future progress in precise pose estimation in other slender-bodied and deformable organisms.
Collapse
|
28
|
Alvarenga AB, Oliveira HR, Chen SY, Miller SP, Marchant-Forde JN, Grigoletto L, Brito LF. A Systematic Review of Genomic Regions and Candidate Genes Underlying Behavioral Traits in Farmed Mammals and Their Link with Human Disorders. Animals (Basel) 2021; 11:ani11030715. [PMID: 33800722 PMCID: PMC7999279 DOI: 10.3390/ani11030715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary This study is a comprehensive review of genomic regions associated with animal behavior in farmed mammals (beef and dairy cattle, pigs, and sheep) which contributes to a better understanding of the biological mechanisms influencing the target indicator trait and to gene expression studies by suggesting genes likely controlling the trait, and it will be useful in optimizing genomic predictions of breeding values incorporating biological information. Behavioral mechanisms are complex traits, genetically controlled by multiple genes spread across the whole genome. The majority of the genes identified in cattle, pigs, and sheep in association with a plethora of behavioral measurements (e.g., temperament, terrain use, milking speed, tail biting, and sucking reflex) are likely controlling stimuli reception (e.g., olfactory), internal recognition of stimuli (e.g., neuroactive ligand–receptor interaction), and body response to a stimulus (e.g., blood pressure, fatty acidy metabolism, hormone signaling, and inflammatory pathways). Six genes were commonly identified between cattle and pigs. About half of the genes for behavior identified in farmed mammals were also identified in humans for behavioral, mental, and neuronal disorders. Our findings indicate that the majority of the genes identified are likely controlling animal behavioral outcomes because their biological functions as well as potentially differing allele frequencies between two breed groups (subjectively) clustered based on their temperament characteristics. Abstract The main objectives of this study were to perform a systematic review of genomic regions associated with various behavioral traits in the main farmed mammals and identify key candidate genes and potential causal mutations by contrasting the frequency of polymorphisms in cattle breeds with divergent behavioral traits (based on a subjective clustering approach). A total of 687 (cattle), 1391 (pigs), and 148 (sheep) genomic regions associated with 37 (cattle), 55 (pigs), and 22 (sheep) behavioral traits were identified in the literature. In total, 383, 317, and 15 genes overlap with genomic regions identified for cattle, pigs, and sheep, respectively. Six common genes (e.g., NR3C2, PITPNM3, RERG, SPNS3, U6, and ZFAT) were found for cattle and pigs. A combined gene-set of 634 human genes was produced through identified homologous genes. A total of 313 out of 634 genes have previously been associated with behavioral, mental, and neurologic disorders (e.g., anxiety and schizophrenia) in humans. Additionally, a total of 491 candidate genes had at least one statistically significant polymorphism (p-value < 0.05). Out of those, 110 genes were defined as having polymorphic regions differing in greater than 50% of exon regions. Therefore, conserved genomic regions controlling behavior were found across farmed mammal species and humans.
Collapse
Affiliation(s)
- Amanda B. Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 625014, China
| | | | - Jeremy N. Marchant-Forde
- Livestock Behavior Research Unit, United States Department of Agriculture—Agricultural Research Service (USDA–ARS), West Lafayette, IN 47907, USA;
| | - Lais Grigoletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 05508, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Correspondence:
| |
Collapse
|
29
|
Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 2021; 109:1084-1099. [PMID: 33609484 DOI: 10.1016/j.neuron.2021.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Neuroscientists have long studied species with convenient biological features to discover how behavior emerges from conserved molecular, neural, and circuit level processes. With the advent of new tools, from viral vectors and gene editing to automated behavioral analyses, there has been a recent wave of interest in developing new, "nontraditional" model species. Here, we advocate for a complementary approach to model species development, that is, model clade development, as a way to integrate an evolutionary comparative approach with neurobiological and behavioral experiments. Capitalizing on natural behavioral variation in and investing in experimental tools for model clades will be a valuable strategy for the next generation of neuroscience discovery.
Collapse
|
30
|
Song Q, Magnuson R, Jalinsky J, Roseman M, Neiman M. Intraspecific genetic variation for anesthesia success in a New Zealand freshwater snail. Genetica 2021; 149:47-54. [PMID: 33389278 DOI: 10.1007/s10709-020-00110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022]
Abstract
Intraspecific genetic variation can drive phenotypic variation even across very closely related individuals. Here, we demonstrate that genetic differences between snails are a major contributor to wide variation in menthol anesthesia success in an important freshwater snail model system, Potamopyrgus antipodarum. Anesthesia is used to immobilize organisms for experiments and surgical procedures and to humanely mitigate pain. This is the first example of which we are aware of a role for genetic variation in anesthesia success in a mollusk. These findings highlight the fact that using only one strain or lineage for many experiments will not provide a full picture of phenotypic variation, demonstrate the importance of optimizing biomedically relevant techniques and protocols across a variety of genetic backgrounds, illuminate a potential mechanism underlying previously documented challenges in molluscan anesthesia, and set the stage for powerful and humane manipulative experiments in P. antipodarum.
Collapse
Affiliation(s)
- Qiudong Song
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Joseph Jalinsky
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Marissa Roseman
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA, USA.
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
31
|
Ruiz-Ortiz J, Tollkuhn J. Specificity in sociogenomics: Identifying causal relationships between genes and behavior. Horm Behav 2021; 127:104882. [PMID: 33121994 PMCID: PMC7855425 DOI: 10.1016/j.yhbeh.2020.104882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
Abstract
There has been rapid growth in the use of transcriptomic analyses to study the interplay between gene expression and behavior. Experience can modify gene expression in the brain, leading to changes in internal state and behavioral displays, while gene expression variation between species is thought to specify many innate behavior differences. However, providing a causal association between a gene and a given behavior remains challenging as it is difficult to determine when and where a gene contributes to the function of a behaviorally-relevant neuronal population. Moreover, given that there are fewer genetic tools available for non-traditional model organisms, transcriptomic approaches have been largely limited to profiling of bulk tissue, which can obscure the contributions of subcortical brain regions implicated in multiple behaviors. Here, we discuss how emerging single cell technologies combined with methods offering additional spatial and connectivity information can give us insight about the genetic profile of specific cells involved in the neural circuit of target social behaviors. We also emphasize how these techniques are broadly adaptable to non-traditional model organisms. We propose that, ultimately, a combination of these approaches applied throughout development will be key to discerning how genes shape the formation of social behavior circuits.
Collapse
Affiliation(s)
- Jenelys Ruiz-Ortiz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
32
|
Maney DL, Merritt JR, Prichard MR, Horton BM, Yi SV. Inside the supergene of the bird with four sexes. Horm Behav 2020; 126:104850. [PMID: 32937166 PMCID: PMC7725849 DOI: 10.1016/j.yhbeh.2020.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
The white-throated sparrow (Zonotrichia albicollis) offers unique opportunities to understand the adaptive value of supergenes, particularly their role in alternative phenotypes. In this species, alternative plumage morphs segregate with a nonrecombining segment of chromosome 2, which has been called a 'supergene'. The species mates disassortatively with respect to the supergene; that is, each breeding pair consists of one individual with it and one without it. This species has therefore been called the "bird with four sexes". The supergene segregates with a behavioral phenotype; birds with it are more aggressive and less parental than birds without it. Here, we review our efforts to identify the genes inside the supergene that are responsible for the behavioral polymorphism. The gene ESR1, which encodes estrogen receptor α, differs between the morphs and predicts both territorial and parental behavior. Variation in the regulatory regions of ESR1 causes an imbalance in expression of the two alleles, and the degree to which this imbalance favors the supergene allele predicts territorial singing. In heterozygotes, knockdown of ESR1 causes a phenotypic switch, from more aggressive to less aggressive. We recently showed that another gene important for social behavior, vasoactive intestinal peptide (VIP), is differentially expressed between the morphs and predicts territorial singing. We hypothesize that ESR1 and VIP contribute to behavior in a coordinated way and could represent co-adapted alleles. Because the supergene contains more than 1000 individual genes, this species provides rich possibilities for discovering alleles that work together to mediate life-history trade-offs and maximize the fitness of alternative complex phenotypes.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | | | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
33
|
Merritt JR, Grogan KE, Zinzow-Kramer WM, Sun D, Ortlund EA, Yi SV, Maney DL. A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird. Proc Natl Acad Sci U S A 2020; 117:21673-21680. [PMID: 32817554 PMCID: PMC7474689 DOI: 10.1073/pnas.2011347117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has captured ESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identified cis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.
Collapse
Affiliation(s)
| | | | | | - Dan Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322
| |
Collapse
|