1
|
Lui Y, Ferreira Fernandes J, Vuong MT, Sharma S, Santos AM, Davis SJ. The Structural Biology of T-Cell Antigen Detection at Close Contacts. Immunol Rev 2025; 331:e70014. [PMID: 40181535 PMCID: PMC11969063 DOI: 10.1111/imr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 04/05/2025]
Abstract
T cells physically interrogate their targets using tiny membrane protrusions called microvilli, forming junctions ~400 nm in diameter and ~ 15 nm deep, referred to as "close contacts". These contacts, which are stabilized by the binding of the small adhesion protein CD2 to its ligand, CD58 and locally exclude large proteins such as the phosphatase CD45, are the sites of antigen recognition by the T-cell receptor (TCR) and very early signaling by T cells. With our collaborators, we have characterized the molecular structures of several of the key proteins mediating these early events: i.e., CD2 and its ligands, CD45, the αβ- and γδ-TCRs, and the accessory proteins CD28, CTLA-4, and PD-1. Here, we review our structural work and the insights it offers into the early events underpinning T-cell responsiveness that take place in the confined space of the close contact. We reflect on the crucial roles that the structural organization and dimensions of these proteins are likely to have in determining the sequence of events leading to antigen recognition at close contacts and consider the general implications of the structural work for explanations of how immune receptor signaling is initiated.
Collapse
Affiliation(s)
- Yuan Lui
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - João Ferreira Fernandes
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Mai T. Vuong
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Sumana Sharma
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Ana Mafalda Santos
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Simon J. Davis
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Lim JJ, Jones CM, Loh TJ, Dao HT, Tran MT, Tye-Din JA, La Gruta NL, Rossjohn J. A naturally selected αβ T cell receptor binds HLA-DQ2 molecules without co-contacting the presented peptide. Nat Commun 2025; 16:3330. [PMID: 40199885 PMCID: PMC11979002 DOI: 10.1038/s41467-025-58690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
αβ T cell receptors (TCR) co-recognise peptide (p) antigens that are presented by major histocompatibility complex (MHC) molecules. While marked variations in TCR-p-MHC docking topologies have been observed from structural studies, the co-recognition paradigm has held fast. Using HLA-DQ2.5-peptide tetramers, here we identify a TRAV12-1+-TRBV5-1+ G9 TCR from human peripheral blood that binds HLA-DQ2.5 in a peptide-agnostic manner. The crystal structures of TCR-HLA-DQ2.5-peptide complexes show that the G9 TCR binds HLA-DQ2.5 in a reversed docking topology without contacting the peptide, with the TCR contacting the β1 region of HLA-DQ2.5 and distal from the peptide antigen binding cleft. High-throughput screening of HLA class I and II molecules finds the G9 TCR to be pan-HLA-DQ2 reactive, with leucine-55 of HLA-DQ2.5 being a key determinant underpinning G9 TCR specificity excluding other HLA-II allomorphs. Consistent with the functional assays, the interactions of the G9 TCR and HLA-DQ2.5 precludes CD4 binding, thereby impeding T cell activation. Collectively, we describe a naturally selected αβTCR from human peripheral blood that deviates from the TCR-p-MHC co-recognition paradigm.
Collapse
MESH Headings
- Humans
- HLA-DQ Antigens/metabolism
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/chemistry
- HLA-DQ Antigens/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Peptides/metabolism
- Peptides/immunology
- Peptides/chemistry
- Protein Binding
- Crystallography, X-Ray
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hien Thy Dao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mai T Tran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
3
|
González-Muñoz S, Long Y, Guzmán-Jiménez A, Cerván-Martín M, Higueras-Serrano I, Castilla JA, Clavero A, Garrido N, Luján S, Yang X, Guo X, Liu J, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Bossini-Castillo L, Palomino-Morales RJ, Wang C, Hu Z, Carmona FD. Trans-ethnic GWAS meta-analysis of idiopathic spermatogenic failure highlights the immune-mediated nature of Sertoli cell-only syndrome. Commun Biol 2025; 8:571. [PMID: 40188177 PMCID: PMC11972312 DOI: 10.1038/s42003-025-08001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Non-obstructive azoospermia, a severe form of male infertility caused by spermatogenic failure (SPGF), has a largely unknown genetic basis across ancestries. To our knowledge, this is the first trans-ethnic meta-analysis of genome-wide association studies on SPGF, involving 2255 men with idiopathic SPGF and 3608 controls from European and Asian populations. Using logistic regression and inverse variance methods, we identify two significant genetic associations with Sertoli cell-only (SCO) syndrome, the most extreme SPGF phenotype. The G allele of rs34915133, in the major histocompatibility complex class II region, significantly increases SCO risk (P = 5.25E-10, OR = 1.57), supporting a potential immune-related cause. Additionally, the rs10842262 variant in the SOX5 gene region is also a genetic marker of SCO (P = 5.29E-09, OR = 0.72), highlighting the key role of this gene in the male reproductive function. Our findings reveal shared genetic factors in male infertility across ancestries and provide insights into the molecular mechanisms underlying SCO.
Collapse
Affiliation(s)
- Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Yichen Long
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance. IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Immune-Inflammatory Processes and Gene Therapeutics Group, Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
4
|
Rathakrishnan P, McShan AC. In silico identification and characterization of small molecule binding to the CD1d immunoreceptor. J Biomol Struct Dyn 2025; 43:2929-2947. [PMID: 38109194 DOI: 10.1080/07391102.2023.2294388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
CD1 immunoreceptors are a non-classical major histocompatibility complex (MHC) that present antigens to T cells to elucidate immune responses against disease. The antigen repertoire of CD1 has been composed primarily of lipids until recently when CD1d-restricted T cells were shown to be activated by non-lipidic small molecules, such as phenyl pentamethyl dihydrobenzofuran sulfonate (PPBF) and related benzofuran sulfonates. To date structural insights into PPBF/CD1d interactions are lacking, so it is unknown whether small molecule and lipid antigens are presented and recognized through similar mechanisms. Furthermore, it is unknown whether CD1d can bind to and present a broader range of small molecule metabolites to T cells, acting out functions analogous to the MHC class I related protein MR1. Here, we perform in silico docking and molecular dynamics simulations to structurally characterize small molecule interactions with CD1d. PPBF was supported to be presented to T cell receptors through the CD1d F' pocket. Virtual screening of CD1d against more than 17,000 small molecules with diverse geometry and chemistry identified several novel scaffolds, including phytosterols, cholesterols, triterpenes, and carbazole alkaloids, that serve as candidate CD1d antigens. Protein-ligand interaction profiling revealed conserved residues in the CD1d F' pocket that similarly anchor small molecules and lipids. Our results suggest that CD1d could have the intrinsic ability to bind and present a broad range of small molecule metabolites to T cells to carry out its function beyond lipid antigen presentation.
Collapse
Affiliation(s)
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Dong M, Liu X, Zhao C, Fang Z, Wang Z, Guo X, Wang Y, Li Y, Ye M, Jia L. Temporal resolved multi-proteomic analysis enabled the systematic characterization of N-glycosylation pattern changes during Jurkat T cell activation. Anal Bioanal Chem 2025; 417:2169-2183. [PMID: 39998645 DOI: 10.1007/s00216-025-05805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Protein glycosylation plays essential roles in regulating innate and adaptive immune response. Previous studies only focused on individual protein-glycan interactions or specific glycoform changes during T cell activation, yet the systematic characterization of protein glycosylation alterations remains insufficiently elucidated. To address these limitations, we conducted temporally resolved quantitative analysis of glycoforms, site-specific glycans, glycoproteins, and glycosylation enzymes in activated Jurkat T cells, and successfully portrayed the dynamic landscape of protein glycosylation during Jurkat T cell activation. We found the heterogeneity and number of significantly upregulated glycopeptides increased along with activation. For most glycopeptides, their alteration patterns did not correlate with the abundance of their glycoprotein substrates. However, functional molecules including CD69, CD28, and PTPRC demonstrated co-upregulation at both the protein and glycosylation levels. Correlation analysis between glycopeptides and glycotransferases indicated that sialylated or fucosylated peptides were well correlated with enzymes involved in glycan branching and capping. Comparative analysis of global peptides, glycopeptides, and phosphopeptides revealed their distinctive changing patterns along Jurkat T cell activation, and only glycosylation demonstrated a steady increase trend with a large proportion of upregulated glycopeptides. Collectively, this integrated multi-proteomics characterization of activated Jurkat T cells provided insights for the development of novel therapeutic strategy targeting glycosylation.
Collapse
Affiliation(s)
- Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changrui Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| |
Collapse
|
6
|
Chen S, Fu P, Rastegar-Kashkooli Y, Zhu L, Zong Y, Huang M, Gao C, Wang J, Zhang J, Wang J, Jiang C. AX-024 Inhibits Antigen-Specific T-Cell Response and Improves Intracerebral Hemorrhage Outcomes in Mice. Stroke 2025. [PMID: 40143825 DOI: 10.1161/strokeaha.124.048507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Stroke-induced opposite T-cell responses in the peri-lesion area and periphery worsen stroke outcomes by aggravating brain injury or increasing infectious complications, respectively. Despite their well-known role in T lymphocyte activation, the impact of TCRs (T-cell receptors) on stroke remains poorly understood. In this study, we investigated the causal link between TCRs and the opposite T-cell responses observed in intracerebral hemorrhage (ICH). METHODS We established the ICH model by injecting the collagenase VII-S into the left striatum of young adult (10-12 weeks) male and female and aged (18-20 months) male C57BL/6 mice. We intraperitoneally administered AX-024, a small molecule inhibitor of TCR signaling, and evaluated the results using flow cytometry, Western blotting, immunofluorescence staining, histological staining, bacterial culture, and behavioral tests. RESULTS Our findings in young adult male mice indicate that administering AX-024 within 48 hours suppressed the activation of nonspecific and antigen-specific CD3 (cluster of differentiation 3)+CD4+ and CD3+CD8+ cells in the brain 36 hours and 3 days after ICH but not 7 days after. Additionally, it temporarily inhibited antigen-specific T-cell activation in the periphery at the above 2 time points. It also reduced molecular and cellular neuroinflammation in the hemorrhagic brain early after ICH. These effects in the brain and periphery of young adult male mice ultimately improved ICH outcomes while having no impact on lung bacterial loads. This can be further supported by similar findings in young adult female and aged male mice with ICH. CONCLUSIONS AX-024 may represent a promising option for mitigating the detrimental effects of T cells entering the damaged brain without increasing bacterial loads in the lung in ICH. The potential of AX-024 as a potent immunosuppressive treatment for ICH is an exciting prospect that warrants further investigation.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
| | - Peiji Fu
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
| | - Yan Zong
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
| | - Maosen Huang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
| | - Chenhao Gao
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China. (S.C., P.F., L.Z., Y.Z., M.H., C.J.)
| |
Collapse
|
7
|
Frooman MB, Choi K, Kahn MZ, Yang LY, Cunningham A, RisCassi JM, McShan AC. Identification and biophysical characterization of Plasmodium peptide binding by common African HLAs. Sci Rep 2025; 15:8614. [PMID: 40074802 PMCID: PMC11903679 DOI: 10.1038/s41598-025-92191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Human Leukocyte Antigens (HLA) are immunoreceptors that present peptide antigens at the cell surface to T cells as a primary mechanism of immune surveillance. Malaria, a disease associated with the Plasmodium parasite, claims > 600,000 lives per year globally with most deaths occurring in Africa. Development of efficacious prophylactic vaccines or therapeutic treatments for malaria has been hindered by the lack of a basic understanding of the role of HLA-mediated peptide antigen presentation during Plasmodium infection. In particular, there is (i) little understanding of which peptide antigens are presented by HLAs in the context of malaria, and (ii) a lack of structural insights into Plasmodium peptide antigen presentation by HLAs, which underpins peptide/HLA stability, specificity, cross-presentation across HLA alleles, and recognition by T cell receptors. To begin to address these knowledge gaps, we identify and characterize candidate peptide antigens derived from Plasmodium falciparum with potential for presentation by common class I HLA alleles. We computationally screen nine proteins from the P. falciparum proteome to predict eight peptides with potential for cross-presentation by common alleles in African populations, HLA-A*02:01 and HLA-B*08:01. We then validate the predictions by producing recombinant HLAs in complex with the eight identified peptides by in vitro refolding. We evaluate the folding and thermal stability of the resulting sixteen peptide/HLA complexes by CD spectroscopy and nanoDSF. In silico modeling of peptide/HLA complexes informs a plausible structural basis for mechanisms for cross-presentation of P. falciparum peptides across HLA-A*02:01 and HLA-B*08:01 alleles. Finally, we expand our identified P. falciparum peptides to cover a broader range of HLA alleles in malaria endemic populations with experimental validation provided for HLA-C*07:01 and HLA-E*01:03. Together, our results are a step forward towards a deeper understanding of the potential for multi-allele cross-presentation of peptides in malaria. These results further inform future development of multivalent vaccine strategies targeting HLA profiles in malaria endemic populations.
Collapse
Affiliation(s)
- Marielle B Frooman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Klara Choi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Maya Z Kahn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Li-Yen Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aubrielle Cunningham
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jenna M RisCassi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
8
|
Liu Y, Zhao C, Liu J, Du Y. Design, synthesis, and biological evaluation of novel KRN7000 analogues using 5α-gem-difluorocarba-β-l-arabinopyranose. Carbohydr Res 2025; 552:109457. [PMID: 40081114 DOI: 10.1016/j.carres.2025.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Two novel KRN7000 analogues, where d-galactopyranosyl residue was replaced by 5α-gem-difluorocarba-β-l-arabinopyranose, were designed based on docking computation and energy decomposition analyses. The target compounds were synthesized employing the key steps of Ferrier's carbocyclic ring closure and gem-difluoride formation with d-galactose as starting material. The in vivo bioassay revealed that the designed glycolipids could stimulate iNKT cells to produce cytokines IFN-γ and IL-4. The introduced hydroxyl groups on glycolipid acyl chain provided extra CD1d substrate affinities, and thus favored to boost Th1-type cytokine secretion. When the ring oxygen was replaced by CF2 group on sugar unit, its TCR affinities were enhanced in contrast with KRN7000. The in vivo cytokine profiles induced by synthetic glycolipids were initially dominated by the binding ability of CD1/glycolipid, and then adjusted by affinity toward TCR in CD1/α-GalCer/TCR triplex structure. The current results could be helpful in designing of more efficient α-GalCer analogs.
Collapse
Affiliation(s)
- Yuanfang Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China
| |
Collapse
|
9
|
Zhou Z, Chen J, Lin S, Hong L, Wei DQ, Xiong Y. GRATCR: Epitope-Specific T Cell Receptor Sequence Generation With Data-Efficient Pre-Trained Models. IEEE J Biomed Health Inform 2025; 29:2271-2283. [PMID: 40031605 DOI: 10.1109/jbhi.2024.3514089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
T cell receptors (TCRs) play a crucial role in numerous immunotherapies targeting tumor cells. However, their acquisition and optimization present significant challenges, involving laborious and time-consuming wet lab experimental resource. Deep generative models have demonstrated remarkable capabilities in functional protein sequence generation, offering a promising solution for enhancing the acquisition of specific TCR sequences. Here, we propose GRATCR, a framework incorporates two pre-trained modules through a novel "grafting" strategy, to de-novo generate TCR sequences targeting specific epitopes. Experimental results demonstrate that TCRs generated by GRATCR exhibit higher specificity toward desired epitopes and are more biologically functional compared with the state-of-the-art model, by using significantly fewer training data. Additionally, the generated sequences display novelty compared to natural sequences, and the interpretability evaluation further confirmed that the model is capable of capturing important binding patterns.
Collapse
|
10
|
Yang M, Zhong P, Wei P. Living Bacteria: A New Vehicle for Vaccine Delivery in Cancer Immunotherapy. Int J Mol Sci 2025; 26:2056. [PMID: 40076679 PMCID: PMC11900161 DOI: 10.3390/ijms26052056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer vaccines, aimed at evolving the human immune system to eliminate tumor cells, have long been explored as a method of cancer treatment with significant clinical potential. Traditional delivery systems face significant challenges in directly targeting tumor cells and delivering adequate amounts of antigen due to the hostile tumor microenvironment. Emerging evidence suggests that certain bacteria naturally home in on tumors and modulate antitumor immunity, making bacterial vectors a promising vehicle for precision cancer vaccines. Live bacterial vehicles offer several advantages, including tumor colonization, precise drug delivery, and immune stimulation, making them a compelling option for cancer immunotherapy. In this review, we explore the mechanisms of action behind living bacteria-based vaccines, recent progress in popular bacterial chassis, and strategies for specific payload delivery and biocontainment to ensure safety. These approaches will lay the foundation for developing an affordable, widely applicable cancer vaccine delivery system. This review also discusses the challenges and future opportunities in harnessing bacterial-based vaccines for enhanced therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
| | | | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (M.Y.); (P.Z.)
| |
Collapse
|
11
|
Goel M, Steinberg-Bains K, Eugster A, Wehner R, Tunger A, Reinhardt S, Sharma V, Rost F, Schmitz M, Schmelz R, Zeissig S, Rachner TD, Bornhäuser M, Bonifacio E, Link-Rachner CS. Combining T cell receptor sequencing and transcriptomics to characterize tissue-resident T cells from human gut biopsies. Biochem Biophys Res Commun 2025; 749:151353. [PMID: 39837221 DOI: 10.1016/j.bbrc.2025.151353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Gastrointestinal T cells (GI-T) play a critical role in mucosal immunity, balancing tolerance and pathogen defence. T cells recognize antigens via T cell receptors (TCRs). Next-generation sequencing (NGS) is utilized to analyse TCR repertoires in contexts such as health, haematological diseases, autoimmunity, and inflammation. While some studies have explored T cell involvement in GI conditions, the integration of different techniques and examination of diverse tissues remain underdeveloped. In our "proof of concept" study, for the first time, we combined flow cytometry, TCR sequencing and transcriptomics to analyse T cell repertoires from bulk sorted T cells and from single cells. This combination provides information about both, specificity and functionality of particular T cells. We focused on biopsy samples from the stomach, colon, and compared these to blood samples from patients with and without inflammation associated with erosive gastritis. This combined approach allows unique insights into T cell biology. Through TCR clonotype analysis, we identified oligoclonal expansion in inflamed biopsies, with minimal TCR clonotype overlap between individuals, highlighting personalized immune responses. Gene expression analysis revealed upregulation of T cell activation and signalling and chemokines in inflamed biopsies. Single-cell sequencing provided deeper insights into specific T cell populations, identifying dominant clonotypes with cytotoxic function. Our findings underscore the importance of studying affected sites to fully understand T cell responses and localized immune reactions. Our approach opens unique possibilities for studying TCR and gene expression from limited biopsy material, potentially leading to personalized therapies and biomarkers for gastrointestinal diseases.
Collapse
Affiliation(s)
- Manisha Goel
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katja Steinberg-Bains
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Eugster
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Reinhardt
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Dresden-concept Genome Center, C/o Center for Molecular and Cellular Bioengineering, Technology Platform of Technische Universität Dresden, Dresden, Germany
| | - Virag Sharma
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabian Rost
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Dresden-concept Genome Center, C/o Center for Molecular and Cellular Bioengineering, Technology Platform of Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renate Schmelz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Cornelia S Link-Rachner
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Quiñones-Parra SM, Gras S, Nguyen THO, Farenc C, Szeto C, Rowntree LC, Chaurasia P, Sant S, Boon ACM, Jayasinghe D, Rimmelzwaan GF, Petersen J, Doherty PC, Uldrich AP, Littler DR, Rossjohn J, Kedzierska K. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Sci Immunol 2025; 10:eadn3805. [PMID: 39919196 DOI: 10.1126/sciimmunol.adn3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Cross-reactive αβ T cell receptors (TCRs) recognizing multiple peptide variants can provide effective control of rapidly evolving viruses yet remain understudied. By screening 12 naturally occurring influenza-derived HLA-B*35:01-restricted nucleoprotein (NP)418-426 epitopes (B*35:01-NP418) that emerged since 1918 within influenza A viruses, including 2024 A/H5N1 viruses, we identified functional broadly cross-reactive T cells universally recognizing NP418 variants. Binding studies demonstrated that TCR cross-reactivity was concomitant with diminished antigen sensitivity. Primary human B*35:01/NP418+CD8+ T cell lines displayed reduced cross-reactivity in the absence of CD8 coreceptor binding, validating the low avidity of cross-reactive B*35:01-NP418+CD8+ T cell responses. Six TCR-HLA-B*35:01/NP418 crystal structures showed how cross-reactive TCRs recognized multiple B*35:01/NP418 epitope variants. Specific TCR interactions were formed with invariant and conserved peptide-HLA features, thus remaining distal from highly varied positions of the NP418 epitope. Our study defines molecular mechanisms associated with extensive TCR cross-reactivity toward naturally occurring viral variants highly relevant to universal protective immunity against influenza.
Collapse
Affiliation(s)
- Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher Szeto
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Kalampokis I, Wong CS, Ma J, Smith LM, Masten BJ, Chabot-Richards D, Pisetsky DS. The Limitation of HLA Diversity as a Risk Factor for Pediatric-Onset Autoimmune Rheumatic Disease. J Clin Med 2025; 14:916. [PMID: 39941587 PMCID: PMC11818087 DOI: 10.3390/jcm14030916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Background: HLA homozygosity of specific alleles at a single locus is associated with increased risk for autoimmunity and/or more severe clinical phenotypes. However, the contribution of the overall limitation of HLA diversity across multiple loci to autoimmunity risk remains to be determined. Methods: We conducted a proof-of-concept case-control study of 413 individuals (279 cases with pediatric-onset autoimmune rheumatic diseases, 134 matched controls) examining the "Limitation of HLA Diversity" (LoHLAD) across multiple loci as an allele-independent risk factor for autoimmunity. We examined the association of LoHLAD with pediatric-onset autoimmune rheumatic diseases at five HLA loci (A, B, DQB1, DRB1, DRB3/4/5). LoHLAD was defined as (1) homozygosity at any of the examined loci, and/or (2) the presence of a single allele or the complete lack of an allele at the HLA-DRB3/4/5 locus. Results: The frequency of LoHLAD at any locus was significantly higher in cases compared to controls (65.95% vs. 30.60%, OR 4.39 [2.82-6.84], p < 0.0001). Higher frequencies of LoHLAD in cases compared to controls were observed at both class I (19.35% vs. 10.45%, OR 2.06 [1.10-3.86], p = 0.031) and class II (54.48% vs. 20.15%, OR 4.74 [2.92-7.69], p < 0.0001) loci. Specifically, significant differences between cases and controls were observed at the B (OR 8.63 [1.14-65.55], p = 0.016), DQB1 (OR 3.34 [1.27-8.78], p = 0.016), and DRB3/4/5 (OR 4.64 [2.77-7.75], p < 0.0001) loci. Multiple logistic regression models confirmed the ability of LoHLAD to positively predict autoimmunity. Conclusions: LoHLAD is a significant allele-independent risk factor for pediatric-onset autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Ioannis Kalampokis
- University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.M.); (L.M.S.)
- University of New Mexico, Albuquerque, NM 87106, USA; (C.S.W.); (B.J.M.); (D.C.-R.)
| | - Craig S. Wong
- University of New Mexico, Albuquerque, NM 87106, USA; (C.S.W.); (B.J.M.); (D.C.-R.)
| | - Jihyun Ma
- University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.M.); (L.M.S.)
| | - Lynette M. Smith
- University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.M.); (L.M.S.)
| | - Barbara J. Masten
- University of New Mexico, Albuquerque, NM 87106, USA; (C.S.W.); (B.J.M.); (D.C.-R.)
- Tricore Reference Laboratories, Albuquerque, NM 87102, USA
| | | | - David S. Pisetsky
- Duke University Medical Center, Durham, NC 27710, USA;
- Durham Veterans Administration Medical Center, Durham, NC 27705, USA
| |
Collapse
|
14
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Chernigovskaya M, Pavlović M, Kanduri C, Gielis S, Robert P, Scheffer L, Slabodkin A, Haff IH, Meysman P, Yaari G, Sandve GK, Greiff V. Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning. Nucleic Acids Res 2025; 53:gkaf025. [PMID: 39873270 PMCID: PMC11773363 DOI: 10.1093/nar/gkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2025] [Indexed: 01/30/2025] Open
Abstract
Machine learning (ML) has shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are required to complement the development and benchmarking of robust and interpretable AIRR-ML methods where experimental data is currently inaccessible or insufficient. The challenge for simulated data to be useful is incorporating key features observed in experimental repertoires. These features, such as antigen or disease-associated immune information, cause AIRR-ML problems to be challenging. Here, we introduce LIgO, a software suite, which simulates AIRR data for the development and benchmarking of AIRR-ML methods. LIgO incorporates different types of immune information both on the receptor and the repertoire level and preserves native-like generation probability distribution. Additionally, LIgO assists users in determining the computational feasibility of their simulations. We show two examples where LIgO supports the development and validation of AIRR-ML methods: (i) how individuals carrying out-of-distribution immune information impacts receptor-level prediction performance and (ii) how immune information co-occurring in the same AIRs impacts the performance of conventional receptor-level encoding and repertoire-level classification approaches. LIgO guides the advancement and assessment of interpretable AIRR-ML methods.
Collapse
Affiliation(s)
- Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Chakravarthi Kanduri
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Sofie Gielis
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Lonneke Scheffer
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
| | - Andrei Slabodkin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | | | - Pieter Meysman
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| |
Collapse
|
16
|
Barakos GP, Georgoulis V, Koumpis E, Hatzimichael E. Elucidating the Role of the T Cell Receptor Repertoire in Myelodysplastic Neoplasms and Acute Myeloid Leukemia. Diseases 2025; 13:19. [PMID: 39851483 PMCID: PMC11765071 DOI: 10.3390/diseases13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies. Myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML) are hematological neoplasms that are characterized by immune evasion mechanisms, with immunotherapy giving only modest results thus far. Our review of TCR repertoire dynamics in these diseases reveals distinct patterns: MDS patients show increased TCR clonality with disease progression, while AML exhibits varied TCR signatures depending on disease stage and treatment response. Understanding these patterns has important clinical implications, as TCR repertoire metrics may serve as potential biomarkers for disease progression and treatment response, particularly in the context of immunotherapy and stem cell transplantation. These insights could guide patient stratification and treatment selection, ultimately improving therapeutic outcomes in MDS and AML.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Vasileios Georgoulis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| |
Collapse
|
17
|
Sun Y, Pumroy RA, Mallik L, Chaudhuri A, Wang C, Hwang D, Danon JN, Dasteh Goli K, Moiseenkova-Bell VY, Sgourakis NG. CryoEM structure of an MHC-I/TAPBPR peptide-bound intermediate reveals the mechanism of antigen proofreading. Proc Natl Acad Sci U S A 2025; 122:e2416992122. [PMID: 39786927 PMCID: PMC11745410 DOI: 10.1073/pnas.2416992122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive. Here, we leverage a high-fidelity TAPBPR variant and conformationally stabilized MHC-I, to determine the solution structure of the human antigen editing complex bound to a peptide decoy by cryogenic electron microscopy (cryo-EM) at an average resolution of 3.0 Å. Antigen proofreading is mediated by transient interactions formed between the nascent peptide binding groove with the P2/P3 peptide anchors, where conserved MHC-I residues stabilize incoming peptides through backbone-focused contacts. Finally, using our high-fidelity chaperone, we demonstrate robust peptide exchange on the cell surface across multiple clinically relevant human MHC-I allomorphs. Our work has important ramifications for understanding the selection of immunogenic epitopes for T cell screening and vaccine design applications.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ruth A. Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Leena Mallik
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Apala Chaudhuri
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chloe Wang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Immunology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Daniel Hwang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Julia N. Danon
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kimia Dasteh Goli
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Vera Y. Moiseenkova-Bell
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nikolaos G. Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
18
|
Hoque M, Grigg JB, Ramlall T, Jones J, McGoldrick LL, Lin JC, Olson WC, Smith E, Franklin MC, Zhang T, Saotome K. Structural characterization of two γδ TCR/CD3 complexes. Nat Commun 2025; 16:318. [PMID: 39747888 PMCID: PMC11697310 DOI: 10.1038/s41467-024-55467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The T-cell receptor (TCR)/CD3 complex plays an essential role in the immune response and is a key player in cancer immunotherapies. There are two classes of TCR/CD3 complexes, defined by their TCR chain usage (αβ or γδ). Recently reported structures have revealed the organization of the αβ TCR/CD3 complex, but similar studies regarding the γδ TCR/CD3 complex have lagged behind. Here, we report cryoelectron microscopy (cryoEM) structural analysis of two γδ TCRs, G115 (Vγ9 Vδ2) and 9C2 (Vγ5 Vδ1), in complex with CD3 subunits. Our results show that the overall subunit organization of the γδ TCR/CD3 complexes is similar to αβ TCRs. However, both γδ TCRs display highly mobile extracellular domains (ECDs), unlike αβ TCRs, which have TCR ECDs that are rigidly coupled to its transmembrane (TM) domains. We corroborate this finding in cells by demonstrating that a γδ T-cell specific antibody can bind a site that would be inaccessible in the more rigid αβ TCR/CD3 complex. Furthermore, we observed that the Vγ5 Vδ1 complex forms a TCR γ5 chain-mediated dimeric species whereby two TCR/CD3 complexes are assembled. Collectively, these data shed light on γδ TCR/CD3 complex formation and may aid the design of γδ TCR-based therapies.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Cryoelectron Microscopy
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD3 Complex/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Models, Molecular
- Protein Domains
Collapse
Affiliation(s)
- Mohammed Hoque
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | | | - Trudy Ramlall
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Jennifer Jones
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | - Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| |
Collapse
|
19
|
Mallis RJ, Brazin KN, Duke‐Cohan JS, Akitsu A, Stephens HM, Chang‐Gonzalez AC, Masi DJ, Kirkpatrick EH, Holliday EL, Feng Y, Zienkiewicz KJ, Lee JJ, Cinella V, Uberoy KI, Tan K, Wagner G, Arthanari H, Hwang W, Lang MJ, Reinherz EL. Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation. Immunol Rev 2025; 329:e13432. [PMID: 39745432 PMCID: PMC11744257 DOI: 10.1111/imr.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 01/21/2025]
Abstract
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Mechanotransduction, Cellular
- Signal Transduction
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan S. Duke‐Cohan
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Aoi Akitsu
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanna M. Stephens
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Daniel J. Masi
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Evan H. Kirkpatrick
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Elizabeth L. Holliday
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yinnian Feng
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Vincenzo Cinella
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kaveri I. Uberoy
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kemin Tan
- Structural Biology Center, X‐Ray Science Division, Advanced Photon SourceArgonne National LaboratoryLemontIllinoisUSA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Wonmuk Hwang
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Materials Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Physics and AstronomyTexas A&M UniversityCollege StationTexasUSA
- Center for AI and Natural SciencesKorea Institute for Advanced StudySeoulRepublic of Korea
| | - Matthew J. Lang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
20
|
Brambley CA, Baker BM. Immune tolerance in peripheral CD4 + T cells is cooperatively regulated by PD-1 and CD73. Nat Immunol 2025; 26:9-10. [PMID: 39747432 DOI: 10.1038/s41590-024-02039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Chad A Brambley
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
21
|
Gray GI, Chukwuma PC, Eldaly B, Perera WWJG, Brambley CA, Rosales TJ, Baker BM. The Evolving T Cell Receptor Recognition Code: The Rules Are More Like Guidelines. Immunol Rev 2025; 329:e13439. [PMID: 39804137 PMCID: PMC11771984 DOI: 10.1111/imr.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work. Here we explore our evolving understanding of TCR recognition, illustrating how structural and biophysical investigations regularly uncover complex phenomena that push against paradigms and expand our understanding of how TCRs bind to and discriminate between peptide/MHC complexes. We discuss the implications of these findings for basic, translational, and predictive immunology, including the challenges in accounting for the inherent adaptability, flexibility, and occasional biophysical sloppiness that characterize TCR recognition.
Collapse
MESH Headings
- Humans
- Animals
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Peptides/immunology
- Peptides/metabolism
- Peptides/chemistry
Collapse
Affiliation(s)
- George I Gray
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - P Chukwunalu Chukwuma
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bassant Eldaly
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - W W J Gihan Perera
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Chad A Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Tatiana J Rosales
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
22
|
Dian Y, Liu Y, Zeng F, Sun Y, Deng G. Efficacy and safety of tebentafusp in patients with metastatic uveal melanoma: A systematic review and meta-analysis. Hum Vaccin Immunother 2024; 20:2374647. [PMID: 39004419 PMCID: PMC11249029 DOI: 10.1080/21645515.2024.2374647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with metastatic uveal melanoma (mUM) have a poor prognosis, and few appropriate medications are available. Tebentafusp is approved by the Food and Drug Administration for mUM recently. However, the real efficacy and safety of tebentafusp are still unclear. We searched PubMed, Embase, and Cochrane Library from inception to March 20, 2024. The research was reported based on the preferred reporting items for systematic reviews and meta-analysis guidelines. We used random effects models to aggregate data on the response rates and adverse events of tebentafusp therapy. Six studies met the inclusion criteria with a total sample of 589 participants. The pooled objective response rate was 0.08 (95% CI: 0.05-0.12), and pooled disease control rate was 0.51 (95% CI: 0.44-0.57). The overall incidence was 0.99 (95% CI: 0.95-1.00) for any grade adverse events, 0.50 (95% CI: 0.41-0.59) for grade 3-4 adverse events, and 0.01 (95% CI: 0-0.03) for discontinuation due to adverse events. Tebentafusp exhibits promising treatment outcomes for mUM patients. Although accompanied with a common occurrence of adverse events, which can typically be managed and controlled. Future research is necessary for substantiating these findings and refining guidelines for management of mUM.
Collapse
Affiliation(s)
- Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Householder KD, Xiang X, Jude KM, Deng A, Obenaus M, Wilson SC, Chen X, Wang N, Garcia KC. De novo design and structure of a peptide-centric TCR mimic binding module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628822. [PMID: 39763827 PMCID: PMC11702606 DOI: 10.1101/2024.12.16.628822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
T cell receptor (TCR) mimics offer a promising platform for tumor-specific targeting of peptide-MHC in cancer immunotherapy. Here, we designed a de novo α-helical TCR mimic (TCRm) specific for the NY-ESO-1 peptide presented by HLA-A*02, achieving high on-target specificity with nanomolar affinity (Kd = 9.5 nM). The structure of the TCRm/pMHC complex at 2.05 Å resolution revealed a rigid TCR-like docking mode with an unusual degree of focus on the up-facing NY-ESO-1 side chains, suggesting the potential for reduced off-target reactivity. Indeed, a structure-informed in silico screen of 14,363 HLA-A*02 peptides correctly predicted two off-target peptides, yet our TCRm maintained a wide therapeutic window as a T cell engager. These results represent a path for precision targeting of tumor antigens with peptide-focused α-helical TCR mimics.
Collapse
Affiliation(s)
- Karsten D. Householder
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Program in Immunology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Xinyu Xiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Arthur Deng
- Department of Computer Science, Stanford University; Stanford, CA 94305
| | - Matthias Obenaus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Steven C. Wilson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Xiaojing Chen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Nan Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA 94305
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Department of Structural Biology, Stanford University School of Medicine; Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA 94305
| |
Collapse
|
24
|
Huang TL, Zhang TY, Xiang L, Jiang HC, Zhang XW. A Novel HLA-C Allele, HLA-C*12:419, Was Identified by Next-Generation Sequencing in a Chinese Individual. HLA 2024; 104:e15785. [PMID: 39616525 DOI: 10.1111/tan.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
HLA-C*12:419 has a single nucleotide substitution at position 445 G>T when compared to the C*12:02:02:25 allele.
Collapse
Affiliation(s)
- Ti-Long Huang
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Tian-Yao Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiang
- Nanjing Practice Medicine Diagnostics Co. Ltd., Nanjing, China
| | - Hong-Chao Jiang
- Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Xian-Wen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
26
|
Song K, Xu H, Shi Y, Zou X, Da LT, Hao J. Investigating TCR-pMHC interactions for TCRs without identified epitopes by constructing a computational pipeline. Int J Biol Macromol 2024; 282:136502. [PMID: 39423970 DOI: 10.1016/j.ijbiomac.2024.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The molecular mechanisms underlying epitope recognition by T cell receptors (TCRs) are critical for activating T cell immune responses and rationally designing TCR-based therapeutics. Single-cell sequencing techniques vastly boost the accumulation of TCR sequences, while the limitation of available TCR-pMHC structures hampers further investigations. In this study, we proposed a computational pipeline that incorporates structural information and single-cell sequencing data to investigate the epitope-recognition mechanisms for TCRs without identified epitopes. By antigen specificity clustering, we mapped the epitope sequences between epitope-known and epitope-unknown TCRs from COVID-19 patients. One reported SARS-CoV-2 epitope, NQKLIANQF (S919-927), was identified for a TCR expressed by 614 T cells (TCR-614). Epitope screening also identified a potential cross-reactive epitope, KLKTLVATA (NSP31790-1798), for a TCR expressed by 204 T cells (TCR-204). By molecular dynamics (MD) simulations, we revealed the detailed epitope-recognition mechanisms for both TCRs. The structural motifs responsible for epitope recognition revealed by the MD simulations are consistent with the sequential features recognized by the sequence-based clustering method. We hope that this strategy could facilitate the discovery and optimization of TCR-based therapeutics.
Collapse
Affiliation(s)
- Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honglin Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xin Zou
- Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; Ninth People's Hospital, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China.
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
28
|
Tan C, xiao Y, Liu T, Chen S, Zhou J, Zhang S, Hu Y, Wu A, Li C. Development of multi-epitope mRNA vaccine against Clostridioides difficile using reverse vaccinology and immunoinformatics approaches. Synth Syst Biotechnol 2024; 9:667-683. [PMID: 38817826 PMCID: PMC11137598 DOI: 10.1016/j.synbio.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Clostridioides difficile (C. difficile), as the major pathogen of diarrhea in healthcare settings, has become increasingly prevalent within community populations, resulting in significant morbidity and mortality. However, the therapeutic options for Clostridioides difficile infection (CDI) remain limited, and as of now, no authorized vaccine is available to combat this disease. Therefore, the development of a novel vaccine against C. difficile is of paramount importance. In our study, the complete proteome sequences of 118 strains of C. difficile were downloaded and analyzed. We found four antigenic proteins that were highly conserved and can be used for epitope identification. We designed two vaccines, WLcd1 and WLcd2, that contain the ideal T-cell and B-cell epitopes, adjuvants, and the pan HLA DR-binding epitope (PADRE) sequences. The biophysical and chemical assessments of these vaccine candidates indicated that they were suitable for immunogenic applications. Molecular docking analyses revealed that WLcd1 bonded with higher affinity to Toll-like receptors (TLRs) than WLcd2. Furthermore, molecular dynamics (MD) simulations, performed using Gmx_MMPBSA v1.56, confirmed the binding stability of WLcd1 with TLR2 and TLR4. The preliminary findings suggested that this multi-epitope vaccine could be a promising candidate for protection against CDI; however, experimental studies are necessary to confirm these predictions.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Yuanyuan xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Sisi Zhang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Yiran Hu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| |
Collapse
|
29
|
Praveena T, Le Nours J. State of play in the molecular presentation and recognition of anti-tumor lipid-based analogues. Front Immunol 2024; 15:1479382. [PMID: 39669569 PMCID: PMC11635198 DOI: 10.3389/fimmu.2024.1479382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The Natural Killer T cells (NKT) are a unique subset of T lymphocytes that recognize lipid-based antigens that are presented by the monomorphic MHC-I-like molecule, CD1d. Over 30 years ago, the discovery of the glycolipid α-Galactosylceramide (α-GalCer) from the marine sponge Agelas mauritianus, as a potent activator of the invariant Natural Killer T (iNKT) cells, has attracted great attention for its use in cancer immunotherapy. However, α-GalCer can initiate both pro-inflammatory T helper cell 1 (Th1) and anti-inflammatory Th2 type immune responses that can result in either enhanced or suppressed immunity in a somewhat unpredictable manner. Th1 polarized immune response is often correlated with an optimal anti-tumor immunity, and therefore α-GalCer did not fully offer the desired potential as an anti-tumor therapeutic. Over the past decades, considerable efforts have then been invested into the design and development of novel synthetic α-GalCer analogues that will direct a more efficient immune response towards the production of Th1 biased cytokines. In this minireview, we will discuss how subtle modifications in the chemical nature of a number of α-GalCer derivatives varied immune responses. Whilst some of these analogues showed potential in enhancing stability within CD1d and directing favourable immune responses for tumor immunotherapy, their responses in mice also highlighted the need for further research in humanized models to overcome translational challenges and optimize therapeutic efficacy.
Collapse
Affiliation(s)
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
30
|
Yang M, He D, Sun Y, Guo Y, Ma Y, Feng L, Liu M. The intratumoral landscape of T cell receptor repertoire in esophageal squamous cell carcinoma. J Transl Med 2024; 22:1069. [PMID: 39605085 PMCID: PMC11600597 DOI: 10.1186/s12967-024-05825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a malignant neoplasm with detrimental implications for human health. The landscape of ESCC therapy has been revolutionized by the introduction of immunotherapy, specifically involving immune checkpoint inhibitors (ICIs). A number of studies have documented the prognostic significance of T-cell receptor (TCR) repertoire and its association with many tumors. Nevertheless, the TCR repertoire landscape and its significance in ESCC still need to be explored. METHODS In this study, we conducted RNA-Seq analysis to investigate the characteristics of the TCR repertoire in 90 patients. Moreover, high-throughput TCR sequencing was performed on tumor tissues from 41 patients who received immunotherapy. Additionally, a comprehensive analysis of the T-cell receptor repertoire landscape within ESCC tumors was carried out through immunohistochemical staining on all patient samples. RESULTS We noticed a diminished diversity of TCR repertoire within the tumor compared to its adjacent normal tissue. In terms of immunotherapy responses, non-responsive patients exhibited higher TCR repertoire diversity indices and an increased frequency of common V and J genes. Additionally, elevated TCR repertoire diversity correlated with improved overall survival rates. Lastly, immunohistochemical staining results indicated a correlation between TCR repertoire diversity and the tumor immune microenvironment (TIME). CONCLUSIONS Our study primarily describes the landscape of TCR repertoires in ESCC through three aspects: differences in tumor tissues, immune response to immunotherapy, and survival prognosis of patients. These results emphasize the importance of TCR repertoire characteristics as unique and relevant biomarkers for ESCC immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China
| | - Dan He
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China
| | - Yu Sun
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, PR China
| | - Yunquan Guo
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China
| | - Yu Ma
- The Fourth People' Hospital of Urumqi, Xinjiang Uygur Autonomous Region, Urumqi, 830002, PR China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, PR China
| | - Meng Liu
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China.
| |
Collapse
|
31
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
32
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
33
|
Henderson J, Nagano Y, Milighetti M, Tiffeau-Mayer A. Limits on inferring T cell specificity from partial information. Proc Natl Acad Sci U S A 2024; 121:e2408696121. [PMID: 39374400 PMCID: PMC11494314 DOI: 10.1073/pnas.2408696121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
A key challenge in molecular biology is to decipher the mapping of protein sequence to function. To perform this mapping requires the identification of sequence features most informative about function. Here, we quantify the amount of information (in bits) that T cell receptor (TCR) sequence features provide about antigen specificity. We identify informative features by their degree of conservation among antigen-specific receptors relative to null expectations. We find that TCR specificity synergistically depends on the hypervariable regions of both receptor chains, with a degree of synergy that strongly depends on the ligand. Using a coincidence-based approach to measuring information enables us to directly bound the accuracy with which TCR specificity can be predicted from partial matches to reference sequences. We anticipate that our statistical framework will be of use for developing machine learning models for TCR specificity prediction and for optimizing TCRs for cell therapies. The proposed coincidence-based information measures might find further applications in bounding the performance of pairwise classifiers in other fields.
Collapse
Affiliation(s)
- James Henderson
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, LondonWC1E 6BT, United Kingdom
| | - Yuta Nagano
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Division of Medicine, University College London, LondonWC1E 6BT, United Kingdom
| | - Martina Milighetti
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Cancer Institute, University College London, LondonWC1E 6DD, United Kingdom
| | - Andreas Tiffeau-Mayer
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
34
|
Almeida CF, Gully BS, Jones CM, Kedzierski L, Gunasinghe SD, Rice MT, Berry R, Gherardin NA, Nguyen TT, Mok YF, Reijneveld JF, Moody DB, Van Rhijn I, La Gruta NL, Uldrich AP, Rossjohn J, Godfrey DI. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024; 15:8816. [PMID: 39394178 PMCID: PMC11470135 DOI: 10.1038/s41467-024-51897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/21/2024] [Indexed: 10/13/2024] Open
Abstract
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR-peptide-MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice
- Phycoerythrin/metabolism
- Phycoerythrin/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Crystallography, X-Ray
- Mice, Inbred C57BL
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Models, Molecular
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trang T Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Melbourne Protein Characterisation Platform, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Grundy EE, Shaw LC, Wang L, Lee AV, Argueta JC, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Chappell NP, Bollard CM, Chiappinelli KB. A T cell receptor specific for an HLA-A*03:01-restricted epitope in the endogenous retrovirus ERV-K-Env exhibits limited recognition of its cognate epitope. Mob DNA 2024; 15:19. [PMID: 39385229 PMCID: PMC11462856 DOI: 10.1186/s13100-024-00333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - Lauren C Shaw
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Loretta Wang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
| | - Abigail V Lee
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - James Castro Argueta
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada
| | - R Brad Jones
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - C Russell Y Cruz
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Heather Gordish-Dressman
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- The Center for Translational Research, Children's National Hospital, Washington, DC, USA
| | | | - Catherine M Bollard
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
- The George Washington University Cancer Center, Washington, DC, USA.
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA.
| |
Collapse
|
36
|
Lo WL, Huseby ES. The partitioning of TCR repertoires by thymic selection. J Exp Med 2024; 221:e20230897. [PMID: 39167074 PMCID: PMC11338286 DOI: 10.1084/jem.20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
αβ T cells are critical components of the adaptive immune system; they maintain tissue and immune homeostasis during health, provide sterilizing immunity after pathogen infection, and are capable of eliminating transformed tumor cells. Fundamental to these distinct functions is the ligand specificity of the unique antigen receptor expressed on each mature T cell (TCR), which endows lymphocytes with the ability to behave in a cell-autonomous, disease context-specific manner. Clone-specific behavioral properties are initially established during T cell development when thymocytes use TCR recognition of major histocompatibility complex (MHC) and MHC-like ligands to instruct survival versus death and to differentiate into a plethora of inflammatory and regulatory T cell lineages. Here, we review the ligand specificity of the preselection thymocyte repertoire and argue that developmental stage-specific alterations in TCR signaling control cross-reactivity and foreign versus self-specificity of T cell sublineages.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
37
|
Gully BS, Ferreira Fernandes J, Gunasinghe SD, Vuong MT, Lui Y, Rice MT, Rashleigh L, Lay CS, Littler DR, Sharma S, Santos AM, Venugopal H, Rossjohn J, Davis SJ. Structure of a fully assembled γδ T cell antigen receptor. Nature 2024; 634:729-736. [PMID: 39146975 PMCID: PMC11485255 DOI: 10.1038/s41586-024-07920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
T cells in jawed vertebrates comprise two lineages, αβ T cells and γδ T cells, defined by the antigen receptors they express-that is, αβ and γδ T cell receptors (TCRs), respectively. The two lineages have different immunological roles, requiring that γδ TCRs recognize more structurally diverse ligands1. Nevertheless, the receptors use shared CD3 subunits to initiate signalling. Whereas the structural organization of αβ TCRs is understood2,3, the architecture of γδ TCRs is unknown. Here, we used cryogenic electron microscopy to determine the structure of a fully assembled, MR1-reactive, human Vγ8Vδ3 TCR-CD3δγε2ζ2 complex bound by anti-CD3ε antibody Fab fragments4,5. The arrangement of CD3 subunits in γδ and αβ TCRs is conserved and, although the transmembrane α-helices of the TCR-γδ and -αβ subunits differ markedly in sequence, packing of the eight transmembrane-helix bundles is similar. However, in contrast to the apparently rigid αβ TCR2,3,6, the γδ TCR exhibits considerable conformational heterogeneity owing to the ligand-binding TCR-γδ subunits being tethered to the CD3 subunits by their transmembrane regions only. Reducing this conformational heterogeneity by transfer of the Vγ8Vδ3 TCR variable domains to an αβ TCR enhanced receptor signalling, suggesting that γδ TCR organization reflects a compromise between efficient signalling and the ability to engage structurally diverse ligands. Our findings reveal the marked structural plasticity of the TCR on evolutionary timescales, and recast it as a highly versatile receptor capable of initiating signalling as either a rigid or flexible structure.
Collapse
MESH Headings
- Animals
- Humans
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CHO Cells
- Cricetulus
- Cryoelectron Microscopy
- HEK293 Cells
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fab Fragments/ultrastructure
- Ligands
- Models, Molecular
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Protein Subunits/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/ultrastructure
- Signal Transduction
Collapse
Affiliation(s)
- Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - João Ferreira Fernandes
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mai T Vuong
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yuan Lui
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Liam Rashleigh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chan-Sien Lay
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sumana Sharma
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ana Mafalda Santos
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hariprasad Venugopal
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Simon J Davis
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Pymm P, Saunders PM, Anand S, MacLachlan BJ, Faoro C, Hitchen C, Rossjohn J, Brooks AG, Vivian JP. The Structural Basis for Recognition of Human Leukocyte Antigen Class I Molecules by the Pan-HLA Antibody W6/32. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:876-885. [PMID: 39093013 DOI: 10.4049/jimmunol.2400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The central immunological role of HLA class I (HLA-I) in presenting peptide Ags to cellular components of the immune system has been the focus of intense study for >60 y. A confounding factor in the study of HLA-I has been the extreme polymorphism of these molecules. The mAb W6/32 has been a fundamental reagent bypassing the issue of polymorphism by recognizing an epitope that is conserved across diverse HLA-I allotypes. However, despite the widespread use of W6/32, the epitope of this Ab has not been definitively mapped. In this study, we present the crystal structure of the Fab fragment of W6/32 in complex with peptide-HLA-B*27:05. W6/32 bound to HLA-B*27:05 beneath the Ag-binding groove, recognizing a discontinuous epitope comprised of the α1, α2, and α3 domains of HLA-I and β2-microglobulin. The epitope comprises a region of low polymorphism reflecting the pan-HLA-I nature of the binding. Notably, the W6/32 epitope neither overlaps the HLA-I binding sites of either T cell Ag receptors or killer cell Ig-like receptors. However, it does coincide with the binding sites for leukocyte Ig-like receptors and CD8 coreceptors. Consistent with this, the use of W6/32 to block the interaction of NK cells with HLA-I only weakly impaired inhibition mediated by KIR3DL1, but impacted HLA-LILR recognition.
Collapse
Affiliation(s)
- Phillip Pymm
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Sushma Anand
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Camilla Faoro
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Corinne Hitchen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Tran MT, Lim JJ, Loh TJ, Mannering SI, Rossjohn J, Reid HH. A structural basis of T cell cross-reactivity to native and spliced self-antigens presented by HLA-DQ8. J Biol Chem 2024; 300:107612. [PMID: 39074636 PMCID: PMC11388500 DOI: 10.1016/j.jbc.2024.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that has a strong HLA association, where a number of self-epitopes have been implicated in disease pathogenesis. Human pancreatic islet-infiltrating CD4+ T cell clones not only respond to proinsulin C-peptide (PI40-54; GQVELGGGPGAGSLQ) but also cross-react with a hybrid insulin peptide (HIP; PI40-47-IAPP74-80; GQVELGGG-NAVEVLK) presented by HLA-DQ8. How T cell receptors recognize self-peptide and cross-react to HIPs is unclear. We investigated the cross-reactivity of the CD4+ T cell clones reactive to native PI40-54 epitope and multiple HIPs fused at the same N-terminus (PI40-54) to the degradation products of two highly expressed pancreatic islet proteins, neuropeptide Y (NPY68-74) and amyloid polypeptide (IAPP23-29 and IAPP74-80). We observed that five out of the seven selected SKW3 T cell lines expressing TCRs isolated from CD4+ T cells of people with T1D responded to multiple HIPs. Despite shared TRAV26-1-TRBV5-1 gene usage in some T cells, these clones cross-reacted to varying degrees with the PI40-54 and HIP epitopes. Crystal structures of two TRAV26-1+-TRBV5-1+ T cell receptors (TCRs) in complex with PI40-54 and HIPs bound to HLA-DQ8 revealed that the two TCRs had distinct mechanisms responsible for their differential recognition of the PI40-54 and HIP epitopes. Alanine scanning mutagenesis of the PI40-54 and HIPs determined that the P2, P7, and P8 residues in these epitopes were key determinants of TCR specificity. Accordingly, we provide a molecular basis for cross-reactivity towards native insulin and HIP epitopes presented by HLA-DQ8.
Collapse
Affiliation(s)
- Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jia Jia Lim
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| | - Hugh H Reid
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
40
|
Sok CL, Rossjohn J, Gully BS. The Evolving Portrait of γδ TCR Recognition Determinants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:543-552. [PMID: 39159405 PMCID: PMC11335310 DOI: 10.4049/jimmunol.2400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
In αβ T cells, immunosurveillance is enabled by the αβ TCR, which corecognizes peptide, lipid, or small-molecule Ags presented by MHC- and MHC class I-like Ag-presenting molecules, respectively. Although αβ TCRs vary in their Ag recognition modes, in general they corecognize the presented Ag and the Ag-presenting molecule and do so in an invariable "end-to-end" manner. Quite distinctly, γδ T cells, by way of their γδ TCR, can recognize ligands that extend beyond the confines of MHC- and MHC class I-like restrictions. From structural studies, it is now becoming apparent that γδ TCR recognition modes can break the corecognition paradigm and deviate markedly from the end-to-end docking mechanisms of αβ TCR counterparts. This brief review highlights the emerging portrait of how γδ TCRs can recognize diverse epitopes of their Ags in a manner reminiscent to how Abs recognize Ags.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Humans
- Animals
- Antigen Presentation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Epitopes, T-Lymphocyte/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Chhon Ling Sok
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Benjamin S. Gully
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Huang AL, He YZ, Yang Y, Pang M, Zheng GP, Wang HL. Exploring the potential of the TCR repertoire as a tumor biomarker (Review). Oncol Lett 2024; 28:413. [PMID: 38988449 PMCID: PMC11234811 DOI: 10.3892/ol.2024.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.
Collapse
Affiliation(s)
- An-Li Huang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
- The First Clinical Medical College, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yan-Zhao He
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yong Yang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Min Pang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guo-Ping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Hai-Long Wang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
42
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
43
|
Liang J, Liao Y, Tu Z, Liu J. Revamping Hepatocellular Carcinoma Immunotherapy: The Advent of Microbial Neoantigen Vaccines. Vaccines (Basel) 2024; 12:930. [PMID: 39204053 PMCID: PMC11359864 DOI: 10.3390/vaccines12080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm for hepatocellular carcinoma (HCC). However, its efficacy varies significantly with each patient's genetic composition and the complex interactions with their microbiome, both of which are pivotal in shaping anti-tumor immunity. The emergence of microbial neoantigens, a novel class of tumor vaccines, heralds a transformative shift in HCC therapy. This review explores the untapped potential of microbial neoantigens as innovative tumor vaccines, poised to redefine current HCC treatment modalities. For instance, neoantigens derived from the microbiome have demonstrated the capacity to enhance anti-tumor immunity in colorectal cancer, suggesting similar applications in HCC. By harnessing these unique neoantigens, we propose a framework for a personalized immunotherapeutic response, aiming to deliver a more precise and potent treatment strategy for HCC. Leveraging these neoantigens could significantly advance personalized medicine, potentially revolutionizing patient outcomes in HCC therapy.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (J.L.); (Y.L.); (Z.T.)
| |
Collapse
|
44
|
Wu Q, Li C, Zhu B, Zhu J, Yang K, Liu Z, Liu W, Gao T, Yuan F, Guo R, Tian Y, Zhou D. Advancement in the Antigenic Epitopes and Vaccine Adjuvants of African Swine Fever Virus. Pathogens 2024; 13:706. [PMID: 39204306 PMCID: PMC11357537 DOI: 10.3390/pathogens13080706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever virus (ASFV), a highly virulent double-stranded DNA virus, poses a significant threat to global pig farming, with mortality rates in domestic pigs reaching up to 100%. Originating in Kenya in 1921, ASFV has since proliferated to Western Europe, Latin America, Eastern Europe, and most recently China in 2018, resulting in substantial global agricultural losses. Antigenic epitopes, recognized by the immune system's T cells and B cells, are pivotal in antiviral immune responses. The identification and characterization of these antigenic epitopes can offer invaluable insights into the immune response against ASFV and aid in the development of innovative immunotherapeutic strategies. Vaccine adjuvants, substances that amplify the body's specific immune response to antigens, also play a crucial role. This review provides an overview of the progress in studying T/B-cell epitopes in ASFV proteins and ASFV vaccine adjuvants, highlighting their role in the immune response and potential use in new vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Q.W.); (C.L.); (B.Z.); (J.Z.); (K.Y.); (Z.L.); (W.L.); (T.G.); (F.Y.); (R.G.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Q.W.); (C.L.); (B.Z.); (J.Z.); (K.Y.); (Z.L.); (W.L.); (T.G.); (F.Y.); (R.G.)
| |
Collapse
|
45
|
Sun Y, Pumroy RA, Mallik L, Chaudhuri A, Wang C, Hwang D, Danon JN, Goli KD, Moiseenkova-Bell V, Sgourakis NG. CryoEM structure of an MHC-I/TAPBPR peptide bound intermediate reveals the mechanism of antigen proofreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606663. [PMID: 39211162 PMCID: PMC11361172 DOI: 10.1101/2024.08.05.606663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive. Here, we leverage a high-fidelity TAPBPR variant and conformationally stabilized MHC-I, to determine the solution structure of the human antigen editing complex bound to a peptide decoy by cryogenic electron microscopy (cryo-EM) at an average resolution of 3.0 Å. Antigen proofreading is mediated by transient interactions formed between the nascent peptide binding groove with the P2/P3 peptide anchors, where conserved MHC-I residues stabilize incoming peptides through backbone-focused contacts. Finally, using our high-fidelity chaperone, we demonstrate robust peptide exchange on the cell surface across multiple clinically relevant human MHC-I allomorphs. Our work has important ramifications for understanding the selection of immunogenic epitopes for T cell screening and vaccine design applications.
Collapse
|
46
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
47
|
Cao TP, Shahine A, Cox LR, Besra GS, Moody DB, Rossjohn J. A structural perspective of how T cell receptors recognize the CD1 family of lipid antigen-presenting molecules. J Biol Chem 2024; 300:107511. [PMID: 38945451 PMCID: PMC11780374 DOI: 10.1016/j.jbc.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
The CD1 family of antigen-presenting molecules adopt a major histocompatibility complex class I (MHC-I) fold. Whereas MHC molecules present peptides, the CD1 family has evolved to bind self- and foreign-lipids. The CD1 family of antigen-presenting molecules comprises four members-CD1a, CD1b, CD1c, and CD1d-that differ in their architecture around the lipid-binding cleft, thereby enabling diverse lipids to be accommodated. These CD1-lipid complexes are recognized by T cell receptors (TCRs) expressed on T cells, either through dual recognition of CD1 and lipid or in a new model whereby the TCR directly contacts CD1, thereby triggering an immune response. Chemical syntheses of lipid antigens, and analogs thereof, have been crucial in understanding the underlying specificity of T cell-mediated lipid immunity. This review will focus on our current understanding of how TCRs interact with CD1-lipid complexes, highlighting how it can be fundamentally different from TCR-MHC-peptide corecognition.
Collapse
Affiliation(s)
- Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
48
|
Gunbin KV, Kopeina GS, Zhivotovsky B, Zamaraev AV. Features of the CD1 gene family in rodents and the uniqueness of the immune system of naked mole-rat. Biol Direct 2024; 19:58. [PMID: 39075541 PMCID: PMC11285450 DOI: 10.1186/s13062-024-00503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Cluster of Differentiation 1 (CD1) proteins are widely expressed throughout jawed vertebrates and present lipid antigens to specific CD1-restricted T lymphocytes. CD1 molecules play an important role in immune defense with the presence or absence of particular CD1 proteins frequently associated with the functional characteristics of the immune system. Here, we show the evolution of CD1 proteins in the Rodentia family and the diversity among its members. Based on the analysis of CD1 protein-coding regions in rodent genomes and the reconstruction of protein structures, we found that Heterocephalus glaber represents a unique member of the suborder Hystricomorpha with significant changes in protein sequences and structures of the CD1 family. Multiple lines of evidence point to the absence of CD1d and CD1e and probably a dysfunctional CD1b protein in Heterocephalus glaber. In addition, the impact of CD1d loss on the CD1d/Natural killer T (NKT) cell axis in the naked mole-rat and its potential implications for immune system function are discussed in detail.
Collapse
Affiliation(s)
- Konstantin V Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Gelina S Kopeina
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, 17177, Sweden.
| | - Alexey V Zamaraev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
49
|
Pertseva M, Follonier O, Scarcella D, Reddy ST. TCR clustering by contrastive learning on antigen specificity. Brief Bioinform 2024; 25:bbae375. [PMID: 39129361 PMCID: PMC11317525 DOI: 10.1093/bib/bbae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Effective clustering of T-cell receptor (TCR) sequences could be used to predict their antigen-specificities. TCRs with highly dissimilar sequences can bind to the same antigen, thus making their clustering into a common antigen group a central challenge. Here, we develop TouCAN, a method that relies on contrastive learning and pretrained protein language models to perform TCR sequence clustering and antigen-specificity predictions. Following training, TouCAN demonstrates the ability to cluster highly dissimilar TCRs into common antigen groups. Additionally, TouCAN demonstrates TCR clustering performance and antigen-specificity predictions comparable to other leading methods in the field.
Collapse
Affiliation(s)
- Margarita Pertseva
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oceane Follonier
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Daniele Scarcella
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| |
Collapse
|
50
|
Loh TJ, Lim JJ, Jones CM, Dao HT, Tran MT, Baker DG, La Gruta NL, Reid HH, Rossjohn J. The molecular basis underlying T cell specificity towards citrullinated epitopes presented by HLA-DR4. Nat Commun 2024; 15:6201. [PMID: 39043656 PMCID: PMC11266596 DOI: 10.1038/s41467-024-50511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
CD4+ T cells recognising citrullinated self-epitopes presented by HLA-DRB1 bearing the shared susceptibility epitope (SE) are implicated in rheumatoid arthritis (RA). However, the underlying T cell receptor (TCR) determinants of epitope specificity towards distinct citrullinated peptide antigens, including vimentin-64cit59-71 and α-enolase-15cit10-22 remain unclear. Using HLA-DR4-tetramers, we examine the T cell repertoire in HLA-DR4 transgenic mice and observe biased TRAV6 TCR gene usage across these two citrullinated epitopes which matches with TCR bias previously observed towards the fibrinogen β-74cit69-81 epitope. Moreover, shared TRAV26-1 gene usage is evident in four α-enolase-15cit10-22 reactive T cells in three human samples. Crystal structures of mouse TRAV6+ and human TRAV26-1+ TCR-HLA-DR4 complexes presenting vimentin-64cit59-71 and α-enolase-15cit10-22, respectively, show three-way interactions between the TCR, SE, citrulline, and the basis for the biased selection of TRAV genes. Position 2 of the citrullinated epitope is a key determinant underpinning TCR specificity. Accordingly, we provide a molecular basis of TCR specificity towards citrullinated epitopes.
Collapse
MESH Headings
- Humans
- Mice, Transgenic
- HLA-DR4 Antigen/immunology
- HLA-DR4 Antigen/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Mice
- Animals
- Vimentin/immunology
- Vimentin/metabolism
- Vimentin/genetics
- CD4-Positive T-Lymphocytes/immunology
- Citrullination
- Phosphopyruvate Hydratase/immunology
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/metabolism
- Epitopes, T-Lymphocyte/immunology
- Citrulline/metabolism
- Citrulline/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Epitopes/immunology
- Crystallography, X-Ray
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hien Thy Dao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mai T Tran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Daniel G Baker
- Janssen Research & Development, LLC, Horsham, Philadelphia, PA, USA
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|