1
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
2
|
Meng S, Yang G, Yu E, Li J. Bibliometric analysis and visualization of the research on the relationship between RNA methylation and immune cell infiltration in tumors. Front Immunol 2024; 15:1477828. [PMID: 39726589 PMCID: PMC11669668 DOI: 10.3389/fimmu.2024.1477828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background This research endeavors to delve into the research hotspots and trends concerning RNA methylation and tumor immune cells through the application of bibliometric analysis and visualization techniques. Methods A comprehensive search in WoSCC (2014-2023) for RNA methylation and tumor immune cell articles/reviews was conducted. Bibliometric analysis and visualization employed CiteSpace, Bibliometric, and VOSviewer tools. Results A total of 3295 articles were included in the analysis, with a continuously increasing number of publications linking RNA methylation to tumoral immune cells. Chinese authors and research institutions have demonstrated a sustained growth trend in both the number of publications and author influence. SUN YAT SEN UNIVERSITY, a Chinese institution, has published the highest number of articles in this field, while also demonstrating extensive international and inter-institutional collaborations. Meanwhile, HARVARD UNIVERSITY has also achieved impressive results. For instance, Frontiers in Immunology has published the largest number of articles in this category. Nature Communications has published articles that are most influential in this field, playing a pivotal role in disseminating research findings. The sustained vitality of this field is attributed to its solid research foundation, including the groundbreaking work published by Professor Chiappinelli KB in Cell and the widely cited paper by Professor Han DL in Nature. Analysis of research trend topics reveals that m5C, immunotherapy, and the immune microenvironment are current research focuses. Conclusion Future investigative efforts at the juncture of RNA methylation and tumor immune cells are anticipated to concentrate on domains including m5C, n7-methylguanosine, cuproptosis, prognosis assessment, immunotherapeutic strategies, and the tumor microenvironment.
Collapse
Affiliation(s)
- Sibo Meng
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanghui Yang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Enhao Yu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Jiaxin Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Fatima M, Huang F, Fu X. Emerging influence of RNA post-transcriptional modifications in the synovial homeostasis of rheumatoid arthritis. Front Immunol 2024; 15:1494873. [PMID: 39717780 PMCID: PMC11663879 DOI: 10.3389/fimmu.2024.1494873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an important autoimmune disease that affects synovial tissues, accompanied by redness, pain, and swelling as main symptoms, which will limit the quality of daily life and even cause disability. Multiple coupling effects among the various cells in the synovial micro-environment modulate the poor progression and development of diseases. Respectively, synovium is the primary target tissue of inflammatory articular pathologies; synovial hyperplasia, and excessive accumulation of immune cells lead to joint remodelling and destroyed function. In general, epigenetic modification is an effective strategy to regulate dynamic balance of synovial homeostasis. Several typical post-transcriptional changes in cellular RNA can control the post-transcriptional modification of RNA structure. It can inhibit important processes, including degradation of RNA and nuclear translocation. Recent studies have found that RNA modification regulates the homeostasis of the synovial micro-environment and forms an intricate network in the "bone-cartilage-synovium" feedback loop. Aberrant regulation of RNA methylation triggers the pathological development of RA. Collectively, this review summarises recent advanced research about RNA modification in modulating synovial homeostasis by making close interaction among resident synovial macrophages, fibroblasts, T cells, and B cells, which could display the dramatic role of RNA modifications in RA pathophysiological process and perform the promising therapeutic target for treating RA.
Collapse
Affiliation(s)
- Madiha Fatima
- Department of Neurology, The Affiliated Yong-chuan Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Neurobiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Huang
- Medical Examination Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohong Fu
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang D, Li B, Xu H, Li J, Ma C, Ge W, Lu C, Cao X. Identification of FBLL1 as a neuron-specific RNA 2'-O-methyltransferase mediating neuronal differentiation. Proc Natl Acad Sci U S A 2024; 121:e2406961121. [PMID: 39570315 PMCID: PMC11621510 DOI: 10.1073/pnas.2406961121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
2'-O-methylation is one of the most prevalent RNA modifications found in different RNA types. However, the identities of enzymes participating in the transfer of methyl groups are not well defined. To date, fibrillarin (FBL) is the only known small nucleolar ribonucleoprotein (snoRNP) 2'-O-methyltransferase. Whether other snoRNP 2'-O-methyltransferases exist and their functions in targeting RNAs to determine cell differentiation and function need to be elucidated. Here, we identify FBL-like protein 1 (FBLL1) as a 2'-O-methyltransferase and find its function in promoting neuronal differentiation. We show that FBLL1 is a key snoRNP complex enzyme that transfers methyl groups to substrate RNAs both in vitro and in vivo. Moreover, FBLL1 exhibits different 2'-O-methyltransferase site selectivity from FBL and tissue-specific distribution. FBLL1 is preferentially expressed in the brain, especially in human neuron cells, and promotes neuronal differentiation through 2'-O-methylation of GAP43 messenger RNA (mRNA). Knockdown of FBLL1, but not FBL, reduced 2'-O-methylation levels in GAP43 mRNA, decreased expression of GAP43 proteins, and eventually repressed neuronal differentiation. Our finding of neuron-specific FBLL1 adds insights into RNA modification in neurobiology and provides clues for understanding 2'-O-methylation in health and disease.
Collapse
Affiliation(s)
- Deyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Bo Li
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Henan Xu
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Jingying Li
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100005, China
| | - Chao Ma
- National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences, Beijing100005, China
| | - Wei Ge
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100005, China
| | - Congcong Lu
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Xuetao Cao
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100005, China
| |
Collapse
|
5
|
Zou Y, Guo Z, Ge XY, Qiu Y. RNA Modifications in Pathogenic Viruses: Existence, Mechanism, and Impacts. Microorganisms 2024; 12:2373. [PMID: 39597761 PMCID: PMC11596894 DOI: 10.3390/microorganisms12112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is a key posttranscriptional process playing various biological roles, and one which has been reported to exist extensively in cellular RNAs. Interestingly, recent studies have shown that viral RNAs also contain a variety of RNA modifications, which are regulated dynamically by host modification machinery and play critical roles in different stages of the viral life cycle. In this review, we summarize the reports of four typical modifications reported on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), and N1-methyladenosine (m1A), describe the molecular mechanisms of these modification processes, and illustrate their impacts on viral replication, pathogenicity, and innate immune responses. Notably, we find that RNA modifications in different viruses share some common features and mechanisms in their generation, regulation, and function, highlighting the potential for viral RNA modifications and the related host machinery to serve as the targets or bases for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
| | | | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| |
Collapse
|
6
|
Zhang H, Luo X, Yang W, Wu Z, Zhao Z, Pei X, Zhang X, Chen C, Lei JH, Shi Q, Zhao Q, Chen Y, Wu W, Zeng Z, Ju HQ, Qiu M, Liu J, Shen B, Chen M, Chen J, Deng CX, Xu RH, Hou J. YTHDF2 upregulation and subcellular localization dictate CD8 T cell polyfunctionality in anti-tumor immunity. Nat Commun 2024; 15:9559. [PMID: 39500904 PMCID: PMC11538425 DOI: 10.1038/s41467-024-53997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
RNA methylation is an important regulatory process to determine immune cell function but how it affects the anti-tumor activity of CD8 T cells is not fully understood. Here we show that the N6-methyladenosine (m6A) RNA reader YTHDF2 is highly expressed in early effector or effector-like CD8 T cells. We find that YTHDF2 facilitates nascent RNA synthesis, and m6A recognition is fundamental for this distinctively nuclear function of the protein, which also reinforces its autoregulation at the RNA level. Loss of YTHDF2 in T cells exacerbates tumor progression and confers unresponsiveness to PD-1 blockade in mice and in humans. In addition to initiating RNA decay that is necessary for mitochondrial fitness, YTHDF2 orchestrates chromatin changes that promote T cell polyfunctionality. YTHDF2 interacts with IKZF1/3, which is important for sustained transcription of their target genes. Accordingly, immunotherapy-induced efficacy could be largely restored in YTHDF2-deficient T cells through combinational use of IKZF1/3 inhibitor lenalidomide in a mouse model. Thus, YTHDF2 coordinates epi-transcriptional and transcriptional networks to potentiate T cell immunity, which could inform therapeutic intervention.
Collapse
Affiliation(s)
- Haiyan Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Xiaojing Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Translational Research Center, Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Zhiying Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhicong Zhao
- Department of Systems Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Pei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Xue Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Chonghao Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Qingxia Shi
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Wenwei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Miaozhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Jun Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China
- Translational Research Center, Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiajie Hou
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau, SAR, China.
- Translational Research Center, Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Li P, Huang D. NSUN2-mediated RNA methylation: Molecular mechanisms and clinical relevance in cancer. Cell Signal 2024; 123:111375. [PMID: 39218271 DOI: 10.1016/j.cellsig.2024.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating the ongoing investigation of molecular targets for improved diagnosis, prognosis, and therapy. Among these targets, RNA modifications, particularly N5-methylcytosine (m5C) in RNA, have emerged as critical regulators of gene expression and cellular functions. NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a key enzyme in m5C modification, significantly influencing various biological processes and tumorigenesis. NSUN2 methylates multiple RNA species, including transfer RNAs (tRNAs), messenger RNAs (mRNAs), and non-coding RNAs, impacting RNA stability, translation efficiency, and cellular stress responses. These modifications, in turn, affect cell proliferation, differentiation, and survival. In cancer, NSUN2 is frequently upregulated, associated with aggressive tumor phenotypes, poor prognosis, and therapy resistance. Its role in oncogenic signaling pathways further underscores its importance in cancer biology. This review offers a comprehensive overview of NSUN2's role in cancer, focusing on its involvement in RNA methylation and its implications for tumor initiation and progression. Additionally, we explore the potential of NSUN2 as a biomarker for cancer diagnosis and prognosis, and its promise as a therapeutic target.
Collapse
Affiliation(s)
- Penghui Li
- Department of gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
8
|
Mazurais D, Simon V, Auffret P, Cormier A, Dauvé A, Madec L, Tanguy-Guillo B, Gayet N, Fleury E, Le Luyer J. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106775. [PMID: 39369654 DOI: 10.1016/j.marenvres.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
In this study, we examined the effect of near future ocean acidification (OA) on the transcriptome of a sensory organ in contact with surrounding water, the tongue in adult European sea bass (Dicentrarchus labrax) by mean of RNAseq experiment. We acquired a total of 14.1 Mb quality-trimmed reads covering 18,703 expressed genes from the tongue of fish reared from two generations at actual (pH 8.0 condition) and predicted near-future seawater pH (pH 7.6 condition). Gene ontologies analyses of expressed genes support the evidence that the tongue exhibits biological processes related to the sensory system, tooth mineralization and immune defences among others. Our data revealed only 295 OA-induced regulated genes with 114 up- and 181 down-regulated by OA. Functions over-represented encompass processes involved in organic substance metabolic process, RNA metabolism and especially RNA methylation which, combined with the regulation of some hsp genes expression, suggest a molecular response to stress which might contribute to lingual cell homeostasis under OA. The immune system process is also found enriched within OA-induced regulated genes. With the exception of one fatty acid receptor, known taste perception effectors were not impacted by OA in the tongue. However, a complementary droplet digital PCR approach dedicated to genes involved in gustatory signal transduction revealed the down regulation by OA of pyrimidinergic receptor (p2ry4) transcript expression in the gills of the fish. Combined with scanning electron microscopy analysis, our RNAseq data revealed that OA has no impact on processes related to teeth development and mineralization. Altogether, our data reveal that multigenerational exposure to OA has not a substantially effect on the tongue transcriptome but emphasis should be placed on investigating the potential physiological consequences related to the regulation of genes related to cell stress, immune system and fatty acid sensitivity to conclude on species resilience in face of OA.
Collapse
Affiliation(s)
- David Mazurais
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France.
| | - Victor Simon
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | - Pauline Auffret
- Ifremer, IRSI, SEBIMER Service Bioinformatique de l'Ifremer, F-29280, Plouzané, France
| | - Alexandre Cormier
- Ifremer, IRSI, SEBIMER Service Bioinformatique de l'Ifremer, F-29280, Plouzané, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Lauriane Madec
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | | | - Nicolas Gayet
- IFREMER, UBO, BEEP, Biology and Ecology of Deep-Sea Ecosystems, 1625 route de Sainte-Anne, Plouzane, 29280, France
| | - Elodie Fleury
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | - Jérémy Le Luyer
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| |
Collapse
|
9
|
Huang Y, Wang S, Hu D, Zhang L, Shi S. ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m 6A modification of VDAC3. Sci Rep 2024; 14:23461. [PMID: 39379688 PMCID: PMC11461877 DOI: 10.1038/s41598-024-75033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Osteoporosis, a common bone disease in older individuals, involves the progression influenced by N6-methyladenosine (m6A) modification. This study aimed to elucidate the effects of VDAC3 m6A modification on human bone mesenchymal stromal cell (BMSC) senescence and osteogenic differentiation. BMSCs were treated with etoposide to induce senescence. Senescence was assessed by β-galactosidase staining and quantitative real-time PCR (qPCR), and osteogenic differentiation was evaluated using Western blot, alkaline phosphatase, and alizarin red S staining. VDAC3 and ALKBH5 expression were quantified by qPCR, and their interaction was assessed by RNA immunoprecipitation (RIP) and luciferase reporter assay. m6A methylation was analyzed using the Me-RIP assay. VDAC3 expression was significantly decreased in etoposide-treated BMSCs (1.00 ± 0.13 vs. 0.26 ± 0.06). VDAC3 overexpression reduced etoposide-induced senescence and promoted osteogenic differentiation. ALKBH5 overexpression inhibited VDAC3 m6A modification (1.00 ± 0.095 vs. 0.233 ± 0.177) and its stability. ALKBH5 knockdown decreased etoposide-induced senescence and promoted osteogenic differentiation, effects that were reversed by VDAC3 knockdown. YTHDF1 was identified as the m6A methylation reader, and its overexpression inhibited VDAC3 stability. We demonstrated that ALKBH5 inhibited osteogenic differentiation of etoposide-induced senescent cells through the inhibition of VDAC3 m6A modification, and YTHDF1 acted as the m6A methylation reader. These findings provide a novel theoretical basis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Dong Hu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
10
|
Ding H, Liu N, Wang Y, Adam SA, Jin J, Feng W, Sun J. Implications of RNA pseudouridylation for cancer biology and therapeutics: a narrative review. J Transl Med 2024; 22:906. [PMID: 39375731 PMCID: PMC11457414 DOI: 10.1186/s12967-024-05687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pseudouridine (Ψ), a C5-glycoside isomer of uridine, stands as one of the most prevalent RNA modifications in all RNA types. Distinguishing from the C-N bond linking uridine to ribose, the link between Ψ and ribose is a C-C bond, endowing Ψ modified RNA distinct properties and functions in various biological processes. The conversion of uridine to Ψ is governed by pseudouridine synthases (PUSs). RNA pseudouridylation is implicated in cancer biology and therapeutics. OBJECTIVES In this review, we will summarize the methods for detecting Ψ, the process of Ψ generation, the impact of Ψ modification on RNA metabolism and gene expression, the roles of dysregulated Ψ and pseudouridine synthases in cancers, and the underlying mechanism. METHODS We conducted a comprehensive search of PubMed from its inception through February 2024. The search terms included "pseudouridine"; "pseudouridine synthase"; "PUS"; "dyskerin"; "cancer"; "tumor"; "carcinoma"; "malignancy"; "tumorigenesis"; "biomarker"; "prognosis" and "therapy". We included studies published in peer-reviewed journals that focused on Ψ detection, specific mechanisms involving Ψ and PUSs, and prognosis in cancer patients with high Ψ expression. We excluded studies lacking sufficient methodological details or appropriate controls. RESULTS Ψ has been recognized as a significant biomarker in cancer diagnosis and prognosis. Abnormal Ψ modifications mediated by various PUSs result in dysregulated RNA metabolism and impaired RNA function, promoting the development of various cancers. Overexpression of PUSs is common in cancer cells and predicts poor prognosis. PUSs inhibition arrests cell proliferation and enhances apoptosis in cancer cells, suggesting PUS-targeting cancer therapy may be a potential strategy in cancer treatment. DISCUSSION High Ψ levels in serum, urine, and saliva may suggest cancer, but do not specify the type, requiring additional lab markers and imaging for accurate diagnosis. Standardized detection methods are also crucial for reliable results. PUSs are linked to cancer, but more researches are needed to understand their mechanisms in different cancers. Anticancer treatments targeting PUSs are still under developed.
Collapse
Affiliation(s)
- Hanyi Ding
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Na Liu
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Deng Y, Zhou J, Li HB. The physiological and pathological roles of RNA modifications in T cells. Cell Chem Biol 2024; 31:1578-1592. [PMID: 38986618 DOI: 10.1016/j.chembiol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Chongqing International Institute for Immunology, Chongqing 401320, China.
| |
Collapse
|
12
|
Zhang Y, Xu W, Peng C, Ren S, Mustafe Hidig S, Zhang C. Exploring the role of m7G modification in Cancer: Mechanisms, regulatory proteins, and biomarker potential. Cell Signal 2024; 121:111288. [PMID: 38971569 DOI: 10.1016/j.cellsig.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sakarie Mustafe Hidig
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Yang YL, Li XW, Chen HB, Tang QD, Li YH, Xu JY, Xie JJ. Single-cell transcriptomics reveals writers of RNA modification-mediated immune microenvironment and cardiac resident Macro-MYL2 macrophages in heart failure. BMC Cardiovasc Disord 2024; 24:432. [PMID: 39152369 PMCID: PMC11328403 DOI: 10.1186/s12872-024-04080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Heart failure (HF), which is caused by cardiac overload and injury, is linked to significant mortality. Writers of RNA modification (WRMs) play a crucial role in the regulation of epigenetic processes involved in immune response and cardiovascular disease. However, the potential roles of these writers in the immunological milieu of HF remain unknown. METHODS We comprehensively characterized the expressions of 28 WRMs using datasets GSE145154 and GSE141910 to map the cardiac immunological microenvironment in HF patients. Based on the expression of WRMs, the immunological cells in the datasets were scored. RESULTS Single-cell transcriptomics analysis (GSE145154) revealed immunological dysregulation in HF as well as differential expression of WRMs in immunological cells from HF and non-HF (NHF) samples. WRM-scored immunological cells were positively correlated with the immunological response, and the high WRM score group exhibited elevated immunological cell infiltration. WRMs are involved in the differentiation of T cells and myeloid cells. WRM scores of T cell and myeloid cell subtypes were significantly reduced in the HF group compared to the NHF group. We identified a myogenesis-related resident macrophage population in the heart, Macro-MYL2, that was characterized by an increased expression of cardiomyocyte structural genes (MYL2, TNNI3, TNNC1, TCAP, and TNNT2) and was regulated by TRMT10C. Based on the WRM expression pattern, the transcriptomics data (GSE141910) identified two distinct clusters of HF samples, each with distinct functional enrichments and immunological characteristics. CONCLUSION Our study demonstrated a significant relationship between the WRMs and immunological microenvironment in HF, as well as a novel resident macrophage population, Macro-MYL2, characterized by myogenesis. These results provide a novel perspective on the underlying mechanisms and therapeutic targets for HF. Further experiments are required to validate the regulation of WRMs and Macro-MYL2 macrophage subtype in the cardiac immunological milieu.
Collapse
Affiliation(s)
- Yao-Lin Yang
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Xiao-Wei Li
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Hai-Bin Chen
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Qi-Dong Tang
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Yu-Hui Li
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Ji-Ying Xu
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Jia-Jia Xie
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China.
| |
Collapse
|
14
|
Zou Z, He C. The YTHDF proteins display distinct cellular functions on m 6A-modified RNA. Trends Biochem Sci 2024; 49:611-621. [PMID: 38677920 PMCID: PMC11227416 DOI: 10.1016/j.tibs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.
Collapse
Affiliation(s)
- Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
16
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Meng Z, Li X, Lu S, Hua Y, Yin B, Qian B, Li Z, Zhou Y, Sergeeva I, Fu Y, Ma Y. A comprehensive analysis of m6A/m7G/m5C/m1A-related gene expression and immune infiltration in liver ischemia-reperfusion injury by integrating bioinformatics and machine learning algorithms. Eur J Med Res 2024; 29:326. [PMID: 38867322 PMCID: PMC11170855 DOI: 10.1186/s40001-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and develop effective therapeutic strategies that target immune response. Methylation modifications in mRNA play various crucial roles in different diseases. This study aimed to identify potential methylation-related markers in patients with LIRI and evaluate the corresponding immune infiltration. METHODS Two Gene Expression Omnibus datasets containing human liver transplantation data (GSE12720 and GSE151648) were downloaded for integrated analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to investigate the functional enrichment of differentially expressed genes (DEGs). Differentially expressed methylation-related genes (DEMRGs) were identified by overlapping DEG sets and 65 genes related to N6-methyladenosine (m6A), 7-methylguanine (m7G), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). To evaluate the relationship between DEMRGs, a protein-protein interaction (PPI) network was utilized. The core DEMRGs were screened using three machine learning algorithms: least absolute shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination. After verifying the diagnostic efficacy using the receiver operating characteristic curve, we validated the expression of the core DEMRGs in clinical samples and performed relative cell biology experiments. Additionally, the immune status of LIRI was comprehensively assessed using the single sample gene set enrichment analysis algorithm. The upstream microRNA and transcription factors of the core DEMRGs were also predicted. RESULTS In total, 2165 upregulated and 3191 downregulated DEGs were identified, mainly enriched in LIRI-related pathways. The intersection of DEGs and methylation-related genes yielded 28 DEMRGs, showing high interaction in the PPI network. Additionally, the core DEMRGs YTHDC1, METTL3, WTAP, and NUDT3 demonstrated satisfactory diagnostic efficacy and significant differential expression and corresponding function based on cell biology experiments. Furthermore, immune infiltration analyses indicated that several immune cells correlated with all core DEMRGs in the LIRI process to varying extents. CONCLUSIONS We identified core DEMRGs (YTHDC1, METTL3, WTAP, and NUDT3) associated with immune infiltration in LIRI through bioinformatics and validated them experimentally. This study may provide potential methylation-related gene targets for LIRI immunotherapy.
Collapse
Affiliation(s)
- Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Irina Sergeeva
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Min YH, Shao WX, Hu QS, Xie NB, Zhang S, Feng YQ, Xing XW, Yuan BF. Simultaneous Detection of Adenosine-to-Inosine Editing and N6-Methyladenosine at Identical RNA Sites through Deamination-Assisted Reverse Transcription Stalling. Anal Chem 2024; 96:8730-8739. [PMID: 38743814 DOI: 10.1021/acs.analchem.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.
Collapse
Affiliation(s)
- Yi-Hao Min
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wen-Xuan Shao
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiu-Shuang Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xi-Wen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
19
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
20
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
21
|
Krishnamurthy B, Thomas HE. METTL3 restrains autoimmunity in β-cells. Nat Cell Biol 2024; 26:321-322. [PMID: 38409326 DOI: 10.1038/s41556-024-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Melbourne, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Melbourne, Victoria, Australia.
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Añazco-Guenkova AM, Miguel-López B, Monteagudo-García Ó, García-Vílchez R, Blanco S. The impact of tRNA modifications on translation in cancer: identifying novel therapeutic avenues. NAR Cancer 2024; 6:zcae012. [PMID: 38476632 PMCID: PMC10928989 DOI: 10.1093/narcan/zcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Recent advancements have illuminated the critical role of RNA modifications in post-transcriptional regulation, shaping the landscape of gene expression. This review explores how tRNA modifications emerge as critical players, fine-tuning functionalities that not only maintain the fidelity of protein synthesis but also dictate gene expression and translation profiles. Highlighting their dysregulation as a common denominator in various cancers, we systematically investigate the intersection of both cytosolic and mitochondrial tRNA modifications with cancer biology. These modifications impact key processes such as cell proliferation, tumorigenesis, migration, metastasis, bioenergetics and the modulation of the tumor immune microenvironment. The recurrence of altered tRNA modification patterns across different cancer types underscores their significance in cancer development, proposing them as potential biomarkers and as actionable targets to disrupt tumorigenic processes, offering new avenues for precision medicine in the battle against cancer.
Collapse
Affiliation(s)
- Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
23
|
Shen J, Sun Y, Zhuang Q, Xue D, He X. NAT10 promotes renal ischemia-reperfusion injury via activating NCOA4-mediated ferroptosis. Heliyon 2024; 10:e24573. [PMID: 38312597 PMCID: PMC10835180 DOI: 10.1016/j.heliyon.2024.e24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI) and is associated with substantial morbidity and mortality rates. In this study, we aimed to investigate the role of NAT10 and its ac4C RNA modification in IRI-induced renal injury. Our findings revealed that both the expression level of NAT10 and the RNA ac4C level in the kidneys were elevated in the IRI group compared to the sham group. Functionally, we observed that inhibition of NAT10 activity with Remodelin or the specific knockout of NAT10 in the kidney led to a significant attenuation of IRI-induced renal injury. Furthermore, in vitro experiments demonstrated that NAT10 inhibition and specific knockout of NAT10 in the kidney markedly suppressed global ac4C RNA modification, providing protection against hypoxia/reoxygenation-induced tubular epithelial cell injury and ferroptosis. Mechanistically, our study uncovered that NAT10 promoted ac4C RNA modification of NCOA4 mRNA, thereby enhancing its stability and contributing to IRI-induced ferroptosis in tubular epithelial cells (TECs). These findings underscore the potential of NAT10 and ac4C RNA modification as promising therapeutic targets for the treatment of AKI. Overall, our study sheds light on the critical involvement of NAT10 and ac4C RNA modification in the pathogenesis of IRI-induced renal injury, offering valuable insights for the development of novel AKI treatment strategies.
Collapse
Affiliation(s)
- Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Yangyang Sun
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
24
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
25
|
Ramsoomair CK, Ceccarelli M, Heiss JD, Shah AH. The epitranscriptome of high-grade gliomas: a promising therapeutic target with implications from the tumor microenvironment to endogenous retroviruses. J Transl Med 2023; 21:893. [PMID: 38071304 PMCID: PMC10709919 DOI: 10.1186/s12967-023-04725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) comprises 45.6% of all primary malignant brain cancers and is one of the most common and aggressive intracranial tumors in adults. Intratumoral heterogeneity with a wide range of proteomic, genetic, and epigenetic dysregulation contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. To date, numerous clinical trials have been developed to target the proteome and epigenome of high-grade gliomas with promising results. However, studying RNA modifications, or RNA epitranscriptomics, is a new frontier within neuro-oncology. RNA epitranscriptomics was discovered in the 1970s, but in the last decade, the extent of modification of mRNA and various non-coding RNAs has emerged and been implicated in transposable element activation and many other oncogenic processes within the tumor microenvironment. This review provides background information and discusses the therapeutic potential of agents modulating epitranscriptomics in high-grade gliomas. A particular emphasis will be placed on how combination therapies that include immune agents targeting hERV-mediated viral mimicry could improve the treatment of GBM.
Collapse
Affiliation(s)
- Christian K Ramsoomair
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
- Medical Scientist Training Program, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1550 N.W. 10Th Avenue, Miami, FL, 33136, USA
| | - John D Heiss
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish H Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|