1
|
Du J, Wang Z, Xing Y, Gao X, Lu Z, Li D, Tian J. Long-Read Sequencing Revealing the Effectiveness of Captive Breeding Strategy for Improving the Gut Microbiota of Spotted Seal (Phoca largha). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:9. [PMID: 39589560 DOI: 10.1007/s10126-024-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The spotted seal (Phoca largha) is the sole pinniped species that can reproduce in China and has been classified as the First-Grade State Protection animal. The conventional method for the protection and maintenance of the spotted seal population is the captive maintenance of the species in artificially controlled environments. Nevertheless, the efficacy of the captive strategy remains uncertain, with the potential to impact the health of spotted seals through alterations in gut microbiota. In this study, PacBio sequencing based on the full-length of the bacterial 16S rRNA gene was applied to faeces from captive and wild spotted seals, thereby providing a first reference for the gut microbiota profile of spotted seals at the species scale. The gut microbiota of captive spotted seals was found to be more diverse than that of the wild population. The gut microbiota of spotted seals exhibited notable variation due to captive breeding, with an enrichment of Firmicutes and a reduction in Proteobacteria. The results of the co-occurrence network analysis indicated that the gut microbiota of captive spotted seals exhibited a greater degree of complexity and stability in comparison to that observed in their wild counterparts. The analysis of community assembly mechanisms revealed an increased determinism for the gut microbiota of captive individuals, with a concomitant decrease in the contribution of drift. Furthermore, the results of the predicted functions indicated a reduction in stress responses and an enhanced ability to metabolise sugars in the gut microbiota of captive spotted seals. In conclusion, the results of this study provide evidence that the current captive breeding strategy is an effective approach for improving the gut microbiota of spotted seals. Furthermore, this study demonstrates the potential of monitoring the gut microbiota to assess the health of marine mammals and inform conservation strategies for endangered species.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
2
|
Sequeira AMM, Techera EJE. Lessons from a Rubik's Cube to solve the biodiversity crisis. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14416. [PMID: 39558783 DOI: 10.1111/cobi.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
Global biodiversity is facing unprecedented pressures, calling into question the effectiveness of existing governance systems aimed at halting extinctions. Renewed hope arose with the recent Conference of the Parties (COP) to the Convention on Biological Diversity (COP15 December 2022) and the Convention on International Trade in Endangered Species (COP19 November 2022). Yet, barriers remain that hamper biodiversity conservation. Identifying and overcoming these barriers is crucial for success. We considered previous lessons learned to show that current barriers to conservation are centered on a multidimensional array of mismatches among legal (law), ecological (science), and sociocultural (human) dimensions across the short, medium, and long term. Focusing on highly migratory marine megafauna (whales, sharks, and turtles), we used the Rubik's cube as a metaphor to conceptualize the multidimensional mismatches and devised a pathway for solutions that is highly dependent on strict alignment across all dimensions. We recommend the continuous cycling across all dimension interfaces to align the use (and update) of regulations and processes in law, improve data and experimentation methods in science, and develop education and engagement actions in the human dimension. This timely alignment across all dimensions is key to achieving biodiversity targets and avoiding further extinctions.
Collapse
Affiliation(s)
- Ana M M Sequeira
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- UWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Erika J E Techera
- UWA Law School and UWA Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Martín V, Tejedor M, Carrillo M, Pérez-Gil M, Arbelo M, Servidio A, Pérez-Gil E, Varo-Cruz N, Fusar Poli F, Aliart S, Tejera G, Lorente M, Fernández A. Strandings and at sea observations reveal the canary archipelago as an important habitat for pygmy and dwarf sperm whale. ADVANCES IN MARINE BIOLOGY 2024; 99:21-64. [PMID: 39577893 DOI: 10.1016/bs.amb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Cetaceans are a critical component of marine ecosystems, acting as top predators in mesopelagic trophic webs. In the Macaronesian biogeographical region, cetacean populations face threats from various anthropogenic activities. Evaluating cryptic oceanic species like kogiids whales is challenging due to insufficient biological and ecological data, making conservation assessments and management efforts harder to achieve. Kogia breviceps and K. sima comprising the family Kogiidae, are morphologically similar, widely distributed, and elusive, with most information originating from stranded specimens and few at sea observations. This study examines data from Kogia species stranded in the Canary Islands between 1977 and 2024 and analyzes sighting data obtained between 1999 and 2024. Between 1977 and May 2024, there were 111 stranding events involving 114 kogiid individuals along the Canary Islands' coasts: 86 events (88 individuals) were pygmy sperm whales, 14 events (15 individuals) were dwarf sperm whales, and 11 events with 11 individuals, were unidentified Kogia species. Additionally, 36 kogiid sightings were recorded, of which 34 originated from dedicated surveys and 2 from opportunistic sightings. Of these sightings, 14 (39%) were K. breviceps, 9 (25%) were K. sima, and 13 (36%) were unidentified Kogia. Twenty-nine sightings (80.5%) of kogiids were recorded in the waters off the eastern coast of the islands of Lanzarote and Fuerteventura. The data indicate that the waters around the Canary Islands are an important habitat for Kogia whales. The findings establish a baseline for future research and underscore the necessity of accurately assessing conservation pressures on pygmy and dwarf sperm whales in the region.
Collapse
Affiliation(s)
- Vidal Martín
- Society for the Study of Cetacean in the Canary Archipelago (SECAC), Canary Islands Cetacean Research Centre, Canary Islands Stranding Network, Lanzarote, Canary Islands, Spain.
| | - Marisa Tejedor
- Canary Islands Cetaceans Stranding Network, Playa Blanca, Lanzarote, Canary Islands, Spain
| | | | - Mónica Pérez-Gil
- Cetacean and Marine Research Institute of the Canary Islands (CEAMAR), Playa Honda, Lanzarote, Canary Islands, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonella Servidio
- Cetacean and Marine Research Institute of the Canary Islands (CEAMAR), Playa Honda, Lanzarote, Canary Islands, Spain
| | - Enrique Pérez-Gil
- Cetacean and Marine Research Institute of the Canary Islands (CEAMAR), Playa Honda, Lanzarote, Canary Islands, Spain
| | - Nuria Varo-Cruz
- Cetacean and Marine Research Institute of the Canary Islands (CEAMAR), Playa Honda, Lanzarote, Canary Islands, Spain
| | - Francesca Fusar Poli
- Society for the Study of Cetacean in the Canary Archipelago (SECAC), Canary Islands Cetacean Research Centre, Canary Islands Stranding Network, Lanzarote, Canary Islands, Spain
| | - Sol Aliart
- Society for the Study of Cetacean in the Canary Archipelago (SECAC), Canary Islands Cetacean Research Centre, Canary Islands Stranding Network, Lanzarote, Canary Islands, Spain
| | - Gustavo Tejera
- Canary Islands´ Ornithology and Natural History Group (GOHNIC)
| | - Marta Lorente
- Society for the Study of Cetacean in the Canary Archipelago (SECAC), Canary Islands Cetacean Research Centre, Canary Islands Stranding Network, Lanzarote, Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
4
|
Klöcker CA, Albert OT, Ferter K, Bjelland O, Lennox RJ, Albretsen J, Pohl L, Dahlmo LS, Queiroz N, Junge C. Seasonal habitat use and diel vertical migration in female spurdog in Nordic waters. MOVEMENT ECOLOGY 2024; 12:62. [PMID: 39242541 PMCID: PMC11380420 DOI: 10.1186/s40462-024-00498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Studying habitat use and vertical movement patterns of individual fish over continuous time and space is innately challenging and has therefore largely remained elusive for a wide range of species. Amongst sharks, this applies particularly to smaller-bodied and less wide-ranging species such as the spurdog (Squalus acanthias Linnaeus, 1758), which, despite its importance for fisheries, has received limited attention in biologging and biotelemetry studies, particularly in the North-East Atlantic. METHODS To investigate seasonal variations in fine-scale niche use and vertical movement patterns in female spurdog, we used archival data from 19 pregnant individuals that were satellite-tagged for up to 365 days in Norwegian fjords. We estimated the realised niche space with kernel densities and performed continuous wavelet analyses to identify dominant periods in vertical movement. Triaxial acceleration data were used to identify burst events and infer activity patterns. RESULTS Pregnant females frequently utilised shallow depths down to 300 m at temperatures between 8 and 14 °C. Oscillatory vertical moments revealed persistent diel vertical migration (DVM) patterns, with descents at dawn and ascents at dusk. This strict normal DVM behaviour dominated in winter and spring and was associated with higher levels of activity bursts, while in summer and autumn sharks predominantly selected warm waters above the thermocline with only sporadic dive and bursts events. CONCLUSIONS The prevalence of normal DVM behaviour in winter months linked with elevated likely foraging-related activity bursts suggests this movement behaviour to be foraging-driven. With lower number of fast starts exhibited in warm waters during the summer and autumn months, habitat use in this season might be rather driven by behavioural thermoregulation, yet other factors may also play a role. Individual and cohort-related variations indicate a complex interplay of movement behaviour and habitat use with the abiotic and biotic environment. Together with ongoing work investigating fine-scale horizontal movement as well as sex- and age-specific differences, this study provides vital information to direct the spatio-temporal distribution of a newly reopened fishery and contributes to an elevated understanding of the movement ecology of spurdog in the North-East Atlantic and beyond.
Collapse
Affiliation(s)
- C Antonia Klöcker
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Ole Thomas Albert
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Keno Ferter
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Otte Bjelland
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Robert J Lennox
- Ocean Tracking Network, Dalhousie University, 1355 Oxford St, Halifax, NS, Canada
| | - Jon Albretsen
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Lotte Pohl
- VLIZ, Flanders Marine Institute, Marine Observation Centre, Jacobsenstraat 1, 8400, Ostend, Belgium
| | - Lotte Svengård Dahlmo
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygardsgaten 112, 5008, Bergen, Norway
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Claudia Junge
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway.
| |
Collapse
|
5
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
6
|
Waller MJ, Humphries NE, Womersley FC, Loveridge A, Jeffries AL, Watanabe Y, Payne N, Semmens J, Queiroz N, Southall EJ, Sims DW. The vulnerability of sharks, skates, and rays to ocean deoxygenation: Physiological mechanisms, behavioral responses, and ecological impacts. JOURNAL OF FISH BIOLOGY 2024; 105:482-511. [PMID: 38852616 DOI: 10.1111/jfb.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.
Collapse
Affiliation(s)
- Matt J Waller
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | | | | | - Amy L Jeffries
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Yuuki Watanabe
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan
| | - Nicholas Payne
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jayson Semmens
- Institue for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Nuno Queiroz
- CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | | | - David W Sims
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Freshwater C, Anderson SC, Huff DD, Smith JM, Jackson D, Hendriks B, Hinch SG, Johnston S, Trites AW, King J. Chinook salmon depth distributions on the continental shelf are shaped by interactions between location, season, and individual condition. MOVEMENT ECOLOGY 2024; 12:21. [PMID: 38491373 PMCID: PMC11337652 DOI: 10.1186/s40462-024-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of habitat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour. METHODS We collected thousands of observations of depth from > 300 acoustically tagged adult Chinook salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables while accounting for differences in individual condition and maturation stage. RESULTS The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration. CONCLUSIONS Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide management decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat selection.
Collapse
Affiliation(s)
- Cameron Freshwater
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada.
| | - Sean C Anderson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - David D Huff
- Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA, USA
| | - Joseph M Smith
- Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA, USA
| | | | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Stephen Johnston
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew W Trites
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Jackie King
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Haddock SHD, Choy CA. Life in the Midwater: The Ecology of Deep Pelagic Animals. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:383-416. [PMID: 38231738 DOI: 10.1146/annurev-marine-031623-095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive-owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth-with whatever tools are available-we can fill the knowledge gaps and better link ecology to the environment throughout the water column.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA;
| | - C Anela Choy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Logan RK, Vaudo JJ, Wetherbee BM, Shivji MS. Seasonally mediated niche partitioning in a vertically compressed pelagic predator guild. Proc Biol Sci 2023; 290:20232291. [PMID: 38052444 PMCID: PMC10697796 DOI: 10.1098/rspb.2023.2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Niche partitioning among closely related, sympatric species is a fundamental concept in ecology, and its mechanisms are of broad interest for understanding ecosystem functioning and predicting the impacts of human-driven environmental change. However, identifying mechanisms by which top marine predators partition available resources has been especially challenging given the difficulty of quantifying resource use of large pelagic animals. In the eastern tropical Pacific (ETP), three large, highly mobile and ecologically similar pelagic predators (blue marlin (Makaira nigricans), black marlin (Istiompax indica) and sailfish (Istiophorus platypterus)) coexist in a vertically compressed habitat. To evaluate each species' ecological niche, we leveraged a decade of recreational fisheries data, multi-year satellite tracking with high-resolution dive data, and stable isotope analysis. Fishery interaction and telemetry-based three-dimensional seasonal utilization distributions suggested high spatial and temporal overlap among species; however, seasonal and diel variability in diving behaviour produced spatial partitioning, leading to low trophic overlap among species. Expanding oxygen minimum zones will reduce the available vertical habitat within predator guilds, likely leading to increases in interspecific competition. Thus, understanding the mechanisms of habitat partitioning among predators in the vertically compressed ETP can provide insight into how predators in other ocean regions may respond to vertically limited habitats.
Collapse
Affiliation(s)
- Ryan K. Logan
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Jeremy J. Vaudo
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Bradley M. Wetherbee
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mahmood S. Shivji
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| |
Collapse
|
10
|
Curnick DJ, Deaville R, Bortoluzzi JR, Cameron L, Carlsson JEL, Carlsson J, Dolton HR, Gordon CA, Hosegood P, Nilsson A, Perkins MW, Purves KJ, Spiro S, Vecchiato M, Williams RS, Payne NL. Northerly range expansion and first confirmed records of the smalltooth sand tiger shark, Odontaspis ferox, in the United Kingdom and Ireland. JOURNAL OF FISH BIOLOGY 2023; 103:1549-1555. [PMID: 37602958 DOI: 10.1111/jfb.15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Three Odontaspis ferox (confirmed by mtDNA barcoding) were found in the English Channel and Celtic Sea in 2023 at Lepe, UK (50.7846, -1.3508), Kilmore Quay, Ireland (52.1714, -6.5937), and Lyme Bay, UK (50.6448, -2.9302). These are the first records of O. ferox in either country, and extend the species' range by over three degrees of latitude, to >52° N. They were ~275 (female), 433 (female), and 293 cm (male) total length, respectively. These continue a series of new records, possibly indicative of a climate change-induced shift in the species' range.
Collapse
Affiliation(s)
- David J Curnick
- Institute of Zoology, Zoological Society of London, London, UK
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Jenny R Bortoluzzi
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Luke Cameron
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jeanette E L Carlsson
- Area 52 Research Group, School of Biology & Environmental Science/Earth Institute, University College Dublin, Dublin, Ireland
| | - Jens Carlsson
- Area 52 Research Group, School of Biology & Environmental Science/Earth Institute, University College Dublin, Dublin, Ireland
| | - Haley R Dolton
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Cat A Gordon
- The Shark Trust, 4 Creykes Court, The Millfields, Plymouth, UK
| | - Phil Hosegood
- School of Biological & Marine Science, University of Plymouth, Drake Circus, Plymouth, UK
| | - Alicia Nilsson
- Area 52 Research Group, School of Biology & Environmental Science/Earth Institute, University College Dublin, Dublin, Ireland
| | | | - Kevin J Purves
- Veterinary Sciences Centre, University College Dublin, Dublin, Ireland
| | - Simon Spiro
- Institute of Zoology, Zoological Society of London, London, UK
| | - Marco Vecchiato
- Institute of Zoology, Zoological Society of London, London, UK
- Royal Veterinary College, University of London, London, UK
| | | | - Nicholas L Payne
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Braun CD, Della Penna A, Arostegui MC, Afonso P, Berumen ML, Block BA, Brown CA, Fontes J, Furtado M, Gallagher AJ, Gaube P, Golet WJ, Kneebone J, Macena BCL, Mucientes G, Orbesen ES, Queiroz N, Shea BD, Schratwieser J, Sims DW, Skomal GB, Snodgrass D, Thorrold SR. Linking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean. Proc Natl Acad Sci U S A 2023; 120:e2306357120. [PMID: 38150462 PMCID: PMC10666118 DOI: 10.1073/pnas.2306357120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023] Open
Abstract
Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.
Collapse
Affiliation(s)
- Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Alice Della Penna
- Institute of Marine Science, University of Auckland, Auckland1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland1010, New Zealand
| | - Martin C. Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Pedro Afonso
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Kingdom of Saudi Arabia
| | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Craig A. Brown
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Jorge Fontes
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Miguel Furtado
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | | | - Peter Gaube
- Applied Physics Laboratory–University of Washington, Seattle, WA98105
| | - Walter J. Golet
- The School of Marine Sciences, The University of Maine, Orono, ME04469
- The Gulf of Maine Research Institute, Portland, ME04101
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA02110
| | - Bruno C. L. Macena
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Gonzalo Mucientes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão4485-661, Portugal
| | - Eric S. Orbesen
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão4485-661, Portugal
| | | | | | - David W. Sims
- Marine Biological Association, PlymouthPL1 2PB, United Kingdom
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, SouthamptonSO14 3ZH, United Kingdom
| | | | - Derke Snodgrass
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Simon R. Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
12
|
Arostegui MC, Muhling B, Culhane E, Dewar H, Koch SS, Braun CD. A shallow scattering layer structures the energy seascape of an open ocean predator. SCIENCE ADVANCES 2023; 9:eadi8200. [PMID: 37792940 PMCID: PMC10550225 DOI: 10.1126/sciadv.adi8200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Large predators frequent the open ocean where subsurface light drives visually based trophic interactions. However, we lack knowledge on how predators achieve energy balance in the unproductive open ocean where prey biomass is minimal in well-lit surface waters but high in dim midwaters in the form of scattering layers. We use an interdisciplinary approach to assess how the bioenergetics of scattering layer forays by a model predator vary across biomes. We show that the mean metabolic cost rate of daytime deep foraging dives to scattering layers decreases as much as 26% from coastal to pelagic biomes. The more favorable energetics offshore are enabled by the addition of a shallow scattering layer that, if not present, would otherwise necessitate costlier dives to deeper layers. The unprecedented importance of this shallow scattering layer challenges assumptions that the globally ubiquitous primary deep scattering layer constitutes the only mesopelagic resource regularly targeted by apex predators.
Collapse
Affiliation(s)
- Martin C. Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Barbara Muhling
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Emmett Culhane
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Heidi Dewar
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Stephanie S. Koch
- Department of Biological Sciences, Thomas More University, Crestview Hills, KY, USA
| | - Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
13
|
Tracey SR, Wolfe BW, Hartmann K, Pepperell J, Williams SM. Movement behavior of swordfish provisions connectivity between the temperate and tropical southwest Pacific Ocean. Sci Rep 2023; 13:11812. [PMID: 37479745 PMCID: PMC10362066 DOI: 10.1038/s41598-023-38744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Swordfish (Xiphias gladius) are a widely distributed (45°N-45°S) large pelagic fish targeted by fisheries worldwide. Swordfish that occur at high latitudes tend to disproportionately be large adults, so their movements have implications for population dynamics and fisheries management. In the southwest Pacific, little is known about this subset of the stock and existing evidence suggests limited movement from the subtropics into cooler high latitude waters. Here, we capitalize on the recent emergence of a recreational swordfish fishery off temperate southeast Australia to characterize movements of swordfish caught in the fishery with pop-up satellite archival transmitting tags. Data were recovered from tags deployed for 56-250 days on 11 swordfish (50-350 kg) tagged between 38 and 43°S in the western Tasman Sea. Five swordfish entered the Coral Sea (< 30°S), with four reaching north to 11-24°S, up to 3275 km away from location of capture. Behavior modelling suggests these four individuals rapidly transited north until encountering 23-27 °C water, at which point they lingered in the area for several months, consistent with spawning-related partial migration. One migrating swordfish still carrying a tag after the spawning season returned to ~ 120 km of its release location, suggesting site fidelity. Movements toward the central south Pacific were confined to two individuals crossing 165°E. Swordfish predominantly underwent normal diel vertical migration, descending into the mesopelagic zone at dawn (median daytime depth 494.9 m, 95% CI 460.4-529.5 m). Light attenuation predicted daytime depth, with swordfish rising by up to 195 m in turbid water. At night, swordfish were deeper during the full moon, median night-time depth 45.8 m (37.8-55.5) m versus 18.0 m (14.9-21.8) m at new moon. Modelling fine-scale (10 min-1) swordfish depth revealed dynamic effects of moon phase varying predictably across time of night with implications for fisheries interactions. Studying highly migratory fishes near distribution limits allows characterization of the full range of movement phenotypes within a population, a key consideration for important fish stocks in changing oceans.
Collapse
Affiliation(s)
- Sean R Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Klaas Hartmann
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Julian Pepperell
- Pepperell Research and Consulting Pty Ltd, P.O. Box 1475, Noosaville DC, QLD, 4566, Australia
| | - Sam M Williams
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
14
|
Arostegui MC, Shero MR, Frank LR, Berquist RM, Braun CD. An enigmatic pelagic fish with internalized red muscle: A future regional endotherm or forever an ectotherm? JOURNAL OF FISH BIOLOGY 2023; 102:1311-1326. [PMID: 36911991 DOI: 10.1111/jfb.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Ectothermy and endothermy in extant fishes are defined by distinct integrated suites of characters. Although only ⁓0.1% of fishes are known to have endothermic capacity, recent discoveries suggest that there may still be uncommon pelagic fish species with yet to be discovered endothermic traits. Among the most rarely encountered marine fishes, the louvar Luvarus imperialis is a remarkable example of adaptive evolution as the only extant pelagic species in the order Acanthuriformes (including surgeonfishes, tangs, unicornfishes and Moorish idol). Magnetic resonance imaging and gross necropsy did not yield evidence of cranial or visceral endothermy but revealed a central-posterior distribution of myotomal red muscle that is a mixture of the character states typifying ectotherms (lateral-posterior) and red muscle endotherms (central-anterior). Dissection of a specimen confirmed, and an osteological proxy supported, that L. imperialis has not evolved the vascular rete that is vital to retaining heat in the red muscle. The combination of presumably relying on caudal propulsion while exhibiting internal red muscle without associated retia is unique to L. imperialis among all extant fishes, raising the macroevolutionary question of whether this species - in geologic timescales - will remain an ectotherm or evolve red muscle endothermy.
Collapse
Affiliation(s)
- Martin C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Lawrence R Frank
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, USA
| | - Rachel M Berquist
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, USA
| | - Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
15
|
Royer M, Meyer C, Royer J, Maloney K, Cardona E, Blandino C, Fernandes da Silva G, Whittingham K, Holland KN. "Breath holding" as a thermoregulation strategy in the deep-diving scalloped hammerhead shark. Science 2023; 380:651-655. [PMID: 37167384 DOI: 10.1126/science.add4445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fish moving between different thermal environments experience heat exchange via conduction through the body wall and convection from blood flow across the gills. We report a strategy of preventing convective heat loss at the gills during excursions into deep, cold water by the tropical scalloped hammerhead shark (Sphryna lewini). Adult scalloped hammerhead sharks dive rapidly and repeatedly from warm (~26°C) surface waters to depths exceeding 800 meters with temperatures as low as 5°C. Biologgers attached to adult sharks show that warm muscle temperatures were maintained throughout the deepest portion of each dive. Substantive cooling only occurred during the latter stages of the ascent phase and, once initiated, was rapid. Heat transfer coefficient modeling indicated that convective heat transfer was suspended, probably by suppressing gill function during deep dives. This previously unobserved strategy has broad similarities to marine mammal "breath hold" diving.
Collapse
Affiliation(s)
- Mark Royer
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Carl Meyer
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - John Royer
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Kelsey Maloney
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Edward Cardona
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Chloé Blandino
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Guilherme Fernandes da Silva
- Department of Marine Sciences, Federal University of São Paulo, 11070-102 Santos, Brazil
- Ocean and Resources Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | | | - Kim N Holland
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| |
Collapse
|
16
|
Fontes J, Castellano‐González G, Macena BCL, Afonso P. Hitchhiking to the abyss. Ecol Evol 2023; 13:e10126. [PMID: 37255846 PMCID: PMC10225908 DOI: 10.1002/ece3.10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
We investigated, for the first time, the hitchhiker-host fidelity of deep-diving whale sharks and Chilean devil rays. We found that two of the most ubiquitous oceanic hitchhikers, the common remora and the pilot fish, are able to follow their hosts to bathypelagic depths, where they are exposed to extreme gradients of light, dissolved oxygen, temperature, and pressure. We documented a deep dive of a large whale shark hosting remoras and pilot fish. Common remora was observed at the deepest section of the dive, at 1460 m, where the water temperature was 3.6°C. A pilot fish was recorded at 900 m, during the ascent phase, with the water temperature of 7.5°C. Although the adaptations that allow these hitchhikers to mitigate the impacts of such extreme environmental conditions remain unknown, we discuss these findings in the framework of the ecophysiology of deep diving and the hitchhiker-host fidelity.
Collapse
Affiliation(s)
- Jorge Fontes
- Ocean Sciences Institute – OkeanosUniversity of the AzoresHortaPortugal
| | | | - Bruno C. L. Macena
- Ocean Sciences Institute – OkeanosUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARUniversity of the AzoresHortaPortugal
| | - Pedro Afonso
- Ocean Sciences Institute – OkeanosUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARUniversity of the AzoresHortaPortugal
| |
Collapse
|
17
|
Beltran RS, Hernandez KM, Condit R, Robinson PW, Crocker DE, Goetsch C, Kilpatrick AM, Costa DP. Physiological tipping points in the relationship between foraging success and lifetime fitness of a long-lived mammal. Ecol Lett 2023; 26:706-716. [PMID: 36888564 DOI: 10.1111/ele.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 03/09/2023]
Abstract
Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.
Collapse
Affiliation(s)
- Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Keith M Hernandez
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Richard Condit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Chandra Goetsch
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
18
|
Watanabe YY, Papastamatiou YP. Biologging and Biotelemetry: Tools for Understanding the Lives and Environments of Marine Animals. Annu Rev Anim Biosci 2023; 11:247-267. [PMID: 36790885 DOI: 10.1146/annurev-animal-050322-073657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Addressing important questions in animal ecology, physiology, and environmental science often requires in situ information from wild animals. This difficulty is being overcome by biologging and biotelemetry, or the use of miniaturized animal-borne sensors. Although early studies recorded only simple parameters of animal movement, advanced devices and analytical methods can now provide rich information on individual and group behavior, internal states, and the surrounding environment of free-ranging animals, especially those in marine systems. We summarize the history of technologies used to track marine animals. We then identify seven major research categories of marine biologging and biotelemetry and explain significant achievements, as well as future opportunities. Big data approaches via international collaborations will be key to tackling global environmental issues (e.g., climate change impacts), and curiosity about the secret lives of marine animals will also remain a major driver of biologging and biotelemetry studies.
Collapse
Affiliation(s)
- Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo, Japan; .,Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, Japan
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| |
Collapse
|
19
|
Alós J, Aarestrup K, Abecasis D, Afonso P, Alonso-Fernandez A, Aspillaga E, Barcelo-Serra M, Bolland J, Cabanellas-Reboredo M, Lennox R, McGill R, Özgül A, Reubens J, Villegas-Ríos D. Toward a decade of ocean science for sustainable development through acoustic animal tracking. GLOBAL CHANGE BIOLOGY 2022; 28:5630-5653. [PMID: 35929978 PMCID: PMC9541420 DOI: 10.1111/gcb.16343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human-made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans-boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations.
Collapse
Affiliation(s)
- Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - David Abecasis
- Center of Marine Sciences, Universidade do Algarve (CCMAR), Faro, Portugal
| | - Pedro Afonso
- Institute of Marine Research (IMAR/Okeanos), University of the Azores, Horta, Portugal
| | | | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | | | - Jonathan Bolland
- Hull International Fisheries Institute, University of Hull, Hull, UK
| | | | - Robert Lennox
- NORCE Norwegian Research Center AS, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| | | | - Aytaç Özgül
- Ege University, Faculty of Fisheries, Izmir, Turkey
| | | | - David Villegas-Ríos
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain
| |
Collapse
|
20
|
Coxon JL, Butcher PA, Spaet JLY, Rizzari JR. Preliminary Data about Habitat Use of Subadult and Adult White Sharks ( Carcharodon carcharias) in Eastern Australian Waters. BIOLOGY 2022; 11:1443. [PMID: 36290347 PMCID: PMC9598950 DOI: 10.3390/biology11101443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
In eastern Australia, white sharks (Carcharodon carcharias) are targeted in shark control programs, yet the movement of subadults and adults of the eastern Australasian population is poorly understood. To investigate horizontal and vertical movement and habitat use in this region, MiniPAT pop-up satellite archival tags were deployed on three larger white sharks (340−388 cm total length) between May 2021 and January 2022. All sharks moved away from the coast after release and displayed a preference for offshore habitats. The upper < 50 m of the water column and temperatures between 14−19 °C were favoured, with a diel pattern of vertical habitat use evident as deeper depths were occupied during the day and shallower depths at night. Horizontal movement consisted of north−south seasonality interspersed with periods of residency. Very little information is available for adult white sharks in eastern Australia and studies like this provide key baseline information for their life history. Importantly, the latitudinal range achieved by white sharks illuminate the necessity for multijurisdictional management to effectively mitigate human-shark interactions whilst supporting conservation efforts of the species.
Collapse
Affiliation(s)
- Jessica L Coxon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Paul A Butcher
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- New South Wales Department of Primary Industries, Fisheries, National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Julia L Y Spaet
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Justin R Rizzari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
21
|
Anticyclonic eddies aggregate pelagic predators in a subtropical gyre. Nature 2022; 609:535-540. [PMID: 36071164 DOI: 10.1038/s41586-022-05162-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022]
Abstract
Ocean eddies are coherent, rotating features that can modulate pelagic ecosystems across many trophic levels. These mesoscale features, which are ubiquitous at mid-latitudes1, may increase productivity of nutrient-poor regions2,3, accumulate prey4 and modulate habitat conditions in the water column5. However, in nutrient-poor subtropical gyres-the largest marine biome-the role of eddies in modulating behaviour throughout the pelagic predator community remains unknown despite predictions for these gyres to expand6 and pelagic predators to become increasingly important for food security7. Using a large-scale fishery dataset in the North Pacific Subtropical Gyre, we show a pervasive pattern of increased pelagic predator catch inside anticyclonic eddies relative to cyclones and non-eddy areas. Our results indicate that increased mesopelagic prey abundance in anticyclone cores4,8 may be attracting diverse predators, forming ecological hotspots where these predators aggregate and exhibit increased abundance. In this energetically quiescent gyre, we expect that isolated mesoscale features (and the habitat conditions in them) exhibit primacy over peripheral submesoscale dynamics in structuring the foraging opportunities of pelagic predators. Our finding that eddies influence coupling of epi- to mesopelagic communities corroborates the growing evidence that deep scattering layer organisms are vital prey for a suite of commercially important predator species9 and, thus, provide valuable ecosystem services.
Collapse
|
22
|
Marine predators aggregate in anticyclonic ocean eddies. Nature 2022:10.1038/d41586-022-02259-w. [PMID: 36071231 DOI: 10.1038/d41586-022-02259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Fahlbusch JA, Czapanskiy MF, Calambokidis J, Cade DE, Abrahms B, Hazen EL, Goldbogen JA. Blue whales increase feeding rates at fine-scale ocean features. Proc Biol Sci 2022; 289:20221180. [PMID: 35975432 PMCID: PMC9382224 DOI: 10.1098/rspb.2022.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Marine predators face the challenge of reliably finding prey that is patchily distributed in space and time. Predators make movement decisions at multiple spatial and temporal scales, yet we have a limited understanding of how habitat selection at multiple scales translates into foraging performance. In the ocean, there is mounting evidence that submesoscale (i.e. less than 100 km) processes drive the formation of dense prey patches that should hypothetically provide feeding hot spots and increase predator foraging success. Here, we integrated environmental remote-sensing with high-resolution animal-borne biologging data to evaluate submesoscale surface current features in relation to the habitat selection and foraging performance of blue whales in the California Current System. Our study revealed a consistent functional relationship in which blue whales disproportionately foraged within dynamic aggregative submesoscale features at both the regional and feeding site scales across seasons, regions and years. Moreover, we found that blue whale feeding rates increased in areas with stronger aggregative features, suggesting that these features indicate areas of higher prey density. The use of fine-scale, dynamic features by foraging blue whales underscores the need to take these features into account when designating critical habitat and may help inform strategies to mitigate the impacts of human activities for the species.
Collapse
Affiliation(s)
- James A. Fahlbusch
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA,Cascadia Research Collective, Olympia, WA, USA
| | - Max F. Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | | | - David E. Cade
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| | - Elliott L. Hazen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA,Environmental Research Division, NOAA Southwest Fisheries Science Center, Monterey, CA, USA
| | - Jeremy A. Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
24
|
Andrzejaczek S, Lucas TC, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, Mambrasar R, McAllister JD, McCully Phillips SR, McGregor F, McMillan MN, McNaughton LM, Mendonça SA, Meyer CG, Meyers M, Mohan JA, Montgomery JC, Mucientes G, Musyl MK, Nasby-Lucas N, Natanson LJ, O’Sullivan JB, Oliveira P, Papastamtiou YP, Patterson TA, Pierce SJ, Queiroz N, Radford CA, Richardson AJ, Richardson AJ, Righton D, Rohner CA, Royer MA, Saunders RA, Schaber M, Schallert RJ, Scholl MC, Seitz AC, Semmens JM, Setyawan E, Shea BD, Shidqi RA, Shillinger GL, Shipley ON, Shivji MS, Sianipar AB, Silva JF, Sims DW, Skomal GB, Sousa LL, Southall EJ, Spaet JLY, Stehfest KM, Stevens G, Stewart JD, Sulikowski JA, Syakurachman I, Thorrold SR, Thums M, Tickler D, Tolloti MT, Townsend KA, Travassos P, Tyminski JP, Vaudo JJ, Veras D, Wantiez L, Weber SB, Wells RD, Weng KC, Wetherbee BM, Williamson JE, Witt MJ, Wright S, Zilliacus K, Block BA, Curnick DJ. Diving into the vertical dimension of elasmobranch movement ecology. SCIENCE ADVANCES 2022; 8:eabo1754. [PMID: 35984887 PMCID: PMC9390984 DOI: 10.1126/sciadv.abo1754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.
Collapse
Affiliation(s)
| | - Tim C.D. Lucas
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Nigel E. Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Amelia J. Armstrong
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Aaron Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Daniel M. Coffey
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | - Adrian C. Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - David M. P. Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Zoological Society of London, London, UK
| | - Mark G. Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Johann Mourier
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- UMS 3514 Plateforme Marine Stella Mare, Université de Corse Pasquale Paoli, Biguglia, France
| | - Lauren R. Peel
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- Save Our Seas Foundation–D’Arros Research Centre, Geneva, Switzerland
| | - Kátya Abrantes
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| | - André S. Afonso
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Matthew J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Brooke N. Anderson
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Gonzalo Araujo
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, UK
| | - Asia O. Armstrong
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Pascal Bach
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Adam Barnett
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| | - Mike B. Bennett
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalia A. Bezerra
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Ramon Bonfil
- El Colegio de la Frontera Sur (ECOSUR)–Unidad Chetumal, Chetumal, Quintana Roo, Mexico
- Océanos Vivientes A.C., Mexico City, Mexico
| | - Andre M. Boustany
- Monterey Bay Aquarium, Monterey, CA, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Heather D. Bowlby
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Ilka Branco
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Judith Brown
- Ascension Island Government Conservation and Fisheries Department, Georgetown, Ascension Island, UK
| | - Patrick J. Burke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul Butcher
- NSW Department of Primary Industries–Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW, Australia
| | | | - Taylor K. Chapple
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, USA
| | - Olivier Chateau
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | | | - Rui Coelho
- Portuguese Institute for the Ocean and Atmosphere, I.P. (IPMA), Olhão, Algarve, Portugal
- Centre of Marine Sciences of the Algarve, Universidade do Algarve, Faro, Algarve, Portugal
| | - Enric Cortes
- Southeast Fisheries Science Center, NOAA Fisheries, Panama City, FL, USA
| | | | - Paul D. Cowley
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Donald A. Croll
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Juan M. Cuevas
- Wildlife Conservation Society Argentina, Ciudad Autónoma de Buenos Aires, Argentina
- División Zoología de Vertebrados, Museo de La Plata, Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Tobey H. Curtis
- Atlantic Highly Migratory Species Management Division, NOAA Fisheries, Gloucester, MA, USA
| | - Laurent Dagorn
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Jonathan J. Dale
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Ryan Daly
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Oceanographic Research Institute, Durban, South Africa
| | - Heidi Dewar
- Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, USA
| | - Philip D. Doherty
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Andrés Domingo
- Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos (DINARA), Montevideo, Uruguay
| | | | - Michael Drew
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- SARDI Aquatic Sciences, Adelaide, SA, Australia
| | - Christine L. Dudgeon
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Maroochydore, QLD, Australia
| | | | - Riley G. Elliott
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Jim R. Ellis
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | | | - Thomas J. Farrugia
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
- Alaska Ocean Observing System, Anchorage, AK, USA
| | - Luciana C. Ferreira
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Francesco Ferretti
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - John D. Filmalter
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | | | - Richard Fitzpatrick
- Biopixel Oceans Foundation, Cairns, QLD, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Fabien Forget
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Malcolm P. Francis
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Bryan R. Franks
- Marine Science Research Institute, Jacksonville University, Jacksonville, FL, USA
| | | | - Felipe Galvan-Magana
- Instituto Politecnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Mirta L. García
- Museo de La Plata, Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Troy F. Gaston
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia
| | - Bronwyn M. Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Jonathan R. Green
- Galapagos Whale Shark Project, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador
| | - Sofia Green
- Galapagos Whale Shark Project, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador
| | - Christopher A. Griffiths
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Abdi Hasan
- Yayasan Konservasi Indonesia, Sorong, West Papua, Indonesia
| | - Lucy A. Hawkes
- College of Life and Environmental Science, Hatherly Laboratories, University of Exeter, Exeter, Devon, UK
| | - Fabio Hazin
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Matthew Heard
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- SARDI Aquatic Sciences, Adelaide, SA, Australia
- Conservation and Wildlife Branch, Department for Environment and Water, Adelaide, SA, Australia
| | - Alex Hearn
- Migramar, Forest Knolls, CA, USA
- Galapagos Whale Shark Project, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador
- Galapagos Science Center, Department of Biological Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | | | - Kim N. Holland
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Lucy A. Howey
- Johns Hopkins University, Baltimore, MD, USA
- Haiti Ocean Project, Petite Riviere de Nippes, Haiti
| | - Robert E. Hueter
- OCEARCH, Park City, UT, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Melanie Hutchinson
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
- Joint Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Fabrice R. A. Jaine
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Salvador J. Jorgensen
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Paul E. Kanive
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Jessica Labaja
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| | - Fernanda O. Lana
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Hugo Lassauce
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- ISEA, University of New Caledonia, Nouméa, New Caledonia
- Conservation International New Caledonia, Nouméa, New Caledonia
| | - Rebecca S. Lipscombe
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Bruno C. L. Macena
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
- Okeanos Centre, University of the Azores, Horta, Faial, Portugal
| | | | - Jaime D. McAllister
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | | - Matthew N. McMillan
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | | | - Sibele A. Mendonça
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Carl G. Meyer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Megan Meyers
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - John A. Mohan
- School of Marine and Environmental Programs, University of New England, Biddeford, ME, USA
| | - John C. Montgomery
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Gonzalo Mucientes
- Instituto de Investigacions Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Galicia, Spain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairao, Portugal
| | | | - Nicole Nasby-Lucas
- Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Paulo Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Yannis P. Papastamtiou
- Institute of the Environment, Department of Biological Science, Florida International University, North Miami, FL, USA
| | | | | | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairao, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairao, Portugal
| | - Craig A. Radford
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Andy J. Richardson
- Ascension Island Government Conservation and Fisheries Department, Georgetown, Ascension Island, UK
| | - Anthony J. Richardson
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia
- CSIRO Oceans and Atmosphere, St Lucia, QLD, Australia
| | - David Righton
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | | | - Mark A. Royer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | | | | | | | - Michael C. Scholl
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- IUCN SSC Shark Specialist Group, Gland, Vaud, Switzerland
- Aquarium-Muséum Universitaire de Liège, University of Liège, Liège, Wallonia, Belgium
| | - Andrew C. Seitz
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Edy Setyawan
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Brendan D. Shea
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
- Beneath the Waves, Herndon, VA, USA
| | - Rafid A. Shidqi
- Coastal Science and Policy Program, University of California, Santa Cruz, Santa Cruz, CA, USA
- Thresher Shark Project Indonesia, Alor Island, East Nusa Tenggara, Indonesia
| | - George L. Shillinger
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Migramar, Forest Knolls, CA, USA
- Upwell, Monterey, CA, USA
| | | | - Mahmood S. Shivji
- Guy Harvey Research Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Abraham B. Sianipar
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Joana F. Silva
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - David W. Sims
- The Marine Biological Association, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | - Lara L. Sousa
- Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Department of Zoology, Oxford University, Oxford, UK
| | | | - Julia L. Y. Spaet
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, UK
| | | | - Guy Stevens
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
| | - Joshua D. Stewart
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - James A. Sulikowski
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Simon R. Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michele Thums
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - David Tickler
- Marine Futures Lab, School of Biological Science, The University of Western Australia, Crawley, WA, Australia
| | | | - Kathy A. Townsend
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Hervey Bay, QLD, Australia
| | - Paulo Travassos
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - John P. Tyminski
- OCEARCH, Park City, UT, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | - Jeremy J. Vaudo
- Guy Harvey Research Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Drausio Veras
- Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Serra Talhada, PE, Brazil
| | | | - Sam B. Weber
- Ascension Island Government Conservation and Fisheries Department, Georgetown, Ascension Island, UK
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - R.J. David Wells
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kevin C. Weng
- Fisheries Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA
| | - Bradley M. Wetherbee
- Guy Harvey Research Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
- University of Rhode Island, Kingston, RI, USA
| | - Jane E. Williamson
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Matthew J. Witt
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
- College of Life and Environmental Science, Hatherly Laboratories, University of Exeter, Exeter, Devon, UK
| | - Serena Wright
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - Kelly Zilliacus
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | |
Collapse
|
25
|
Le Croizier G, Sonke JE, Lorrain A, Serre S, Besnard L, Schaal G, Amezcua-Martinez F, Point D. Mercury stable isotopes suggest reduced foraging depth in oxygen minimum zones for blue sharks. MARINE POLLUTION BULLETIN 2022; 181:113892. [PMID: 35810652 DOI: 10.1016/j.marpolbul.2022.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Oxygen minimum zones (OMZs) are currently expanding across the global ocean due to climate change, leading to a compression of usable habitat for several marine species. Mercury stable isotope compositions provide a spatially and temporally integrated view of marine predator foraging habitat and its variability with environmental conditions. Here, we analyzed mercury isotopes in blue sharks Prionace glauca from normoxic waters in the northeastern Atlantic and from the world's largest and shallowest OMZ, located in the northeastern Pacific (NEP). Blue sharks from the NEP OMZ area showed higher Δ199Hg values compared to sharks from the northeastern Atlantic, indicating a reduction in foraging depth of approximately 200 m. Our study suggests for the first time that blue shark feeding depth is altered by expanding OMZs and illustrates the use of mercury isotopes to assess the impacts of ocean deoxygenation on the vertical foraging habitat of pelagic predators.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán 82040, Sin., México.
| | - Jeroen E Sonke
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Sandrine Serre
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Felipe Amezcua-Martinez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán 82040, Sin., México
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|