1
|
Peng Y, Li C, Hui X, Huo X, Shumuyed NA, Jia Z. Phenotypic and genotypic analysis of drug resistance in M. tuberculosis isolates in Gansu, China. PLoS One 2024; 19:e0311042. [PMID: 39331607 PMCID: PMC11432870 DOI: 10.1371/journal.pone.0311042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Tuberculosis has posed a serious threat to human health. It is imperative to investigate the geographic prevalence of tuberculosis and medication resistance, as this information is essential for informing strategies for its prevention and treatment. Drug resistance was identified using a proportion method. Drug-resistant genes and pathways were predicted using whole genome sequencing. The drug resistance range of bedaquiline was identified using the microporous plate two-fold dilution method, and drug resistance genes were studied using sequencing. The study revealed that 19.99% of the tuberculosis cases had multidrug resistance. The genes of M. tuberculosis are predominantly involved in the synthesis of ABC transporters, two-component systems, and bacterial secretion systems, as well as in energy production and conversion, and lipid transport and metabolism. The genes encode for 82.45% of carbohydrate-related enzymes such as glycoside hydrolases, glycosyl transferases, and carbohydrate esterases. The minimum inhibitory concentration (MIC) of bedaquiline against clinical strains was approximately 0.06 μg/mL, with identified mutations in drug-resistant genes Rv0678, atpE, and pepQ, specifically V152A, P62A, and T222N, respectively. The multidrug resistance tuberculosis development was attributed to the strong medication resistance exhibited. It was concluded that tuberculosis had presented a high level of drug resistance. Phenotypic resistance was related to genes, existing potential genetic resistance in M. tuberculosis. Bedaquiline was found to possess effective antibacterial properties against M. tuberculosis.
Collapse
Affiliation(s)
- Yousheng Peng
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenchen Li
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xueke Hui
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Nigus Abebe Shumuyed
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhong Jia
- Gansu Agricultural University, Lanzhou, Gansu, China
- The Second People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Dash S, Rathi E, Kumar A, Chawla K, Joseph A, Kini SG. Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review. J Biomol Struct Dyn 2024; 42:6472-6522. [PMID: 37395797 DOI: 10.1080/07391102.2023.2230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Emerging threats of multi-drug resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) tuberculosis led to the discovery of a novel target which was entitled Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) enzyme. DprE1 is composed of two isoforms, decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-D-2-keto erythro pentose reductase (DprE2). The enzymes, DprE1 and DprE2, regulate the two-step epimerization process to form DPA (Decaprenylphosphoryl arabinose) from DPX (Decaprenylphosphoryl-D-ribose), which is the sole precursor in the cell wall synthesis of arabinogalactan (AG) and lipoarabinomannan (LAM). Target-based and whole-cell-based screening played an imperative role in the identification of the druggable target, DprE1, whereas the druggability of the DprE2 enzyme is not proved yet. To date, diverse scaffolds of heterocyclic and aromatic ring systems have been reported as DprE1 inhibitors based on their interaction mode, i.e. covalent, and non-covalent inhibitors. This review describes the structure-activity relationship (SAR) of reported covalent and non-covalent inhibitors to enlighten about the crucial pharmacophoric features required for DprE1 inhibition, along with in-silico studies which characterize the amino acid residues responsible for covalent and non-covalent interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Zheng X, Gui X, Yao L, Ma J, He Y, Lou H, Gu J, Ying R, Chen L, Sun Q, Liu Y, Ho CM, Lee BY, Clemens DL, Horwitz MA, Ding X, Hao X, Yang H, Sha W. Efficacy and safety of an innovative short-course regimen containing clofazimine for treatment of drug-susceptible tuberculosis: a clinical trial. Emerg Microbes Infect 2023; 12:2187247. [PMID: 36872899 PMCID: PMC10026740 DOI: 10.1080/22221751.2023.2187247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
In preclinical studies, a new antituberculosis drug regimen markedly reduced the time required to achieve relapse-free cure. This study aimed to preliminarily evaluate the efficacy and safety of this four-month regimen, consisting of clofazimine, prothionamide, pyrazinamide and ethambutol, with a standard six-month regimen in patients with drug-susceptible tuberculosis. An open-label pilot randomized clinical trial was conducted among the patients with newly diagnosed bacteriologically-confirmed pulmonary tuberculosis. The primary efficacy end-point was sputum culture negative conversion. Totally, 93 patients were included in the modified intention-to-treat population. The rates of sputum culture conversion were 65.2% (30/46) and 87.2% (41/47) for short-course and standard regimen group, respectively. There was no difference on two-month culture conversion rates, time to culture conversion, nor early bactericidal activity (P > 0.05). However, patients on short-course regimen were observed with lower rates of radiological improvement or recovery and sustained treatment success, which was mainly attributed to higher percent of patients permanently changed assigned regimen (32.1% vs. 12.3%, P = 0.012). The main cause for it was drug-induced hepatitis (16/17). Although lowering the dose of prothionamide was approved, the alternative option of changing assigned regimen was chosen in this study. While in per-protocol population, sputum culture conversion rates were 87.0% (20/23) and 94.4% (34/36) for the respective groups. Overall, the short-course regimen appeared to have inferior efficacy and higher incidence of hepatitis but desired efficacy in per-protocol population. It provides the first proof-of-concept in humans of the capacity of the short-course approach to identify drug regimens that can shorten the treatment time for tuberculosis.
Collapse
Affiliation(s)
- Xubin Zheng
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xuwei Gui
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Lan Yao
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Jun Ma
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Yifan He
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Hai Lou
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Jin Gu
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Ruoyan Ying
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Liping Chen
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Qin Sun
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Yidian Liu
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chih-Ming Ho
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaohui Hao
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Hua Yang
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Wei Sha
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Berrocal-Almanza LC, Lima M, Piotrowski H, Botticello J, Badhan A, Karnani N, Kaur H, Pareek M, Haldar P, Dedicoat M, Kon OM, Zenner D, Lalvani A. Vulnerability and tuberculosis treatment outcomes in urban settings in England: A mixed-methods study. PLoS One 2023; 18:e0281918. [PMID: 37590225 PMCID: PMC10434856 DOI: 10.1371/journal.pone.0281918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Evidence on factors contributing to poor treatment outcome and healthcare priorities in vulnerable populations affected by tuberculosis (TB) in urban areas of England other than London is needed to inform setting-specific prevention and care policies. We addressed this knowledge gap in a cohort of TB patients and healthcare providers in Birmingham and Leicester, UK. METHODS A mixed-methods study was performed. Logistic regression was used to identify TB patients more likely to have poor treatment outcomes according to clinical and demographic characteristics and social risk factors (SRFs) in a 2013-18 cohort. 25 semi-structured interviews were undertaken in purposely selected individuals (9 patients and 16 healthcare professionals) to glean insights on their healthcare priorities and the factors that contribute to poor treatment outcome. RESULTS The quantitative cohort comprised 2252 patients. Those who were ≥ 55 years of age, foreign-born from Central Europe, East Asia and Sub Saharan Africa and with MDR-TB were more likely to have poor treatment outcomes. According to patients and healthcare professionals, the factors that contribute to vulnerability to develop TB and poor treatment outcomes include poor working and living conditions, inadequate or absent welfare protection, poor primary healthcare responsiveness, treatment duration and side effects. These factors could be addressed by increased networking, partnership and integration between healthcare and social services and better integration between primary and secondary healthcare. CONCLUSIONS In both cities, being ≥ 55 years of age, having MDR-TB and being of foreign-birth are predictors of unfavourable treatment outcome. Risk of poor treatment outcome and vulnerability seem to be multidimensional. A better understanding of specific vulnerabilities and how they affect patient care pathway is needed to design adequate support programmes.
Collapse
Affiliation(s)
- Luis C. Berrocal-Almanza
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Marcela Lima
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Helen Piotrowski
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Julie Botticello
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Amarjit Badhan
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Nisha Karnani
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Hanna Kaur
- Birmingham & Solihull TB Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Manish Pareek
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Pranabashis Haldar
- Department of Respiratory Sciences, Institute for Lung Health, Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martin Dedicoat
- Birmingham & Solihull TB Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Onn Min Kon
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
- St Mary’s Hospital, Imperial Healthcare NHS Trust, London, United Kingdom
| | - Dominik Zenner
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
- Wolfson Institute for Population Health, Queen Mary University, London, United Kingdom
| | - Ajit Lalvani
- National Heart and Lung Institute, NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Tuberculosis Research Centre, Respiratory Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Villemagne B, Faion L, Tangara S, Willand N. Recent advances in Fragment-based strategies against tuberculosis. Eur J Med Chem 2023; 258:115569. [PMID: 37423127 DOI: 10.1016/j.ejmech.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Tuberculosis remains one of the world's leading infectious disease killers, causing more than 1.5 million of deaths each year. It is therefore a priority to discover and develop new classes of anti-tuberculosis drugs to design new treatments in order to fight the increasing burden of resistant-tuberculosis. Fragment-based drug discovery (FBDD) relies on the identification of small molecule hits, further improved to high-affinity ligands through three main approaches: fragment growing, merging and linking. The aim of this review is to highlight the recent progresses made in fragment-based approaches for the discovery and development of Mycobacterium tuberculosis inhibitors in a wide range of pathways. Hit discovery, hit-to-lead optimization, SAR and binding mode when available are discussed.
Collapse
Affiliation(s)
- Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.
| | - Léo Faion
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Salia Tangara
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| |
Collapse
|
6
|
Dam S, Tangara S, Hamela C, Hattabi T, Faïon L, Carre P, Antoine R, Herledan A, Leroux F, Piveteau C, Eveque M, Flipo M, Deprez B, Kremer L, Willand N, Villemagne B, Hartkoorn RC. Tricyclic SpiroLactams Kill Mycobacteria In Vitro and In Vivo by Inhibiting Type II NADH Dehydrogenases. J Med Chem 2022; 65:16651-16664. [PMID: 36473699 PMCID: PMC9791652 DOI: 10.1021/acs.jmedchem.2c01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is critical that novel classes of antituberculosis drugs are developed to combat the increasing burden of infections by multidrug-resistant strains. To identify such a novel class of antibiotics, a chemical library of unique 3-D bioinspired molecules was explored revealing a promising, mycobacterium specific Tricyclic SpiroLactam (TriSLa) hit. Chemical optimization of the TriSLa scaffold delivered potent analogues with nanomolar activity against replicating and nonreplicating Mycobacterium tuberculosis. Characterization of isolated TriSLa-resistant mutants, and biochemical studies, found TriSLas to act as allosteric inhibitors of type II NADH dehydrogenases (Ndh-2 of the electron transport chain), resulting in an increase in bacterial NADH/NAD+ ratios and decreased ATP levels. TriSLas are chemically distinct from other inhibitors of Ndh-2 but share a dependence for fatty acids for activity. Finally, in vivo proof-of-concept studies showed TriSLas to protect zebrafish larvae from Mycobacterium marinum infection, suggesting a vulnerability of Ndh-2 inhibition in mycobacterial infections.
Collapse
Affiliation(s)
- Sushovan Dam
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Salia Tangara
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Claire Hamela
- Centre
National de la Recherche Scientifique, Institut de Recherche en Infectiologie
de Montpellier, UMR 9004, Université
de Montpellier, 34293 Montpellier, France
| | - Theo Hattabi
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Léo Faïon
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Paul Carre
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rudy Antoine
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Adrien Herledan
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Catherine Piveteau
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Maxime Eveque
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Marion Flipo
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Laurent Kremer
- Centre
National de la Recherche Scientifique, Institut de Recherche en Infectiologie
de Montpellier, UMR 9004, Université
de Montpellier, 34293 Montpellier, France,INSERM, IRIM, 34293 Montpellier, France
| | - Nicolas Willand
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France,
| | - Baptiste Villemagne
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France,
| | - Ruben C. Hartkoorn
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France,
| |
Collapse
|
7
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
8
|
Xue Y, Zhou J, Wang P, Lan JH, Lian WQ, Fan YY, Xu BN, Yin JP, Feng ZH, Zhou J, Jia CY. Burden of tuberculosis and its association with socio-economic development status in 204 countries and territories, 1990–2019. Front Med (Lausanne) 2022; 9:905245. [PMID: 35935764 PMCID: PMC9355511 DOI: 10.3389/fmed.2022.905245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background Tuberculosis (TB) always runs in the forefront of the global burden when it comes to infectious diseases. Tuberculosis, which can lead to impairment of quality of life, financial hardship, discrimination, marginalization, and social barriers, is a major public health problem. The assessment of TB burden and trend can provide crucial information for policy decision and planning, and help countries in the world to achieve the goal of sustainable development of ending the epidemic of TB in 2030. Methods All data are from the Global Burden of Disease 2019 (GBD 2019) database, which analyzed the burden trend of age-standardized incidence, DALYs, and deaths rate in TB and HIV/AIDS-infected TB over the past 30 years. Also, GBD 2019 not only analyzed the burden distribution of TB in 204 countries and main regions of the world but also analyzed the relationship between the burden of global TB and the socio–demographic Index (SDI). Results The age-standardized incidence, age-standardized disability-adjusted life years (DALYs), and age-standardized deaths rate for HIV-negative TB were 10,671.45 (9,395.60–12,194.10), 59,042.45 (53,684.78–64,641.53), and 1,463.62 (1,339.24–1,602.71) (95% CI, per 100,000 person-years) in 2019, respectively. Age-standardized incidence, age-standardized DALYs, and age-standardized deaths rate of HIV/AIDS-XDR-TB (95% CI, per 1,000 person-years) were 2.10 (1.51–2.90), 64.23 (28.64–117.74), and 1.01 (0.42–1.86), respectively. We found that TB is inversely proportional to SDI, the age-standardized incidence, DALYs, and deaths rate low burden countries were in high SDI areas, while high burden countries were in low SDI areas. The global TB showed a slow decline trend, but the age-standardized incidence of HIV-positive TB was increasing, and mainly distributed in sub-Saharan Africa. Conclusion Age-standardized incidence, age-standardized DALYs, and age-standardized deaths rate of TB is related to SDI, and the burden of low SDI countries is lighter than that of high SDI countries. Without effective measures, it will be difficult for countries around the world to achieve the goal of ending the TB epidemic by 2030. Effective control of the spread of TB requires concerted efforts from all countries in the world, especially in the countries with low SDI, which need to improve the diagnosis and preventive measures of TB and improve the control of HIV/AIDS-TB.
Collapse
Affiliation(s)
- Yi Xue
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Zhou
- School of Medicine, Xiamen University, Xiamen, China
| | - Peng Wang
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun-hong Lan
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wen-qin Lian
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue-Ying Fan
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bei-Ni Xu
- Department of Clinical Laboratory, Shanghai Ninth people's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia-Peng Yin
- Division of Plastic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zi-hao Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Chi-Yu Jia
| | - Jian Zhou
- Department of Otolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Jian Zhou
| | - Chi-Yu Jia
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Zi-hao Feng
| |
Collapse
|
9
|
Abstract
Phages that infect pathogenic bacteria present a valuable resource for treating antibiotic-resistant infections. We isolated and developed a collection of 19 Enterococcus phages, including myoviruses, siphoviruses, and a podovirus, that can infect both Enterococcus faecalis and Enterococcus faecium. Several of the Myoviridae phages that we found in southern California wastewater were from the Brockvirinae subfamily (formerly Spounavirinae) and had a broad host range across both E. faecium and E. faecalis. By searching the NCBI Sequence Read Archive, we showed that these phages are prevalent globally in human and animal microbiomes. Enterococcus is a regular member of healthy human gut microbial communities; however, it is also an opportunistic pathogen responsible for an increasing number of antibiotic-resistant infections. We tested the ability of each phage to clear Enterococcus host cultures and delay the emergence of phage-resistant Enterococcus. We found that some phages were ineffective at clearing Enterococcus cultures individually but were effective when combined into cocktails. Quantitative PCR was used to track phage abundance in cocultures and revealed dynamics ranging from one dominant phage to an even distribution of phage growth. Genomic characterization showed that mutations in Enterococcus exopolysaccharide synthesis genes were consistently found in the presence of phage infection. This work will help to inform cocktail design for Enterococcus, which is an important target for phage therapy applications. IMPORTANCE Due to the rise in antibiotic resistance, Enterococcus infections are a major health crisis that requires the development of alternative therapies. Phage therapy offers an alternative to antibiotics and has shown promise in both in vitro and early clinical studies. Here, we established a collection of 19 Enterococcus phages and tested whether combining phages into cocktails could delay growth and the emergence of resistant mutants in comparison with individual phages. We showed that cocktails of two or three phages often prevented the growth of phage-resistant mutants, and we identified which phages were replicating the most in each cocktail. When resistant mutants emerged to single phages, they showed consistent accumulation of mutations in exopolysaccharide synthesis genes. These data serve to demonstrate that a cocktail approach can inform efforts to improve efficacy against Enterococcus isolates and reduce the emergence of resistance.
Collapse
|
10
|
Advances in the application of 1,2,4-triazole-containing hybrids as anti-tuberculosis agents. Future Med Chem 2021; 13:2107-2124. [PMID: 34698509 DOI: 10.4155/fmc-2020-0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis is a deadly communicable disease caused by the bacillus Mycobacterium tuberculosis (MTB), and pulmonary tuberculosis accounts for over 80% of the total cases. The 1,2,4-triazole is a privileged structure in the discovery of new drugs, and its derivatives act on various targets in MTB. In particular, 1,2,4-triazole hybrids can not only exert dual or multiple antitubercular mechanisms of action but also have the potential to enhance efficacy and reduce side effects. The present work aims to summarize the current status of 1,2,4-triazole hybrids as potential antitubercular agents, covering articles published between 2010 and 2020, to aid the further rational design of novel potential drug candidates endowed with higher efficacy, better compliance and fewer side effects.
Collapse
|
11
|
Lopes LGF, Carvalho EM, Sousa EHS. A bioinorganic chemistry perspective on the roles of metals as drugs and targets against Mycobacterium tuberculosis - a journey of opportunities. Dalton Trans 2021; 49:15988-16003. [PMID: 32583835 DOI: 10.1039/d0dt01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medicinal inorganic chemists have provided many strategies to tackle a myriad of diseases, pushing forward the frontiers of pharmacology. As an example, the fight against tuberculosis (TB), an infectious bacterial disease, has led to the development of metal-based compounds as potential drugs. This disease remains a current health issue causing over 1.4 million of deaths per year. The emergence of multi- (MDR) and extensively-drug resistant (XDR) Mycobacterium tuberculosis (Mtb) strains along with a long dormancy process, place major challenges in developing new therapeutic compounds. Isoniazid is a front-line prodrug used against TB with appealing features for coordination chemists, which have been explored in a series of cases reported here. An isoniazid iron-based compound, called IQG-607, has caught our attention, whose in vitro and in vivo studies are advanced and thoroughly discussed, along with other metal complexes. Isoniazid is inactive against dormant Mtb, a hard to eliminate state of this bacillus, found in one-fourth of the world's population and directly implicated in the lengthy treatment of TB (ca. 6 months). Thus, our understanding of this phenomenon may lead to a rational design of new drugs. Along these lines, we describe how metals as targets can cross paths with metals used as selective therapeutics, where we mainly review heme-based sensors, DevS and DosT, as a key system in the Mtb dormancy process and a current drug target. Overall, we report new opportunities for bioinorganic chemists to tackle this longstanding and current threat.
Collapse
Affiliation(s)
- Luiz G F Lopes
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| | | | | |
Collapse
|
12
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
14
|
Triazole-containing hybrids with anti- Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med Chem 2021; 13:643-662. [PMID: 33619989 DOI: 10.4155/fmc-2020-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.
Collapse
|
15
|
Ernest JP, Strydom N, Wang Q, Zhang N, Nuermberger E, Dartois V, Savic RM. Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annu Rev Pharmacol Toxicol 2021; 61:495-516. [PMID: 32806997 PMCID: PMC7790895 DOI: 10.1146/annurev-pharmtox-030920-011143] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of resistance.
Collapse
Affiliation(s)
- Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey 07110, USA
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| |
Collapse
|
16
|
Nye TM, Fernandez NL, Simmons LA. A positive perspective on DNA methylation: regulatory functions of DNA methylation outside of host defense in Gram-positive bacteria. Crit Rev Biochem Mol Biol 2020; 55:576-591. [PMID: 33059472 DOI: 10.1080/10409238.2020.1828257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of post-replicative DNA methylation is pervasive among both prokaryotic and eukaryotic organisms. In bacteria, the study of DNA methylation has largely been in the context of restriction-modification systems, where DNA methylation serves to safeguard the chromosome against restriction endonuclease cleavage intended for invading DNA. There has been a growing recognition that the methyltransferase component of restriction-modification systems can also regulate gene expression, with important contributions to virulence factor gene expression in bacterial pathogens. Outside of restriction-modification systems, DNA methylation from orphan methyltransferases, which lack cognate restriction endonucleases, has been shown to regulate important processes, including DNA replication, DNA mismatch repair, and the regulation of gene expression. The majority of research and review articles have been focused on DNA methylation in the context of Gram-negative bacteria, with emphasis toward Escherichia coli, Caulobacter crescentus, and related Proteobacteria. Here we summarize the epigenetic functions of DNA methylation outside of host defense in Gram-positive bacteria, with a focus on the regulatory effects of both phase variable methyltransferases and DNA methyltransferases from traditional restriction-modification systems.
Collapse
Affiliation(s)
- Taylor M Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nicolas L Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Showalter HD. Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles to Treat Tuberculosis and Neglected Tropical Diseases. Molecules 2020; 25:molecules25184137. [PMID: 32927749 PMCID: PMC7576498 DOI: 10.3390/molecules25184137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
Nitroimidazole drugs have a long history as therapeutic agents to treat bacterial and parasitic diseases. The discovery in 1989 of a bicyclic nitroimidazole lead, displaying in vitro and in vivo antitubercular activity, spurred intensive exploration of this and related scaffolds, which led to the regulatory approval of pretomanid and delamanid as a new class of tuberculosis drugs. Much of the discovery work related to this took place over a 20-year period ending in 2010, which is covered in a number of cited reviews. This review highlights subsequent research published over the 2011–August 2020 timeframe, and captures detailed structure–activity relationship studies and synthetic strategies directed towards uncovering newer generation drugs for both tuberculosis and selected neglected tropical diseases. Additionally, this review presents in silico calculations relating to the drug-like properties of lead compounds and clinical agents, as well as chemical development and manufacturing processes toward providing bulk drug supplies.
Collapse
Affiliation(s)
- Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Cheng C, Pan W, Li X, Qu H. Clinical effect of vitamin D supplementation on patients with pulmonary tuberculosis and its influence on the expression of immune cells and inflammatory factors. Exp Ther Med 2020; 20:2236-2244. [PMID: 32765700 PMCID: PMC7401900 DOI: 10.3892/etm.2020.8957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis is highly infectious and has a high incidence worldwide. Therefore, effective treatment is essential for the disease. The immune function and inflammatory factors can reflect the therapeutic effect of pulmonary tuberculosis to some extent. Thus, the aim of the present study was to investigate the clinical effect of vitamin D supplementation on pulmonary tuberculosis patients and its influence on the expression of immune cells and inflammatory factors in patients. A total of 256 patients with pulmonary tuberculosis who were admitted to our hospital were collected as research participants; 120 patients who were treated with conventional antituberculosis drugs were taken as a control group (CG) and 136 patients who were treated with vitamin D-assisted antituberculosis drugs were taken as the research group (RG). The levels of inflammatory factors (IL-6, MMP-9, IL-4, TNF-α) and T lymphocyte subgroup of patients were measured in both groups before and after treatment. The efficacy was compared in both groups. The disappearance time of wheezing and cough in RG was shorter than that in CG (P<0.001). There was no difference in X-ray chest plain film, sputum examination results and efficacy of patients in both groups (P>0.05). After treatment, CD3+, CD4+, CD4+/CD8+ were upregulated in both groups (P<0.05), while CD3+, CD4+, CD4+/CD8+ in RG were higher than those in CG (P<0.05). After treatment, inflammatory factors in both groups improved compared with those before treatment. Serum inflammatory factors in RG were significantly lower than those in CG (P<0.05). After treatment, surfactant protein in the two groups was lower than that before treatment, while that in RG was significantly lower than that in CG (P<0.05). After treatment, soluble selectins in both groups improved significantly. The level of soluble selectins in RG was slightly lower than that in CG. The incidence of adverse reactions in RG was lower than that in CG. The life quality scores of patients in RG were slightly higher than those in CG (P<0.05). In conclusion, vitamin D-assisted antituberculosis drugs can effectively improve the immune function and expression level of inflammatory factors in pulmonary tuberculosis patients and reduce adverse reactions.
Collapse
Affiliation(s)
- Chunxu Cheng
- Department of Infectious Diseases, Changchun Hospital for Infectious Diseases, Changchun, Jilin 130031, P.R. China
| | - Weina Pan
- Department of Infectious Diseases, Changchun Hospital for Infectious Diseases, Changchun, Jilin 130031, P.R. China
| | - Xiang Li
- Department of Radiology, The Third People's Hospital of Gongzhuling City, Siping, Jilin 136105, P.R. China
| | - Hongyan Qu
- Department of Drug-Resistant Tuberculosis, Changchun Hospital for Infectious Diseases, Changchun, Jilin 130031, P.R. China
| |
Collapse
|
19
|
Kempker RR, Chkhartishvili N, Kinkladze I, Schechter MC, Harrington K, Rukhadze N, Dzigua L, Tserstvadze T, Del Rio C, Blumberg HM, Tukvadze N. High Yield of Active Tuberculosis Case Finding Among HIV-Infected Patients Using Xpert MTB/RIF Testing. Open Forum Infect Dis 2019; 6:ofz233. [PMID: 31211163 PMCID: PMC6559269 DOI: 10.1093/ofid/ofz233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
Objective Conduct an active case finding study in Tbilisi, Georgia, for pulmonary tuberculosis (TB) among people living with HIV (PLWH). Methods Newly diagnosed HIV patients were assessed for symptoms and asked to submit sputum samples for smear microscopy, culture, and molecular diagnostic testing (Xpert MTB/RIF). Results Among 276 PLWH, 131 agreed to participate and 103 submitted sputum samples. Most participants were male (70%) and mean age of 43 years. There were high rates of a positive hepatitis C virus (HCV) antibody test (46%) and the median CD4 count was 122 cells/mm3. A total of 15 (11.5%) persons were diagnosed with pulmonary TB, including 1 each with multidrug-resistant and isoniazid-resistant disease. Twelve had a positive culture for Mycobacterium tuberculosis and Xpert TB/RIF assay, and 4 had positive smear microscopy. Patients with pulmonary TB were more likely to use injection drugs (67% vs 36%, P = .02) and have a positive HCV antibody (73% vs 42%, P = .02). The presence and absence of any TB symptom had a sensitivity and negative predictive value for TB of 93% and 98%, respectively. Conclusion Our findings highlight the high prevalence of TB among newly diagnosed HIV-infected patients in an area with high rates of drug-resistant TB and the utility of an active case finding strategy for TB diagnosis.
Collapse
Affiliation(s)
- Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | - Inga Kinkladze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Marcos C Schechter
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | - Nino Rukhadze
- Infectious Diseases, AIDS, and Clinical Immunology Research Center, Tbilisi, Georgia
| | - Lela Dzigua
- Infectious Diseases, AIDS, and Clinical Immunology Research Center, Tbilisi, Georgia
| | - Tengiz Tserstvadze
- Infectious Diseases, AIDS, and Clinical Immunology Research Center, Tbilisi, Georgia
| | - Carlos Del Rio
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Henry M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| |
Collapse
|
20
|
Balcells ME, Yokobori N, Hong BY, Corbett J, Cervantes J. The lung microbiome, vitamin D, and the tuberculous granuloma: A balance triangle. Microb Pathog 2019; 131:158-163. [PMID: 30953746 DOI: 10.1016/j.micpath.2019.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has the extraordinary ability to persist for decades within granulomas in the human host. These histopathological structures involved in both protection and pathogenesis, are subject to various influences from the host systemically and through micro-niche environments. Despite the fact that vitamin D (VD) has a key role in macrophage activation and mycobacterial clearance in the early stages of Mtb infection, the overall role of VD in granuloma maintenance or functionality has been scarcely studied. VD deficiency has long time been known to influence on gut microbiota composition, and recent studies have shown that it can also impact on respiratory microbiome. The human microbiota plays an important role in pathogen colonization resistance, and it has been proposed to play a potential role in TB pathogenesis. In this article, we have reviewed current knowledge on the interaction between VD, the lung microbiome and TB, and propose mechanisms by which the tuberculous granuloma's outcome could be modulated by these two factors. The determinants of the final fate of lung granulomas are still unclear, and deciphering the underlying drivers of Mtb infection outcome within those structures is of critical importance.
Collapse
Affiliation(s)
- María Elvira Balcells
- Department of Infectious Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemí Yokobori
- Instituto de Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| | - Bo-Young Hong
- Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - John Corbett
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, USA
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, USA.
| |
Collapse
|