1
|
Szulc N, Gąsior-Głogowska M, Żyłka P, Szefczyk M, Wojciechowski JW, Żak AM, Dyrka W, Kaczorowska A, Burdukiewicz M, Tarek M, Kotulska M. Structural effects of charge destabilization and amino acid substitutions in amyloid fragments of CsgA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124094. [PMID: 38503257 DOI: 10.1016/j.saa.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.
Collapse
Affiliation(s)
- Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; CNRS, University of Lorraine, F-5400 Nancy, France; Department of Physics and Biophysics, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paweł Żyłka
- Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej M Żak
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Witold Dyrka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Michał Burdukiewicz
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Campus Universitat Autònoma de Barcelona Plaça Cívica Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Clinical Research Centre, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Mounir Tarek
- CNRS, University of Lorraine, F-5400 Nancy, France.
| | - Malgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
2
|
Castel B, El Mahboubi K, Jacquet C, Delaux PM. Immunobiodiversity: Conserved and specific immunity across land plants and beyond. MOLECULAR PLANT 2024; 17:92-111. [PMID: 38102829 DOI: 10.1016/j.molp.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Angiosperms represent most plants that humans cultivate, grow, and eat. However, angiosperms are only one of five major land plant lineages. As a whole lineage, plants also include algal groups. All these clades represent a tremendous genetic diversity that can be investigated to reveal the evolutionary history of any given mechanism. In this review, we describe the current model of the plant immune system, discuss its evolution based on the recent literature, and propose future directions for the field. In angiosperms, plant-microbe interactions have been intensively studied, revealing essential cell surface and intracellular immune receptors, as well as metabolic and hormonal defense pathways. Exploring diversity at the genomic and functional levels demonstrates the conservation of these pathways across land plants, some of which are beyond plants. On basis of the conserved mechanisms, lineage-specific variations have occurred, leading to diversified reservoirs of immune mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to other species by integration of wild immune receptors or engineering of novel forms of receptors for improved resistance to pathogens. We propose that exploring further the diversity of immune mechanisms in the whole plant lineage will reveal completely novel sources of resistance to be deployed in crops.
Collapse
Affiliation(s)
- Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
3
|
Wojciechowski JW, Tekoglu E, Gąsior-Głogowska M, Coustou V, Szulc N, Szefczyk M, Kopaczyńska M, Saupe SJ, Dyrka W. Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins. PLoS Comput Biol 2022; 18:e1010787. [PMID: 36542665 PMCID: PMC9815663 DOI: 10.1371/journal.pcbi.1010787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/05/2023] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
NLR proteins are intracellular receptors constituting a conserved component of the innate immune system of cellular organisms. In fungi, NLRs are characterized by high diversity of architectures and presence of amyloid signaling. Here, we explore the diverse world of effector and signaling domains of fungal NLRs using state-of-the-art bioinformatic methods including MMseqs2 for fast clustering, probabilistic context-free grammars for sequence analysis, and AlphaFold2 deep neural networks for structure prediction. In addition to substantially improving the overall annotation, especially in basidiomycetes, the study identifies novel domains and reveals the structural similarity of MLKL-related HeLo- and Goodbye-like domains forming the most abundant superfamily of fungal NLR effectors. Moreover, compared to previous studies, we found several times more amyloid motif instances, including novel families, and validated aggregating and prion-forming properties of the most abundant of them in vitro and in vivo. Also, through an extensive in silico search, the NLR-associated amyloid signaling was identified in basidiomycetes. The emerging picture highlights similarities and differences in the NLR architectures and amyloid signaling in ascomycetes, basidiomycetes and other branches of life.
Collapse
Affiliation(s)
- Jakub W. Wojciechowski
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Emirhan Tekoglu
- Biyomühendislik Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Turkey
- Wydział Chemiczny, Politechnika Wrocławska, Poland
| | - Marlena Gąsior-Głogowska
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Virginie Coustou
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux, France
| | - Natalia Szulc
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Monika Szefczyk
- Katedra Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław, Poland
| | - Marta Kopaczyńska
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux, France
- * E-mail: (SJS); (WD)
| | - Witold Dyrka
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
- * E-mail: (SJS); (WD)
| |
Collapse
|
4
|
Abstract
Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the wtf system in the fission yeast Schizosaccharomyces pombe; the Sk spore killers of Neurospora species; and two spore-killer systems in Podospora anserina, Spok and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.
Collapse
Affiliation(s)
- Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France;
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
5
|
Detomasi TC, Rico-Ramírez AM, Sayler RI, Gonçalves AP, Marletta MA, Glass NL. A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in Neurospora crassa allorecognition. eLife 2022; 11:e80459. [PMID: 36040303 PMCID: PMC9550227 DOI: 10.7554/elife.80459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organisms require the ability to differentiate themselves from organisms of different or even the same species. Allorecognition processes in filamentous fungi are essential to ensure identity of an interconnected syncytial colony to protect it from exploitation and disease. Neurospora crassa has three cell fusion checkpoints controlling formation of an interconnected mycelial network. The locus that controls the second checkpoint, which allows for cell wall dissolution and subsequent fusion between cells/hyphae, cwr (cell wall remodeling), encodes two linked genes, cwr-1 and cwr-2. Previously, it was shown that cwr-1 and cwr-2 show severe linkage disequilibrium with six different haplogroups present in N. crassa populations. Isolates from an identical cwr haplogroup show robust fusion, while somatic cell fusion between isolates of different haplogroups is significantly blocked in cell wall dissolution. The cwr-1 gene encodes a putative polysaccharide monooxygenase (PMO). Herein we confirm that CWR-1 is a C1-oxidizing chitin PMO. We show that the catalytic (PMO) domain of CWR-1 was sufficient for checkpoint function and cell fusion blockage; however, through analysis of active-site, histidine-brace mutants, the catalytic activity of CWR-1 was ruled out as a major factor for allorecognition. Swapping a portion of the PMO domain (V86 to T130) did not switch cwr haplogroup specificity, but rather cells containing this chimera exhibited a novel haplogroup specificity. Allorecognition to mediate cell fusion blockage is likely occurring through a protein-protein interaction between CWR-1 with CWR-2. These data highlight a moonlighting role in allorecognition of the CWR-1 PMO domain.
Collapse
Affiliation(s)
- Tyler C Detomasi
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Richard I Sayler
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
| | - A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Michael A Marletta
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Rodriguez Gama A, Miller T, Lange JJ, Unruh JR, Halfmann R. A nucleation barrier spring-loads the CBM signalosome for binary activation. eLife 2022; 11:79826. [PMID: 35727133 PMCID: PMC9342958 DOI: 10.7554/elife.79826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Immune cells activate in binary, switch-like fashion via large protein assemblies known as signalosomes, but the molecular mechanism of the switch is not yet understood. Here, we employed an in-cell biophysical approach to dissect the assembly mechanism of the CARD-BCL10-MALT1 (CBM) signalosome, which governs nuclear transcription factor-κB activation in both innate and adaptive immunity. We found that the switch consists of a sequence-encoded and deeply conserved nucleation barrier to ordered polymerization by the adaptor protein BCL10. The particular structure of the BCL10 polymers did not matter for activity. Using optogenetic tools and single-cell transcriptional reporters, we discovered that endogenous BCL10 is functionally supersaturated even in unstimulated human cells, and this results in a predetermined response to stimulation upon nucleation by activated CARD multimers. Our findings may inform on the progressive nature of age-associated inflammation, and suggest that signalosome structure has evolved via selection for kinetic rather than equilibrium properties of the proteins. The innate immune system is the body’s first line of defence against pathogens. Although innate immune cells do not recognize specific disease-causing agents, they can detect extremely low levels of harmful organisms or substances. In response, they activate signals that lead to inflammation, which tells other cells that there is an infection. Innate immune cells are turned on in a switch-like fashion, becoming active very quickly after interacting with a pathogen. This is due to the action of signalosomes, large complexes made up of several proteins that clump together to form long chains that activate the cell. But how do these large protein complexes assemble quick enough to create the switch-like activation observed in innate immune cells? To answer this question, Rodríguez Gama et al. focused on the CBM signalosome, which is involved in triggering inflammation through the activation of a protein called NF-kB. First, Rodríguez Gama et al. used genetic tools to determine that activating the CBM signalosome drives a switch-like activation of NF-kB in cells. This means that individual cells in a population either become fully activated or not at all in response to minute amounts of harmful substances. Once they had established this, Rodríguez Gama et al. wanted to know which protein in the CBM signalosome was responsible for the switch. They found that one of the proteins in the signalosome, called BCL10, has a ‘nucleation barrier’ encoded in its sequence. This means that it is very hard for BCL10 to start clumping together, but once it does, the clumps grow on their own. The nucleation barrier describes exactly how hard it is for these clumps to get started, and is determined by how disorganized the protein is. When a pathogen ‘stimulates’ an immune cell, a tiny template is formed that lowers the nucleation barrier so that BCL10 can then aggregate itself together, leading to the switch-like behaviour observed. The nucleation barrier allows there to be more than enough BCL10 present in the cell at all times – ready to clump together at a moment’s notice – and this permits the cell to detect very low levels of a pathogen. Rodríguez Gama et al. then tested whether BCL10 from other animals also has a nucleation barrier. They found that this feature is conserved from cnidarians, such as corals or jellyfish, to mammals, including humans. This suggests that the use of nucleation barriers to regulate innate immune signalling has existed for a long time throughout evolution. The work by Rodríguez Gama et al. broadens our understanding of how the innate immune system senses and responds to extremely low levels of pathogens. That BCL10 is always ready to clump together suggests it may be a driving force for chronic and age-associated inflammation. Additionally, the findings of Rodríguez Gama et al. also offer insights into how other signalosomes may become activated, and offer the possibility of new drugs aimed at modifying nucleation barriers.
Collapse
Affiliation(s)
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
7
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
9
|
Folding Steps in the Fibrillation of Functional Amyloid: Denaturant Sensitivity Reveals Common Features in Nucleation and Elongation. J Mol Biol 2021; 434:167337. [PMID: 34748745 DOI: 10.1016/j.jmb.2021.167337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023]
Abstract
Functional bacterial amyloids (FuBA) are intrinsically disordered proteins (IDPs) which rapidly and efficiently aggregate, forming extremely stable fibrils. The conversion from IDP to amyloid is evolutionarily optimized and likely couples folding to association. Many FuBA contain several imperfect repeat sequences which contribute to the stability of mature FuBA fibrils. Aggregation can be considered an intermolecular extension of the process of intramolecular protein folding which has traditionally been studied using chemical denaturants. Here we employ denaturants to investigate folding steps during fibrillation of CsgA and FapC. We quantify protein compactification (i.e. the extent of burial of otherwise exposed surface area upon association of proteins) during different stages of fibrillation based on the dependence of fibrillation rate constants on the denaturant concentration (m-values) determined from fibrillation curves. For both proteins, urea mainly affects nucleation and elongation (not fragmentation), consistent with the fact that these steps involve both intra- and intermolecular association. The two steps have similar m-values, indicating that activation steps in nucleation and elongation involve the same level of folding. Surprisingly, deletion of two or three repeats from FapC leads to larger m-values (i.e. higher compactification) during the activation step of fibril growth. This observation is extended by SAXS analysis of the fibrils which indicates that weakening of the amyloidogenic core caused by repeat deletions causes a larger portion of normally unstructured regions of the protein to be included into the amyloid backbone. We conclude that the sensitivity of fibrillation to denaturants can provide useful insight into molecular mechanisms of aggregation.
Collapse
|
10
|
Dyrka W, Gąsior-Głogowska M, Szefczyk M, Szulc N. Searching for universal model of amyloid signaling motifs using probabilistic context-free grammars. BMC Bioinformatics 2021; 22:222. [PMID: 33926372 PMCID: PMC8086366 DOI: 10.1186/s12859-021-04139-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Background Amyloid signaling motifs are a class of protein motifs which share basic structural and functional features despite the lack of clear sequence homology. They are hard to detect in large sequence databases either with the alignment-based profile methods (due to short length and diversity) or with generic amyloid- and prion-finding tools (due to insufficient discriminative power). We propose to address the challenge with a machine learning grammatical model capable of generalizing over diverse collections of unaligned yet related motifs. Results First, we introduce and test improvements to our probabilistic context-free grammar framework for protein sequences that allow for inferring more sophisticated models achieving high sensitivity at low false positive rates. Then, we infer universal grammars for a collection of recently identified bacterial amyloid signaling motifs and demonstrate that the method is capable of generalizing by successfully searching for related motifs in fungi. The results are compared to available alternative methods. Finally, we conduct spectroscopy and staining analyses of selected peptides to verify their structural and functional relationship. Conclusions While the profile HMMs remain the method of choice for modeling homologous sets of sequences, PCFGs seem more suitable for building meta-family descriptors and extrapolating beyond the seed sample. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04139-y.
Collapse
Affiliation(s)
- Witold Dyrka
- Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Politechnika Wrocławska, Wrocław, Poland.
| | - Marlena Gąsior-Głogowska
- Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Politechnika Wrocławska, Wrocław, Poland
| | - Monika Szefczyk
- Wydział Chemiczny, Katedra Chemii Bioorganicznej, Politechnika Wrocławska, Wrocław, Poland
| | - Natalia Szulc
- Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Politechnika Wrocławska, Wrocław, Poland
| |
Collapse
|
11
|
Abstract
Formation of higher-order supramolecular complexes has emerged as a common principle underlying activity of a number of immune and regulated cell-death signalling pathways in animals, plants and fungi. Some of these signalosomes employ functional amyloid motifs in their assembly process. The description of such systems in fungi finds its origin in earlier studies on a fungal prion termed [Het-s], originally identified as a non-Mendelian cytoplasmic infectious element. Janine Beisson has been a key contributor to such early studies. Recent work on this and related systems offers a more integrated view framing this prion in a broader picture including related signalling systems described in animals. We propose here an auto-commentary centred on three recent studies on amyloid signalling in microbes. Collectively, these studies increase our understanding of fold conservation in functional amyloids and the structural basis of seeding, highlight the relation of fungal amyloid motifs to mammalian RHIM (RIP homotypic interaction motif) and expand the concept of Nod-like receptor-based amyloid signalosomes to the prokaryote reign.
Collapse
Affiliation(s)
- Asen Daskalov
- Institut de Biochimie et de Génétique Cellulaire (CNRS UMR 5095, Université de Bordeaux) , France
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire (CNRS UMR 5095, Université de Bordeaux) , France
| |
Collapse
|
12
|
Rodríguez Gama A, Miller T, Halfmann R. Mechanics of a molecular mousetrap-nucleation-limited innate immune signaling. Biophys J 2021; 120:1150-1160. [PMID: 33460595 PMCID: PMC8059202 DOI: 10.1016/j.bpj.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Innate immune responses, such as cell death and inflammatory signaling, are typically switch-like in nature. They also involve "prion-like" self-templating polymerization of one or more signaling proteins into massive macromolecular assemblies known as signalosomes. Despite the wealth of atomic-resolution structural information on signalosomes, how the constituent polymers nucleate and whether the switch-like nature of that event at the molecular scale relates to the digital nature of innate immune signaling at the cellular scale remains unknown. In this perspective, we review current knowledge of innate immune signalosome assembly, with an emphasis on structural constraints that allow the proteins to accumulate in inactive soluble forms poised for abrupt polymerization. We propose that structurally encoded nucleation barriers to protein polymerization kinetically regulate the corresponding pathways, which allows for extremely sensitive, rapid, and decisive signaling upon pathogen detection. We discuss how nucleation barriers satisfy the rigorous on-demand functions of the innate immune system but also predispose the system to precocious activation that may contribute to progressive age-associated inflammation.
Collapse
Affiliation(s)
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, Missouri; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
13
|
Levkovich SA, Rencus-Lazar S, Gazit E, Laor Bar-Yosef D. Microbial Prions: Dawn of a New Era. Trends Biochem Sci 2021; 46:391-405. [PMID: 33423939 DOI: 10.1016/j.tibs.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents. Here, we outline unorthodox examples of microbial prions in yeast and other microorganisms, focusing on their noncanonical functions. We discuss novel molecular mechanisms for the inheritance of conformationally-encoded epigenetic information and the evolutionary advantages they confer. Lastly, in light of recent advancements in the field of molecular self-assembly, we present a hypothesis regarding the existence of non-proteinaceous prion-like entities.
Collapse
Affiliation(s)
- Shon A Levkovich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Laor Bar-Yosef
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|