1
|
Luth MR, Godinez-Macias KP, Chen D, Okombo J, Thathy V, Cheng X, Daggupati S, Davies H, Dhingra SK, Economy JM, Edgar RCS, Gomez-Lorenzo MG, Istvan ES, Jado JC, LaMonte GM, Melillo B, Mok S, Narwal SK, Ndiaye T, Ottilie S, Palomo Diaz S, Park H, Peña S, Rocamora F, Sakata-Kato T, Small-Saunders JL, Summers RL, Tumwebaze PK, Vanaerschot M, Xia G, Yeo T, You A, Gamo FJ, Goldberg DE, Lee MCS, McNamara CW, Ndiaye D, Rosenthal PJ, Schreiber SL, Serra G, De Siqueira-Neto JL, Skinner-Adams TS, Uhlemann AC, Kato N, Lukens AK, Wirth DF, Fidock DA, Winzeler EA. Systematic in vitro evolution in Plasmodium falciparum reveals key determinants of drug resistance. Science 2024; 386:eadk9893. [PMID: 39607932 DOI: 10.1126/science.adk9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/21/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Surveillance of drug resistance and the discovery of novel targets-key objectives in the fight against malaria-rely on identifying resistance-conferring mutations in Plasmodium parasites. Current approaches, while successful, require laborious experimentation or large sample sizes. To elucidate shared determinants of antimalarial resistance that can empower in silico inference, we examined the genomes of 724 Plasmodium falciparum clones, each selected in vitro for resistance to one of 118 compounds. We identified 1448 variants in 128 recurrently mutated genes, including drivers of antimalarial multidrug resistance. In contrast to naturally occurring variants, those selected in vitro are more likely to be missense or frameshift, involve bulky substitutions, and occur in conserved, ordered protein domains. Collectively, our dataset reveals mutation features that predict drug resistance in eukaryotic pathogens.
Collapse
Affiliation(s)
- Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | - Daisy Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - John Okombo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute, Beijing, China
| | - Sindhu Daggupati
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Heledd Davies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan M Economy
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca C S Edgar
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Eva S Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juan Carlos Jado
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gregory M LaMonte
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tolla Ndiaye
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stella Peña
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tomoyo Sakata-Kato
- Global Health Drug Discovery Institute, Beijing, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert L Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | | | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guoqin Xia
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashley You
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | - Daniel E Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Gloria Serra
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Jair Lage De Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tina S Skinner-Adams
- Institute for Biomedicine and Glycomics and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nobutaka Kato
- Global Health Drug Discovery Institute, Beijing, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Zhu H, Zhu D, Wu K, He W, Li L, Li T, Liu L, Liu Z, Song X, Cheng W, Mo J, Yao Y, Li J. Establishment and evaluation of a qPCR method for the detection of pfmdr1 mutations in Plasmodium falciparum, the causal agent of fatal malaria. Diagn Microbiol Infect Dis 2024; 110:116400. [PMID: 38909426 DOI: 10.1016/j.diagmicrobio.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Drug resistance surveillance is a major integral part of malaria control programs. Molecular methods play a pivotal role in drug resistance detection and related molecular research. This study aimed to develop a rapid and accurate detection method for drug resistance of Plasmodium falciparum (P. falciparum). A quantitative real-time PCR (qPCR) assay has been developed that identifies the mutation at locus A256T in the P.falciparum multi-drug resistance(pfmdr1) gene producing amino acid change at position 86. The results of 198 samples detected by qPCR were consistent with nested PCR and sequencing, giving an accuracy of 94.3%. The sensitivity, specificity, positive and negative predictive value of qPCR were 85.7%, 97.6%, 90.0% and 96.4%, respectively. The results of qPCR are basically consistent with the nested PCR, which is expected to replace the nested PCR as a new molecular biological method for drug resistance detection, providing reliable technical support for global malaria prevention and control.
Collapse
Affiliation(s)
- Huiyin Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Daiqian Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Kai Wu
- Wuhan Centers for Disease Prevention and Control, Wuhan 430024, PR China
| | - Wei He
- Jiangnan University, Wuxi 442000, PR China
| | - Liugen Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Tongfei Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Long Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaonan Song
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Weijia Cheng
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinyu Mo
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jian Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
3
|
Matrevi SA, Adams T, Tandoh KZ, Opoku-Agyeman P, Bruku S, Ennuson NA, Apau-Danso PK, Fiagbedzi E, Avornyo M, Myers CJ, Futagbi J, Hagan OC, Abuaku B, Koram KA, Awandare G, Quashie NB, Duah-Quashie NO. Putative molecular markers of Plasmodium falciparum resistance to antimalarial drugs in malaria parasites from Ghana. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1279835. [PMID: 38456076 PMCID: PMC10910922 DOI: 10.3389/fepid.2024.1279835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Antimalarial drugs including artemisinin-based combination therapy (ACT) regimens and sulphadoxine-pyrimethamine (SP) are used in Ghana for malaria therapeutics and prophylaxis respectively. The genetic basis of Plasmodium falciparum development of drug resistance involves single nucleotide polymorphisms in genes encoding proteins for multiple cellular and metabolic processes. The prevalence of single nucleotide polymorphisms in nine P. falciparum genes linked to ACT and SP resistance in the malaria parasite population was determined. Methods Archived filter paper blood blot samples from patients aged 9 years and below with uncomplicated malaria reporting at 10 sentinel sites located in three ecological zones for the Malaria Therapeutic Efficacy Studies were used. The samples used were collected from 2007-2018 malaria transmission seasons and mutations in the genes were detected using PCR and Sanger sequencing. Results In all 1,142 samples were used for the study. For falcipain-2 gene (pffp2), Sanger sequencing was successful for 872 samples and were further analysed. The prevalence of the mutants was 45% (392/872) with pffp2 markers V51I and S59F occurring in 15.0% (128/872) and 3.0% (26/872) of the samples respectively. Prevalence of other P. falciparum gene mutations: coronin (pfcoronin) was 44.8% (37/90); cysteine desulfurase (pfnfs) was 73.9% (68/92); apicoplast ribosomal protein S10 (pfarps10) was 36.8% (35/95); ferredoxin (pffd) was 8.8% (8/91); multidrug resistance protein-1 (pfmrp1) was 95.2.0% (80/84); multidrug resistance protein-2 (pfmrp2) was 91.4% (32/35); dihydrofolate reductase (pfdhfr) was 99.0% (84/85); dihydropteroate synthase (pfdhps) was 72% (68/95). Discussion The observation of numerous mutations in these genes of interest in the Ghanaian isolates, some of which have been implicated in delayed parasite clearance is of great interest. The presence of these genotypes may account for the decline in the efficacies of ACT regimens being used to treat uncomplicated malaria in the country. The need for continuous monitoring of these genetic markers to give first-hand information on parasite susceptibility to antimalarial drugs to inform policy makers and stakeholders in malaria elimination in the country is further discussed.
Collapse
Affiliation(s)
- Sena Adzoa Matrevi
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Tryphena Adams
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwesi Zandoh Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Philip Opoku-Agyeman
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Selassie Bruku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Aba Ennuson
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Paa Kwesi Apau-Danso
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Emmanuel Fiagbedzi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Mary Avornyo
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Charles James Myers
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Joy Futagbi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Oheneba Charles Hagan
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Ansah Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Koonyosying P, Srichairatanakool S, Tiwananthagorn S, Sthitmatee N. Inhibitory effects on bovine babesial infection by iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2-methylpyridin-4-one (CM1), and antimalarial drugs. Vet Parasitol 2023; 324:110055. [PMID: 37931475 DOI: 10.1016/j.vetpar.2023.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 μM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 μM, artefenomel 2.56 ± 0.67 μM, chloroquine 2.14 ± 0.76 μM, primaquine 22.61 ± 6.72 μM, dihydroarthemisinine 4.65 ± 0.22 μM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 μM, and diminazine aceturate 0.42 ± 0.01 μM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.
Collapse
Affiliation(s)
- Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saruda Tiwananthagorn
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
5
|
Schaffner SF, Badiane A, Khorgade A, Ndiop M, Gomis J, Wong W, Ndiaye YD, Diedhiou Y, Thwing J, Seck MC, Early A, Sy M, Deme A, Diallo MA, Sy N, Sene A, Ndiaye T, Sow D, Dieye B, Ndiaye IM, Gaye A, Ndiaye A, Battle KE, Proctor JL, Bever C, Fall FB, Diallo I, Gaye S, Sene D, Hartl DL, Wirth DF, MacInnis B, Ndiaye D, Volkman SK. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. Nat Commun 2023; 14:7268. [PMID: 37949851 PMCID: PMC10638404 DOI: 10.1038/s41467-023-43087-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
We here analyze data from the first year of an ongoing nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal. The analysis is based on 1097 samples collected at health facilities during passive malaria case detection in 2019; it provides a baseline for analyzing parasite genetic metrics as they vary over time and geographic space. The study's goal was to identify genetic metrics that were informative about transmission intensity and other aspects of transmission dynamics, focusing on measures of genetic relatedness between parasites. We found the best genetic proxy for local malaria incidence to be the proportion of polygenomic infections (those with multiple genetically distinct parasites), although this relationship broke down at low incidence. The proportion of related parasites was less correlated with incidence while local genetic diversity was uninformative. The type of relatedness could discriminate local transmission patterns: two nearby areas had similarly high fractions of relatives, but one was dominated by clones and the other by outcrossed relatives. Throughout Senegal, 58% of related parasites belonged to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci and at one novel locus, reflective of ongoing selection pressure.
Collapse
Affiliation(s)
- Stephen F Schaffner
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Aida Badiane
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Akanksha Khorgade
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Medoune Ndiop
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Jules Gomis
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yaye Die Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Younouss Diedhiou
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Julie Thwing
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mame Cheikh Seck
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Angela Early
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Mouhamad Sy
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Awa Deme
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Mamadou Alpha Diallo
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ngayo Sy
- Section de Lutte Anti-Parasitaire (SLAP) Clinic, Thies, Senegal
| | - Aita Sene
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Tolla Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Djiby Sow
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Baba Dieye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Amy Gaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Aliou Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Katherine E Battle
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin Bever
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Ibrahima Diallo
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Seynabou Gaye
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Doudou Sene
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Bronwyn MacInnis
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Daouda Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Sarah K Volkman
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA.
| |
Collapse
|
6
|
Balta VA, Stiffler D, Sayeed A, Tripathi AK, Elahi R, Mlambo G, Bakshi RP, Dziedzic AG, Jedlicka AE, Nenortas E, Romero-Rodriguez K, Canonizado MA, Mann A, Owen A, Sullivan DJ, Prigge ST, Sinnis P, Shapiro TA. Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito. Nat Commun 2023; 14:6415. [PMID: 37828012 PMCID: PMC10570281 DOI: 10.1038/s41467-023-42030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field.
Collapse
Affiliation(s)
- Victoria A Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Deborah Stiffler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Abeer Sayeed
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Rahul P Bakshi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Amanda G Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Anne E Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Keyla Romero-Rodriguez
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Matthew A Canonizado
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Alexis Mann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L69 3BX, UK
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Sean T Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Theresa A Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA.
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA.
| |
Collapse
|
7
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
8
|
Schaffner SF, Badiane A, Khorgade A, Ndiop M, Gomis J, Wong W, Ndiaye YD, Diedhiou Y, Thwing J, Seck MC, Early A, Sy M, Deme A, Diallo MA, Sy N, Sene A, Ndiaye T, Sow D, Dieye B, Ndiaye IM, Gaye A, Ndiaye A, Battle KE, Proctor JL, Bever C, Fall FB, Diallo I, Gaye S, Sene D, Hartl DL, Wirth DF, MacInnis B, Ndiaye D, Volkman SK. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.11.23288401. [PMID: 37131838 PMCID: PMC10153316 DOI: 10.1101/2023.04.11.23288401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Parasite genetic surveillance has the potential to play an important role in malaria control. We describe here an analysis of data from the first year of an ongoing, nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal, intended to provide actionable information for malaria control efforts. Looking for a good proxy for local malaria incidence, we found that the best predictor was the proportion of polygenomic infections (those with multiple genetically distinct parasites), although that relationship broke down in very low incidence settings (r = 0.77 overall). The proportion of closely related parasites in a site was more weakly correlated ( r = -0.44) with incidence while the local genetic diversity was uninformative. Study of related parasites indicated their potential for discriminating local transmission patterns: two nearby study areas had similarly high fractions of relatives, but one area was dominated by clones and the other by outcrossed relatives. Throughout the country, 58% of related parasites proved to belong to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci as well as at one novel locus, reflective of ongoing selection pressure.
Collapse
|
9
|
Balta VA, Stiffler D, Sayeed A, Tripathi AK, Elahi R, Mlambo G, Bakshi RP, Dziedzic AG, Jedlicka AE, Nenortas E, Romero-Rodriguez K, Canonizado MA, Mann A, Owen A, Sullivan DJ, Prigge ST, Sinnis P, Shapiro TA. Transmissibility of clinically relevant atovaquone-resistant Plasmodium falciparum by anopheline mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527535. [PMID: 36798298 PMCID: PMC9934642 DOI: 10.1101/2023.02.07.527535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Rising numbers of malaria cases and deaths underscore the need for new interventions. Long-acting injectable medications, such as those now in use for HIV prophylaxis, offer the prospect of a malaria "chemical vaccine", combining the efficacy of a drug (like atovaquone) with the durability of a biological vaccine. Of concern, however, is the possible selection and transmission of drug-resistant parasites. We addressed this question by generating clinically relevant, highly atovaquone-resistant, Plasmodium falciparum mutants competent to infect mosquitoes. Isogenic paired strains, that differ only by a single Y268S mutation in cytochrome b, were evaluated in parallel in southeast Asian (Anopheles stephensi) or African (Anopheles gambiae) mosquitoes, and thence in humanized mice. Fitness costs of the mutation were evident along the lifecycle, in asexual parasite growth in vitro and in a progressive loss of parasites in the mosquito. In numerous independent experiments, microscopic exam of salivary glands from hundreds of mosquitoes failed to detect even one Y268S sporozoite, a defect not rescued by coinfection with wild type parasites. Furthermore, despite uniformly successful transmission of wild type parasites from An. stephensi to FRG NOD huHep mice bearing human hepatocytes and erythrocytes, multiple attempts with Y268S-fed mosquitoes failed: there was no evidence of parasites in mouse tissues by microscopy, in vitro culture, or PCR. These studies confirm a severe-to-lethal fitness cost of clinically relevant atovaquone-resistant P. falciparum in the mosquito, and they significantly lessen the likelihood of their transmission in the field.
Collapse
Affiliation(s)
- Victoria A. Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Deborah Stiffler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Abeer Sayeed
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Abhai K. Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Rahul P. Bakshi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Amanda G. Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
| | - Anne E. Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Keyla Romero-Rodriguez
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Matthew A. Canonizado
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Alexis Mann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3BX, UK
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Sean T. Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Theresa A. Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| |
Collapse
|
10
|
Lê HG, Naw H, Kang JM, Võ TC, Myint MK, Htun ZT, Lee J, Yoo WG, Kim TS, Shin HJ, Na BK. Molecular Profiles of Multiple Antimalarial Drug Resistance Markers in Plasmodium falciparum and Plasmodium vivax in the Mandalay Region, Myanmar. Microorganisms 2022; 10:2021. [PMID: 36296297 PMCID: PMC9612053 DOI: 10.3390/microorganisms10102021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 09/21/2023] Open
Abstract
Emergence and spreading of antimalarial drug resistant malaria parasites are great hurdles to combating malaria. Although approaches to investigate antimalarial drug resistance status in Myanmar malaria parasites have been made, more expanded studies are necessary to understand the nationwide aspect of antimalarial drug resistance. In the present study, molecular epidemiological analysis for antimalarial drug resistance genes in Plasmodium falciparum and P. vivax from the Mandalay region of Myanmar was performed. Blood samples were collected from patients infected with P. falciparum and P. vivax in four townships around the Mandalay region, Myanmar in 2015. Partial regions flanking major mutations in 11 antimalarial drug resistance genes, including seven genes (pfdhfr, pfdhps, pfmdr-1, pfcrt, pfk13, pfubp-1, and pfcytb) of P. falciparum and four genes (pvdhfr, pvdhps, pvmdr-1, and pvk12) of P. vivax were amplified, sequenced, and overall mutation patterns in these genes were analyzed. Substantial levels of mutations conferring antimalarial drug resistance were detected in both P. falciparum and P. vivax isolated in Mandalay region of Myanmar. Mutations associated with sulfadoxine-pyrimethamine resistance were found in pfdhfr, pfdhps, pvdhfr, and pvdhps of Myanmar P. falciparum and P. vivax with very high frequencies up to 90%. High or moderate levels of mutations were detected in genes such as pfmdr-1, pfcrt, and pvmdr-1 associated with chloroquine resistance. Meanwhile, low frequency mutations or none were found in pfk13, pfubp-1, pfcytb, and pvk12 of the parasites. Overall molecular profiles for antimalarial drug resistance genes in malaria parasites in the Mandalay region suggest that parasite populations in the region have substantial levels of mutations conferring antimalarial drug resistance. Continuous monitoring of mutations linked with antimalarial drug resistance is necessary to provide useful information for policymakers to plan for proper antimalarial drug regimens to control and eliminate malaria in the country.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin 05062, Myanmar
| | - Zaw Than Htun
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin 05062, Myanmar
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon 22212, Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon 22212, Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University College of Medicine, Suwon 16499, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
11
|
Babesia, Theileria, Plasmodium and Hemoglobin. Microorganisms 2022; 10:microorganisms10081651. [PMID: 36014069 PMCID: PMC9414693 DOI: 10.3390/microorganisms10081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The Propagation of Plasmodium spp. and Babesia/Theileria spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host’s red blood cell (RBC). The cellular processes of uptake, trafficking and metabolic processing of host RBC proteins are thus crucial for the intraerythrocytic development of these parasites. In contrast to malarial Plasmodia, the molecular mechanisms of uptake and processing of the major RBC cytoplasmic protein hemoglobin remain widely unexplored in intraerythrocytic Babesia/Theileria species. In the paper, we thus provide an updated comparison of the intraerythrocytic stage feeding mechanisms of these two distantly related groups of parasitic Apicomplexa. As the associated metabolic pathways including proteolytic degradation and networks facilitating heme homeostasis represent attractive targets for diverse antimalarials, and alterations in these pathways underpin several mechanisms of malaria drug resistance, our ambition is to highlight some fundamental differences resulting in different implications for parasite management with the potential for novel interventions against Babesia/Theileria infections.
Collapse
|
12
|
Carpi G, Gorenstein L, Harkins TT, Samadi M, Vats P. A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study. Brief Bioinform 2022; 23:6658853. [PMID: 35945154 PMCID: PMC9487672 DOI: 10.1093/bib/bbac314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility.
Collapse
Affiliation(s)
- Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN, USA.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lev Gorenstein
- Rosen Center for Advanced Computing, Purdue University, West Lafayette IN, USA
| | | | | | - Pankaj Vats
- NVIDIA, 2788 San Tomas, Santa Clara, CA, USA
| |
Collapse
|
13
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
14
|
Okombo J, Kanai M, Deni I, Fidock DA. Genomic and Genetic Approaches to Studying Antimalarial Drug Resistance and Plasmodium Biology. Trends Parasitol 2021; 37:476-492. [PMID: 33715941 PMCID: PMC8162148 DOI: 10.1016/j.pt.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in genomics and molecular genetics has empowered novel approaches to study gene functions in disease-causing pathogens. In the human malaria parasite Plasmodium falciparum, the application of genome-based analyses, site-directed genome editing, and genetic systems that allow for temporal and quantitative regulation of gene and protein expression have been invaluable in defining the genetic basis of antimalarial resistance and elucidating candidate targets to accelerate drug discovery efforts. Using examples from recent studies, we review applications of some of these approaches in advancing our understanding of Plasmodium biology and illustrate their contributions and limitations in characterizing parasite genomic loci associated with antimalarial drug responses.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioanna Deni
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|