1
|
Roterman CN, McArthur M, Laverty Baralle C, Marsh L, Copley JT. Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae). PLoS One 2025; 20:e0314320. [PMID: 39908246 DOI: 10.1371/journal.pone.0314320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/07/2024] [Indexed: 02/07/2025] Open
Abstract
Yeti crabs (Kiwaidae) are deep-sea hydrothermal vent and methane seep dwelling crustaceans that farm chemosynthetic microbes on their bodies. Sexual dimorphism is a common feature of decapod crustaceans, but little is known about its prevalence in species from deep-sea habitats. We address this knowledge deficit by investigating claw sexual dimorphism and symmetry in the hydrothermal-vent endemic 'Hoff crab', Kiwa tyleri. A total of 135 specimens from the East Scotia Ridge were examined, revealing mean asymmetry indices close to zero with respect to propodus length and height, albeit with a significantly larger number of marginally left-dominant individuals with respect to propodus length, possibly indicative of some task specialisation between claws, or a vestigial ancestral trait. Both male and female claws exhibit positive allometry with increasing carapace length, but males possess significantly larger claws compared with females when accounting for carapace size, exhibiting faster growing propodus length, and broader propodus heights throughout the size distribution. This marked difference is indicative of either male-male competition for mate access, sexual selection, or differential energy allocation (growth vs reproduction) between males and females, as observed in other decapod crustaceans. In contrast, a reanalysis of data for the methane seep inhabiting yeti crab Kiwa puravida revealed no significant difference in claw allometry, indicating a possible lack of similar sexual selection pressures, and highlighting potential key differences in the ecological and reproductive strategies of K. tyleri and K. puravida relating to claw function, microbial productivity and population density. Whether sex differences in claw allometry represents the norm or the exception in Kiwaidae will require the examination of other species in the family. This research enhances our understanding of the behaviour, ecology and evolution of yeti crabs, providing a basis for future studies.
Collapse
Affiliation(s)
| | - Molly McArthur
- Institute of Marine Science, University of Portsmouth, Portsmouth, United Kingdom
| | | | - Leigh Marsh
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Jon T Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|
2
|
Yan Y, Seim I, Guo Y, Chi X, Zhong Z, Wang D, Li M, Wang H, Zhang H, Wang M, Li C. Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps. BMC Biol 2025; 23:13. [PMID: 39806408 PMCID: PMC11730519 DOI: 10.1186/s12915-025-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea. Supporting this, transcriptomic and fatty acid data further corroborate our findings. RESULTS We report the first genome of a deep-sea spionid, L. polybranchiata. Over long-term adaptive evolution, genes associated with vision and biological rhythmicity were lost, which may indirectly benefit oligotrophy by eliminating energetically costly processes. Compared to its shallow-sea relatives, L. polybranchiata has a significantly higher proportion of polyunsaturated fatty acids (PUFAs) and expanded gene families involved in the biosynthesis of unsaturated fatty acids and chromatin stabilization, possibly in response to high hydrostatic pressure. Additionally, L. polybranchiata has broad digestive scope, allowing it to fully utilize the limited food resources in the deep sea to sustain a large population. As a pioneer species, L. polybranchiata has an expanded repertoire of genes encoding potential chemoreceptor proteins, including ionotropic receptors (IRs) and gustatory receptor-like receptors (GRLs). These proteins, characterized by their conserved 3D structures, may enhance the organism's ability to detect chemical cues in chemosynthetic ecosystems, facilitating rapid settlement in suitable environments. CONCLUSIONS Our results shed light on the adaptation of Lindaspio to the darkness, high hydrostatic pressure, and food deprivation in the deep sea, providing insights into the molecular basis for L. polybranchiata becoming a pioneer species.
Collapse
Affiliation(s)
- Yujie Yan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Yang Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Haining Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Wang H, He K, Zhang H, Zhang Q, Cao L, Li J, Zhong Z, Chen H, Zhou L, Lian C, Wang M, Chen K, Qian PY, Li C. Deciphering deep-sea chemosynthetic symbiosis by single-nucleus RNA-sequencing. eLife 2024; 12:RP88294. [PMID: 39102287 PMCID: PMC11299980 DOI: 10.7554/elife.88294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host-symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill's structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host-symbiont interaction and the bivalves' environmental adaption mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Jing Li
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Yan G, Wei T, Lan Y, Xu T, Qian P. Different parts of the mussel Gigantidas haimaensis holobiont responded differently to deep-sea sampling stress. Integr Zool 2024. [PMID: 39072987 DOI: 10.1111/1749-4877.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Acute environmental changes cause stress during conventional deep-sea biological sampling without in situ fixation and affect gene expressions of samples collected. However, the degree of influence and underlying mechanisms are hardly investigated. Here, we conducted comparative transcriptomic analyses between in situ and onboard fixed gills and between in situ and onboard fixed mantles of deep-sea mussel Gigantidas haimaensis to assess the effects of incidental sampling stress. Results showed that transcription, translation, and energy metabolism were upregulated in onboard fixed gills and mantles, thereby mobilizing rapid gene expression to tackle the stress. Autophagy and phagocytosis that related to symbiotic interactions between the host and endosymbiont were downregulated in the onboard fixed gills. These findings demonstrated that symbiotic gill and nonsymbiotic mantle responded differently to sampling stress, and symbiosis in the gill was perturbed. Further comparative metatranscriptomic analysis between in situ and onboard fixed gills revealed that stress response genes, peptidoglycan biosynthesis, and methane fixation were upregulated in the onboard fixed endosymbiotic Gammaproteobacteria inside the gills, implying that energy metabolism of the endosymbiont was increased to cope with sampling stress. Furthermore, comparative analysis between the mussel G. haimaensis and the limpet Bathyacmaea lactea transcriptomes resultedidentified six transcription factor orthologs upregulated in both onboard fixed mussel mantles and limpets, including sharply increased early growth response protein 1 and Kruppel-like factor 5. They potentially play key roles in initiating the response of sampled deep-sea macrobenthos to sampling stress. Our results clearly show that in situ fixed biological samples are vital for studying deep-sea environmental adaptation.
Collapse
Affiliation(s)
- Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
5
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
6
|
Thompson C, Ortmann AC, Bolhuis H, Makhalanyane T, Thompson F. Harnessing marine microbiomes to develop a sustainable, all-Atlantic bioeconomy. MLIFE 2024; 3:163-166. [PMID: 38948138 PMCID: PMC11211665 DOI: 10.1002/mlf2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Cristiane Thompson
- Institute of BiologyFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Alice C. Ortmann
- Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - Henk Bolhuis
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ)The Netherlands
| | - Thulani Makhalanyane
- Department of Microbiology, School of Data Science and Computational ThinkingStellenbosch UniversityStellenboschSouth Africa
| | - Fabiano Thompson
- Institute of BiologyFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| |
Collapse
|
7
|
Turrini P, Chebbi A, Riggio FP, Visca P. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives. Front Microbiol 2024; 15:1370520. [PMID: 38572233 PMCID: PMC10987966 DOI: 10.3389/fmicb.2024.1370520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Caves are ubiquitous subterranean voids, accounting for a still largely unexplored surface of the Earth underground. Due to the absence of sunlight and physical segregation, caves are naturally colonized by microorganisms that have developed distinctive capabilities to thrive under extreme conditions of darkness and oligotrophy. Here, the microbiomes colonizing three frequently studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava tubes among volcanic caves, have comparatively been reviewed. Geological configurations, nutrient availability, and energy flows in caves are key ecological drivers shaping cave microbiomes through photic, twilight, transient, and deep cave zones. Chemoheterotrophic microbial communities, whose sustenance depends on nutrients supplied from outside, are prevalent in limestone and volcanic caves, while elevated inorganic chemical energy is available in SAS caves, enabling primary production through chemolithoautotrophy. The 16S rRNA-based metataxonomic profiles of cave microbiomes were retrieved from previous studies employing the Illumina platform for sequencing the prokaryotic V3-V4 hypervariable region to compare the microbial community structures from different cave systems and environmental samples. Limestone caves and lava tubes are colonized by largely overlapping bacterial phyla, with the prevalence of Pseudomonadota and Actinomycetota, whereas the co-dominance of Pseudomonadota and Campylobacterota members characterizes SAS caves. Most of the metataxonomic profiling data have so far been collected from the twilight and transient zones, while deep cave zones remain elusive, deserving further exploration. Integrative approaches for future geomicrobiology studies are suggested to gain comprehensive insights into the different cave types and zones. This review also poses novel research questions for unveiling the metabolic and genomic capabilities of cave microorganisms, paving the way for their potential biotechnological applications.
Collapse
Affiliation(s)
- Paolo Turrini
- Department of Science, Roma Tre University, Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
8
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
9
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
10
|
Sun Y, Wang M, Cao L, Seim I, Zhou L, Chen J, Wang H, Zhong Z, Chen H, Fu L, Li M, Li C, Sun S. Mosaic environment-driven evolution of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont. MICROBIOME 2023; 11:253. [PMID: 37974296 PMCID: PMC10652631 DOI: 10.1186/s40168-023-01695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear. RESULTS Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep. Endosymbiont genomes were assembled using a pipeline that distinguishes within-species variation and revealed highly heterogeneous compositions in mussels from different habitats. Phylogenetic analysis separated the assemblies into three distinct environment-linked clades. Their functional differentiation follows a mosaic evolutionary pattern. Core genes, essential for central metabolic function and symbiosis, were conserved across all clades. Clade-specific genes associated with heavy metal resistance, pH homeostasis, and nitrate utilization exhibited signals of accelerated evolution. Notably, transposable elements and plasmids contributed to the genetic reshuffling of the symbiont genomes and likely accelerated adaptive evolution through pseudogenization and the introduction of new genes. CONCLUSIONS The current study uncovers the environment-driven evolution of deep-sea symbionts mediated by mobile genetic elements. Its findings highlight a potentially common and critical role of within-species diversity in animal-microbiome symbioses. Video Abstract.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Lei Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Gao ZM, Xu T, Chen HG, Lu R, Tao J, Wang HB, Qiu JW, Wang Y. Early genome erosion and internal phage-symbiont-host interaction in the endosymbionts of a cold-seep tubeworm. iScience 2023; 26:107033. [PMID: 37389180 PMCID: PMC10300362 DOI: 10.1016/j.isci.2023.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Endosymbiosis with chemosynthetic Gammaproteobacteria is widely recognized as an adaptive mechanism of siboglinid tubeworms, yet evolution of these endosymbionts and their driving forces remain elusive. Here, we report a finished endosymbiont genome (HMS1) of the cold-seep tubeworm Sclerolinum annulatum. The HMS1 genome is small in size, with abundant prophages and transposable elements but lacking gene sets coding for denitrification, hydrogen oxidization, oxidative phosphorylation, vitamin biosynthesis, cell pH and/or sodium homeostasis, environmental sensing, and motility, indicative of early genome erosion and adaptive evolution toward obligate endosymbiosis. Unexpectedly, a prophage embedded in the HMS1 genome undergoes lytic cycle. Highly expressed ROS scavenger and LexA repressor genes indicate that the tubeworm host likely activates the lysogenic phage into lytic cycle through the SOS response to regulate endosymbiont population and harvest nutrients. Our findings indicate progressive evolution of Sclerolinum endosymbionts toward obligate endosymbiosis and expand the knowledge about phage-symbiont-host interaction in deep-sea tubeworms.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Ting Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hua-Guan Chen
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Lu
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Hong-Bin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| |
Collapse
|
12
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
13
|
Chen C, Sigwart JD. The lost vent gastropod species of Lothar A. Beck. Zootaxa 2023; 5270:401-436. [PMID: 37518156 DOI: 10.11646/zootaxa.5270.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/01/2023]
Abstract
Deep-sea hydrothermal vents host many endemic species adapted to these chemosynthesis-based ecosystems. The exploration of vent fields including those in the tropical Pacific is currently accelerating, due to the development of deep-sea mining for valuable minerals. Molecular evidence has shown that many vent endemic gastropod lineages include sibling species pairs in adjacent oceanic basins. While the fauna of the Manus Basin is relatively well described, many lineages in adjacent regions in North Fiji or Lau Basins are recognised as separate species, but unnamed. Valuable material from this fauna was studied by Lothar A. Beck in the 1990s, who fully drafted descriptions for these species, but did not publish them. Beck's manuscript names, prior to the present study, represented real species but nomina nuda without taxonomic validity. Here we present the descriptions of seven new species and one new genus, extracted from Beck's unpublished manuscript that was rediscovered after his death in 2020. The publication of these descriptions makes them taxonomically available and respects the scientific contributions of Beck. Providing valid descriptions of these species is critically important now to enable the recognition of species that may require conservation in the face of future environmental destruction. Symmetriapelta Beck, gen. nov. is described as new genus. Bathyacmaea nadinae Beck, sp. nov., Pyropelta ovalis Beck, sp. nov., Pseudorimula leisei Beck, sp. nov., Lepetodrilus fijiensis Beck, sp. nov., Shinkailepas conspira Beck, sp. nov., Symmetromphalus mcleani Beck, sp. nov. and Symmetriapelta wareni Beck, sp. nov. are introduced as new species.
Collapse
Affiliation(s)
- Chong Chen
- X-STAR; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima-cho; Yokosuka; Kanagawa; 237- 0061; Japan.
| | - Julia D Sigwart
- Department of Marine Zoology; Senckenberg Research Institute and Museum; Frankfurt; Germany.
| |
Collapse
|
14
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
15
|
Guo Y, Meng L, Wang M, Zhong Z, Li D, Zhang Y, Li H, Zhang H, Seim I, Li Y, Jiang A, Ji Q, Su X, Chen J, Fan G, Li C, Liu S. Hologenome analysis reveals independent evolution to chemosymbiosis by deep-sea bivalves. BMC Biol 2023; 21:51. [PMID: 36882766 PMCID: PMC9993606 DOI: 10.1186/s12915-023-01551-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution. RESULTS We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta. CONCLUSIONS Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.
Collapse
Affiliation(s)
- Yang Guo
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingfeng Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Denghui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanbo Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuli Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Aijun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qianyue Ji
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xiaoshan Su
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- College of Marine Science, University of Chinese Academy of Sciences, Qingdao, 266400, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI-qingdao, Qingdao, China.
| |
Collapse
|
16
|
Pop MM, Di Lorenzo T, Iepure S. Living on the edge – An overview of invertebrates from groundwater habitats prone to extreme environmental conditions. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1054841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Groundwater ecosystems from cold polar and circumpolar regions, hot springs, as well as those developed in salt, gypsum or in volcanic rocks are one of the environments considered to exhibit extreme environmental conditions such as low (below 0°C) or high (over 45°C) temperatures, hypersaline waters, or with elevated content of toxic gases like hydrogen sulfide or methane. They represent the “unseen ecosystem beneath our feet” and are inhabited by a large diversity of organisms, persisting and flourishing under severe environmental conditions that are usually hostile to the majority of organisms. These types of groundwater ecosystems are remarkable “evolutionary hotspots” that witnessed the adaptive radiation of morphologically and ecologically diverse species, whereas the organisms living here are good models to understand the evolutionary processes and historical factors involved in speciation and adaptation to severe environmental conditions. Here, we provide an overview of the groundwater invertebrates living in continental groundwater habitats prone to extreme environmental conditions in one or more physico-chemical parameters. Invertebrates are represented by a wide variety of taxonomic groups, however dominated by crustaceans that show specific adaptations mostly metabolic, physiologic, and behavioral. Symbiotic associations among bacteria and invertebrates are also discussed enlightening this biological interaction as a potential adaptation of different groundwater invertebrates to cope with severe environmental conditions. Given the high pressures that anthropogenic activities pose on groundwater habitats worldwide, we predict that several of these highly specialized organisms will be prone to extinction in the near future. Finally, we highlight the knowledge gaps and future research approaches in these particular groundwater ecosystems by using integrative-omic studies besides the molecular approach to shed light on genetic variation and phenotypic plasticity at species and populational levels.GRAPHICAL ABSTRACT
Collapse
|
17
|
Aubé J, Cambon-Bonavita MA, Velo-Suárez L, Cueff-Gauchard V, Lesongeur F, Guéganton M, Durand L, Reveillaud J. A novel and dual digestive symbiosis scales up the nutrition and immune system of the holobiont Rimicaris exoculata. MICROBIOME 2022; 10:189. [PMID: 36333777 PMCID: PMC9636832 DOI: 10.1186/s40168-022-01380-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In deep-sea hydrothermal vent areas, deprived of light, most animals rely on chemosynthetic symbionts for their nutrition. These symbionts may be located on their cuticle, inside modified organs, or in specialized cells. Nonetheless, many of these animals have an open and functional digestive tract. The vent shrimp Rimicaris exoculata is fueled mainly by its gill chamber symbionts, but also has a complete digestive system with symbionts. These are found in the shrimp foregut and midgut, but their roles remain unknown. We used genome-resolved metagenomics on separate foregut and midgut samples, taken from specimens living at three contrasted sites along the Mid-Atlantic Ridge (TAG, Rainbow, and Snake Pit) to reveal their genetic potential. RESULTS We reconstructed and studied 20 Metagenome-Assembled Genomes (MAGs), including novel lineages of Hepatoplasmataceae and Deferribacteres, abundant in the shrimp foregut and midgut, respectively. Although the former showed streamlined reduced genomes capable of using mostly broken-down complex molecules, Deferribacteres showed the ability to degrade complex polymers, synthesize vitamins, and encode numerous flagellar and chemotaxis genes for host-symbiont sensing. Both symbionts harbor a diverse set of immune system genes favoring holobiont defense. In addition, Deferribacteres were observed to particularly colonize the bacteria-free ectoperitrophic space, in direct contact with the host, elongating but not dividing despite possessing the complete genetic machinery necessary for this. CONCLUSION Overall, these data suggest that these digestive symbionts have key communication and defense roles, which contribute to the overall fitness of the Rimicaris holobiont. Video Abstract.
Collapse
Affiliation(s)
- Johanne Aubé
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Lourdes Velo-Suárez
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France and Centre Brestois d’Analyse du Microbiote (CBAM), Brest University Hospital, Brest, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Françoise Lesongeur
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Marion Guéganton
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Lucile Durand
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
18
|
Zhang Y, Huang N, Jing H. Biogeography and Population Divergence of Microeukaryotes Associated with Fluids and Chimneys in the Hydrothermal Vents of the Southwest Indian Ocean. Microbiol Spectr 2022; 10:e0263221. [PMID: 36121256 PMCID: PMC9603758 DOI: 10.1128/spectrum.02632-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Deep-sea hydrothermal vents have been proposed as oases for microbes, but microeukaryotes as key components of the microbial loop have not been well studied. Based on high-throughput sequencing and network analysis of the 18S rRNA gene, distinct biogeographical distribution patterns and impacting factors were revealed from samples in the three hydrothermal fields of the southwest Indian Ocean, where higher gene abundance of microeukaryotes appeared in chimneys. The microeukaryotes in the fluids might be explained by hydrogeochemical heterogeneity, especially that of the nitrate and silicate concentrations, while the microeukaryotes in the chimneys coated with either Fe oxides or Fe-Si oxyhydroxides might be explained by potentially different associated prokaryotic groups. Population divergence of microeukaryotes, especially clades of parasitic Syndiniales, was observed among different hydrothermal fluids and chimneys and deserves further exploration to gain a deeper understanding of the trophic relationships and potential ecological function of microeukaryotes in the deep-sea extreme ecosystems, especially in the complex deep-sea chemoautotrophic habitats. IMPORTANCE Deep-sea hydrothermal vents have been proposed as oases for microbes, but microeukaryotes as key components of the microbial loop have not been well studied. Based on high-throughput sequencing and network analysis of the 18S rRNA gene, population divergence of microeukaryotes, especially clades of parasitic Syndiniales, was observed among different hydrothermal fields. This might be attributed to the hydrogeochemical heterogeneity of fluids and to the potentially different associated prokaryotic groups in chimneys.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ning Huang
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
19
|
Breusing C, Klobusnik NH, Hauer MA, Beinart RA. Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc. G3 (BETHESDA, MD.) 2022; 12:jkac220. [PMID: 35997584 PMCID: PMC9526052 DOI: 10.1093/g3journal/jkac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022]
Abstract
Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis-a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | | | - Michelle A Hauer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| |
Collapse
|
20
|
Hui M, Wang A, Cheng J, Sha Z. Full-length 16S rRNA amplicon sequencing reveals the variation of epibiotic microbiota associated with two shrimp species of Alvinocarididae: possibly co-determined by environmental heterogeneity and specific recognition of hosts. PeerJ 2022; 10:e13758. [PMID: 35966925 PMCID: PMC9368993 DOI: 10.7717/peerj.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Shrimps of the family Alvinocarididae, endemic species to deep sea chemosynthetic ecosystems, harbor epibiotic microbes on gills which probably play important roles in the survival of the shrimps. Among them, Alvinocaris longirostris and Shinkaicaris leurokolos occupy different ecological niches within the same hydrothermal vent in Okinawa Trough, and A. longirostris also exists in a methane seep of the South China Sea. In this study, full-length 16S rRNA sequences of the gill associated bacteria of two alvinocaridid species from different chemosynthetically ecological niches were first captured by single-molecule real-time sequencing. Totally, 120,792 optimized circular consensus sequences with ∼1,450 bp in length were obtained and clustered into 578 operational taxonomic units. Alpha diversity analysis showed seep A. longirostris had the highest species richness and evenness (average Chao1 = 213.68, Shannon = 3.39). Beta diversity analysis revealed that all samples were clearly divided into three groups, and microbial community of A. longirostris from seep and vent were more related than the other comparisons. By permutational multivariate analysis of variance, the most significant community compositional variance was detected between seep A. longirostris and vent S. leurokolos (R 2 = 0.731, P = 0.001). The taxon tags were further classified into 21 phyla, 40 classes, 89 orders, 124 families and 135 genera. Overall, the microbial communities were dominated by Campylobacteria and Gammaproteobacteria. Alphaproteobacteria, Bacteroidia, Verrucomicrobiae, Bacilli and other minor groups were also detected at lower abundance. Taxonomic groups recovered from the vent S. leurokolos samples were only dominated by Sulfurovaceae (94.06%). In comparison, gill-associated microbiota of vent A. longirostris consisted of more diverse sulfur-oxidizing bacteria, including Sulfurovaceae (69.21%), Thiotrichaceae (6.77%) and a putative novel Gammaproteobacteria group (14.37%), while in seep A. longirostris, Gammaproteobacteria un-group (44.01%) constituted the major component, following the methane-oxidizing bacteria Methylomonadaceae (19.38%), and Sulfurovaceae (18.66%). Therefore, the gill associated bacteria composition and abundance of alvinocaridid shrimps are closely related to the habitat heterogeneity and the selection of microbiota by the host. However, the interaction between these alvinocaridid shrimps and the epibiotic communities requires further study based on metagenome sequencing and fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Aiyang Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,,Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Cheng
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,,Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Metabolism Interactions Promote the Overall Functioning of the Episymbiotic Chemosynthetic Community of Shinkaia crosnieri of Cold Seeps. mSystems 2022; 7:e0032022. [PMID: 35938718 PMCID: PMC9426478 DOI: 10.1128/msystems.00320-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remarkably diverse bacteria have been observed as biofilm aggregates on the surface of deep-sea invertebrates that support the growth of hosts through chemosynthetic carbon fixation. Growing evidence also indicates that community-wide interactions, and especially cooperation among symbionts, contribute to overall community productivity. Here, metagenome-guided metatranscriptomic and metabolic analyses were conducted to investigate the taxonomic composition, functions, and potential interactions of symbionts dwelling on the seta of Shinkaia crosnieri lobsters in a methane cold seep. Methylococcales and Thiotrichales dominated the community, followed by the Campylobacteriales, Nitrosococcales, Flavobacteriales, and Chitinophagales Metabolic interactions may be common among the episymbionts since many separate taxon genomes encoded complementary genes within metabolic pathways. Specifically, Thiotrichales could contribute to detoxification of hydroxylamine that is a metabolic by-product of Methylococcales. Further, Nitrosococcales may rely on methanol leaked from Methylococcales cells that efficiently oxidize methane. Elemental sulfur may also serve as a community good that enhances sulfur utilization that benefits the overall community, as evidenced by confocal Raman microscopy. Stable intermediates may connect symbiont metabolic activities in cyclical oxic-hypoxic fluctuating environments, which then enhance overall community functioning. This hypothesis was partially confirmed via in situ experiments. These results highlight the importance of microbe-microbe interactions in symbiosis and deep-sea adaptation. IMPORTANCE Symbioses between chemosynthetic bacteria and marine invertebrates are common in deep-sea chemosynthetic ecosystems and are considered critical foundations for deep-sea colonization. Episymbiotic microorganisms tend to form condensed biofilms that may facilitate metabolite sharing among biofilm populations. However, the prevalence of metabolic interactions among deep-sea episymbionts and their contributions to deep-sea adaptations are not well understood due to sampling and cultivation difficulties associated with deep-sea environments. Here, we investigated metabolic interactions among the episymbionts of Shinkaia crosnieri, a dominant chemosynthetic ecosystem lobster species in the Northwest Pacific Ocean. Meta-omics characterizations were conducted alongside in situ experiments to validate interaction hypotheses. Furthermore, imaging analysis was conducted, including electron microscopy, fluorescent in situ hybridization (FISH), and confocal Raman microscopy (CRM), to provide direct evidence of metabolic interactions. The results support the Black Queen Hypothesis, wherein leaked public goods are shared among cohabitating microorganisms to enhance the overall adaptability of the community via cooperation.
Collapse
|
22
|
Breusing C, Castel J, Yang Y, Broquet T, Sun J, Jollivet D, Qian P, Beinart RA. Global 16S rRNA diversity of provannid snail endosymbionts from Indo-Pacific deep-sea hydrothermal vents. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:299-307. [PMID: 35170217 PMCID: PMC9303550 DOI: 10.1111/1758-2229.13051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Symbioses between invertebrate animals and chemosynthetic bacteria build the foundation of deep-sea hydrothermal ecosystems worldwide. Despite the importance of these symbioses for ecosystem functioning, the diversity of symbionts within and between host organisms and geographic regions is still poorly understood. In this study we used 16S rRNA amplicon sequencing to determine the diversity of gill endosymbionts in provannid snails of the genera Alviniconcha and Ifremeria, which are key species at deep-sea hydrothermal vents in the Indo-Pacific Ocean. Our analysis of 761 snail samples across the distributional range of these species confirms previous findings that symbiont lineages are strongly partitioned by host species and broad-scale geography. Less structuring was observed within geographic regions, probably due to insufficient strain resolution of the 16S rRNA gene. Symbiont richness in individual hosts appeared to be unrelated to host size, suggesting that provannid snails might acquire their symbionts only during a permissive time window in early developmental stages in contrast to other vent molluscs that obtain their symbionts throughout their lifetime. Despite the extent of our dataset, symbiont accumulation curves did not reach saturation, highlighting the need for increased sampling efforts to uncover the full diversity of symbionts within these and other hydrothermal vent species.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| | - Jade Castel
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)The Hong Kong University of Science and TechnologyHong KongChina
| | - Thomas Broquet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Jin Sun
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Didier Jollivet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffRoscoffFrance
| | - Pei‐Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)The Hong Kong University of Science and TechnologyHong KongChina
| | - Roxanne A. Beinart
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| |
Collapse
|