1
|
Bailey C, Pich O, Thol K, Watkins TBK, Luebeck J, Rowan A, Stavrou G, Weiser NE, Dameracharla B, Bentham R, Lu WT, Kittel J, Yang SYC, Howitt BE, Sharma N, Litovchenko M, Salgado R, Hung KL, Cornish AJ, Moore DA, Houlston RS, Bafna V, Chang HY, Nik-Zainal S, Kanu N, McGranahan N, Flanagan AM, Mischel PS, Jamal-Hanjani M, Swanton C. Origins and impact of extrachromosomal DNA. Nature 2024; 635:193-200. [PMID: 39506150 PMCID: PMC11540846 DOI: 10.1038/s41586-024-08107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Extrachromosomal DNA (ecDNA) is a major contributor to treatment resistance and poor outcome for patients with cancer1,2. Here we examine the diversity of ecDNA elements across cancer, revealing the associated tissue, genetic and mutational contexts. By analysing data from 14,778 patients with 39 tumour types from the 100,000 Genomes Project, we demonstrate that 17.1% of tumour samples contain ecDNA. We reveal a pattern highly indicative of tissue-context-based selection for ecDNAs, linking their genomic content to their tissue of origin. We show that not only is ecDNA a mechanism for amplification of driver oncogenes, but it also a mechanism that frequently amplifies immunomodulatory and inflammatory genes, such as those that modulate lymphocyte-mediated immunity and immune effector processes. Moreover, ecDNAs carrying immunomodulatory genes are associated with reduced tumour T cell infiltration. We identify ecDNAs bearing only enhancers, promoters and lncRNA elements, suggesting the combinatorial power of interactions between ecDNAs in trans. We also identify intrinsic and environmental mutational processes linked to ecDNA, including those linked to its formation, such as tobacco exposure, and progression, such as homologous recombination repair deficiency. Clinically, ecDNA detection was associated with tumour stage, more prevalent after targeted therapy and cytotoxic treatments, and associated with metastases and shorter overall survival. These results shed light on why ecDNA is a substantial clinical problem that can cooperatively drive tumour growth signals, alter transcriptional landscapes and suppress the immune system.
Collapse
Affiliation(s)
- Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Department of Pathology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Georgia Stavrou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Natasha E Weiser
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | | | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jeanette Kittel
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - S Y Cindy Yang
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Natasha Sharma
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maria Litovchenko
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Paul S Mischel
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
2
|
Tang J, Weiser NE, Wang G, Chowdhry S, Curtis EJ, Zhao Y, Wong ITL, Marinov GK, Li R, Hanoian P, Tse E, Mojica SG, Hansen R, Plum J, Steffy A, Milutinovic S, Meyer ST, Luebeck J, Wang Y, Zhang S, Altemose N, Curtis C, Greenleaf WJ, Bafna V, Benkovic SJ, Pinkerton AB, Kasibhatla S, Hassig CA, Mischel PS, Chang HY. Enhancing transcription-replication conflict targets ecDNA-positive cancers. Nature 2024; 635:210-218. [PMID: 39506153 PMCID: PMC11540844 DOI: 10.1038/s41586-024-07802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 11/08/2024]
Abstract
Extrachromosomal DNA (ecDNA) presents a major challenge for cancer patients. ecDNA renders tumours treatment resistant by facilitating massive oncogene transcription and rapid genome evolution, contributing to poor patient survival1-7. At present, there are no ecDNA-specific treatments. Here we show that enhancing transcription-replication conflict enables targeted elimination of ecDNA-containing cancers. Stepwise analyses of ecDNA transcription reveal pervasive RNA transcription and associated single-stranded DNA, leading to excessive transcription-replication conflicts and replication stress compared with chromosomal loci. Nucleotide incorporation on ecDNA is markedly slower, and replication stress is significantly higher in ecDNA-containing tumours regardless of cancer type or oncogene cargo. pRPA2-S33, a mediator of DNA damage repair that binds single-stranded DNA, shows elevated localization on ecDNA in a transcription-dependent manner, along with increased DNA double strand breaks, and activation of the S-phase checkpoint kinase, CHK1. Genetic or pharmacological CHK1 inhibition causes extensive and preferential tumour cell death in ecDNA-containing tumours. We advance a highly selective, potent and bioavailable oral CHK1 inhibitor, BBI-2779, that preferentially kills ecDNA-containing tumour cells. In a gastric cancer model containing FGFR2 amplified on ecDNA, BBI-2779 suppresses tumour growth and prevents ecDNA-mediated acquired resistance to the pan-FGFR inhibitor infigratinib, resulting in potent and sustained tumour regression in mice. Transcription-replication conflict emerges as a target for ecDNA-directed therapy, exploiting a synthetic lethality of excess to treat cancer.
Collapse
Affiliation(s)
- Jun Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Natasha E Weiser
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Guiping Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ellis J Curtis
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Yanding Zhao
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Georgi K Marinov
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Philip Hanoian
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | - Jens Luebeck
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yanbo Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Shu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Nicolas Altemose
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | | | | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Chang L, Xie Y, Taylor B, Wang Z, Sun J, Armand EJ, Mishra S, Xu J, Tastemel M, Lie A, Gibbs ZA, Indralingam HS, Tan TM, Bejar R, Chen CC, Furnari FB, Hu M, Ren B. Droplet Hi-C enables scalable, single-cell profiling of chromatin architecture in heterogeneous tissues. Nat Biotechnol 2024:10.1038/s41587-024-02447-1. [PMID: 39424717 DOI: 10.1038/s41587-024-02447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Current methods for analyzing chromatin architecture are not readily scalable to heterogeneous tissues. Here we introduce Droplet Hi-C, which uses a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture of the mouse cortex and analyzed gene regulatory programs in major cortical cell types. In addition, we used this technique to detect copy number variations, structural variations and extrachromosomal DNA in human glioblastoma, colorectal and blood cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We refined the technique to allow joint profiling of chromatin architecture and transcriptome in single cells, facilitating exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C both addresses critical gaps in chromatin analysis of heterogeneous tissues and enhances understanding of gene regulation.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brett Taylor
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jiachen Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Systems Biology and Bioinformatics PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ethan J Armand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jie Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Melodi Tastemel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Audrey Lie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zane A Gibbs
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hannah S Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tuyet M Tan
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank B Furnari
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.
- Center for Epigenomics, Institute for Genomic Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Li A, Zhao K, Duan Y, Zhang B, Zheng Y, Zhu C, Chen Q, Liu WB, Hui L, Xia Y, Cheng X. SARS-CoV-2 nsp13 suppresses hepatitis B virus replication by targeting cccDNA transcription. J Virol 2024:e0104224. [PMID: 39373477 DOI: 10.1128/jvi.01042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
SARS-CoV-2 nonstructural protein 13 (nsp13) has been shown to selectively suppress the transcription of episomal DNA while sparing chromosomal DNA. Hepatitis B Virus (HBV) harbors covalently closed circular DNA (cccDNA), a form of viral episomal DNA found within infected hepatocyte nuclei. The persistence of cccDNA is the major cause of chronic HBV infection. In this study, we investigated the impact of SARS-CoV-2 nsp13 on HBV replication, particularly in the context of cccDNA. Our findings demonstrate that nsp13 effectively hinders HBV replication by suppressing the transcription of HBV cccDNA, both in vitro and in vivo. Additionally, we observed that SARS-CoV-2 nsp13 binds to HBV cccDNA and its NTPase and helicase activities contribute significantly to inhibiting HBV replication. Furthermore, our screening identified the interaction between nsp13 and structural maintenance of chromosomes 4, opening new avenues for future mechanistic inquiries. This study presents the evidence suggesting the potential utilization of SARS-CoV-2 nsp13 as a strategy to impede HBV replication by specifically targeting cccDNA. These findings provide a proof of concept for exploring nsp13 as a prospective approach in combating HBV infection. IMPORTANCE To effectively combat hepatitis B virus (HBV), it is imperative to develop potent antiviral medications targeting covalently closed circular DNA (cccDNA). Our investigation aimed to assess the impact of SARS-CoV-2 nsp13 on HBV replication across diverse HBV models, confirming its ability to significantly reduce several HBV replication markers. Additionally, our identification of the interaction between nsp13 and SMC4 opens the door for further mechanistic exploration. This marks a paradigm shift in our approach to HBV antiviral therapy, introducing an entirely novel perspective. Our findings propose a novel strategy for developing anti-HBV drugs that specifically target HBV cccDNA.
Collapse
Affiliation(s)
- Aixin Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bei Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Chile
| | - Wen-Bo Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lixia Hui
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Chile
- Hubei Jiangxia Laboratory, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
5
|
Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y. Bioinformatics advances in eccDNA identification and analysis. Oncogene 2024; 43:3021-3036. [PMID: 39209966 DOI: 10.1038/s41388-024-03138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a unique class of chromosome-originating circular DNA molecules, which are closely linked to oncogene amplification. Due to recent technological advances, particularly in high-throughput sequencing technology, bioinformatics methods based on sequencing data have become primary approaches for eccDNA identification and functional analysis. Currently, eccDNA-relevant databases incorporate previously identified eccDNA and provide thorough functional annotations and predictions, thereby serving as a valuable resource for eccDNA research. In this review, we collected around 20 available eccDNA-associated bioinformatics tools, including identification tools and annotation databases, and summarized their properties and capabilities. We evaluated some of the eccDNA detection methods in simulated data to offer recommendations for future eccDNA detection. We also discussed the current limitations and prospects of bioinformatics methodologies in eccDNA research.
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xianjun Dong
- Adams Center of Parkinson's Disease Research, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
- Department of Neurology, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
6
|
Zhang H, Liu B, Cheng J, Li Z, Jia M, Li M, Zhao L, Wang L, Xi Y. Characterization and integrated analysis of extrachromosomal DNA amplification in hematological malignancies. Neoplasia 2024; 56:101025. [PMID: 38996538 PMCID: PMC11301242 DOI: 10.1016/j.neo.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The study of extrachromosomal DNA (ecDNA), an element existing beyond classical chromosomes, contributes to creating a more comprehensive map of the cancer genome. In hematological malignancies, research on ecDNA has lacked comprehensive investigation into its frequency, structure, function, and mechanisms of formation. We re-analyzed WGS data from 208 hematological cancer samples across 11 types, focusing on ecDNA characteristics. Amplification of ecDNA was observed in 7 of these cancer types, with no instances found in normal blood cells. Patients with leukemia carrying ecDNA showed a low induction therapy remission rate (<30 %), a high relapse rate (75 %) among those who achieved complete remission, and a significantly lower survival rate compared to the general leukemia population, even those with complex chromosomal karyotypes. Among the 55 identified ecDNA amplicons, 268 genes were detected, of which 38 are known cancer-related genes exhibiting significantly increased copy numbers. By integrating RNA-Seq data, we discovered that the increased copy number, resulting in a higher amount of available DNA templates, indeed leads to the elevated expression of genes encoded on ecDNA. Additionally, through the integration of H3K4me3/H3K27ac chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin with sequencing, and high-throughput chromosome conformation capture data, we identified that ecDNA amplifications can also facilitate efficient, copy number-independent amplification of oncogenes. This process is linked to active histone modifications, improved chromatin accessibility, and enhancer hijacking, all of which are effects of ecDNA amplification. Mechanistically, chromothripsis and dysfunction of the DNA repair pathway can, to some extent, explain the origin of ecDNA.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Cheng
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zijian Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingfeng Jia
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ming Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Long Zhao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lina Wang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaming Xi
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
7
|
Peng Y, Tao H, Wang G, Wu M, Xu T, Wen C, Zheng X, Dai Y. Exploring the Role of Extrachromosomal Circular DNA in Human Diseases. Cytogenet Genome Res 2024:1-13. [PMID: 39348807 DOI: 10.1159/000541563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) has emerged as a central focus in molecular biology, with various types being found across species through advanced techniques, including high-throughput sequencing. This dynamic molecule exerts a significant influence on aging and immune function and plays pivotal roles in autoimmune diseases, type 2 diabetes mellitus, cancer, and genetic disorders. SUMMARY This comprehensive review investigates the classification, characteristics, formation processes, and multifaceted functions of eccDNA, providing an in-depth exploration of its mechanisms in diverse diseases. KEY MESSAGES The goal of this review was to establish a robust theoretical foundation for a more comprehensive understanding of eccDNA, offering valuable insights for the development of clinical diagnostics and innovative therapeutic strategies in the context of related diseases.
Collapse
Affiliation(s)
- Yali Peng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Tinatin Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
8
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
9
|
Yuan XQ, Zhou N, Song SJ, Xie YX, Chen SQ, Yang TF, Peng X, Zhang CY, Zhu YH, Peng L. Decoding the genomic enigma: Approaches to studying extrachromosomal circular DNA. Heliyon 2024; 10:e36659. [PMID: 39263178 PMCID: PMC11388731 DOI: 10.1016/j.heliyon.2024.e36659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a pervasive yet enigmatic component of the eukaryotic genome, exists autonomously from its chromosomal counterparts. Ubiquitous in eukaryotes, eccDNA plays a critical role in the orchestration of cellular processes and the etiology of diseases, particularly cancers. However, the full scope of its influence on health and disease remains elusive, presenting a rich vein of research yet to be mined. Unraveling the complexities of eccDNA necessitates a distillation of methodologies - from biogenesis to functional analysis - a landscape we overview in this study with precision and clarity. Here, we systematically outline cutting-edge methodologies from high-throughput sequencing and bioinformatics to experimental validations, showcasing the intricate world of eccDNAs. We combed through a treasure trove of auxiliary research resources and analytical tools. Moreover, we chart a course for future inquiry, illuminating the horizon with potential groundbreaking strategies for designing eccDNA research projects and pioneering new methodological frontiers.
Collapse
Affiliation(s)
- Xiao-Qing Yuan
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nan Zhou
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Shi-Jian Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi-Xia Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shui-Qin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Teng-Fei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xian Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Puai Medical College, Shaoyang University, Shaoyang, 422100, China
| | - Chao-Yang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Ying-Hua Zhu
- Department of Genetic Medicine, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, 523325, China
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
10
|
He H, Gao Z, Hu Z, Liang G, Huang Y, Zhou M, Liang R, Zhang K. Identification and Characterization of Extrachromosomal Circular DNA in Slimming Grass Carp. Biomolecules 2024; 14:1045. [PMID: 39334812 PMCID: PMC11430282 DOI: 10.3390/biom14091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Slimming grass carp is a commercial variety with good body form and meat quality, which is cultured by starving common grass carp in a clean flowing water environment. Compared to common grass carp, slimming grass carp has a far higher economic value. Until now, no molecular study has concentrated on the regulation mechanism of the muscle characteristics of slimming grass carp. This study first reported the gene expression profile of the muscle characteristics of slimming grass carp based on the level of extrachromosomal circular DNAs (eccDNAs). EccDNAs are double-stranded circular DNAs derived from genomic DNAs and play crucial roles in the functional regulation of a wide range of biological processes, none of which have been shown to occur in fish. Here, muscle eccDNAs from slimming grass carp and common grass carp were both generally sequenced, and the information, as well as the expression profile of eccDNAs, were compared and analysed. The findings reveal that 82,238 and 25,857 eccDNAs were detected from slimming grass carp and common grass carp, respectively. The length distribution of eccDNAs was in the range of 1~1000 bp, with two peaks at about 200 bp and 400 bp. When the expression profiles of eccDNAs between slimming grass carp and common grass carp were compared, 3523 up-regulated and 175 down-regulated eccDNAs were found. Enrichment analysis showed that these eccDNA genes were correlated with cellular structure and response, cell immunology, enzyme activity, etc. Certain differentially expressed eccDNAs involved in muscle characteristics were detected, which include myosin heavy chain, myosin light chain, muscle segment homeobox C, calsequestrin, calmodulin, etc., among which the majority of genes were linked to muscle structure and contraction. This indicates that during the process of cultivating from common grass carp to slimming grass carp, the treatment primarily affected muscle structure and contraction, making the meat quality of slimming grass carp different from that of common grass carp. This result provides molecular evidence and new insights by which to elucidate the regulating mechanism of muscle phenotypic characterisation in slimming grass carp and other fish.
Collapse
Affiliation(s)
- Haobin He
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zihan Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zehua Hu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guanyu Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Rishen Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kai Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2024:10.1038/s41576-024-00761-7. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Mortenson KL, Dawes C, Wilson ER, Patchen NE, Johnson HE, Gertz J, Bailey SD, Liu Y, Varley KE, Zhang X. 3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression. Nat Commun 2024; 15:6130. [PMID: 39033128 PMCID: PMC11271278 DOI: 10.1038/s41467-024-50387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1, ETV1, CRKL, and ID4. Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC, on the same complex amplicons such as ecDNA. We characterized a MYC-ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.
Collapse
Affiliation(s)
- Katelyn L Mortenson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Courtney Dawes
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Emily R Wilson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nathan E Patchen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Hailey E Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Swneke D Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Surgery and Human Genetics, McGill University, Montreal, QC, Canada
| | - Yang Liu
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Mortenson KL, Dawes C, Wilson ER, Patchen NE, Johnson HE, Gertz J, Bailey SD, Liu Y, Varley KE, Zhang X. 3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576965. [PMID: 38328209 PMCID: PMC10849656 DOI: 10.1101/2024.01.23.576965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1 , ETV1 , CRKL , and ID4 . Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC , on the same complex amplicons such as ecDNA. We characterized a MYC - ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC 's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.
Collapse
|
15
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
16
|
Pal Choudhuri S, Girard L, Lim JYS, Wise JF, Freitas B, Yang D, Wong E, Hamilton S, Chien VD, Kim YJ, Gilbreath C, Zhong J, Phat S, Myers DT, Christensen CL, Mazloom-Farsibaf H, Stanzione M, Wong KK, Hung YP, Farago AF, Meador CB, Dyson NJ, Lawrence MS, Wu S, Drapkin BJ. Acquired Cross-Resistance in Small Cell Lung Cancer due to Extrachromosomal DNA Amplification of MYC Paralogs. Cancer Discov 2024; 14:804-827. [PMID: 38386926 PMCID: PMC11061613 DOI: 10.1158/2159-8290.cd-23-0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here, we present a preclinical system that recapitulates acquired cross-resistance, developed from 51 patient-derived xenograft (PDX) models. Each model was tested in vivo against three clinical regimens: cisplatin plus etoposide, olaparib plus temozolomide, and topotecan. These drug-response profiles captured hallmark clinical features of SCLC, such as the emergence of treatment-refractory disease after early relapse. For one patient, serial PDX models revealed that cross-resistance was acquired through MYC amplification on extrachromosomal DNA (ecDNA). Genomic and transcriptional profiles of the full PDX panel revealed that MYC paralog amplifications on ecDNAs were recurrent in relapsed cross-resistant SCLC, and this was corroborated in tumor biopsies from relapsed patients. We conclude that ecDNAs with MYC paralogs are recurrent drivers of cross-resistance in SCLC. SIGNIFICANCE SCLC is initially chemosensitive, but acquired cross-resistance renders this disease refractory to further treatment and ultimately fatal. The genomic drivers of this transformation are unknown. We use a population of PDX models to discover that amplifications of MYC paralogs on ecDNA are recurrent drivers of acquired cross-resistance in SCLC. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jun Yi Stanley Lim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jillian F. Wise
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Braeden Freitas
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Di Yang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Seth Hamilton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victor D. Chien
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yoon Jung Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Collin Gilbreath
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - David T. Myers
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | | | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Marcello Stanzione
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Yin P. Hung
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna F. Farago
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Catherine B. Meador
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Benjamin J. Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Chang L, Xie Y, Taylor B, Wang Z, Sun J, Tan TR, Bejar R, Chen CC, Furnari FB, Hu M, Ren B. Droplet Hi-C for Fast and Scalable Profiling of Chromatin Architecture in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590148. [PMID: 38712075 PMCID: PMC11071305 DOI: 10.1101/2024.04.18.590148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Comprehensive analysis of chromatin architecture is crucial for understanding the gene regulatory programs during development and in disease pathogenesis, yet current methods often inadequately address the unique challenges presented by analysis of heterogeneous tissue samples. Here, we introduce Droplet Hi-C, which employs a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture at single-cell resolution from the mouse cortex and analyzed gene regulatory programs in major cortical cell types. Additionally, we used this technique to detect copy number variation (CNV), structural variations (SVs) and extrachromosomal DNA (ecDNA) in cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We further refined this technique to allow for joint profiling of chromatin architecture and transcriptome in single cells, facilitating a more comprehensive exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C not only addresses critical gaps in chromatin analysis of heterogeneous tissues but also emerges as a versatile tool enhancing our understanding of gene regulation in health and disease.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brett Taylor
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jiachen Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tuyet R. Tan
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank B. Furnari
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Epigenomics, Institute for Genomic Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
19
|
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024; 14:488. [PMID: 38672504 PMCID: PMC11048305 DOI: 10.3390/biom14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.
Collapse
Affiliation(s)
- Enze Deng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
20
|
Mizokami H, Okabe A, Choudhary R, Mima M, Saeda K, Fukuyo M, Rahmutulla B, Seki M, Goh BC, Kondo S, Dochi H, Moriyama-Kita M, Misawa K, Hanazawa T, Tan P, Yoshizaki T, Fullwood MJ, Kaneda A. Enhancer infestation drives tumorigenic activation of inactive B compartment in Epstein-Barr virus-positive nasopharyngeal carcinoma. EBioMedicine 2024; 102:105057. [PMID: 38490101 PMCID: PMC10951899 DOI: 10.1016/j.ebiom.2024.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING The funds are listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Harue Mizokami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan
| | - Ruchi Choudhary
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Hamamatsu University School of Medicine, Shizuoka, 431-3125, Japan
| | - Kenta Saeda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Hamamatsu University School of Medicine, Shizuoka, 431-3125, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Melissa Jane Fullwood
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, 117599, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
21
|
Wang S, Wu CY, He MM, Yong JX, Chen YX, Qian LM, Zhang JL, Zeng ZL, Xu RH, Wang F, Zhao Q. Machine learning-based extrachromosomal DNA identification in large-scale cohorts reveals its clinical implications in cancer. Nat Commun 2024; 15:1515. [PMID: 38373991 PMCID: PMC10876971 DOI: 10.1038/s41467-024-45479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
The clinical implications of extrachromosomal DNA (ecDNA) in cancer therapy remain largely elusive. Here, we present a comprehensive analysis of ecDNA amplification spectra and their association with clinical and molecular features in multiple cohorts comprising over 13,000 pan-cancer patients. Using our developed computational framework, GCAP, and validating it with multifaceted approaches, we reveal a consistent pan-cancer pattern of mutual exclusivity between ecDNA amplification and microsatellite instability (MSI). In addition, we establish the role of ecDNA amplification as a risk factor and refine genomic subtypes in a cohort from 1015 colorectal cancer patients. Importantly, our investigation incorporates data from four clinical trials focused on anti-PD-1 immunotherapy, demonstrating the pivotal role of ecDNA amplification as a biomarker for guiding checkpoint blockade immunotherapy in gastrointestinal cancer. This finding represents clinical evidence linking ecDNA amplification to the effectiveness of immunotherapeutic interventions. Overall, our study provides a proof-of-concept of identifying ecDNA amplification from cancer whole-exome sequencing (WES) data, highlighting the potential of ecDNA amplification as a valuable biomarker for facilitating personalized cancer treatment.
Collapse
Affiliation(s)
- Shixiang Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chen-Yi Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Xin Yong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Mei Qian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jin-Ling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
22
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Fang M, Fang J, Luo S, Liu K, Yu Q, Yang J, Zhou Y, Li Z, Sun R, Guo C, Qu K. eccDNA-pipe: an integrated pipeline for identification, analysis and visualization of extrachromosomal circular DNA from high-throughput sequencing data. Brief Bioinform 2024; 25:bbae034. [PMID: 38349061 PMCID: PMC10862650 DOI: 10.1093/bib/bbae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is currently attracting considerable attention from researchers due to its significant impact on tumor biogenesis. High-throughput sequencing (HTS) methods for eccDNA identification are continually evolving. However, an efficient pipeline for the integrative and comprehensive analysis of eccDNA obtained from HTS data is still lacking. Here, we introduce eccDNA-pipe, an accessible software package that offers a user-friendly pipeline for conducting eccDNA analysis starting from raw sequencing data. This dataset includes data from various sequencing techniques such as whole-genome sequencing (WGS), Circle-seq and Circulome-seq, obtained through short-read sequencing or long-read sequencing. eccDNA-pipe presents a comprehensive solution for both upstream and downstream analysis, encompassing quality control and eccDNA identification in upstream analysis and downstream tasks such as eccDNA length distribution analysis, differential analysis of genes enriched with eccDNA and visualization of eccDNA structures. Notably, eccDNA-pipe automatically generates high-quality publication-ready plots. In summary, eccDNA-pipe provides a comprehensive and user-friendly pipeline for customized analysis of eccDNA research.
Collapse
Affiliation(s)
- Minghao Fang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230027, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 311200, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Songwen Luo
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Liu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qiaoni Yu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiaxuan Yang
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 311200, China
| | - Youyang Zhou
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 311200, China
| | - Zongkai Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruoming Sun
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
- School of Pharmacy, Bengbu Medical University, Bengbu, 233030, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230027, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
24
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
25
|
Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S127-S147. [PMID: 38621748 DOI: 10.1134/s0006297924140086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 04/17/2024]
Abstract
The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.
Collapse
Affiliation(s)
- Natalia V Rassomakhina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
26
|
Mandahl N, Mertens F, Mitelman F. Gene amplification in neoplasia: A cytogenetic survey of 80 131 cases. Genes Chromosomes Cancer 2024; 63:e23214. [PMID: 38050922 DOI: 10.1002/gcc.23214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Gene amplification is a crucial process in cancer development, leading to the overexpression of oncogenes. It manifests cytogenetically as extrachromosomal double minutes (dmin), homogeneously staining regions (hsr), or ring chromosomes (r). This study investigates the prevalence and distribution of these amplification markers in a survey of 80 131 neoplasms spanning hematologic disorders, and benign and malignant solid tumors. The study reveals distinct variations in the frequency of dmin, hsr, and r among different tumor types. Rings were the most common (3.4%) sign of amplification, followed by dmin (1.3%), and hsr (0.8%). Rings were particularly frequent in malignant mesenchymal tumors, especially liposarcomas (47.5%) and osteosarcomas (23.4%), dmin were prevalent in neuroblastoma (30.9%) and pancreatic carcinoma (21.9%), and hsr frequencies were highest in head and neck carcinoma (14.0%) and neuroblastoma (9.0%). Combining all three amplification markers (dmin/hsr/r), malignant solid tumors consistently exhibited higher frequencies than hematologic disorders and benign solid tumors. The structural characteristics of these amplification markers and their potential role in tumorigenesis and tumor progression highlight the complex interplay between cancer-initiating gene-level alterations, for example, fusion genes, and subsequent amplification dynamics. Further research integrating cytogenetic and molecular approaches is warranted to better understand the underlying mechanisms of these amplifications, in particular, the enigmatic question of why certain malignancies display certain types of amplification. Comparing the present results with molecular genetic data proved challenging because of the diversity in definitions of amplification across studies. This study underscores the need for standardized definitions in future work.
Collapse
Affiliation(s)
- Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Division of Laboratory Medicine, Department of Clinical Genetics and Pathology, University Hospital, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Zhao X, Zhao H, Liu Y, Guo Z. Methods, bioinformatics tools and databases in ecDNA research: An overview. Comput Biol Med 2023; 167:107680. [PMID: 37976817 DOI: 10.1016/j.compbiomed.2023.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Extrachromosomal DNA (ecDNA), derived from chromosomes, is a cancer-specific circular DNA molecule. EcDNA drives tumor initiation and progression, which is associated with poor clinical outcomes and drug resistance in a wide range of cancers. Although ecDNA was first discovered in 1965, tremendous technological revolutions in recent years have provided crucial new insights into its key biological functions and regulatory mechanisms. Here, we provide a thorough overview of the methods, bioinformatics tools, and database resources used in ecDNA research, mainly focusing on their performance, strengths, and limitations. This study can provide important reference for selecting the most appropriate method in ecDNA research. Furthermore, we offer suggestions for the current bioinformatics analysis of ecDNA and provide an outlook to the future research.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Huan Zhao
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation, Dalian Ocean University, Dalian, 116023, China
| | - Yupeng Liu
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiyun Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
28
|
Li Z, Wang B, Liang H, Li Y, Zhang Z, Han L. A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma. Cancer Lett 2023; 574:216369. [PMID: 37640198 DOI: 10.1016/j.canlet.2023.216369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
Collapse
Affiliation(s)
- Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 480082, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
29
|
Zhang P, Mbodj A, Soundiramourtty A, Llauro C, Ghesquière A, Ingouff M, Keith Slotkin R, Pontvianne F, Catoni M, Mirouze M. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nat Commun 2023; 14:5236. [PMID: 37640706 PMCID: PMC10462705 DOI: 10.1038/s41467-023-41023-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Abundant extrachromosomal circular DNA (eccDNA) is associated with transposable element (TE) activity. However, how the eccDNA compartment is controlled by epigenetic regulations and what is its impact on the genome is understudied. Here, using long reads, we sequence both the eccDNA compartment and the genome of Arabidopsis thaliana mutant plants affected in DNA methylation and post-transcriptional gene silencing. We detect a high load of TE-derived eccDNA with truncated and chimeric forms. On the genomic side, on top of truncated and full length TE neo-insertions, we detect complex structural variations (SVs) notably at a disease resistance cluster being a natural hotspot of SV. Finally, we serendipitously identify large tandem duplications in hypomethylated plants, suggesting that SVs could have been overlooked in epigenetic mutants. We propose that a high eccDNA load may alter DNA repair pathways leading to genome instability and the accumulation of SVs, at least in plants.
Collapse
Affiliation(s)
- Panpan Zhang
- Institut de Recherche pour le Développement (IRD), Laboratory of Plant Genome and Development, Perpignan, France
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
- University of Montpellier, Montpellier, France
| | - Assane Mbodj
- Institut de Recherche pour le Développement (IRD), Laboratory of Plant Genome and Development, Perpignan, France
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
| | - Abirami Soundiramourtty
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
- University of Perpignan, Perpignan, France
| | - Christel Llauro
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
- Centre National de la Recherche Scientifique (CNRS), Laboratory of Plant Genome and Development, Perpignan, France
| | - Alain Ghesquière
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Mathieu Ingouff
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Frédéric Pontvianne
- Centre National de la Recherche Scientifique (CNRS), Laboratory of Plant Genome and Development, Perpignan, France
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), Laboratory of Plant Genome and Development, Perpignan, France.
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France.
| |
Collapse
|
30
|
Chang L, Deng E, Wang J, Zhou W, Ao J, Liu R, Su D, Fan X. Single-cell third-generation sequencing-based multi-omics uncovers gene expression changes governed by ecDNA and structural variants in cancer cells. Clin Transl Med 2023; 13:e1351. [PMID: 37517066 PMCID: PMC10387328 DOI: 10.1002/ctm2.1351] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Cancer cells often exhibit large-scale genomic variations, such as circular extrachromosomal DNA (ecDNA) and structural variants (SVs), which have been highly correlated with the initiation and progression of cancer. Currently, no adequate method exists to unveil how these variations regulate gene expression in heterogeneous cancer cell populations at a single-cell resolution. METHODS Here, we developed a single-cell multi-omics sequencing method, scGTP-seq, to analyse ecDNA and SVs using long-read sequencing technologies. RESULTS AND CONCLUSIONS We demonstrated that our method can efficiently detect ecDNA and SVs and illustrated how these variations affect transcriptomic changes in various cell lines. Finally, we applied and validated this method in a clinical sample of hepatocellular carcinoma (HCC), demonstrating a feasible way to monitor the evolution of ecDNA and SVs during cancer progression.
Collapse
Affiliation(s)
- Lei Chang
- GMU‐GIBH Joint School of Life SciencesGuangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Innovation centre for Advanced Interdisciplinary MedicineThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
- Present address:
Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Enze Deng
- GMU‐GIBH Joint School of Life SciencesGuangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
| | - Jun Wang
- GMU‐GIBH Joint School of Life SciencesGuangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
| | - Wei Zhou
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
| | - Jian Ao
- Innovation centre for Advanced Interdisciplinary MedicineThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Rong Liu
- GMU‐GIBH Joint School of Life SciencesGuangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
| | - Dan Su
- GMU‐GIBH Joint School of Life SciencesGuangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
- The Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouGuangdong ProvinceP. R. China
| | - Xiaoying Fan
- GMU‐GIBH Joint School of Life SciencesGuangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Innovation centre for Advanced Interdisciplinary MedicineThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
- Department of Biomedical DevicesThe Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouGuangdong ProvinceP. R. China
- The Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouGuangdong ProvinceP. R. China
| |
Collapse
|
31
|
Liang Z, Gilbreath C, Liu W, Wang Y, Zhang MQ, Zhang DE, Wu S, Fu XD. Chromatin-associated RNA Dictates the ecDNA Interactome in the Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550855. [PMID: 37547001 PMCID: PMC10402128 DOI: 10.1101/2023.07.27.550855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Extrachromosomal DNA (ecDNA) promotes cancer by driving copy number heterogeneity and amplifying oncogenes along with functional enhancers. More recent studies suggest two additional mechanisms for further enhancing their oncogenic potential, one via forming ecDNA hubs to augment oncogene expression 1 and the other through acting as portable enhancers to trans-activate target genes 2. However, it has remained entirely elusive about how ecDNA explores the three-dimensional space of the nucleus and whether different ecDNA have distinct interacting mechanisms. Here, by profiling the DNA-DNA and DNA-RNA interactomes in tumor cells harboring different types of ecDNAs in comparison with similarly amplified homogenously staining regions (HSRs) in the chromosome, we show that specific ecDNA interactome is dictated by ecDNA-borne nascent RNA. We demonstrate that the ecDNA co-amplifying PVT1 and MYC utilize nascent noncoding PVT1 transcripts to mediate specific trans-activation of both ecDNA and chromosomal genes. In contrast, the ecDNA amplifying EGFR is weak in this property because of more efficient splicing to remove chromatin-associated nascent RNA. These findings reveal a noncoding RNA-orchestrated program hijacked by cancer cells to enhance the functional impact of amplified oncogenes and associated regulatory elements.
Collapse
Affiliation(s)
- Zhengyu Liang
- Department of System Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Collin Gilbreath
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenyue Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Wang
- Samara Inc., San Francisco, CA, USA
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas, Dallas, TX 75080, USA
| | - Dong-Er Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sihan Wu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiang-Dong Fu
- Department Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Lead contact
| |
Collapse
|
32
|
Lin M, Chen Y, Xia S, He Z, Yu X, Huang L, Lin S, Liang B, Huang Z, Mei S, Liu D, Zheng L, Luo Y. Integrative profiling of extrachromosomal circular DNA in placenta and maternal plasma provides insights into the biology of fetal growth restriction and reveals potential biomarkers. Front Genet 2023; 14:1128082. [PMID: 37476414 PMCID: PMC10354665 DOI: 10.3389/fgene.2023.1128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Fetal growth restriction (FGR) is a placenta-mediated pregnancy complication that predisposes fetuses to perinatal complications. Maternal plasma cell-free DNA harbors DNA originating from placental trophoblasts, which is promising for the prenatal diagnosis and prediction of pregnancy complications. Extrachromosomal circular DNA (eccDNA) is emerging as an ideal biomarker and target for several diseases. Methods: We utilized eccDNA sequencing and bioinformatic pipeline to investigate the characteristics and associations of eccDNA in placenta and maternal plasma, the role of placental eccDNA in the pathogenesis of FGR, and potential plasma eccDNA biomarkers of FGR. Results: Using our bioinformatics pipelines, we identified multi-chromosomal-fragment and single-fragment eccDNA in placenta, but almost exclusively single-fragment eccDNA in maternal plasma. Relative to that in plasma, eccDNA in placenta was larger and substantially more abundant in exons, untranslated regions, promoters, repetitive elements [short interspersed nuclear elements (SINEs)/Alu, SINEs/mammalian-wide interspersed repeats, long terminal repeats/endogenous retrovirus-like elements, and single recognition particle RNA], and transcription factor binding motifs. Placental multi-chromosomal-fragment eccDNA was enriched in confident enhancer regions predicted to pertain to genes in apoptosis, energy, cell growth, and autophagy pathways. Placental eccDNA-associated genes whose abundance differed between the FGR and control groups were associated with immunity-related gene ontology (GO) terms. The combined analysis of plasma and placental eccDNA-associated genes in the FGR and control groups led to the identification of potential biomarkers that were assigned to the GO terms of the epigenetic regulation of gene expression and nutrient-related processes, respectively. Conclusion: Together, our results highlight links between placenta functions and multi-chromosomal-fragment and single-fragment eccDNA. The integrative analysis of placental and plasma eccDNA confirmed the potential of these molecules as disease-specific biomarkers of FGR.
Collapse
Affiliation(s)
- Minhuan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binrun Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Dong Y, He Q, Chen X, Yang F, He L, Zheng Y. Extrachromosomal DNA (ecDNA) in cancer: mechanisms, functions, and clinical implications. Front Oncol 2023; 13:1194405. [PMID: 37448518 PMCID: PMC10338009 DOI: 10.3389/fonc.2023.1194405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is circular DNA that plays an important role in the development and heterogeneity of cancer. The rapid evolution of methods to detect ecDNA, including microscopic and sequencing approaches, has greatly enhanced our knowledge of the role of ecDNA in cancer development and evolution. Here, we review the molecular characteristics, functions, mechanisms of formation, and detection methods of ecDNA, with a focus on the potential clinical implications of ecDNA in cancer. Specifically, we consider the role of ecDNA in acquired drug resistance, as a diagnostic and prognostic biomarker, and as a therapeutic target in the context of cancer. As the pathological and clinical significance of ecDNA continues to be explored, it is anticipated that ecDNA will have broad applications in the diagnosis, prognosis, and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yucheng Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi He
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyu Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li He
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Yongchang Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Pradella D, Zhang M, Gao R, Yao MA, Gluchowska KM, Florez YC, Mishra T, Rocca GL, Weigl M, Jiao Z, Nguyen HHM, Grimm F, Lisi M, Mastroleo C, Chen K, Luebeck J, Bafna V, Antonescu CR, Ventura A. Immortalization and transformation of primary cells mediated by engineered ecDNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546239. [PMID: 37425909 PMCID: PMC10327150 DOI: 10.1101/2023.06.25.546239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Focal gene amplifications are among the most common cancer-associated mutations, but their evolution and contribution to tumorigenesis have proven challenging to recapitulate in primary cells and model organisms. Here we describe a general approach to engineer large (>1 Mbp) focal amplifications mediated by extrachromosomal circular DNAs (ecDNAs, also known as "double minutes") in a spatiotemporally controlled manner in cancer cell lines and in primary cells derived from genetically engineered mice. With this strategy, ecDNA formation can be coupled with expression of fluorescent reporters or other selectable markers to enable the identification and tracking of ecDNA-containing cells. We demonstrate the feasibility of this approach by engineering MDM2-containing ecDNAs in near-diploid human cells, showing that GFP expression can be used to track ecDNA dynamics under physiological conditions or in the presence of specific selective pressures. We also apply this approach to generate mice harboring inducible Myc - and Mdm2 -containing ecDNAs analogous to those spontaneously occurring in human cancers. We show that the engineered ecDNAs rapidly accumulate in primary cells derived from these animals, promoting proliferation, immortalization, and transformation.
Collapse
|
35
|
Yang M, Zhang S, Jiang R, Chen S, Huang M. Circlehunter: a tool to identify extrachromosomal circular DNA from ATAC-Seq data. Oncogenesis 2023; 12:28. [PMID: 37217468 DOI: 10.1038/s41389-023-00476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
In cancer, extrachromosomal circular DNA (ecDNA), or megabase-pair amplified circular DNA, plays an essential role in intercellular heterogeneity and tumor cell revolution because of its non-Mendelian inheritance. We developed circlehunter ( https://github.com/suda-huanglab/circlehunter ), a tool for identifying ecDNA from ATAC-Seq data using the enhanced chromatin accessibility of ecDNA. Using simulated data, we showed that circlehunter has an F1 score of 0.93 at 30× local depth and read lengths as short as 35 bp. Based on 1312 ecDNAs predicted from 94 publicly available datasets of ATAC-Seq assays, we found 37 oncogenes contained in these ecDNAs with amplification characteristics. In small cell lung cancer cell lines, ecDNA containing MYC leads to amplification of MYC and cis-regulates the expression of NEUROD1, resulting in an expression pattern consistent with the NEUROD1 high expression subtype and sensitive to Aurora kinase inhibitors. This showcases that circlehunter could serve as a valuable pipeline for the investigation of tumorigenesis.
Collapse
Affiliation(s)
- Manqiu Yang
- School of Biology and Basic Medical Sciences, Soochow University, 215123, Suzhou, China
| | - Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 215123, Suzhou, China
| | - Rong Jiang
- School of Biology and Basic Medical Sciences, Soochow University, 215123, Suzhou, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
36
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
37
|
Jiang R, Yang M, Zhang S, Huang M. Advances in sequencing-based studies of microDNA and ecDNA: Databases, identification methods, and integration with single-cell analysis. Comput Struct Biotechnol J 2023; 21:3073-3080. [PMID: 37273851 PMCID: PMC10238454 DOI: 10.1016/j.csbj.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a class of circular DNA molecules that originate from genomic DNA but are separate from chromosomes. They are common in various organisms, with sizes ranging from a few hundred to millions of base pairs. A special type of large extrachromosomal DNA (ecDNA) is prevalent in cancer cells. Research on ecDNA has significantly contributed to our comprehension of cancer development, progression, evolution, and drug resistance. The use of next-generation (NGS) and third-generation sequencing (TGS) techniques to identify eccDNAs throughout the genome has become a trend in current research. Here, we briefly review current advances in the biological mechanisms and applications of two distinct types of eccDNAs: microDNA and ecDNA. In addition to presenting available identification tools based on sequencing data, we summarize the most recent efforts to integrate ecDNA with single-cell analysis and put forth suggestions to promote the process.
Collapse
Affiliation(s)
| | | | - Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
38
|
He Z, Wilson A, Rich F, Kenwright D, Stevens A, Low YS, Thunders M. Chromosomal instability and its effect on cell lines. Cancer Rep (Hoboken) 2023:e1822. [PMID: 37095005 DOI: 10.1002/cnr2.1822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Cancer cell lines are invaluable model systems for biomedical research because they provide an almost unlimited supply of biological materials. However, there is considerable skepticism regarding the reproducibility of data derived from these in vitro models. RECENT FINDINGS Chromosomal instability (CIN) is one of the primary issues associated with cell lines, which can cause genetic heterogeneity and unstable cell properties within a cell population. Many of these problems can be avoided with some precautions. Here we review the underlying causes of CIN, including merotelic attachment, telomere dysfunction, DNA damage response defects, mitotic checkpoint defects and cell cycle disturbances. CONCLUSION In this review we summarize studies highlighting the consequences of CIN in various cell lines and provide suggestions on monitoring and controlling CIN during cell culture.
Collapse
Affiliation(s)
- Zichen He
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Andrew Wilson
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Fenella Rich
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Diane Kenwright
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Aaron Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Yee Syuen Low
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
39
|
Luebeck J, Ng AWT, Galipeau PC, Li X, Sanchez CA, Katz-Summercorn AC, Kim H, Jammula S, He Y, Lippman SM, Verhaak RGW, Maley CC, Alexandrov LB, Reid BJ, Fitzgerald RC, Paulson TG, Chang HY, Wu S, Bafna V, Mischel PS. Extrachromosomal DNA in the cancerous transformation of Barrett's oesophagus. Nature 2023; 616:798-805. [PMID: 37046089 PMCID: PMC10132967 DOI: 10.1038/s41586-023-05937-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.
Collapse
Affiliation(s)
- Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Alvin Wei Tian Ng
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Patricia C Galipeau
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Xiaohong Li
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Carissa A Sanchez
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Hoon Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sriganesh Jammula
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
| | - Yudou He
- Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Scott M Lippman
- Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Carlo C Maley
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ludmil B Alexandrov
- Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Brian J Reid
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca C Fitzgerald
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK.
| | - Thomas G Paulson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California at San Diego, La Jolla, CA, USA.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan Chemistry, Engineering, and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
40
|
Zhao Z, Wang X, Ding Y, Cao X, Zhang X. SMC4, a novel tumor prognostic marker and potential tumor therapeutic target. Front Oncol 2023; 13:1117642. [PMID: 37007153 PMCID: PMC10064883 DOI: 10.3389/fonc.2023.1117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
The structural maintenance of chromosome 4 (SMC4) is a member of the ATPase family of chromosomes. The most widely reported function of SMC4, as well as the remaining subunits of whole condensin complexes, is compression and dissociation of sister chromatids, DNA damage repair, DNA recombination, and pervasive transcription of the genome. Studies have also shown that SMC4 plays an exceedingly essential role in the division cycle of embryonic cells, such as RNA splicing, DNA metabolic process, cell adhesion, and extracellular matrix. On the other hand, SMC4 is also a positive regulator of the inflammatory innate immune response, while excessive innate immune responses not only disrupt immune homeostasis and may lead to autoimmune diseases, but even cancer. To further understand the expression and prognostic value of SMC4 in tumors, we provide an in-depth review of the literature and several bioinformatic databases, for example, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), The Human Protein Atlas and Kaplan Meier plotter tools, illustrating that SMC4 plays a vital role in the occurrence and development of tumors, and high expression of SMC4 seems to consistently predict worse overall survival. In conclusion, we present this review which introduces the structure, biological function of SMC4, and its correlation with the tumor in detail; it might provide new insight into a novel tumor prognostic marker and potential tumor therapeutic target.
Collapse
Affiliation(s)
- Zonglei Zhao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xixiu Wang
- Department of Cardiovascular Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yan Ding
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xuefeng Cao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
- *Correspondence: Xuefeng Cao,
| | - Xingyuan Zhang
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
41
|
Chen Y, Qiu Q, She J, Yu J. Extrachromosomal circular DNA in colorectal cancer: biogenesis, function and potential as therapeutic target. Oncogene 2023; 42:941-951. [PMID: 36859558 PMCID: PMC10038807 DOI: 10.1038/s41388-023-02640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Extrachromosomal circular DNA (ecDNA) has gained renewed interest since its discovery more than half a century ago, emerging as critical driver of tumor evolution. ecDNA is highly prevalent in many types of cancers, including colorectal cancer (CRC), which is one of the most deadly cancers worldwide. ecDNAs play an essential role in regulating oncogene expression, intratumor heterogeneity, and resistance to therapy independently of canonical chromosomal alterations in CRC. Furthermore, the existence of ecDNAs is attributed to the patient's prognosis, since ecDNA-based oncogene amplification adversely affects clinical outcomes. Recent understanding of ecDNA put an extra layer of complexity in the pathogenesis of CRC. In this review, we will discuss the current understanding on mechanisms of biogenesis, and distinctive features of ecDNA in CRC. In addition, we will examine how ecDNAs mediate oncogene overexpression, gene regulation, and topological interactions with active chromatin, which facilitates genetic heterogeneity, accelerates CRC malignancy, and enhances rapid adaptation to therapy resistance. Finally, we will discuss the potential diagnostic and therapeutic implications of ecDNAs in CRC.
Collapse
Affiliation(s)
- Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
42
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
43
|
Luo J, Li Y, Zhang T, Xv T, Chen C, Li M, Qiu Q, Song Y, Wan S. Extrachromosomal circular DNA in cancer drug resistance and its potential clinical implications. Front Oncol 2023; 12:1092705. [PMID: 36793345 PMCID: PMC9923117 DOI: 10.3389/fonc.2022.1092705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Chemotherapy is widely used to treat patients with cancer. However, resistance to chemotherapeutic drugs remains a major clinical concern. The mechanisms of cancer drug resistance are extremely complex and involve such factors such as genomic instability, DNA repair, and chromothripsis. A recently emerging area of interest is extrachromosomal circular DNA (eccDNA), which forms owing to genomic instability and chromothripsis. eccDNA exists widely in physiologically healthy individuals but also arises during tumorigenesis and/or treatment as a drug resistance mechanism. In this review, we summarize the recent progress in research regarding the role of eccDNA in the development of cancer drug resistance as well as the mechanisms thereof. Furthermore, we discuss the clinical applications of eccDNA and propose some novel strategies for characterizing drug-resistant biomarkers and developing potential targeted cancer therapies.
Collapse
Affiliation(s)
- Juanjuan Luo
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China,China Medical University, Shenyang, China, Ganzhou, China
| | - Ying Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Tangxuan Zhang
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Tianhan Xv
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Chao Chen
- Department of Interventional Radiology, The People’s Hospital of Ganzhou City, Ganzhou, China
| | - Mengting Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Qixiang Qiu
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yusheng Song
- Department of Interventional Radiology, The People’s Hospital of Ganzhou City, Ganzhou, China,*Correspondence: Shaogui Wan, ; Yusheng Song,
| | - Shaogui Wan
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China,China Medical University, Shenyang, China, Ganzhou, China,*Correspondence: Shaogui Wan, ; Yusheng Song,
| |
Collapse
|
44
|
Pecorino LT, Verhaak RG, Henssen A, Mischel PS. Extrachromosomal DNA (ecDNA): an origin of tumor heterogeneity, genomic remodeling, and drug resistance. Biochem Soc Trans 2022; 50:1911-1920. [PMID: 36355400 PMCID: PMC9788557 DOI: 10.1042/bst20221045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The genome of cancer cells contains circular extrachromosomal DNA (ecDNA) elements not found in normal cells. Analysis of clinical samples reveal they are common in most cancers and their presence indicates poor prognosis. They often contain enhancers and driver oncogenes that are highly expressed. The circular ecDNA topology leads to an open chromatin conformation and generates new gene regulatory interactions, including with distal enhancers. The absence of centromeres leads to random distribution of ecDNAs during cell division and genes encoded on them are transmitted in a non-mendelian manner. ecDNA can integrate into and exit from chromosomal DNA. The numbers of specific ecDNAs can change in response to treatment. This dynamic ability to remodel the cancer genome challenges long-standing fundamentals, providing new insights into tumor heterogeneity, cancer genome remodeling, and drug resistance.
Collapse
Affiliation(s)
| | | | - Anton Henssen
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul S. Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, U.S.A
- Sarafan ChEM-H, Standford, CA, U.S.A
| |
Collapse
|
45
|
Ma X, Chan TA. Solving the puzzle of what makes immunotherapies work. Trends Cancer 2022; 8:890-900. [PMID: 35933298 PMCID: PMC10109520 DOI: 10.1016/j.trecan.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
The rapid adoption of immune checkpoint blockade (ICB) therapies has led to a need to understand the mechanistic drivers of efficacy and the identification of novel biomarkers that enrich for patients who benefit from ICB therapy. Here, we provide a perspective on emerging biomarker candidates, their underlying biological mechanisms, and how they may fit into the current landscape of ICB biomarkers. We discuss new frameworks to identify and evaluate biomarker candidates and review the opportunities and challenges of utilizing biomarker-derived models to facilitate the development of new immunotherapies.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; Case Western School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
46
|
Zhao Y, Yu L, Zhang S, Su X, Zhou X. Extrachromosomal circular DNA: Current status and future prospects. eLife 2022; 11:81412. [PMID: 36256570 PMCID: PMC9578701 DOI: 10.7554/elife.81412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a double-stranded DNA molecule found in various organisms, including humans. In the past few decades, the research on eccDNA has mainly focused on cancers and their associated diseases. Advancements in modern omics technologies have reinvigorated research on eccDNA and shed light on the role of these molecules in a range of diseases and normal cell phenotypes. In this review, we first summarize the formation of eccDNA and its modes of action in eukaryotic cells. We then outline eccDNA as a disease biomarker and reveal its regulatory mechanism. We finally discuss the future prospects of eccDNA, including basic research and clinical application. Thus, with the deepening of understanding and exploration of eccDNAs, they hold great promise in future biomedical research and clinical translational application.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linchan Yu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
48
|
Peng H, Mirouze M, Bucher E. Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102263. [PMID: 35872391 DOI: 10.1016/j.pbi.2022.102263] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years, most plant genomic studies were focused on nuclear chromosomes. Extrachromosomal circular DNA (eccDNA) has largely been neglected for decades since its discovery in 1965. While initial research showed that eccDNAs can originate from highly repetitive sequences, recent findings show that many regions of the genome can contribute to the eccDNA pool. Currently, the biological functions of eccDNAs, if any, are a mystery but recent studies have indicated that they can be regulated by different genomic loci and contribute to stress response and adaptation. In this review, we outline current relevant technological developments facilitating eccDNA identification and the latest discoveries about eccDNAs in plants. Finally, we explore the probable functions and future research directions that could be undertaken with respect to different eccDNA sources.
Collapse
Affiliation(s)
- Haoran Peng
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland; Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, 1211, Geneva, Switzerland
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), EMR269 MANGO, Université de Perpignan, 66860 Perpignan, France; Laboratory of Plant Genome and Development, Université de Perpignan, 66860, Perpignan, France.
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland.
| |
Collapse
|
49
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Al-Rawi DH, Bakhoum SF. Chromosomal instability as a source of genomic plasticity. Curr Opin Genet Dev 2022; 74:101913. [PMID: 35526333 PMCID: PMC9156567 DOI: 10.1016/j.gde.2022.101913] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/03/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of the most aggressive malignancies. Features of these tumors include complex genomic rearrangements, the presence of mis-segregated chromosomes in micronuclei, and extrachromosomal DNA (ecDNA) formation. Here, we review the development of CIN, and examine CIN in the context of cancer evolution, tumor genomic evolution, and therapeutic resistance. We also discuss the role of whole-genome duplications, breakage-fusion-bridge cycles, ecDNA or double minutes in gene amplification promoting tumor evolution.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|