1
|
Jang JH, Lee YJ, Ha IH, Park HJ. The analgesic effect of acupuncture in neuropathic pain: regulatory mechanisms of DNA methylation in the brain. Pain Rep 2024; 9:e1200. [PMID: 39450409 PMCID: PMC11500783 DOI: 10.1097/pr9.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research has demonstrated that chronic pain, resulting from peripheral nerve injury, leads to various symptoms, including not only allodynia and hyperalgesia but also anxiety, depression, and cognitive impairment. These symptoms are believed to arise due to alterations in gene expression and neural function, mediated by epigenetic changes in chromatin structure. Emerging evidence suggests that acupuncture can modulate DNA methylation within the central nervous system, contributing to pain relief and the mitigation of comorbidities. Specifically, acupuncture has been shown to adjust the DNA methylation of genes related to mitochondrial dysfunction, oxidative phosphorylation, and inflammation pathways within cortical regions, such as the prefrontal cortex, anterior cingulate cortex, and primary somatosensory cortex. In addition, it influences the DNA methylation of genes associated with neurogenesis in hippocampal neurons. This evidence indicates that acupuncture, a treatment with fewer side effects compared with conventional medications, could offer an effective strategy for pain management.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Schiele MA, Crespo Salvador O, Lipovsek J, Schwarte K, Schlosser P, Zwanzger P, Arolt V, Baune BT, Köttgen A, Domschke K. Epigenome-Wide DNA Methylation in Unipolar Depression: Predictive Biomarker of Antidepressant Treatment Response? Int J Neuropsychopharmacol 2024; 27:pyae045. [PMID: 39367879 PMCID: PMC11558245 DOI: 10.1093/ijnp/pyae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Despite the well-documented efficacy of antidepressant agents for the treatment of major depressive disorder (MDD), initial treatment nonresponse rates are high. Recent years have seen an increase in research into predictive biomarkers toward improving diagnosis and individualized treatment. Among those, epigenetic mechanisms such as DNA methylation constitute promising candidate markers in predicting antidepressant treatment response in MDD. The present study sought to address epigenome-wide DNA methylation as a predictor of antidepressant treatment response in the largest sample to date of patients with MDD. METHODS Epigenome-wide DNA methylation was analyzed using the Infinium MethylationEPIC BeadChip in peripheral blood of n = 230 Caucasian patients with MDD receiving 6-week antidepressant treatment in a naturalistic in-patient setting as well as in a subsample of n = 107 patients primarily receiving continuous treatment with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors. Treatment response was assessed by means of the Hamilton Depression Scale. RESULTS No genome-wide significant hits were observed. Suggestive (P < 1E-5) epigenome-wide evidence was discerned for altered DNA methylation at 6 CpG sites (LOC102724467, LOC100506023, RSPO2, SAG, IL16, PRKCI) to predict response to naturalistic antidepressant treatment. In patients treated with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors, differential DNA methylation at 11 CpGs, for example, mapping to the TIMP2, VDAC1, or SORL1 genes, was suggestively associated with treatment response. CONCLUSIONS The present results provide preliminary evidence for altered DNA methylation patterns to be associated with antidepressant treatment response in MDD. Provided significant replication in independent and larger samples, the present findings might in the future aid in clinical decision-making toward more individualized and thus more efficacious treatments of MDD.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oscar Crespo Salvador
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Lipovsek
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Kathrin Schwarte
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Pascal Schlosser
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Bernhard T Baune
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
El-Kadi RA, AbdelKader NF, Zaki HF, Kamel AS. Vilazodone Alleviates Neurogenesis-Induced Anxiety in the Chronic Unpredictable Mild Stress Female Rat Model: Role of Wnt/β-Catenin Signaling. Mol Neurobiol 2024; 61:9060-9077. [PMID: 38584231 PMCID: PMC11496359 DOI: 10.1007/s12035-024-04142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Defective β-catenin signaling is accompanied with compensatory neurogenesis process that may pave to anxiety. β-Catenin has a distinct role in alleviating anxiety in adolescence; however, it undergoes degradation by the degradation complex Axin and APC. Vilazodone (VZ) is a fast, effective antidepressant with SSRI activity and 5-HT1A partial agonism that amends somatic and/or psychic symptoms of anxiety. Yet, there is no data about anxiolytic effect of VZ on anxiety-related neurogenesis provoked by stress-reduced β-catenin signaling. Furthermore, females have specific susceptibility toward psychopathology. The aim of the present study is to uncover the molecular mechanism of VZ relative to Wnt/β-catenin signaling in female rats. Stress-induced anxiety was conducted by subjecting the rats to different stressful stimuli for 21 days. On the 15th day, stressed rats were treated with VZ(10 mg/kg, p.o.) alone or concomitant with the Wnt inhibitor: XAV939 (0.1 mg/kg, i.p.). Anxious rats showed low β-catenin level turned over by Axin-1 with unanticipated reduction of APC pursued with elevated protein levels of neurogenesis-stimulating proteins: c-Myc and pThr183-Erk likewise gene expressions of miR-17-5p and miR-18. Two weeks of VZ treatment showed anxiolytic effect figured by alleviation of hippocampal histological examination. VZ protected β-catenin signal via reduction in Axin-1 and elevation of APC conjugated with modulation of β-catenin downstream targets. The cytoplasmic β-catenin turnover by Axin-1 was restored by XAV939. Herein, VZ showed anti-anxiety effect, which may be in part through regaining the balance of the reduced β-catenin and its subsequent exaggerated response of p-Erk, c-Myc, Dicer-1, miR-17-5p, and miR-18.
Collapse
Affiliation(s)
- Rana A El-Kadi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Alexandria University Hospitals, Champollion Street, El-Khartoum Square, El Azareeta, Alexandria, 21131, Egypt
| | - Noha F AbdelKader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
Torres-Berrío A, Estill M, Patel V, Ramakrishnan A, Kronman H, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee YY, Walker DM, Martínez-Rivera FJ, Lardner CK, Durand-de Cuttoli R, Russo SJ, Shen L, Sidoli S, Nestler EJ. Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress. Neuron 2024; 112:2973-2989.e10. [PMID: 38959894 PMCID: PMC11377169 DOI: 10.1016/j.neuron.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishwendra Patel
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Zhu J, Chen X, Lu B, Li XY, Wang ZH, Cao LP, Chen GM, Chen JS, Chen T, Chen TL, Cheng YQ, Chu ZS, Cui SX, Cui XL, Deng ZY, Gong QY, Guo WB, He CC, Hu ZJY, Huang Q, Ji XL, Jia FN, Kuang L, Li BJ, Li F, Li HX, Li T, Lian T, Liao YF, Liu XY, Liu YS, Liu ZN, Long YC, Lu JP, Qiu J, Shan XX, Si TM, Sun PF, Wang CY, Wang HN, Wang X, Wang Y, Wang YW, Wu XP, Wu XR, Wu YK, Xie CM, Xie GR, Xie P, Xu XF, Xue ZP, Yang H, Yu H, Yuan ML, Yuan YG, Zhang AX, Zhao JP, Zhang KR, Zhang W, Zhang ZJ, Yan CG, Yu Y. Transcriptomic decoding of regional cortical vulnerability to major depressive disorder. Commun Biol 2024; 7:960. [PMID: 39117859 PMCID: PMC11310478 DOI: 10.1038/s42003-024-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Han Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Jian-Shan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao-Lin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhao-Song Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shi-Xian Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xi-Long Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhao-Yu Deng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Can-Can He
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zheng-Jia-Yi Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xin-Lei Ji
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng-Nan Jia
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bao-Juan Li
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Tao Lian
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Fan Liao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yi-Cheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian-Ping Lu
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiao-Xiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Peng-Feng Sun
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hua-Ning Wang
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ping Wu
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yan-Kun Wu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400000, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen-Peng Xue
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Min-Lan Yuan
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ai-Xia Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Wei Zhang
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Zi-Jing Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
7
|
Bolouki A. Role of Epigenetic Modification in the Intergeneration Transmission of War Trauma. Indian J Clin Biochem 2024; 39:312-321. [PMID: 39005862 PMCID: PMC11239641 DOI: 10.1007/s12291-023-01136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/25/2023] [Indexed: 07/16/2024]
Abstract
War trauma has been linked to changes in the neuroendocrine and immunological systems and increases the risk of physical disorders. Traumatic events during the war may have long-term repercussions on psychological and biological parameters in future generations, implying that traumatic stress may have transgenerational consequences. This article addresses how epigenetic mechanisms, which are a key biological mechanism for dynamic adaptation to environmental stressors, may help explain the long-term and transgenerational consequences of trauma. In war survivors, epigenetic changes in genes mediating the hypothalamus-pituitary-adrenal axis, as well as the immune system, have been reported. These genetic modifications may cause long-term changes in the stress response as well as physical health risks. Also, the finding of biomarkers for diagnosing the possibility of psychiatric illnesses in people exposed to stressful conditions such as war necessitates extensive research. While epigenetic research has the potential to further our understanding of the effects of trauma, the findings must be interpreted with caution because epigenetic molecular mechanisms is only one piece of a complicated puzzle of interwoven biological and environmental components.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Clinical Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Unit on Cellular Biology (URBC), University of Namur, Namur, Belgium
| |
Collapse
|
8
|
Siddiqui N, Sharma A, Kesharwani A, Anurag, Parihar VK. Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing Res Rev 2024; 97:102282. [PMID: 38548242 DOI: 10.1016/j.arr.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca2+ homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India.
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
9
|
Vieira TDS, Freitas FV, Silva Neto LCB, Borçoi AR, Mendes SO, Olinda AS, Moreno IAA, Quaioto BR, de Souza MLM, Barbosa WM, Arpini JK, Sorroche BP, de Assis Pinheiro J, Archanjo AB, dos Santos JG, Arantes LMRB, de Oliveira DR, da Silva AMA. An industrialized diet as a determinant of methylation in the 1F region of the NR3C1 gene promoter. Front Nutr 2024; 11:1168715. [PMID: 38633601 PMCID: PMC11021719 DOI: 10.3389/fnut.2024.1168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Dietary composition can modify gene expression, favoring the development of chronic diseases via epigenetic mechanisms. Objective Our study aimed to investigate the relationship between dietary patterns and NR3C1 gene methylation in users of the Brazilian Public Unified Health System (SUS). Methods We recruited 250 adult volunteers and evaluated their socioeconomic status, psychosocial characteristics, lifestyle, and anthropometrics. Peripheral blood was collected and evaluated for cortisol levels, glycemia, lipid profile, and insulin resistance; methylation of CpGs 40-47 of the 1F region of the NR3C1 gene was also measured. Factors associated with degree of methylation were evaluated using generalized linear models (p < 0.05). Lifestyle variables and health variables were included as confounding factors. Results The findings of our cross-sectional study indicated an association between NR3C1 DNA methylation and intake of processed foods. We also observed relevant associations of average NR3C1 DNA across the segment analyzed, methylation in component 1 (40-43), and methylation in component 2 (44-47) with a pattern of consumption of industrialized products in relation to BMI, serum cortisol levels, and lipid profile. These results may indicate a relationship between methylation and metabolic changes related to the stress response. Conclusion These findings suggest an association of methylation and metabolic alterations with stress response. In addition, the present study highlights the significant role of diet quality as a stress-inducing factor that influences NR3C1 methylation. This relationship is further linked to changes in psychosocial factors, lifestyle choices, and cardiometabolic variables, including glucose levels, insulin resistance, and hyperlipidemia.
Collapse
Affiliation(s)
- Tamires dos Santos Vieira
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | - Aline Ribeiro Borçoi
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Amanda Sgrancio Olinda
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Ivana Alece Arantes Moreno
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Bárbara Risse Quaioto
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Wagner Miranda Barbosa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, Brazil
| | | | | | - Julia de Assis Pinheiro
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Anderson Barros Archanjo
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | - Adriana Madeira Alvares da Silva
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
10
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
11
|
Singh P, Srivastava A, Philip L, Ahuja SK, Shivangi, Rawat C, Kutum R, Yadav J, Sood M, Chadda RK, Dash D, Vohora D, Kukreti R. Genome-wide transcriptomic and biochemical profiling of major depressive disorder: Unravelling association with susceptibility, severity, and antidepressant response. Genomics 2024; 116:110772. [PMID: 38158140 DOI: 10.1016/j.ygeno.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Identifying biomarkers for diagnosing Major Depressive Disorder (MDD), assessing its severity, and guiding treatment is crucial. We conducted whole genome transcriptomic study in North Indian population, and analyzed biochemical parameters. Our longitudinal study investigated gene-expression profiles from 72 drug-free MDD patients and 50 healthy controls(HCs) at baseline and 24 patients after 12-weeks of treatment. Gene expression analyses identified differentially expressed genes(DEGs) associated with MDD susceptibility, symptom severity and treatment response, independently validated by qPCR. Hierarchical clustering revealed distinct expression patterns between MDD and HCs, also between mild and severe cases. Enrichment analyses of significant DEGs revealed inflammatory, apoptosis, and immune-related pathways in MDD susceptibility, severity, and treatment response. Simultaneously, we assessed thirty biochemical parameters in the same cohort, showed significant differences between MDD and HCs in 13 parameters with monocytes, eosinophils, creatinine, SGPT, and total protein remained independent predictors of MDD in a multivariate-regression model. Our study supports the role of altered immune/inflammatory signaling in MDD pathophysiology, offering clinically relevant biochemical parameters and insights into transcriptomic gene regulation in MDD pathogenesis and treatment response.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lini Philip
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Simranpreet Kaur Ahuja
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Shivangi
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rintu Kutum
- Department of Computer Science, Ashoka University, Haryana 131029, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Debasis Dash
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Sarkisova KY, Gabova AV, Fedosova EA, Shatskova AB, Narkevich VB, Kudrin VS. Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy. Int J Mol Sci 2023; 24:12425. [PMID: 37569798 PMCID: PMC10419169 DOI: 10.3390/ijms241512425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Depression is a severe and widespread psychiatric disease that often accompanies epilepsy. Antidepressant treatment of depression comorbid with epilepsy is a major concern due to the risk of seizure aggravation. SAMe, a universal methyl donor for DNA methylation and the synthesis of brain monoamines, is known to have high antidepressant activity. This study aimed to find out whether L-methionine (L-MET), a precursor of SAMe, can have antidepressant and/or anxiolytic effects in the WAG/Rij rat model of depression comorbid with absence epilepsy. The results indicate that L-MET reduces the level of anxiety and depression in WAG/Rij rats and suppresses associated epileptic seizures, in contrast to conventional antidepressant imipramine, which aggravates absence seizures. The antidepressant effect of L-MET was comparable with that of the conventional antidepressants imipramine and fluoxetine. However, the antidepressant profile of L-MET was more similar to imipramine than to fluoxetine. Taken together, our findings suggest that L-MET could serve as a promising new antidepressant drug with anxiolytic properties for the treatment of depression comorbid with absence epilepsy. Increases in the level of monoamines and their metabolites-DA, DOPAC, HVA, NA, and MHPG-in several brain structures, is suggested to be a neurochemical mechanism of the beneficial phenotypic effect of L-MET.
Collapse
Affiliation(s)
- Karine Yu. Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Alexandra V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Ekaterina A. Fedosova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Alla B. Shatskova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Victor B. Narkevich
- Federal State Budgetary Institution “Scientific Research Institute of Pharmacology named after V.V. Zakusov”, Baltiyskaya Str. 8, Moscow 125315, Russia; (V.B.N.); (V.S.K.)
| | - Vladimir S. Kudrin
- Federal State Budgetary Institution “Scientific Research Institute of Pharmacology named after V.V. Zakusov”, Baltiyskaya Str. 8, Moscow 125315, Russia; (V.B.N.); (V.S.K.)
| |
Collapse
|
15
|
Marinho LSR, Chiarantin GMD, Ikebara JM, Cardoso DS, de Lima-Vasconcellos TH, Higa GSV, Ferraz MSA, De Pasquale R, Takada SH, Papes F, Muotri AR, Kihara AH. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023; 144:67-76. [PMID: 36115764 DOI: 10.1016/j.semcdb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.
Collapse
Affiliation(s)
| | | | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | | | - Guilherme Shigueto Vilar Higa
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil; Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | | | - Roberto De Pasquale
- Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; Center for Medicinal Chemistry, University of Campinas, Campinas, SP 13083-875, Brazil; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037, USA.
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil.
| |
Collapse
|
16
|
Torres-Berrío A, Estill M, Ramakrishnan A, Kronman H, Patel V, Minier-Toribio A, Issler O, Browne CJ, Parise EM, van der Zee Y, Walker D, Martínez-Rivera FJ, Lardner CK, Cuttoli RDD, Russo SJ, Shen L, Sidoli S, Nestler EJ. Monomethylation of Lysine 27 at Histone 3 Confers Lifelong Susceptibility to Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539829. [PMID: 37214877 PMCID: PMC10197593 DOI: 10.1101/2023.05.08.539829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling, and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice exposed to early life stress (ELS) or to chronic social defeat stress (CSDS) in adulthood displayed increased enrichment of H3K27me1, and transient decreases in H3K27me2, in the nucleus accumbens (NAc), a key brain-reward region. Stress induction of H3K27me1 was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which is induced by chronic stress and controls H3K27 methylation patterns. Overexpression of the VEFS domain led to social, emotional, and cognitive abnormalities, and altered excitability of NAc D1 mediums spiny neurons. Together, we describe a novel function of H3K27me1 in brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.
Collapse
|
17
|
Fulton SL, Bendl J, Gameiro-Ros I, Fullard JF, Al-Kachak A, Lepack AE, Stewart AF, Singh S, Poller WC, Bastle RM, Hauberg ME, Fakira AK, Chen M, Cuttoli RDD, Cathomas F, Ramakrishnan A, Gleason K, Shen L, Tamminga CA, Milosevic A, Russo SJ, Swirski F, Blitzer RD, Slesinger PA, Roussos P, Maze I. ZBTB7A regulates MDD-specific chromatin signatures and astrocyte-mediated stress vulnerability in orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539425. [PMID: 37205394 PMCID: PMC10187272 DOI: 10.1101/2023.05.04.539425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hyperexcitability in the orbitofrontal cortex (OFC) is a key clinical feature of anhedonic domains of Major Depressive Disorder (MDD). However, the cellular and molecular substrates underlying this dysfunction remain unknown. Here, cell-population-specific chromatin accessibility profiling in human OFC unexpectedly mapped genetic risk for MDD exclusively to non-neuronal cells, and transcriptomic analyses revealed significant glial dysregulation in this region. Characterization of MDD-specific cis-regulatory elements identified ZBTB7A - a transcriptional regulator of astrocyte reactivity - as an important mediator of MDD-specific chromatin accessibility and gene expression. Genetic manipulations in mouse OFC demonstrated that astrocytic Zbtb7a is both necessary and sufficient to promote behavioral deficits, cell-type-specific transcriptional and chromatin profiles, and OFC neuronal hyperexcitability induced by chronic stress - a major risk factor for MDD. These data thus highlight a critical role for OFC astrocytes in stress vulnerability and pinpoint ZBTB7A as a key dysregulated factor in MDD that mediates maladaptive astrocytic functions driving OFC hyperexcitability.
Collapse
Affiliation(s)
- Sasha L. Fulton
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaroslav Bendl
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Isabel Gameiro-Ros
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. Fullard
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Amni Al-Kachak
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley E. Lepack
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew F. Stewart
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumnima Singh
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Wolfram C. Poller
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ryan M. Bastle
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mads E. Hauberg
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Amanda K. Fakira
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Chen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flurin Cathomas
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Gleason
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Li Shen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ana Milosevic
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Scott J. Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip Swirski
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Robert D. Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Paul A. Slesinger
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, USA
| | - Ian Maze
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Quaioto BR, Borçoi AR, Mendes SO, Doblas PC, Dos Santos Vieira T, Arantes Moreno IA, Dos Santos JG, Hollais AW, Olinda AS, de Souza MLM, Freitas FV, Pinheiro JA, Cunha ER, Sorroche BP, Arantes LMRB, Álvares-da-Silva AM. Tobacco use modify exon IV BDNF gene methylation levels in depression. J Psychiatr Res 2023; 159:240-248. [PMID: 36753898 DOI: 10.1016/j.jpsychires.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate BDNF gene methylation in individuals with depression based on tobacco use. Therefore, 384 adults from southeastern Brazil were recruited to assess depression, socioeconomic status, lifestyle, and methylation by pyrosequencing exon IV promoter region of the BDNF gene. The Generalized Linear Model (GzLM) was used to check the effect of depression, tobacco, and the interaction between depression and tobacco use in methylation levels. In addition, the Kruskal-Wallis test, followed by Dunn's post hoc test, was used to compare methylation levels. Interaction between depression and tobacco use was significant at levels of BDNF methylation in the CpG 5 (p = 0.045), 8 (p = 0.016), 9 (p = 0.042), 10 (p = 0.026) and mean 5-11 (p < 0.001). Dunn's post hoc test showed that individuals with depression and tobacco use compared to those with or without depression who did not use tobacco had lower levels of BDNF methylation in CpG 5, 6, 7, 8, 9, 11, and mean 5-11. Therefore, we suggest that tobacco use appears to interfere with BDNF gene methylation in depressed individuals.
Collapse
Affiliation(s)
- Bárbara Risse Quaioto
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil.
| | - Aline Ribeiro Borçoi
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Suzanny Oliveira Mendes
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Paola Cerbino Doblas
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Tamires Dos Santos Vieira
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ivana Alece Arantes Moreno
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Joaquim Gasparini Dos Santos
- ICESP, Center for Translational Research in Oncology, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Multiprofessional Residency Program in Adult Oncology Care, Comissão de Residência Multiprofissional/Hospital Das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - André Willian Hollais
- Department of Physiological Sciences, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Amanda Sgrancio Olinda
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Flávia Vitorino Freitas
- Department of Pharmacy and Nutrition, Universidade Federal Do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Júlia Assis Pinheiro
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ester Ribeiro Cunha
- Department of Morphology, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital Do Câncer de Barretos, Barretos, São Paulo, Brazil
| | | | - Adriana Madeira Álvares-da-Silva
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil; Department of Morphology, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
19
|
Han R, Han G, Yan Y, Han L, Li L, Zhang H. Protective effects and mechanisms of the Erzhi formula on glucocorticoid induced primary cortical neuron injury. Front Pharmacol 2023; 14:1038492. [PMID: 36923359 PMCID: PMC10008893 DOI: 10.3389/fphar.2023.1038492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
High concentrations of glucocorticoids (GC) can cross the blood-brain barrier into the brain parenchyma, triggering a stress state that can lead to a range of physiological changes. This study investigated whether Erzhi formula has neuroprotective effects against glucocorticoid damage by establishing a dexamethasone-induced primary cortical neuron injury model in vitro. The results showed that Erzhi formula could reduce dexamethasone-induced apoptosis in primary cultured cortical neurons and improve synaptic damage. Further, network pharmacological analysis revealed that Erzhi formula may exert antidepressant effects by multi-component, multi-target, and multi-pathway characteristics, in which Salidroside, Biochanin-A and other ingredients are key components, HSD11B1, NR3C1, and other proteins are key targets, and steroid metabolism may be a key process in its action. Moreover, our study found that the neuroprotective effect of Erzhi formula might be related to the 11β-HSD1-GC/glucocorticoid receptor (GR) signaling pathway. The Erzhi formula could significantly inhibit the activity of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in vitro using homogeneous time-resolved fluorescence. In addition to providing evidence for the pharmacological effects of the Erzhi formula, the present study lays down the foundation for subsequent experiments.
Collapse
Affiliation(s)
- Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoying Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Moon YK, Kim H, Kim S, Lim SW, Kim DK. Influence of antidepressant treatment on SLC6A4 methylation in Korean patients with major depression. Am J Med Genet B Neuropsychiatr Genet 2023; 192:28-37. [PMID: 36094099 DOI: 10.1002/ajmg.b.32921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation of the serotonin transporter gene (SLC6A4) has been suggested as potential mediator for antidepressant response in patients with depression. This study aimed to determine whether DNA methylation in SLC6A4 changes after antidepressant treatment and whether it affects treatment response in patients with depression. Overall, 221 Korean patients with depression completed 6 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy. DNA was extracted from venous blood pre- and post-treatment, and DNA methylation was analyzed using polymerase chain reaction. We used Wilcoxon's signed-rank test to verify the difference in methylation after treatment. Treatment response was assessed using the 17-item Hamilton Depression Rating Scale, and mRNA levels were quantified. After adjusting for relevant covariates, DNA methylation was significantly altered in specific CpG sites in SLC6A4 (p < .001 in CpG3, CpG4, and CpG5) following 6 weeks of treatment. Methylation change's magnitude (ΔDNA methylation) after drug treatment was not associated with treatment response or mRNA level change. SSRI antidepressants can influence SLC6A4 methylation in patients with depression. However, ΔDNA methylation at CpG3, CpG4, and CpG5 in SLC6A4 was not associated with treatment response. Future studies should investigate the integrative effect of other genetic variants and CpG methylation on gene transcription and antidepressant treatment response.
Collapse
Affiliation(s)
- Young Kyung Moon
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeseung Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Gabova AV, Sarkisova KY. Maternal Methyl-Enriched Diet Normalizes Characteristics of the Sleep–Wake Cycle and Sleep Spindles in Adult Offspring of WAG/Rij Rats with Genetic Absence Epilepsy. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
22
|
Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol Psychiatry 2023; 28:141-153. [PMID: 36517640 PMCID: PMC9812796 DOI: 10.1038/s41380-022-01907-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS), such as abuse and neglect during childhood, can lead to psychiatric disorders in later life. Previous studies have suggested that ELS can cause profound changes in gene expression through epigenetic mechanisms, which can lead to psychiatric disorders in adulthood; however, studies on epigenetic modifications associated with ELS and psychiatric disorders in adolescents are limited. Moreover, how these epigenetic modifications can lead to psychiatric disorders in adolescents is not fully understood. Commonly, DNA methylation, histone modification, and the regulation of noncoding RNAs have been attributed to the reprogramming of epigenetic profiling associated with ELS. Although only a few studies have attempted to examine epigenetic modifications in adolescents with ELS, existing evidence suggests that there are commonalities and differences in epigenetic profiling between adolescents and adults. In addition, epigenetic modifications are sex-dependent and are influenced by the type of ELS. In this review, we have critically evaluated the current evidence on epigenetic modifications in adolescents with ELS, particularly DNA methylation and the expression of microRNAs in both preclinical models and humans. We have also clarified the impact of ELS on psychiatric disorders in adolescents to predict the development of neuropsychiatric disorders and to prevent and recover these disorders through personalized medicine.
Collapse
|
23
|
Pathak H, Borchert A, Garaali S, Burkert A, Frieling H. BDNF exon IV promoter methylation and antidepressant action: a complex interplay. Clin Epigenetics 2022; 14:187. [PMID: 36572893 PMCID: PMC9793565 DOI: 10.1186/s13148-022-01415-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND BDNF exon IV promoter methylation is a potential biomarker for treatment response to antidepressants in MDD. We have previously shown CpG-87 methylation as a successful biomarker for the prediction of non-response to monoaminergic antidepressants like the SSRI Fluoxetine or the SNRI Venlafaxine. This study aimed to dissect the biological evidence and mechanisms for the functionality of CpG-87 methylation in a cell culture model. RESULTS We observed a significant interaction between methylation and antidepressant-mediated transcriptional activity in BDNF exon IV promoter. In addition, antidepressant treatment increased the promoter methylation in a concentration-dependent manner. Further single CpG methylation of -87 did not change the promoter activity, but methylation of CREB domain CpG-39 increased the transcriptional activity in an antidepressant-dependent manner. Interestingly, DNMT3a overexpression also increases the BDNF exon IV transcription and more so in Venlafaxine-treated cells. CONCLUSIONS The study strengthens the previously reported association between antidepressant treatment and BDNF exon IV promoter methylation as well as hints toward the mechanism of action. We argue that potential CpG methylation biomarkers display a complex synergy with the molecular changes at the neighboring CpG positions, thus highlighting the importance of epiallele analyses.
Collapse
Affiliation(s)
- Hansi Pathak
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Anton Borchert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sara Garaali
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Alexandra Burkert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| |
Collapse
|
24
|
Rice Germ Ameliorated Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior by Reducing Neuroinflammation. Nutrients 2022; 14:nu14245382. [PMID: 36558541 PMCID: PMC9780988 DOI: 10.3390/nu14245382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Stress-induced neuroinflammation is widely regarded as one of the primary causes of depression. Gamma-aminobutyric acid (GABA)-enriched foods relieve stress and reduce inflammatory reactions. This study aimed to evaluate whether rice germ with 30% GABA (RG) reduced neuroinflammation in mice exposed to chronic unpredictable mild stress (CUMS). CUMS mice were administered 40, 90, and 140 mg/kg of RG. CUMS increased serum and hypothalamic pro-inflammatory cytokine (TNF-α and IL-6) levels, which were decreased by RG. In the hypothalamus, CUMS elevated M1-type microglia markers of CD86 and NF-κB, whereas RG lowered these levels. The expression levels of NLRP3 inflammasome complex (NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1), IL-1β, and IL-18 were increased in the hypothalamus of CUMS mice and decreased by RG. RG attenuated depressive-like behaviors in CUMS mice, as measured by the forced swim test and tail suspension test. In conclusion, RG decreased hypothalamic inflammation-related signals, such as TNF-α, IL-6, M1 polarization, NF-κB, NLRP3 inflammasome complex, caspase-1, IL-1β, and IL-18, to diminish depressive-like behavior.
Collapse
|
25
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
26
|
Zhu Y, Lussier AA, Smith ADAC, Simpkin AJ, Suderman MJ, Walton E, Relton CL, Dunn EC. Examining the epigenetic mechanisms of childhood adversity and sensitive periods: A gene set-based approach. Psychoneuroendocrinology 2022; 144:105854. [PMID: 35914392 PMCID: PMC9885844 DOI: 10.1016/j.psyneuen.2022.105854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Sensitive periods are developmental stages of heightened plasticity when life experiences, including exposure to childhood adversity, have the potential to exert more lasting impacts. Epigenetic mechanisms, including DNA methylation (DNAm), may provide a pathway through which adversity induces long-term biological changes. DNAm shifts may be more likely to occur during sensitive periods, especially within genes that regulate the timing of sensitive periods. Here, we investigated the possibility that childhood adversity during specific life stages is associated with DNAm changes in genes known to regulate the timing and duration of sensitive periods. METHODS Genome-wide DNAm profiles came from the Avon Longitudinal Study of Parents and Children (n = 785). We first used principal component analysis (PCA) to summarize DNAm variation across 530 CpG sites mapped to the promoters of 58 genes previously-identified as regulating sensitive periods. Gene-level DNAm summaries were calculated for genes regulating sensitive period opening (ngenes = 15), closing (ngenes = 36), and expression (ngenes = 8). We then performed linear discriminant analysis (LDA) to test associations between seven types of parent-reported, time-varying measures of exposure to childhood adversity and DNAm principal components. To our knowledge, this is the first time LDA has been applied to analyze functionally grouped DNAm data to characterize associations between an environmental exposure and epigenetic differences. RESULTS Suggestive evidence emerged for associations between sexual or physical abuse as well as financial hardship during middle childhood, and DNAm of genetic pathways regulating sensitive period opening and expression. However, no statistically significant associations were identified after multiple testing correction. CONCLUSIONS Our gene set-based method combining PCA and LDA complements epigenome-wide approaches. Although our results were largely null, these findings provide a proof-of-concept for studying time-varying exposures and gene- or pathway-level epigenetic modifications.
Collapse
Affiliation(s)
- Yiwen Zhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Alexandre A Lussier
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Andrew D A C Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Andrew J Simpkin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Matthew J Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, United States; Harvard Center on the Developing Child, Cambridge, MA, United States.
| |
Collapse
|
27
|
Šalamon Arčan I, Kouter K, Videtič Paska A. Depressive disorder and antidepressants from an epigenetic point of view. World J Psychiatry 2022; 12:1150-1168. [PMID: 36186508 PMCID: PMC9521527 DOI: 10.5498/wjp.v12.i9.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Depressive disorder is a complex, heterogeneous disease that affects approximately 280 million people worldwide. Environmental, genetic, and neurobiological factors contribute to the depressive state. Since the nervous system is susceptible to shifts in activity of epigenetic modifiers, these allow for significant plasticity and response to rapid changes in the environment. Among the most studied epigenetic modifications in depressive disorder is DNA methylation, with findings centered on the brain-derived neurotrophic factor gene, the glucocorticoid receptor gene, and the serotonin transporter gene. In order to identify biomarkers that would be useful in clinical settings, for diagnosis and for treatment response, further research on antidepressants and alterations they cause in the epigenetic landscape throughout the genome is needed. Studies on cornerstone antidepressants, such as selective serotonin reuptake inhibitors, selective serotonin and norepinephrine reuptake inhibitors, norepinephrine, and dopamine reuptake inhibitors and their effects on depressive disorder are available, but systematic conclusions on their effects are still hard to draw due to the highly heterogeneous nature of the studies. In addition, two novel drugs, ketamine and esketamine, are being investigated particularly in association with treatment of resistant depression, which is one of the hot topics of contemporary research and the field of precision psychiatry.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
28
|
Toskas K, Yaghmaeian-Salmani B, Skiteva O, Paslawski W, Gillberg L, Skara V, Antoniou I, Södersten E, Svenningsson P, Chergui K, Ringnér M, Perlmann T, Holmberg J. PRC2-mediated repression is essential to maintain identity and function of differentiated dopaminergic and serotonergic neurons. SCIENCE ADVANCES 2022; 8:eabo1543. [PMID: 36026451 PMCID: PMC9417181 DOI: 10.1126/sciadv.abo1543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
How neurons can maintain cellular identity over an entire life span remains largely unknown. Here, we show that maintenance of identity in differentiated dopaminergic and serotonergic neurons is critically reliant on the Polycomb repressive complex 2 (PRC2). Deletion of the obligate PRC2 component, Eed, in these neurons resulted in global loss of H3K27me3, followed by a gradual activation of genes harboring both H3K27me3 and H3K9me3 modifications. Notably, H3K9me3 was lost at these PRC2 targets before gene activation. Neuronal survival was not compromised; instead, there was a reduction in subtype-specific gene expression and a progressive impairment of dopaminergic and serotonergic neuronal function, leading to behavioral deficits characteristic of Parkinson's disease and anxiety. Single-cell analysis revealed subtype-specific vulnerability to loss of PRC2 repression in dopamine neurons of the substantia nigra. Our study reveals that a PRC2-dependent nonpermissive chromatin state is essential to maintain the subtype identity and function of dopaminergic and serotonergic neurons.
Collapse
Affiliation(s)
- Konstantinos Toskas
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Behzad Yaghmaeian-Salmani
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, BioClinicum J5:20 Neuro, Visionsgatan 4, SE-171 64 Solna, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Vasiliki Skara
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Irene Antoniou
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Erik Södersten
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, BioClinicum J5:20 Neuro, Visionsgatan 4, SE-171 64 Solna, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
29
|
Alshaya DS. Genetic and epigenetic factors associated with depression: An updated overview. Saudi J Biol Sci 2022; 29:103311. [PMID: 35762011 PMCID: PMC9232544 DOI: 10.1016/j.sjbs.2022.103311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a complex psychiatric disturbance involving many environmental, genetic, and epigenetic factors. Until now, genetic, and non-genetic studies are still on the way to understanding the complex mechanism of this disease, and there are still many questions that have not yet been answered. Depression includes a large spectrum of heterogeneous symptoms correlated to the deficit of a range of psychological, cognitive, and emotional processes, and it affects various age groups. It is classified into several types according to the severity of symptoms, time of occurrence, and time. Following the World Health Organization (WHO), depression attacks near 350 million persons globally. Several factors overlap in causing depression, including genetic and epigenetic factors, environmental conditions, various stresses, lack of some nutrients to which people are exposed, and excessive stress and abuse in childhood. This study included conducting surveys on depression and new treatment trends based on epigenetic factors associated with the occurrence of the disease. Epigenetic factors provide a completely novel dimension to therapeutic approaches as most diseases are not monogenic, and it is likely that the environment has a significant contribution. Epigenetic inheritance is included in many mental and psychiatric disorders such as depression. In general, epigenetic modifications could be summarized in 3 major points: DNA methylation, histone modification, and non-mediated regulation of RNA (ncRNA). This study also describes some genes associated with one of the depressive disorders using bioinformatics tools and gene bank and had the genes: SLC6A4, COMT, TPH2, FKBP5, MDD1, HTR2A, and MDD2. As in this study, the awareness of Saudi society about depression and its genetic and non-genetic causes was estimated. The results showed that an encouraging percentage of more than half of the research sample possessed correct information about this disorder.
Collapse
Key Words
- COMT, Catechol-O-methyltransferase
- Depression
- Epigenetic factors
- FKBP5, FKBP Prolyl Isomerase 5
- Genetic factors
- HTR2A, hydroxy tryptamine receptor 2A
- MBCT, Mindfulness-based cognitive therapy
- MDD1, Major Depressive Disorder 1
- MDD2, Major Depressive Disorder 2
- NICE, National Institute for Health and Care Excellence
- NIMH, National Institute of Mental Health
- SAD, Seasonal Affective Disorder
- SLC6A4, Solute Carrier Family 6 Member 4
- Symptoms
- TPH2, Tryptophan hydroxylase 2
- Treatment
Collapse
Affiliation(s)
- Dalal S. Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
30
|
Abstract
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
Collapse
Affiliation(s)
- Puja K Parekh
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Shane B Johnson
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Conor Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
31
|
de Sousa Maciel I, Sales AJ, Casarotto PC, Castrén E, Biojone C, Joca SRL. Nitric Oxide Synthase inhibition counteracts the stress-induced DNA methyltransferase 3b expression in the hippocampus of rats. Eur J Neurosci 2022; 55:2421-2434. [PMID: 33170977 DOI: 10.1111/ejn.15042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
It has been postulated that the activation of NMDA receptors (NMDAr) and nitric oxide (NO) production in the hippocampus is involved in the behavioral consequences of stress. Stress triggers NMDAr-induced calcium influx in limbic areas, such as the hippocampus, which in turn activates neuronal NO synthase (nNOS). Inhibition of nNOS or NMDAr activity can prevent stress-induced effects in animal models, but the molecular mechanisms behind this effect are still unclear. In this study, cultured hippocampal neurons treated with NMDA or dexamethasone showed an increased of DNA methyltransferase 3b (DNMT3b) mRNA expression, which was blocked by pre-treatment with nNOS inhibitor nω -propyl-l-arginine (NPA). In rats submitted to the Learned Helplessness paradigm (LH), we observed that inescapable stress increased DNMT3b mRNA expression at 1h and 24h in the hippocampus. The NOS inhibitors 7-NI and aminoguanidine (AMG) decreased the number of escape failures in LH and counteracted the changes in hippocampal DNMT3b mRNA induced in this behavioral paradigm. Altogether, our data suggest that NO produced in response to NMDAr activation following stress upregulates DNMT3b in the hippocampus.
Collapse
Affiliation(s)
- Izaque de Sousa Maciel
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | - Amanda J Sales
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | | | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Finland
| | | | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto -SP, Brazil
| |
Collapse
|
32
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
34
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
35
|
Reduction of DNMT3a and RORA in the nucleus accumbens plays a causal role in post-traumatic stress disorder-like behavior: reversal by combinatorial epigenetic therapy. Mol Psychiatry 2021; 26:7481-7497. [PMID: 34253866 DOI: 10.1038/s41380-021-01178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is an incapacitating trauma-related disorder, with no reliable therapy. Although PTSD has been associated with epigenetic alterations in peripheral white blood cells, it is unknown where such changes occur in the brain, and whether they play a causal role in PTSD. Using an animal PTSD model, we show distinct DNA methylation profiles of PTSD susceptibility in the nucleus accumbens (NAc). Data analysis revealed overall hypomethylation of different genomic CG sites in susceptible animals. This was correlated with the reduction in expression levels of the DNA methyltransferase, DNMT3a. Since epigenetic changes in diseases involve different gene pathways, rather than single candidate genes, we next searched for pathways that may be involved in PTSD. Analysis of differentially methylated sites identified enrichment in the RAR activation and LXR/RXR activation pathways that regulate Retinoic Acid Receptor (RAR) Related Orphan Receptor A (RORA) activation. Intra-NAc injection of a lentiviral vector expressing either RORA or DNMT3a reversed PTSD-like behaviors while knockdown of RORA and DNMT3a increased PTSD-like behaviors. To translate our results into a potential pharmacological therapeutic strategy, we tested the effect of systemic treatment with the global methyl donor S-adenosyl methionine (SAM), for supplementing DNA methylation, or retinoic acid, for activating RORA downstream pathways. We found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors. Thus, our data point to a novel approach to the treatment of PTSD, which is potentially translatable to humans.
Collapse
|
36
|
Miao M, Du J, Che B, Guo Y, Zhang J, Ju Z, Xu T, Zhong X, Zhang Y, Zhong C. Circulating choline pathway nutrients and depression after ischemic stroke. Eur J Neurol 2021; 29:459-468. [PMID: 34611955 DOI: 10.1111/ene.15133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Choline pathway nutrients, including choline and betaine, are reported to exert antidepressant effects. However, there is little population-based evidence on the relationships between circulating choline and betaine and poststroke depression (PSD). We aimed to prospectively explore the associations between plasma choline and betaine and depression after ischemic stroke. METHODS This study was based on the China Antihypertensive Trial in Acute Ischemic Stroke. A total of 612 participants with plasma choline and betaine concentrations were included in the analysis. The study outcome was depression 3 months after ischemic stroke. Logistic regression models were performed to estimate the relationships between plasma choline and betaine and the risk of PSD. Risk reclassification and calibration of models with choline or betaine were analyzed. RESULTS Patients with PSD had lower choline and betaine levels than those without PSD (p < 0.05). Compared with tertile 1, the multivariable-adjusted odds ratios (95% CIs) for tertile 3 of choline and betaine were 0.54 (0.35-0.83) and 0.59 (0.38-0.92), respectively. Per 1 SD increase in choline or betaine was associated with a 25% (95% CI 9%-37%) or an 19% (95% CI 3%-32%) decreased risk of PSD, respectively. Furthermore, the addition of choline or betaine to the established risk factors model improved the risk reclassification for PSD, as shown by an increase in the net reclassification index and integrated discrimination improvement (all p < 0.05). CONCLUSIONS Patients with elevated levels of choline and betaine had a lower risk of depression after acute ischemic stroke, suggesting the protective significance of choline pathway nutrients for PSD.
Collapse
Affiliation(s)
- Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jigang Du
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yufei Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jintao Zhang
- Department of Neurology, The 88th Hospital of PLA, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Zhong
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Aging-Dependent Downregulation of SUV39H1 Histone Methyltransferase Increases Susceptibility to Stress-Induced Depressive Behavior. Mol Neurobiol 2021; 58:6427-6442. [PMID: 34536198 DOI: 10.1007/s12035-021-02529-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Aging induces cellular and molecular changes including gene expression alteration in the brain, which might be associated with aging-induced decrease in stress coping ability. In the present study, we investigate how aging changes the ability to cope with stress and increases sensitivity to stress. Aged mice show decreased expression of SUV39H1 histone methyltransferase and increased expression of Mkp-1 in the hippocampus. The siRNA-mediated knockdown of SUV39H1 increases Mkp-1 expression and suppresses p-CREB and Bdnf expression in HT22 cells and in the hippocampus of mice. Chromatin immunoprecipitation assays indicate that the levels of SUV39H1 and methylated histone-H3 bound to the promoter of the Mkp-1 in the hippocampus are reduced in aged mice. Aged mice exhibit depression-like behavior following weak stress that does not induce depressive behavior in young mice. Rosmarinic acid, a phenolic compound that increases SUV39H1 expression, reverses stress-induced changes of SUV39H1, Mkp-1, and Bdnf expression in the hippocampus via an overlapping but distinct mechanism from those of fluoxetine and imipramine and produces anti-depressive effects. These results suggest that aging increases susceptibility to stress via downregulation of SUV39H1 and resulting changes in SUV39H1-regulated signaling pathways in the hippocampus.
Collapse
|
38
|
Transcriptome-wide association study of treatment-resistant depression and depression subtypes for drug repurposing. Neuropsychopharmacology 2021; 46:1821-1829. [PMID: 34158615 PMCID: PMC8357803 DOI: 10.1038/s41386-021-01059-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Major depressive disorder (MDD) is the single largest contributor to global disability and up to 20-30% of patients do not respond to at least two antidepressants (treatment-resistant depression, TRD). This study leveraged imputed gene expression in TRD to perform a drug repurposing analysis. Among those with MDD, we defined TRD as having at least two antidepressant switches according to primary care records in UK Biobank (UKB). We performed a transcriptome-wide association study (TWAS) of TRD (n = 2165) vs healthy controls (n = 11,188) using FUSION and gene expression levels from 21 tissues. We identified compounds with opposite gene expression signatures (ConnectivityMap data) compared to our TWAS results using the Kolmogorov-Smirnov test, Spearman and Pearson correlation. As symptom patterns are routinely assessed in clinical practice and could be used to provide targeted treatments, we identified MDD subtypes associated with TRD in UKB and analysed them using the same pipeline described for TRD. Anxious MDD (n = 14,954) and MDD with weight gain (n = 4697) were associated with TRD. In the TWAS, two genes were significantly dysregulated (TMEM106B and ATP2A1 for anxious and weight gain MDD, respectively). A muscarinic receptor antagonist was identified as top candidate for repurposing in TRD; inhibition of heat shock protein 90 was the main mechanism of action identified for anxious MDD, while modulators of metabolism such as troglitazone showed promising results for MDD with weight gain. This was the first TWAS of TRD and associated MDD subtypes. Our results shed light on possible pharmacological approaches in individuals with difficult-to-treat depression.
Collapse
|
39
|
Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. PLANTS 2021; 10:plants10061226. [PMID: 34208642 PMCID: PMC8235456 DOI: 10.3390/plants10061226] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
Crop plants often have challenges of biotic and abiotic stresses, and they adapt sophisticated ways to acclimate and cope with these through the expression of specific genes. Changes in chromatin, histone, and DNA mostly serve the purpose of combating challenges and ensuring the survival of plants in stressful environments. Epigenetic changes, due to environmental stress, enable plants to remember a past stress event in order to deal with such challenges in the future. This heritable memory, called "plant stress memory", enables plants to respond against stresses in a better and efficient way, not only for the current plant in prevailing situations but also for future generations. Development of stress resistance in plants for increasing the yield potential and stability has always been a traditional objective of breeders for crop improvement through integrated breeding approaches. The application of epigenetics for improvements in complex traits in tetraploid and some other field crops has been unclear. An improved understanding of epigenetics and stress memory applications will contribute to the development of strategies to incorporate them into breeding for complex agronomic traits. The insight in the application of novel plant breeding techniques (NPBTs) has opened a new plethora of options among plant scientists to develop germplasms for stress tolerance. This review summarizes and discusses plant stress memory at the intergenerational and transgenerational levels, mechanisms involved in stress memory, exploitation of induced and natural epigenetic changes, and genome editing technologies with their future possible applications, in the breeding of crops for abiotic stress tolerance to increase the yield for zero hunger goals achievement on a sustainable basis in the changing climatic era.
Collapse
|
40
|
Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney JA, Kopp RF, Liu C, Chen C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci 2021; 15:674273. [PMID: 34054421 PMCID: PMC8155631 DOI: 10.3389/fnins.2021.674273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - Richard F. Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Peter M, Aschauer DF, Rose R, Sinning A, Grössl F, Kargl D, Kraitsy K, Burkard TR, Luhmann HJ, Haubensak W, Rumpel S. Rapid nucleus-scale reorganization of chromatin in neurons enables transcriptional adaptation for memory consolidation. PLoS One 2021; 16:e0244038. [PMID: 33951054 PMCID: PMC8099114 DOI: 10.1371/journal.pone.0244038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
The interphase nucleus is functionally organized in active and repressed territories defining the transcriptional status of the cell. However, it remains poorly understood how the nuclear architecture of neurons adapts in response to behaviorally relevant stimuli that trigger fast alterations in gene expression patterns. Imaging of fluorescently tagged nucleosomes revealed that pharmacological manipulation of neuronal activity in vitro and auditory cued fear conditioning in vivo induce nucleus-scale restructuring of chromatin within minutes. Furthermore, the acquisition of auditory fear memory is impaired after infusion of a drug into auditory cortex which blocks chromatin reorganization in vitro. We propose that active chromatin movements at the nucleus scale act together with local gene-specific modifications to enable transcriptional adaptations at fast time scales. Introducing a transgenic mouse line for photolabeling of histones, we extend the realm of systems available for imaging of chromatin dynamics to living animals.
Collapse
Affiliation(s)
- Manuel Peter
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Dominik F. Aschauer
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Renata Rose
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Florian Grössl
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Klaus Kraitsy
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Preclinical Phenotyping, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Thomas R. Burkard
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Heiko J. Luhmann
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Wulf Haubensak
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| |
Collapse
|
42
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
43
|
Luo PX, Manning CE, Fass JN, Williams AV, Hao R, Campi KL, Trainor BC. Sex-specific effects of social defeat stress on miRNA expression in the anterior BNST. Behav Brain Res 2021; 401:113084. [PMID: 33358922 PMCID: PMC7864284 DOI: 10.1016/j.bbr.2020.113084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Women are more likely to suffer from stress-related affective disorders than men, but the underlying mechanisms of sex differences remain unclear. Previous works show that microRNA (miRNA) profiles are altered in stressed animals and patients with depression and anxiety disorders. In this study, we investigated how miRNA expression in the anterior bed nucleus of stria terminalis (BNST) was affected by social defeat stress in female and male California mice (Peromyscus californicus). We performed sequencing to identify miRNA transcripts in the whole brain and anterior BNST followed by qPCR analysis to compare miRNA expression between control and stressed animals. The results showed that social defeat stress induced sex-specific miRNA expression changes in the anterior BNST. Let-7a, let-7f and miR-181a-5p were upregulated in stressed female but not male mice. Our study provided evidence that social stress produces distinct molecular responses in the BNST of males and females.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Claire E Manning
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Joe N Fass
- Bioinformatics Core and Genome Center, University of California, Davis, CA, 95616, USA
| | - Alexia V Williams
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Katharine L Campi
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
44
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
45
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
46
|
K V A, Wahul AB, Soren K, Das T, Dey S, Samudrala PK, Kumar A, Lahkar M, Chakravarty S. Differential modulation of GR signaling and HDACs in the development of resilient/vulnerable phenotype and antidepressant-like response of vorinostat. Psychoneuroendocrinology 2021; 124:105083. [PMID: 33310695 DOI: 10.1016/j.psyneuen.2020.105083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
The present study explored the antidepressant potential of vorinostat (VOR) against chronic social defeat stress (CSDS) in mice. Since this model has the remarkable capacity to delineate the resilient and the defeated mice, we also looked for their molecular deviations. Defeated mice showed classical phenotypic alterations such as anhedonia, social avoidance, anxiety and despair. Whereas, resilient mice were immune to the development of those. Both defeated and resilient mice demonstrated marked CORT elevation in blood. Development of resilience vs. defeat to CSDS was found to be associated with the differential nuclear levels of GR, HDAC3 and HDAC6 in the hippocampus. Activation of a stress responsive adaptive mechanism involving these mediators at the nuclear level might be offering resilience while maladaptive mechanisms leading to defeat. Interestingly, an elevated hippocampal HDAC6 level in defeated mice was also observed, which was restored by VOR treatment. Further studies will be necessary to delineate the HDAC6 associated antidepressant mechanisms. As HDAC3 and HDAC6 are crucial mediators of GR signaling, further molecular studies may aid in understanding the basis of development of resilience to target MDD with new prospective.
Collapse
Affiliation(s)
- Athira K V
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781125, Assam, India; Applied Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Hyderabad 500007, Telangana, India
| | - Abhipradnya Bipin Wahul
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Hyderabad 500007, Telangana, India
| | - Kalyani Soren
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Hyderabad 500007, Telangana, India
| | - Tapatee Das
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Hyderabad 500007, Telangana, India
| | - Sandeep Dey
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Hyderabad 500007, Telangana, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781125, Assam, India
| | - Arvind Kumar
- CSIR- Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, Telangana, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati 781032, Assam, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Hyderabad 500007, Telangana, India.
| |
Collapse
|
47
|
Swaab DF, Wolff SEC, Bao AM. Sexual differentiation of the human hypothalamus: Relationship to gender identity and sexual orientation. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:427-443. [PMID: 34238476 DOI: 10.1016/b978-0-12-820683-6.00031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gender identity (an individual's perception of being male or female) and sexual orientation (heterosexuality, homosexuality, or bisexuality) are programmed into our brain during early development. During the intrauterine period in the second half of pregnancy, a testosterone surge masculinizes the fetal male brain. If such a testosterone surge does not occur, this will result in a feminine brain. As sexual differentiation of the brain takes place at a much later stage in development than sexual differentiation of the genitals, these two processes can be influenced independently of each other and can result in gender dysphoria. Nature produces a great variability for all aspects of sexual differentiation of the brain. Mechanisms involved in sexual differentiation of the brain include hormones, genetics, epigenetics, endocrine disruptors, immune response, and self-organization. Furthermore, structural and functional differences in the hypothalamus relating to gender dysphoria and sexual orientation are described in this review. All the genetic, postmortem, and in vivo scanning observations support the neurobiological theory about the origin of gender dysphoria, i.e., it is the sizes of brain structures, the neuron numbers, the molecular composition, functions, and connectivity of brain structures that determine our gender identity or sexual orientation. There is no evidence that one's postnatal social environment plays a crucial role in the development of gender identity or sexual orientation.
Collapse
Affiliation(s)
- Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Samantha E C Wolff
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Dudek KA, Kaufmann FN, Lavoie O, Menard C. Central and peripheral stress-induced epigenetic mechanisms of resilience. Curr Opin Psychiatry 2021; 34:1-9. [PMID: 33141775 DOI: 10.1097/yco.0000000000000664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Resilience is an adaptation process presented by an individual despite facing adversities. Epigenetic changes, such as histone acetylation/methylation and DNA methylation, have been demonstrated to mediate stress response. In this review, we summarize recent findings on epigenetic mechanisms contributing to stress resilience. RECENT FINDINGS Epigenetic modifications of genes involved in synaptic plasticity, endocrine, immune, and vascular systems are linked to resilience. For instance, increased DNA methylation of the nonneuronal growth factor Gdnf in specific brain regions promotes stress resilience. Additionally, high DNA methylation at the glucocorticoid receptor gene was associated with resilience in both rodents and humans. At the immune level, chronic stress induces increased DNA methylation at IL6 gene, a mediator of stress vulnerability. Moreover, epigenetic adaptations of the blood--brain barrier have been recently associated with stress resilience, which could lead to innovative therapeutic approaches to treat depression. SUMMARY Identification of both central and peripheral epigenetic changes promoting stress resilience represent promising novel targets in the development of preventive and personalized medicine. Nevertheless, more research is needed to establish sex specific differences and to identify novel epigenetic mechanisms, such as serotonylation and dopaminylation, that hold great promises for the field of psychiatry.
Collapse
Affiliation(s)
- Katarzyna Anna Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | | | | | | |
Collapse
|
49
|
Maitra S, Khandelwal N, Kootar S, Sant P, Pathak SS, Reddy S, K. AP, Murty US, Chakravarty S, Kumar A. Histone Lysine Demethylase JMJD2D/KDM4D and Family Members Mediate Effects of Chronic Social Defeat Stress on Mouse Hippocampal Neurogenesis and Mood Disorders. Brain Sci 2020; 10:brainsci10110833. [PMID: 33182385 PMCID: PMC7695311 DOI: 10.3390/brainsci10110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Depression, anxiety and related mood disorders are major psychiatric illnesses worldwide, and chronic stress appears to be one of the primary underlying causes. Therapeutics to treat these debilitating disorders without a relapse are limited due to the incomplete molecular understanding of their etiopathology. In addition to the well-studied genetic component, research in the past two decades has implicated diverse epigenetic mechanisms in mediating the negative effects of chronic stressful events on neural circuits. This includes the cognitive circuitry, where the dynamic hippocampal dentate gyrus (DG) neurogenesis gets affected in depression and related affective disorders. Most of these epigenetic studies have focused on the impact of acetylation/deacetylation and methylation of several histone lysine residues on neural gene expression. However, there is a dearth of investigation into the role of demethylation of these lysine residues in chronic stress-induced changes in neurogenesis that results in altered behaviour. Here, using the chronic social defeat stress (CSDS) paradigm to induce depression and anxiety in C57BL/6 mice and ex vivo DG neural stem/progenitor cell (NSCs/NPCs) culture we show the role of the members of the JMJD2/KDM4 family of histone lysine demethylases (KDMs) in mediating stress-induced changes in DG neurogenesis and mood disorders. The study suggests a critical role of JMJD2D in DG neurogenesis. Altered enrichment of JMJD2D on the promoters of Id2 (inhibitor of differentiation 2) and Sox2 (SRY-Box Transcription Factor 2) was observed during proliferation and differentiation of NSCs/NPCs obtained from the DG. This would affect the demethylation of repressive epigenetic mark H3K9, thus activating or repressing these and possibly other genes involved in regulating proliferation and differentiation of DG NSCs/NPCs. Treatment of the NSCs/NPCs culture with Dimethyloxallyl Glycine (DMOG), an inhibitor of JMJDs, led to attenuation in their proliferation capacity. Additionally, systemic administration of DMOG in mice for 10 days induced depression-like and anxiety-like phenotype without any stress exposure.
Collapse
Affiliation(s)
- Swati Maitra
- Applied Biology, CSIR—Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.M.); (U.S.M.)
| | - Nitin Khandelwal
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Scherazad Kootar
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Pooja Sant
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Salil S. Pathak
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Sujatha Reddy
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
| | - Annapoorna P. K.
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Upadhyayula Suryanarayana Murty
- Applied Biology, CSIR—Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.M.); (U.S.M.)
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Sumana Chakravarty
- Applied Biology, CSIR—Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.M.); (U.S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: (S.C.); (A.K.)
| | - Arvind Kumar
- Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR—Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad 500007, Telangana, India; (N.K.); (S.K.); (P.S.); (S.S.P.); (S.R.); (A.P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: (S.C.); (A.K.)
| |
Collapse
|
50
|
Athira KV, Bandopadhyay S, Samudrala PK, Naidu VGM, Lahkar M, Chakravarty S. An Overview of the Heterogeneity of Major Depressive Disorder: Current Knowledge and Future Prospective. Curr Neuropharmacol 2020; 18:168-187. [PMID: 31573890 PMCID: PMC7327947 DOI: 10.2174/1570159x17666191001142934] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is estimated to impose maximum debilitating effects on the society by 2030, with its critical effects on health, functioning, quality of life and concomitant high levels of morbidity and mortality. Yet, the disease is inadequately understood, diagnosed and treated. Moreover, with the recent drastic rise in the pace of life, stress has materialized as one of the most potent environmental factors for depression. In this scenario, it is important to understand the modern pathogenetic hypotheses and mechanisms, and possibly try to shift from the traditional approaches in depression therapy. These include the elaboration of pathophysiological changes in heterogeneous systems such as genetic, epigenetic, serotonergic, noradrenergic, gamma-aminobutyric acid, glutamatergic and endocannabinoid systems, neurotrophic factors, HPA axis, immune system as well as cellular stress mechanisms. These components interact with each other in a complex matrix and further elucidation of their mechanism and cascade pathways are needed. This might aid in the identification of MDD subtypes as well as the development of sophisticated biomarkers. Further, characterization might also aid in developing multitargeted therapies that hold much promise as compared to the conventional monoamine based treatment. New candidate pharmacons, refined psychotherapeutic modalities, advanced neuro-surgical and imaging techniques as well as the implementation of pharmacokinetic, pharmacogenetic prescribing guidelines constitute the emerging expanses of MDD treatment.
Collapse
Affiliation(s)
- Kaipuzha Venu Athira
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125, Assam, India.,Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India.,Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sikta Bandopadhyay
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, 781032, Assam, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| |
Collapse
|