1
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Aldridge JL, Alexander ED, Franklin AA, Harrington E, Al-Ghzawi F, Frasier CR. Sex differences in cardiac mitochondrial respiration and reactive oxygen species production may predispose Scn1a -/+ mice to cardiac arrhythmias and Sudden Unexpected Death in Epilepsy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100090. [PMID: 39390983 PMCID: PMC11466061 DOI: 10.1016/j.jmccpl.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dravet Syndrome (DS) is a pediatric-onset epilepsy with an elevated risk of Sudden Unexpected Death in Epilepsy (SUDEP). Most individuals with DS possess mutations in the voltage-gated sodium channel gene Scn1a, expressed in both the brain and heart. Previously, mutations in Scn1a have been linked to arrhythmia. We used a Scn1a -/+ DS mouse model to investigate changes to cardiac mitochondrial function that may underlie arrhythmias and SUDEP. We detected significant alterations in mitochondrial bioenergetics that were sex-specific. Mitochondria from male Scn1a -/+ hearts had deficits in maximal (p = 0.02) and Complex II-linked respiration (p = 0.03). Male Scn1a -/+ mice were also more susceptible to cardiac arrhythmias under increased workload. When isolated cardiomyocytes were subjected to diamide, cardiomyocytes from male Scn1a -/+ hearts were less resistant to thiol oxidation. They had decreased survivability compared to Scn1a +/+ (p = 0.02) despite no whole-heart differences. Lastly, there were no changes in mitochondrial ROS production between DS and wild-type mitochondria at basal conditions, but Scn1a -/+ mitochondria accumulated more ROS during hypoxia/reperfusion. This study determines novel sex-linked differences in mitochondrial and antioxidant function in Scn1a-linked DS. Importantly, we found that male Scn1a -/+ mice are more susceptible to cardiac arrhythmias than female Scn1a -/+ mice. When developing new therapeutics to address SUDEP risk in DS, sex should be considered.
Collapse
Affiliation(s)
- Jessa L. Aldridge
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Emily Davis Alexander
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Allison A. Franklin
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Elizabeth Harrington
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Farah Al-Ghzawi
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Chad R. Frasier
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| |
Collapse
|
3
|
Shiota Y, Nishiyama T, Yokoyama S, Yoshimura Y, Hasegawa C, Tanaka S, Iwasaki S, Kikuchi M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front Genet 2024; 15:1352480. [PMID: 39280100 PMCID: PMC11395840 DOI: 10.3389/fgene.2024.1352480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Autism spectrum disorders (ASD) represent a heterogeneous group of neurodevelopmental disorders with strong genetic predispositions. Although an increasing number of genetic variants have been implicated in the pathogenesis of ASD, little is known about the relationship between ASD-associated genetic variants and individual ASD traits. Therefore, we aimed to investigate these relationships. Methods Here, we report a case-control association study of 32 Japanese children with ASD (mainly with high-functioning autism [HFA]) and 36 with typical development (TD). We explored previously established ASD-associated genes using a next-generation sequencing panel and determined the association between Social Responsiveness Scale (SRS) T-scores and intelligence quotient (IQ) scores. Results In the genotype-phenotype analyses, 40 variants of five genes (SCN1A, SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false discovery rate <0.05). In the quantitative association analyses, 49 variants of 12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B, SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A, SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8) were associated with SRS T- and IQ-scores, respectively. Conclusion Our data suggest that these identified variants are essential for the genetic architecture of HFA.
Collapse
Affiliation(s)
- Yuka Shiota
- Japan Society for the Promotion of Science, Tokyo, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Hassan MT, Tayara H, Chong KT. NaII-Pred: An ensemble-learning framework for the identification and interpretation of sodium ion inhibitors by fusing multiple feature representation. Comput Biol Med 2024; 178:108737. [PMID: 38879934 DOI: 10.1016/j.compbiomed.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
High-affinity ligand peptides for ion channels are essential for controlling the flow of ions across the plasma membrane. These peptides are now being investigated as possible therapeutic possibilities for a variety of illnesses, including cancer and cardiovascular disease. So, the identification and interpretation of ligand peptide inhibitors to control ion flow across cells become pivotal for exploration. In this work, we developed an ensemble-based model, NaII-Pred, for the identification of sodium ion inhibitors. The ensemble model was trained, tested, and evaluated on three different datasets. The NaII-Pred method employs six different descriptors and a hybrid feature set in conjunction with five conventional machine learning classifiers to create 35 baseline models. Through an ensemble approach, the top five baseline models trained on the hybrid feature set were integrated to yield the final predictive model, NaII-Pred. Our proposed model, NaII-Pred, outperforms the baseline models and the current predictors on both datasets. We believe NaII-Pred will play a critical role in screening and identifying potential sodium ion inhibitors and will be an invaluable tool.
Collapse
Affiliation(s)
- Mir Tanveerul Hassan
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
5
|
Alyazidi AS, Muthaffar OY, Bamaga AK, AlAtwi NA, Alshihri SA, Aljezani MA. The Therapeutic Role of Perampanel in Treating Pediatric Patients With Dravet Syndrome: A Scoping Review. Cureus 2024; 16:e65017. [PMID: 39165469 PMCID: PMC11333872 DOI: 10.7759/cureus.65017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/22/2024] Open
Abstract
Sodium channelopathies are genetic disorders caused by mutations in genes, including sodium voltage-gated channel alpha subunit 1 (SCN1A), that lead to several epilepsy syndromes. Traditional treatments with sodium channel blockers often have limited effectiveness and side effects. Dravet syndrome (DS), a severe epilepsy starting in infancy, presents significant treatment challenges. Perampanel (PER), a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, has shown promise for DS, reducing seizure frequency and improving quality of life (QoL). The limited availability of randomized controlled trials on PER among DS is challenging, but broader studies on refractory epilepsies offer insights. Real-world studies support PER's efficacy, underscoring its potential for managing refractory seizures in DS. Studies showed long-term effectiveness in reducing seizure frequency and enhancing QoL. While PER has minimal impact on cognitive development, it significantly improves seizure control. Numerous studies confirm the use of PER as an effective adjunctive treatment for DS; however, it is crucial to observe the safety profile, especially for pediatric sodium channelopathy patients. Common side effects include dizziness, drowsiness, and irritability, necessitating careful management. Long-term safety is generally favorable, but monitoring for behavioral and mood changes is essential. Additionally, the response to PER in DS varies widely, complicating its use. The limited clinical data and the need for careful dosage monitoring, especially in children, present significant challenges. Side effects, potential drug interactions, and high costs further complicate treatment. Despite increasing attention to its cost-effectiveness, accessibility remains limited in some regions, posing significant barriers for many families. In this paper, we review the role of PER in treating pediatric patients with DS, emphasizing clinical evidence and practical considerations.
Collapse
Affiliation(s)
- Anas S Alyazidi
- Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | | | | | | | - Suzan A Alshihri
- Pediatric Neurology, King Abdulaziz University Hospital, Jeddah, SAU
| | - Maram A Aljezani
- Pediatric Neurology, King Abdulaziz University Hospital, Jeddah, SAU
- Pediatric Neurology, King Fahad Medical City, Riyadh, SAU
| |
Collapse
|
6
|
Sánchez JD, Gómez-Carpintero J, González JF, Menéndez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024; 272:116476. [PMID: 38759456 DOI: 10.1016/j.ejmech.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The therapeutic use of the traditional drugs against epilepsy has been hindered by their toxicity and low selectivity. These limitations have stimulated the design and development of new generations of antiepileptic drugs. This review explores the molecular targets and synthesis of the antiepileptic drugs that have entered the market in the 21st century, with a focus on manufacturer synthesis.
Collapse
Affiliation(s)
- J Domingo Sánchez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Jorge Gómez-Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Goodchild SJ, Shuart NG, Williams AD, Ye W, Parrish RR, Soriano M, Thouta S, Mezeyova J, Waldbrook M, Dean R, Focken T, Ghovanloo MR, Ruben PC, Scott F, Cohen CJ, Empfield J, Johnson JP. Molecular Pharmacology of Selective Na V1.6 and Dual Na V1.6/Na V1.2 Channel Inhibitors that Suppress Excitatory Neuronal Activity Ex Vivo. ACS Chem Neurosci 2024; 15:1169-1184. [PMID: 38359277 PMCID: PMC10958515 DOI: 10.1021/acschemneuro.3c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Voltage-gated sodium channel (NaV) inhibitors are used to treat neurological disorders of hyperexcitability such as epilepsy. These drugs act by attenuating neuronal action potential firing to reduce excitability in the brain. However, all currently available NaV-targeting antiseizure medications nonselectively inhibit the brain channels NaV1.1, NaV1.2, and NaV1.6, which potentially limits the efficacy and therapeutic safety margins of these drugs. Here, we report on XPC-7724 and XPC-5462, which represent a new class of small molecule NaV-targeting compounds. These compounds specifically target inhibition of the NaV1.6 and NaV1.2 channels, which are abundantly expressed in excitatory pyramidal neurons. They have a > 100-fold molecular selectivity against NaV1.1 channels, which are predominantly expressed in inhibitory neurons. Sparing NaV1.1 preserves the inhibitory activity in the brain. These compounds bind to and stabilize the inactivated state of the channels thereby reducing the activity of excitatory neurons. They have higher potency, with longer residency times and slower off-rates, than the clinically used antiseizure medications carbamazepine and phenytoin. The neuronal selectivity of these compounds is demonstrated in brain slices by inhibition of firing in cortical excitatory pyramidal neurons, without impacting fast spiking inhibitory interneurons. XPC-5462 also suppresses epileptiform activity in an ex vivo brain slice seizure model, whereas XPC-7224 does not, suggesting a possible requirement of Nav1.2 inhibition in 0-Mg2+- or 4-AP-induced brain slice seizure models. The profiles of these compounds will facilitate pharmacological dissection of the physiological roles of NaV1.2 and NaV1.6 in neurons and help define the role of specific channels in disease states. This unique selectivity profile provides a new approach to potentially treat disorders of neuronal hyperexcitability by selectively downregulating excitatory circuits.
Collapse
Affiliation(s)
- Samuel J. Goodchild
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Noah Gregory Shuart
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Aaron D. Williams
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Wenlei Ye
- Neurocrine
Biosciences, San Diego, California 92130, United States
| | - R. Ryley Parrish
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Maegan Soriano
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Samrat Thouta
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Janette Mezeyova
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Richard Dean
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Thilo Focken
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Mohammad-Reza Ghovanloo
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department
of Neurology, Yale University, New Haven, Connecticut 06519, United States
| | - Peter C. Ruben
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Fiona Scott
- Neurocrine
Biosciences, San Diego, California 92130, United States
| | - Charles J. Cohen
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - James Empfield
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - JP Johnson
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| |
Collapse
|
8
|
Eyal S. Tuning Sodium Channel Blockers to the Near-Atomic Level. Epilepsy Curr 2024; 24:123-125. [PMID: 39280048 PMCID: PMC11394411 DOI: 10.1177/15357597231225065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
9
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
10
|
Chen M, Lu M, Feng X, Wu M, Luo X, Xiang R, Luo R, Wu H, Liu Z, Wang M, Zhou X. LmNaTx15, a novel scorpion toxin, enhances the activity of Nav channels and induces pain in mice. Toxicon 2023; 236:107331. [PMID: 37918718 DOI: 10.1016/j.toxicon.2023.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Polypeptide toxins are major bioactive components found in venomous animals. Many polypeptide toxins can specifically act on targets, such as ion channels and voltage-gated sodium (Nav) channels, in the nervous, muscle, and cardiovascular systems of the recipient to increase defense and predation efficiency. In this study, a novel polypeptide toxin, LmNaTx15, was isolated from the venom of the scorpion Lychas mucronatus, and its activity was analyzed. LmNaTx15 slowed the fast inactivation of Nav1.2, Nav1.3, Nav1.4, Nav1.5, and Nav1.7 and inhibited the peak current of Nav1.5, but it did not affect Nav1.8. In addition, LmNaTx15 altered the voltage-dependent activation and inactivation of these Nav channel subtypes. Furthermore, like site 3 neurotoxins, LmNaTx15 induced pain in mice. These results show a novel scorpion toxin with a modulatory effect on specific Nav channel subtypes and pain induction in mice. Therefore, LmNaTx15 may be a key bioactive component for scorpion defense and predation. Besides, this study provides a basis for analyzing structure-function relationships of the scorpion toxins affecting Nav channel activity.
Collapse
Affiliation(s)
- Minzhi Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Minjuan Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xujun Feng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meijing Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoqing Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ren Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hang Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meichi Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
11
|
Elamin M, Lemtiri-Chlieh F, Robinson TM, Levine ES. Dysfunctional sodium channel kinetics as a novel epilepsy mechanism in chromosome 15q11-q13 duplication syndrome. Epilepsia 2023; 64:2515-2527. [PMID: 37329181 PMCID: PMC10529833 DOI: 10.1111/epi.17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Duplication of the maternal chromosome 15q11.2-q13.1 region causes Dup15q syndrome, a highly penetrant neurodevelopmental disorder characterized by severe autism and refractory seizures. Although UBE3A, the gene encoding the ubiquitin ligase E3A, is thought to be the main driver of disease phenotypes, the cellular and molecular mechanisms that contribute to the development of the syndrome are yet to be determined. We previously established the necessity of UBE3A overexpression for the development of cellular phenotypes in human Dup15q neurons, including increased action potential firing and increased inward current density, which prompted us to further investigate sodium channel kinetics. METHODS We used a Dup15q patient-derived induced pluripotent stem cell line that was CRISPR-edited to remove the supernumerary chromosome and create an isogenic control line. We performed whole cell patch clamp electrophysiology on Dup15q and corrected control neurons at two time points of in vitro development. RESULTS Compared to corrected neurons, Dup15q neurons showed increased sodium current density and a depolarizing shift in steady-state inactivation. Moreover, onset of slow inactivation was delayed, and a faster recovery from both fast and slow inactivation processes was observed in Dup15q neurons. A fraction of sodium current in Dup15q neurons (~15%) appeared to be resistant to slow inactivation. Not unexpectedly, a higher fraction of persistent sodium current was also observed in Dup15q neurons. These phenotypes were modulated by the anticonvulsant drug rufinamide. SIGNIFICANCE Sodium channels play a crucial role in the generation of action potentials, and sodium channelopathies have been uncovered in multiple forms of epilepsy. For the first time, our work identifies in Dup15q neurons dysfunctional inactivation kinetics, which have been previously linked to multiple forms of epilepsy. Our work can also guide therapeutic approaches to epileptic seizures in Dup15q patients and emphasize the role of drugs that modulate inactivation kinetics, such as rufinamide.
Collapse
Affiliation(s)
- Marwa Elamin
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Fouad Lemtiri-Chlieh
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Tiwanna M Robinson
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Eric S Levine
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A mechanistic reinterpretation of fast inactivation in voltage-gated Na + channels. Nat Commun 2023; 14:5072. [PMID: 37604801 PMCID: PMC10442390 DOI: 10.1038/s41467-023-40514-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
The hinged-lid model was long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif is located far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive, leaky inactivated state and decreases the selectivity for Na+ ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
13
|
Rissardo JP, Fornari Caprara AL. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1389. [PMID: 37629678 PMCID: PMC10456719 DOI: 10.3390/medicina59081389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Cenobamate (CNB), ([(R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl], is a novel tetrazole alkyl carbamate derivative. In November 2019, the Food and Drug Administration approved Xcopri®, marketed by SK Life Science Inc., (Paramus, NJ, USA) for adult focal seizures. The European Medicines Agency approved Ontozry® by Arvelle Therapeutics Netherlands B.V.(Amsterdam, The Neatherlands) in March 2021. Cenobamate is a medication that could potentially change the perspectives regarding the management and prognosis of refractory epilepsy. In this way, this study aims to review the literature on CNB's pharmacological properties, pharmacokinetics, efficacy, and safety. CNB is a highly effective drug in managing focal onset seizures, with more than twenty percent of individuals with drug-resistant epilepsy achieving seizure freedom. This finding is remarkable in the antiseizure medication literature. The mechanism of action of CNB is still poorly understood, but it is associated with transient and persistent sodium currents and GABAergic neurotransmission. In animal studies, CNB showed sustained efficacy and potency in the 6 Hz test regardless of the stimulus intensity. CNB was revealed to be the most cost-effective drug among different third-generation antiseizure medications. Also, CNB could have neuroprotective effects. However, there are still concerns regarding its potential for abuse and suicidality risk, which future studies should clearly assess, after which protocols should be changed. The major drawback of CNB therapy is the slow and complex titration and maintenance phases preventing the wide use of this new agent in clinical practice.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | | |
Collapse
|
14
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
15
|
Alberini G, Alexis Paz S, Corradi B, Abrams CF, Benfenati F, Maragliano L. Molecular Dynamics Simulations of Ion Permeation in Human Voltage-Gated Sodium Channels. J Chem Theory Comput 2023; 19:2953-2972. [PMID: 37116214 DOI: 10.1021/acs.jctc.2c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The recent determination of cryo-EM structures of voltage-gated sodium (Nav) channels has revealed many details of these proteins. However, knowledge of ionic permeation through the Nav pore remains limited. In this work, we performed atomistic molecular dynamics (MD) simulations to study the structural features of various neuronal Nav channels based on homology modeling of the cryo-EM structure of the human Nav1.4 channel and, in addition, on the recently resolved configuration for Nav1.2. In particular, single Na+ permeation events during standard MD runs suggest that the ion resides in the inner part of the Nav selectivity filter (SF). On-the-fly free energy parametrization (OTFP) temperature-accelerated molecular dynamics (TAMD) was also used to calculate two-dimensional free energy surfaces (FESs) related to single/double Na+ translocation through the SF of the homology-based Nav1.2 model and the cryo-EM Nav1.2 structure, with different realizations of the DEKA filter domain. These additional simulations revealed distinct mechanisms for single and double Na+ permeation through the wild-type SF, which has a charged lysine in the DEKA ring. Moreover, the configurations of the ions in the SF corresponding to the metastable states of the FESs are specific for each SF motif. Overall, the description of these mechanisms gives us new insights into ion conduction in human Nav cryo-EM-based and cryo-EM configurations that could advance understanding of these systems and how they differ from potassium and bacterial Nav channels.
Collapse
Affiliation(s)
- Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Sergio Alexis Paz
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina
| | - Beatrice Corradi
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
16
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A Mechanistic Reinterpretation of Fast Inactivation in Voltage-Gated Na + Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538555. [PMID: 37162849 PMCID: PMC10168311 DOI: 10.1101/2023.04.27.538555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fast Inactivation in voltage-gated Na + channels plays essential roles in numerous physiological functions. The canonical hinged-lid model has long predicted that a hydrophobic motif in the DIII-DIV linker (IFM) acts as the gating particle that occludes the permeation pathway during fast inactivation. However, the fact that the IFM motif is located far from the pore in recent high-resolution structures of Nav + channels contradicts this status quo model. The precise molecular determinants of fast inactivation gate once again, become an open question. Here, we provide a mechanistic reinterpretation of fast inactivation based on ionic and gating current data. In Nav1.4 the actual inactivation gate is comprised of two hydrophobic rings at the bottom of S6. These function in series and closing once the IFM motif binds. Reducing the volume of the sidechain in both rings led to a partially conductive inactivated state. Our experiments also point to a previously overlooked coupling pathway between the bottom of S6 and the selectivity filter.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
17
|
The emergence of genotypic divergence and future precision medicine applications. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:87-99. [PMID: 36796950 DOI: 10.1016/b978-0-323-85538-9.00013-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genotypic divergence is a term adapted from population genetics and intimately linked to evolution. We use divergence here to emphasize the differences that set individuals apart in any cohort. The history of genetics is filled with descriptions of genotypic differences, but causal inference of interindividual biological variation has been scarce. We suggest that the practice of precision medicine requires a divergent approach, an approach dependent on the causal interpretation of previous convergent (and preliminary) knowledge in the field. This knowledge has relied on convergent descriptive syndromology (lumping), which has overemphasized a reductionistic gene determinism on the quest of seeking associations without causal understanding. Regulatory variants with small effect and somatic mutations are some of the modifying factors that lead to incomplete penetrance and intrafamilial variable expressivity often observed in apparently monogenic clinical disorders. A truly divergent approach to precision medicine requires splitting, that is, the consideration of different layers of genetic phenomena that interact causally in a nonlinear fashion. This chapter reviews convergences and divergences in genetics and genomics, aiming to discuss what can be causally understood to approximate the as-yet utopian lands of Precision Medicine for patients with neurodegenerative disorders.
Collapse
|
18
|
De Bellis M, Boccanegra B, Cerchiara AG, Imbrici P, De Luca A. Blockers of Skeletal Muscle Na v1.4 Channels: From Therapy of Myotonic Syndrome to Molecular Determinants of Pharmacological Action and Back. Int J Mol Sci 2023; 24:ijms24010857. [PMID: 36614292 PMCID: PMC9821513 DOI: 10.3390/ijms24010857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.
Collapse
|
19
|
Milligan CJ, Anderson LL, McGregor IS, Arnold JC, Petrou S. Beyond CBD: Inhibitory effects of lesser studied phytocannabinoids on human voltage-gated sodium channels. Front Physiol 2023; 14:1081186. [PMID: 36891145 PMCID: PMC9986306 DOI: 10.3389/fphys.2023.1081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Cannabis contains cannabidiol (CBD), the main non-psychoactive phytocannabinoid, but also many other phytocannabinoids that have therapeutic potential in the treatment of epilepsy. Indeed, the phytocannabinoids cannabigerolic acid (CBGA), cannabidivarinic acid (CBDVA), cannabichromenic acid (CBCA) and cannabichromene (CBC) have recently been shown to have anti-convulsant effects in a mouse model of Dravet syndrome (DS), an intractable form of epilepsy. Recent studies demonstrate that CBD inhibits voltage-gated sodium channel function, however, whether these other anti-convulsant phytocannabinoids affect these classic epilepsy drug-targets is unknown. Voltage-gated sodium (NaV) channels play a pivotal role in initiation and propagation of the neuronal action potential and NaV1.1, NaV1.2, NaV1.6 and NaV1.7 are associated with the intractable epilepsies and pain conditions. Methods: In this study, using automated-planar patch-clamp technology, we assessed the profile of the phytocannabinoids CBGA, CBDVA, cannabigerol (CBG), CBCA and CBC against these human voltage-gated sodium channels subtypes expressed in mammalian cells and compared the effects to CBD. Results: CBD and CBGA inhibited peak current amplitude in the low micromolar range in a concentration-dependent manner, while CBG, CBCA and CBC revealed only modest inhibition for this subset of sodium channels. CBDVA inhibited NaV1.6 peak currents in the low micromolar range in a concentration-dependent fashion, while only exhibiting modest inhibitory effects on NaV1.1, NaV1.2, and NaV1.7 channels. CBD and CBGA non-selectively inhibited all channel subtypes examined, whereas CBDVA was selective for NaV1.6. In addition, to better understand the mechanism of this inhibition, we examined the biophysical properties of these channels in the presence of each cannabinoid. CBD reduced NaV1.1 and NaV1.7 channel availability by modulating the voltage-dependence of steady-state fast inactivation (SSFI, V0.5 inact), and for NaV1.7 channel conductance was reduced. CBGA also reduced NaV1.1 and NaV1.7 channel availability by shifting the voltage-dependence of activation (V0.5 act) to a more depolarized potential, and for NaV1.7 SSFI was shifted to a more hyperpolarized potential. CBDVA reduced channel availability by modifying conductance, SSFI and recovery from SSFI for all four channels, except for NaV1.2, where V0.5 inact was unaffected. Discussion: Collectively, these data advance our understanding of the molecular actions of lesser studied phytocannabinoids on voltage-gated sodium channel proteins.
Collapse
Affiliation(s)
- Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Lyndsey L Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
21
|
Suvekbala V, Ramachandran H, Veluchamy A, Mascarenhas MAB, Ramprasath T, Nair MKC, Garikipati VNS, Gundamaraju R, Subbiah R. The Promising Epigenetic Regulators for Refractory Epilepsy: An Adventurous Road Ahead. Neuromolecular Med 2022:10.1007/s12017-022-08723-0. [DOI: 10.1007/s12017-022-08723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
22
|
Zaklyazminskaya E, Shestak A, Podolyak D, Komoliatova V, Makarov L, Novitskaya A, Revishvili A. Diagnostic yield and variant reassessment in the genes encoding Nav1.5 channel in Russian patients with Brugada syndrome. Front Pharmacol 2022; 13:984299. [PMID: 36091819 PMCID: PMC9449364 DOI: 10.3389/fphar.2022.984299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia characterized by ST-elevation, negative T-wave, and a high risk of sudden cardiac death (SCD) due to ventricular tachycardia. It is associated with mutations in over 20 genes but only SCN5A is recommended for routine genetic screening. This study was performed to estimate diagnostic yield and pathogenicity assessment of rare genetic variants in the genes encoding Nav1.5 channel in Russian patients with Brugada syndrome (BrS). Targeted genes panel sequencing of the five genes were screened using IonTorrent PGM with following Sanger confirmation. Detailed clinical evaluation of 75 unrelated BrS probands with a deep phenotyping of SCN5A (+) probands was performed. Twelve rare genetic variants (six missense, six truncating) were initially identified and classified as disease-causing. Reassessment of the clinical significance in the light of the current guidelines revealed: 2 Pathogenic (P) variants; 8 Likely Pathogenic (LP); two missense variants (p.G274S and p. S1778H) were re-classified later as a variant of uncertain significance (VUS). Unique VUS (p.Arg100Ser) was detected in the SCN4B gene. Lone Brugada-pattern was observed in 46% probands; 54% patients had concomitant arrhythmias. PR interval, the only electrocardiography parameter correlating with SCN5A-mutation, was longer (207 ± 24 ms) than normal in SCN5A (+) probands. SCD cases were registered in 31 families. Depression was the only recurring extra-cardiac complaint in SCN5A (+) probands; it was self-reported in five SCN5A (+) probands, and co-segregated with Brugada pattern in 2 families. After variants reassessment, the ratio of SCN5A (+) probands with Brugada syndrome accounts for 13% in Russian cohort.
Collapse
Affiliation(s)
- Elena Zaklyazminskaya
- Petrovsky National Research Centre of Surgery, Moscow, Russia
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
- *Correspondence: Elena Zaklyazminskaya,
| | - Anna Shestak
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dmitry Podolyak
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vera Komoliatova
- Centre of Syncope and Cardiac Arrhythmias in Children and Adolescents, Moscow, Russia
| | - Leonid Makarov
- Centre of Syncope and Cardiac Arrhythmias in Children and Adolescents, Moscow, Russia
| | | | | |
Collapse
|
23
|
Bielopolski N, Heyman E, Bassan H, BenZeev B, Tzadok M, Ginsberg M, Blumkin L, Michaeli Y, Sokol R, Yosha-Orpaz N, Hady-Cohen R, Banne E, Lev D, Lerman-Sagie T, Wald-Altman S, Nissenkorn A. "Virtual patch clamp analysis" for predicting the functional significance of pathogenic variants in sodium channels. Epilepsy Res 2022; 186:107002. [PMID: 36027690 DOI: 10.1016/j.eplepsyres.2022.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Opening of voltage-gated sodium channels is crucial for neuronal depolarization. Proper channel opening and influx of Na+ through the ion pore, is dependent upon binding of Na+ ion to a specific amino-acid motif (DEKA) within the pore. In this study we used molecular dynamic simulations, an advanced bioinformatic tool, to research the dysfunction caused by pathogenic variants in SCN1a, SCN2a and SCN8a genes. METHOD Molecular dynamic simulations were performed in six patients: three patients with Dravet syndrome (p.Gly177Ala,p.Ser259Arg and p.Met1267Ile, SCN1a), two patients with early onset drug resistant epilepsy(p.Ala263Val, SCN2a and p.Ile251Arg, SCN8a), and a patient with autism (p.Thr155Ala, SCN2a). After predicting the 3D-structure of mutated proteins by homology modeling, time dependent molecular dynamic simulations were performed, using the Schrödinger algorithm. The opening of the sodium channel, including the detachment of the sodium ion to the DEKA motif and pore diameter were assessed. Results were compared to the existent patch clamp analysis in four patients, and consistency with clinical phenotype was noted. RESULTS The Na+ ion remained attached to DEKA filter longer when compared to wild type in the p.Gly177Ala, p.Ser259Arg,SCN1a, and p.Thr155Ala, SCN2a variants, consistent with loss-of-function. In contrast, it detached quicker from DEKA than wild type in the p.Ala263Val,SCN2a variant, consistent with gain-of-function. In the p.Met1267Ile,SCN1a variant, detachment from DEKA was quicker, but pore diameter decreased, suggesting partial loss-of-function. In the p.Leu251Arg,SCN8a variant, the pore remained opened longer when compared to wild type, consistent with a gain-of-function. The molecular dynamic simulation results were consistent with the existing patch-clamp analysis studies, as well as the clinical phenotype. SIGNIFICANCE Molecular dynamic simulation can be useful in predicting pathogenicity of variants and the disease phenotype, and selecting targeted treatment based on channel dysfunction. Further development of these bioinformatic tools may lead to "virtual patch-clamp analysis".
Collapse
Affiliation(s)
| | - E Heyman
- Pediatric Epilepsy Department, Shamir Medical Center, Asaf Ha Rofeh, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - H Bassan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Shamir Medical Center, Asaf HaRofeh, Israel.
| | - B BenZeev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.
| | - M Tzadok
- Pediatric Neurology Unit, Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.
| | - M Ginsberg
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - L Blumkin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - Y Michaeli
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - R Sokol
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - N Yosha-Orpaz
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - R Hady-Cohen
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel.
| | - E Banne
- Pediatric Epilepsy Department, Shamir Medical Center, Asaf Ha Rofeh, Israel; Genetics Institute, Edith Wolfson Medical Center, Holon, Israel
| | - D Lev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Genetics Institute, Edith Wolfson Medical Center, Holon, Israel.
| | - T Lerman-Sagie
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | | | - A Nissenkorn
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| |
Collapse
|
24
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Herrera-Bravo J, Farías JG, Contreras FP, Herrera-Belén L, Beltrán JF. PEP-PREDNa+: A web server for prediction of highly specific peptides targeting voltage-gated Na+ channels using machine learning techniques. Comput Biol Med 2022; 145:105414. [DOI: 10.1016/j.compbiomed.2022.105414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
|
26
|
Research progress of Nedd4L in cardiovascular diseases. Cell Death Dis 2022; 8:206. [PMID: 35429991 PMCID: PMC9013375 DOI: 10.1038/s41420-022-01017-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Post-translational modifications (PTMs) are a covalent processing process of proteins after translation. Proteins are capable of playing their roles only after being modified, so as to maintain the normal physiological function of cells. As a key modification of protein post-translational modification, ubiquitination is an essential element, which forms an enzyme-linked reaction through ubiquitin-activating enzyme, ubiquitin binding enzyme, and ubiquitin ligase, aiming to regulate the expression level and function of cellular proteins. Nedd4 family is the largest group of ubiquitin ligases, including 9 members, such as Nedd4-1, Nedd4L (Nedd4-2), WWP1, WWP2, ITCH, etc. They could bind to substrate proteins through their WW domain and play a dominant role in the ubiquitination process, and then participate in various pathophysiological processes of cardiovascular diseases (such as hypertension, myocardial hypertrophy, heart failure, etc.). At present, the role of Nedd4L in the cardiovascular field is not fully understood. This review aims to summarize the progress and mechanism of Nedd4L in cardiovascular diseases, and provide potential perspective for the clinical treatment or prevention of related cardiovascular diseases by targeting Nedd4L.
Collapse
|
27
|
Ding J, Wang L, Jin Z, Qiang Y, Li W, Wang Y, Zhu C, Jiang S, Xiao L, Hao X, Hu X, Li X, Wang F, Sun T. Do All Roads Lead to Rome? Genes Causing Dravet Syndrome and Dravet Syndrome-Like Phenotypes. Front Neurol 2022; 13:832380. [PMID: 35359639 PMCID: PMC8961694 DOI: 10.3389/fneur.2022.832380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Dravet syndrome (DS) is a severe epileptic encephalopathy mainly caused by haploinsufficiency of the gene SCN1A, which encodes the voltage-gated sodium channel NaV1. 1 in the brain. While SCN1A mutations are known to be the primary cause of DS, other genes that may cause DS are poorly understood. Several genes with pathogenic mutations result in DS or DS-like phenotypes, which may require different drug treatment approaches. Therefore, it is urgent for clinicians, especially epilepsy specialists to fully understand these genes involved in DS in addition to SCN1A. Particularly for healthcare providers, a deep understanding of these pathogenic genes is useful in properly selecting and adjusting drugs in a more effective and timely manner. Objective The purpose of this study was to identify genes other than SCN1A that may also cause DS or DS-like phenotypes. Methods A comprehensive search of relevant Dravet syndrome and severe myoclonic epilepsy in infancy was performed in PubMed, until December 1, 2021. Two independent authors performed the screening for potentially eligible studies. Disagreements were decided by a third, more professional researcher or by all three. The results reported by each study were narratively summarized. Results A PubMed search yielded 5,064 items, and other sources search 12 records. A total of 29 studies published between 2009 and 2021 met the inclusion criteria. Regarding the included articles, seven studies on PCDH19, three on SCN2A, two on SCN8A, five on SCN1B, two on GABRA1, three on GABRB3, three on GABRG2, and three on STXBP1 were included. Only one study was recorded for CHD2, CPLX1, HCN1 and KCNA2, respectively. It is worth noting that a few articles reported on more than one epilepsy gene. Conclusion DS is not only identified in variants of SCN1A, but other genes such as PCDH19, SCN2A, SCN8A, SCN1B, GABRA1, GABRB3, GABRG2, KCNA2, CHD2, CPLX1, HCN1A, STXBP1 can also be involved in DS or DS-like phenotypes. As genetic testing becomes more widely available, more genes associated with DS and DS-like phenotypes may be identified and gene-based diagnosis of subtypes of phenotypes in this spectrum may improve the management of these diseases in the future.
Collapse
Affiliation(s)
- Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhe Jin
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Hao
- Department of Neurology, First Affiliated Hospital of Zhengzhou Universiy, Zhengzhou, China
| | - Xulei Hu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xinxiao Li
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Feng Wang
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Tao Sun
| |
Collapse
|
28
|
Crystal structure analysis, Hirshfeld surface analysis, spectral investigations (FT-IR, FT-R), DFT calculations, ADMET studies and molecular docking of 3H-Methyl-1H-pyrazole-1-carboxamide (3MPC). J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
30
|
Xiong J, Liu Z, Chen S, Kessi M, Chen B, Duan H, Deng X, Yang L, Peng J, Yin F. Correlation Analyses of Clinical Manifestations and Variant Effects in KCNB1-Related Neurodevelopmental Disorder. Front Pediatr 2022; 9:755344. [PMID: 35071126 PMCID: PMC8767024 DOI: 10.3389/fped.2021.755344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Vitro functional analyses of KCNB1 variants have been done to disclose possible pathogenic mechanisms in KCNB1-related neurodevelopmental disorder. "Complete or partial loss of function (LoF)," "dominant-negative (DN) effect" are applied to describe KCNB1 variant's molecular phenotypes. The study here aimed to investigate clinical presentations and variant effects associations in the disorder. Methods: We reported 10 Chinese pediatric patients with KCNB1-related neurodevelopmental disorder here. Functional experiments on newly reported variants, including electrophysiology and protein expression, were performed in vitro. Phenotypic, functional, and genetic data in the cohort and published literature were collected. According to their variants' molecular phenotypes, patients were grouped into complete or partial LoF, and DN effect or non-dominant-negative (non-DN) effect to compare their clinical features. Results: Nine causative KCNB1 variants in 10 patients were identified in the cohort, including eight novel and one reported. Epilepsy (9/10), global developmental delay (10/10), and behavior issues (7/10) were common clinical features in our patients. Functional analyses of 8 novel variants indicated three partial and five complete LoF variants, five DN and three non-DN effect variants. Patient 1 in our series with truncated variants, whose functional results supported haploinsufficiency, had the best prognosis. Cases in complete LoF group had earlier seizure onset age (64.3 vs. 16.7%, p = 0.01) and worse seizure outcomes (18.8 vs. 66.7%, p = 0.03), and patients in DN effect subgroup had multiple seizure types compared to those in non-DN effect subgroup (65.5 vs. 30.8%, p = 0.039). Conclusion: Patients with KCNB1 variants in the Asian cohort have similar clinical manifestations to those of other races. Truncated KCNB1 variants exhibiting with haploinsufficiency molecular phenotype are linked to milder phenotypes. Individuals with complete LoF and DN effect KCNB1 variants have more severe seizure attacks than the other two subgroups.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
31
|
Beretta S, Gritti L, Ponzoni L, Scalmani P, Mantegazza M, Sala M, Verpelli C, Sala C. Rescuing epileptic and behavioral alterations in a Dravet syndrome mouse model by inhibiting eukaryotic elongation factor 2 kinase (eEF2K). Mol Autism 2022; 13:1. [PMID: 34980259 PMCID: PMC8722032 DOI: 10.1186/s13229-021-00484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Dravet Syndrome is a severe childhood pharmaco-resistant epileptic disorder mainly caused by mutations in the SCN1A gene, which encodes for the α1 subunit of the type I voltage-gated sodium channel (NaV1.1), that causes imbalance between excitation and inhibition in the brain. We recently found that eEF2K knock out mice displayed enhanced GABAergic transmission and tonic inhibition and were less susceptible to epileptic seizures. Thus, we investigated the effect of inhibition of eEF2K on the epileptic and behavioral phenotype of Scn1a ± mice, a murine model of Dravet Syndrome. Methods To elucidate the role of eEF2K pathway in the etiopathology of Dravet syndrome we generated a new mouse model deleting the eEF2K gene in Scn1a ± mice. By crossing Scn1a ± mice with eEF2K−/− mice we obtained the three main genotypes needed for our studies, Scn1a+/+ eEF2K+/+ (WT mice), Scn1a ± eEF2K+/+ mice (Scn1a ± mice) and Scn1a ± eEF2K−/− mice, that were fully characterized for EEG and behavioral phenotype. Furthermore, we tested the ability of a pharmacological inhibitor of eEF2K in rescuing EEG alterations of the Scn1a ± mice. Results We showed that the activity of eEF2K/eEF2 pathway was enhanced in Scn1a ± mice. Then, we demonstrated that both genetic deletion and pharmacological inhibition of eEF2K were sufficient to ameliorate the epileptic phenotype of Scn1a ± mice. Interestingly we also found that motor coordination defect, memory impairments, and stereotyped behavior of the Scn1a ± mice were reverted by eEF2K deletion. The analysis of spontaneous inhibitory postsynaptic currents (sIPSCs) suggested that the rescue of the pathological phenotype was driven by the potentiation of GABAergic synapses. Limitations Even if we found that eEF2K deletion was able to increase inhibitory synapses function, the molecular mechanism underlining the inhibition of eEF2K/eEF2 pathway in rescuing epileptic and behavioral alterations in the Scn1a ± needs further investigations. Conclusions Our data indicate that pharmacological inhibition of eEF2K could represent a novel therapeutic intervention for treating epilepsy and related comorbidities in the Dravet syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00484-0.
Collapse
Affiliation(s)
- Stefania Beretta
- CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy
| | - Laura Gritti
- CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy
| | - Luisa Ponzoni
- CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy
| | - Paolo Scalmani
- L'Unità Operativa Complessa di Epilettologia Clinica e Sperimentale, Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Neurological Institute Carlo Besta, 20133, Milan, Italy
| | - Massimo Mantegazza
- CNRS UMR 7275, Institut National de La Santé Et de La Recherche Médicale, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), Université Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France
| | - Mariaelvina Sala
- CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy.
| | - Carlo Sala
- CNR Neuroscience Institute, Milan, and NeuroMi Milan Center for Neuroscience, Via Raoul Follereau 3, 20854, Vedano al Lambro, MB, Italy.
| |
Collapse
|
32
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
33
|
Comparative structural analysis of human Na v1.1 and Na v1.5 reveals mutational hotspots for sodium channelopathies. Proc Natl Acad Sci U S A 2021; 118:2100066118. [PMID: 33712547 DOI: 10.1073/pnas.2100066118] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the nine subtypes of human voltage-gated sodium (Nav) channels, the brain and cardiac isoforms, Nav1.1 and Nav1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Nav1.1-β4 complex at 3.3 Å resolution here and the Nav1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Nav1.1 and Nav1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Nav1.1 and Nav1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.
Collapse
|
34
|
Kaczmarek LK. The Na Vy paradox: reducing sodium currents increases excitability. Trends Neurosci 2021; 44:767-768. [PMID: 34373125 DOI: 10.1016/j.tins.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Mutations that increase sodium currents in excitatory neurons typically produce hyperexcitability and epileptic seizures. Paradoxically, mutations that reduce NaV1.2 sodium currents also have a similar effect. Two research groups (Spratt et al. and Zhang et al.) have now found that in some excitatory neurons, loss of NaV1.2 increases intrinsic excitability by altering activation and/or expression of potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Modelling of an autonomous Nav1.5 channel system as a part of in silico pharmacology study. J Mol Model 2021; 27:182. [PMID: 34031769 DOI: 10.1007/s00894-021-04799-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
A homology model of Nav1.5, based mainly on the crystal structures of Nav1.2/1.5 was built, optimized and successfully inserted into the membrane bilayer. We applied steered and free MD simulation protocols for the visualization of the mechanism of Nav1.5 activation. We constrained dihedrals of S4 trigger to introduce a structural tension with further rearrangement and movement of secondary structure elements. From these, we observed an intracellular gate opening and movement of the Lys1419 residue caused by a gradual displacement of the distal S6 α-helix with the extended S4 3-10 helix of voltage-sensing domains (VSD). A construction containing the Lys1419 residue in P-loop also changed its position due to the extension of this helix and subsequent induction of the pore-forming helixes motion. From this point, a double membrane system was generated, implying a free of ligand Nav1.5 protein and on the opposite side its copy containing a docked bupivacaine molecule inside the pore channel. The system can be used for the design of selective inhibitors against the Nav1.7 channel, instead of mixed effect on both channels.
Collapse
|
36
|
Fang ZX, Xie LL, Yan LS, Lin H, Pan YN, Liu BK, Jiang Y, Cheng M, Li XJ, Jiang L. Clinical and genetic characteristics of epilepsy of infancy with migrating focal seizures in Chinese children. Epilepsy Res 2021; 174:106669. [PMID: 34020146 DOI: 10.1016/j.eplepsyres.2021.106669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare and severe developmental epileptic encephalopathy. The aim of this study was to improve our understanding of EIMFS by using phenotype-genotype correlation. METHODS We recruited, performed clinical genetic testing, and summarized the clinical features and genetic characteristics in five patients with EIMFS in China. RESULTS The five recruited patients included 2 males and 3 females. The median age of seizure onset was 2 months (range, day 3 to 3 months). All patients exhibited the characteristics of clinically migrating focal motor (tonic or clonic) seizures. Typical migrating ictal electrical patterns were found in 1 patient; the remaining four patients presented with overlapping seizures with different areas of ictal onset in differing hemispheres. All the patients had the associated variants, including KCNT1, SCN1A, SCN2A, TBC1D24 and ALG1. All patients received two or more antiseizure medications, and 1 patient became seizure-free, 1 reported >75 % seizure reduction, 2 reported >50 % seizure reduction, and 1 patient showed no improvement. Varying degrees of psychomotor developmental delays were observed in all patients. CONCLUSIONS The course of EIMFS could be related to the type of gene variant present, and different genes may have specific clinical features. Larger cohorts are required to elucidate such potential phenotype-genotype correlations.
Collapse
Affiliation(s)
- Zhi-Xu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ling-Ling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li-Si Yan
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Huan Lin
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ya-Nan Pan
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ben-Ke Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yan Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Min Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiu-Juan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
37
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
DeKeyser JM, Thompson CH, George AL. Cryptic prokaryotic promoters explain instability of recombinant neuronal sodium channels in bacteria. J Biol Chem 2021; 296:100298. [PMID: 33460646 PMCID: PMC7948969 DOI: 10.1016/j.jbc.2021.100298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in genes encoding the human-brain-expressed voltage-gated sodium (NaV) channels NaV1.1, NaV1.2, and NaV1.6 are associated with a variety of human diseases including epilepsy, autism spectrum disorder, familial migraine, and other neurodevelopmental disorders. A major obstacle hindering investigations of the functional consequences of brain NaV channel mutations is an unexplained instability of the corresponding recombinant complementary DNA (cDNA) when propagated in commonly used bacterial strains manifested by high spontaneous rates of mutation. Here, using a combination of in silico analysis, random and site-directed mutagenesis, we investigated the cause for instability of human NaV1.1 cDNA. We identified nucleotide sequences within the NaV1.1 coding region that resemble prokaryotic promoter-like elements, which are presumed to drive transcription of translationally toxic mRNAs in bacteria as the cause of the instability. We further demonstrated that mutations disrupting these elements mitigate the instability. Extending these observations, we generated full-length human NaV1.1, NaV1.2, and NaV1.6 plasmids using one or two introns that interrupt the latent reading frames along with a minimum number of silent nucleotide changes that achieved stable propagation in bacteria. Expression of the stabilized sequences in cultured mammalian cells resulted in functional NaV channels with properties that matched their parental constructs. Our findings explain a widely observed instability of recombinant neuronal human NaV channels, and we describe re-engineered plasmids that attenuate this problem.
Collapse
Affiliation(s)
- Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
39
|
Gao M, Qu K, Zhang W, Wang X. Pharmacological Activity of Pyrazole Derivatives as an Anticonvulsant for Benefit against Epilepsy. Neuroimmunomodulation 2021; 28:90-98. [PMID: 33774633 DOI: 10.1159/000513297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles. METHODS The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice. RESULTS The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice. CONCLUSION Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.
Collapse
Affiliation(s)
- Meizhe Gao
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Keli Qu
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Xueying Wang
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
40
|
Wasan H, Singh D, Kh R. Safinamide in neurological disorders and beyond: Evidence from preclinical and clinical studies. Brain Res Bull 2020; 168:165-177. [PMID: 33387637 DOI: 10.1016/j.brainresbull.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
The discovery and development of safinamide, an alpha-aminoamide, has been a valuable addition to the existing clinical management of Parkinson's disease (PD). The journey of safinamide dates back to the year 1983, when an alpha-aminoamide called milacemide showed a weak anticonvulsant activity. Milacemide was then structurally modified to give rise to safinamide, which in turn produced robust anticonvulsant activity. The underlying mechanism behind this action of safinamide is attributed to the inhibition of voltage gated calcium and sodium channels. Moreover, owing to the importance of ion channels in maintaining neuronal circuitry and neurotransmitter release, numerous studies explored the potential of safinamide in neurological diseases including PD, stroke, multiple sclerosis and neuromuscular disorders such as Duchenne muscular dystrophy and non-dystrophic myotonias. Nevertheless, evidence from multiple preclinical studies suggested a potent, selective and reversible inhibitory activity of safinamide against monoamine oxidase (MAO)-B enzyme which is responsible for degrading dopamine, a neurotransmitter primarily implicated in the pathophysiology of PD. Therefore, clinical studies were conducted to assess safety and efficacy of safinamide in PD. Indeed, results from various Phase 3 clinical trials suggested strong evidence of safinamide as an add-on therapy in controlling the exacerbation of PD. This review presents a thorough developmental history of safinamide in PD and provides comprehensive insight into plausible mechanisms via which safinamide can be explored in other neurological and muscular diseases.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Reeta Kh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
41
|
Wang P, Wadsworth PA, Dvorak NM, Singh AK, Chen H, Liu Z, Zhou R, Holthauzen LMF, Zhou J, Laezza F. Design, Synthesis, and Pharmacological Evaluation of Analogues Derived from the PLEV Tetrapeptide as Protein-Protein Interaction Modulators of Voltage-Gated Sodium Channel 1.6. J Med Chem 2020; 63:11522-11547. [PMID: 33054193 DOI: 10.1021/acs.jmedchem.0c00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The voltage-gated Na+ (Nav) channel is the molecular determinant of excitability. Disruption of protein-protein interactions (PPIs) between Nav1.6 and fibroblast growth factor 14 (FGF14) leads to impaired excitability of neurons in clinically relevant brain areas associated with channelopathies. Here, we designed, synthesized, and pharmacologically characterized new peptidomimetics based on a PLEV tetrapeptide scaffold derived from the FGF14:Nav1.6 PPI interface. Addition of an N-terminal 1-adamantanecarbonyl pharmacophore significantly improved peptidomimetic inhibitory potency. Surface plasmon resonance studies revealed that while this moiety was sufficient to confer binding to FGF14, altering the C-terminal moiety from methoxy (21a) to π bond-containing (23a and 23b) or cycloalkane substituents (23e) abrogated the binding to Nav1.6. Whole-cell patch-clamp electrophysiology subsequently revealed that 21a had functionally relevant interactions with both the C-terminal tail of Nav1.6 and FGF14. Collectively, these findings support that 21a (PW0564) may serve as a promising lead to develop target-selective neurotherapeutics by modulating protein-channel interactions.
Collapse
|
42
|
Hwang KS, Kan H, Kim SS, Chae JS, Yang JY, Shin DS, Ahn SH, Ahn JH, Cho JH, Jang IS, Shin J, Joo J, Kim CH, Bae MA. Efficacy and pharmacokinetics evaluation of 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) as an anti-seizure agent. Neurochem Int 2020; 141:104870. [PMID: 33035603 DOI: 10.1016/j.neuint.2020.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/15/2022]
Abstract
Epilepsy is a common chronic neurological disease characterized by recurrent epileptic seizures. A seizure is an uncontrolled electrical activity in the brain that can cause different levels of behavior, emotion, and consciousness. One-third of patients fail to receive sufficient seizure control, even though more than fifty FDA-approved anti-seizure drugs (ASDs) are available. In this study, we attempted small molecule screening to identify potential therapeutic agents for the treatment of seizures using seizure-induced animal models. Through behavioral phenotype-based screening, 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) was identified as a prototype. GM-90432 treatment effectively decreased seizure-like behaviors in zebrafish and mice with chemically induced seizures. These results were consistent with decreased neuronal activity through immunohistochemistry for pERK in zebrafish larvae. Additionally, electroencephalogram (EEG) analysis revealed that GM-90432 decreases seizure-specific EEG events in adult zebrafish. Moreover, we revealed the preferential binding of GM-90432 to voltage-gated Na+ channels using a whole-cell patch clamp technique. Through pharmacokinetic analysis, GM-90432 effectively penetrated the blood-brain barrier and was distributed into the brain. Taken together, we suggest that GM-90432 has the potential to be developed into a new ASD candidate.
Collapse
Affiliation(s)
- Kyu-Seok Hwang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyemin Kan
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Seong Soon Kim
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jin Sil Chae
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jung Yoon Yang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dae-Seop Shin
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Se Hwan Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea
| | | | - Jaeyoung Joo
- Zefit. Inc., Daegu, 42988, Republic of Korea; School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 41940, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34114, Republic of Korea
| | - Myung Ae Bae
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
43
|
Melikishvili G, Dulac O, Gataullina S. Neonatal SCN2A encephalopathy: A peculiar recognizable electroclinical sequence. Epilepsy Behav 2020; 111:107187. [PMID: 32603808 DOI: 10.1016/j.yebeh.2020.107187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Sodium voltage-gated channel alpha subunit 2 (SCN2A) gene encodes the Nav1.2 subunit of voltage-gated sodium channel in pyramidal neurons. SCN2A gain-of-function mutations are identified more and more often with gene panels and whole exome sequencing. Phenotype ranges from benign neonatal or infantile seizures to severe epileptic encephalopathy. Although large series of patients targeting genetic background point out two main phenotypes with SCN2A encephalopathy, Ohtahara syndrome and malignant migrating partial seizures in infancy (EMPSI), we noticed that in fact, a peculiar clinical and electroencephalogram (EEG) sequence distinct from these syndromes should suggest the diagnosis early. PATIENTS AND METHODS We report three new cases with de novo SCN2A mutations - 166237617C>A p.(Asp1487Glu), c.407T>G p.(Met136Arg), and c.4633A>G p.(Met1545Val) - diagnosed by direct sequencing or genes panel, their follow-up ranging from 4 to 5 years. RESULTS For all three patients, seizures started at two days of life and consisted of apnea and cyanosis with partial clonic or tonic, alternating on both sides with, up to 100/day, evolving to generalized tonic-clonic seizures (GTCS) and epileptic spasms by three months. First EEG showed a discontinuous pattern, evolving to multifocal spikes, by 3 (two patients) and 6 months (one). Seizure frequency decreased progressively by the middle or end of the first year of life. Only less frequent GTCS persisted during the second year of life for two patients. Improvement was observed in two patients with sodium channel blocker (phenytoin) used at age of 1 month for one patient and at 2 years for another one. All patients remained with severe psychomotor delay. DISCUSSION All three infants share a condition different from Ohtahara syndrome in which tonic spasms predominate and suppression-burst pattern is obvious, and from EMPSI, in which partial migrating discharges involve successively the various parts of the brain including occipital regions with oculoclonic seizures, but there is neither discontinuous pattern nor therapeutic response to sodium channel blockers. CONCLUSION Neonatal SCN2A encephalopathy has a recognizable phenotype starting soon after birth with alternating partial motor seizures evolving to infantile spasms and a discontinuous EEG pattern. Seizures improve spontaneously in the first year of life. This electroclinical sequence should indicate the search of SCN2A mutation and suggest the administration of sodium channel blockers.
Collapse
Affiliation(s)
- Gia Melikishvili
- Department of Pediatrics, MediClubGeorgia Medical Center, Tbilisi, Georgia
| | | | - Svetlana Gataullina
- Services d'explorations fonctionnelles, Centre de médecine du sommeil, Hôpital Antoine-Béclère, AP-HP, Clamart, France; Service de pédiatrie, Centre hospitalier intercommunal André Grégoire, Montreuil, France.
| |
Collapse
|
44
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
45
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
46
|
Silvennoinen K, Balestrini S, Rothwell JC, Sisodiya SM. Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy. Epilepsia 2020; 61:1818-1839. [PMID: 32783192 PMCID: PMC8432162 DOI: 10.1111/epi.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Advances in genetics may enable a deeper understanding of disease mechanisms and promote a shift to more personalised medicine in the epilepsies. At present, understanding of consequences of genetic variants mainly relies on preclinical functional work; tools for acquiring similar data from the living human brain are needed. Transcranial magnetic stimulation (TMS), in particular paired-pulse TMS protocols which depend on the function of cortical GABAergic interneuron networks, has the potential to become such a tool. For this report, we identified and reviewed 23 publications on TMS studies of cortical excitability and inhibition in 15 different genes or conditions relevant to epilepsy. Reduced short-interval intracortical inhibition (SICI) and reduced cortical silent period (CSP) duration were the most commonly reported findings, suggesting abnormal GABAA - (SICI) or GABAB ergic (CSP) signalling. For several conditions, these findings are plausible based on established evidence of involvement of the GABAergic system; for some others, they may inform future research around such mechanisms. Challenges of TMS include lack of complete understanding of the neural underpinnings of the measures used: hypotheses and analyses should be based on existing clinical and preclinical data. Further pitfalls include gathering sufficient numbers of participants, and the effect of confounding factors, especially medications. TMS-EEG is a unique perturbational technique to study the intrinsic properties of the cortex with excellent temporal resolution; while it has the potential to provide further information of use in interpreting effects of genetic variants, currently the links between measures and neurophysiology are less established. Despite these challenges, TMS is a tool with potential for elucidating the system-level in vivo functional consequences of genetic variants in people carrying genetic changes of interest, providing unique insights.
Collapse
Affiliation(s)
- Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Department of UCL Queen Square, Institute of Neurology, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| |
Collapse
|
47
|
Chemometric Models of Differential Amino Acids at the Na vα and Na vβ Interface of Mammalian Sodium Channel Isoforms. Molecules 2020; 25:molecules25153551. [PMID: 32756517 PMCID: PMC7435598 DOI: 10.3390/molecules25153551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: voltage-gated sodium channels (Navs) are integral membrane proteins that allow the sodium ion flux into the excitable cells and initiate the action potential. They comprise an α (Navα) subunit that forms the channel pore and are coupled to one or more auxiliary β (Navβ) subunits that modulate the gating to a variable extent. (2) Methods: after performing homology in silico modeling for all nine isoforms (Nav1.1α to Nav1.9α), the Navα and Navβ protein-protein interaction (PPI) was analyzed chemometrically based on the primary and secondary structures as well as topological or spatial mapping. (3) Results: our findings reveal a unique isoform-specific correspondence between certain segments of the extracellular loops of the Navα subunits. Precisely, loop S5 in domain I forms part of the PPI and assists Navβ1 or Navβ3 on all nine mammalian isoforms. The implied molecular movements resemble macroscopic springs, all of which explains published voltage sensor effects on sodium channel fast inactivation in gating. (4) Conclusions: currently, the specific functions exerted by the Navβ1 or Navβ3 subunits on the modulation of Navα gating remain unknown. Our work determined functional interaction in the extracellular domains on theoretical grounds and we propose a schematic model of the gating mechanism of fast channel sodium current inactivation by educated guessing.
Collapse
|
48
|
Zaucha J, Heinzinger M, Kulandaisamy A, Kataka E, Salvádor ÓL, Popov P, Rost B, Gromiha MM, Zhorov BS, Frishman D. Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins. Brief Bioinform 2020; 22:5872174. [PMID: 32672331 DOI: 10.1093/bib/bbaa132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein's functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.
Collapse
Affiliation(s)
- Jan Zaucha
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - A Kulandaisamy
- Department of Biotechnology of the IIT Bhupat and Jyoti Mehta School of BioSciences in Madras, India
| | - Evans Kataka
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Óscar Llorian Salvádor
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - Petr Popov
- Center for Computational and Data-Intensive Science and Engineering of the Skolkovo Institute of Science and Technology in Moscow, Russia
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology at the TUM Faculty of Informatics in Garching, Germany
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University in Hamilton, Canada
| | - Dmitrij Frishman
- Department of Bioinformatics at the TUM School of Life Sciences Weihenstephan in Freising, Germany
| |
Collapse
|
49
|
Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na + channels in nanodisc. Proc Natl Acad Sci U S A 2020; 117:14187-14193. [PMID: 32513729 DOI: 10.1073/pnas.1922903117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NaChBac, the first bacterial voltage-gated Na+ (Nav) channel to be characterized, has been the prokaryotic prototype for studying the structure-function relationship of Nav channels. Discovered nearly two decades ago, the structure of NaChBac has not been determined. Here we present the single particle electron cryomicroscopy (cryo-EM) analysis of NaChBac in both detergent micelles and nanodiscs. Under both conditions, the conformation of NaChBac is nearly identical to that of the potentially inactivated NavAb. Determining the structure of NaChBac in nanodiscs enabled us to examine gating modifier toxins (GMTs) of Nav channels in lipid bilayers. To study GMTs in mammalian Nav channels, we generated a chimera in which the extracellular fragment of the S3 and S4 segments in the second voltage-sensing domain from Nav1.7 replaced the corresponding sequence in NaChBac. Cryo-EM structures of the nanodisc-embedded chimera alone and in complex with HuwenToxin IV (HWTX-IV) were determined to 3.5 and 3.2 Å resolutions, respectively. Compared to the structure of HWTX-IV-bound human Nav1.7, which was obtained at an overall resolution of 3.2 Å, the local resolution of the toxin has been improved from ∼6 to ∼4 Å. This resolution enabled visualization of toxin docking. NaChBac can thus serve as a convenient surrogate for structural studies of the interactions between GMTs and Nav channels in a membrane environment.
Collapse
|
50
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|