1
|
Hou S, Yu Q, Cheng X, Hu M, Li Z, Luo J. Emission of Protonated Riboflavin Induced by Inhibition of Out-of-plane Vibration in a Rigid Polymer Network. J Phys Chem B 2025; 129:1707-1713. [PMID: 39840898 DOI: 10.1021/acs.jpcb.4c08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Chromophores incorporated into rigid polymer matrices may exhibit novel photophysical properties distinct from those in liquid solutions. In this work, we explored the decay path of the second ππ* state (2ππ*) of riboflavin in poly(vinyl alcohol) (PVA) solutions and films with various acidities. Highly efficient internal conversion from 2ππ* to the lowest ππ* state (1ππ*) induced by slight in-plane motion is demonstrated in all PVA solutions and films, irrespective of environmental acidity and rigidification. Ground-state protonation of riboflavin occurs in the highly acidic PVA film, and this cationic species emits fluorescence around 460 nm, in contrast to the ultrafast nonradiative relaxation in aqueous solution. The emission is demonstrated to originate from the 2ππ* state rather than the 1ππ* state. The 2ππ*-1ππ* internal conversion of protonated riboflavin is demonstrated to be induced by out-of-plane motion and impeded in a rigid PVA network, resulting in the anti-Kasha fluorescence.
Collapse
Affiliation(s)
- Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Xiaolan Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Mengrong Hu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zheng Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Wang W, Liu Y, Cheng X, Yu Q, Hou S, Zhao J, Luo J. Fluorescence Enhancement of Nonemissive Monodeprotonated Luteolin in a Poly(vinyl alcohol) Film. J Phys Chem B 2024; 128:11328-11334. [PMID: 39484864 DOI: 10.1021/acs.jpcb.4c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Solid polymer matrixes can modulate the electronic states of embedded chromophores and have been widely used in flexible optoelectronic and optical materials. Luteolin is one of the most common natural flavonoids, and its neutral and monodeprotonated forms are nonemissive in aqueous solution induced by ultrafast excited-state proton transfer (ESPT) followed by nonradiative relaxation. In this study, we have incorporated luteolin into poly(vinyl alcohol) (PVA) films and studied their fluorescence behaviors. Neutral and one monodeprotonated luteolin coexist in the PVA film. Weak steady-state fluorescence of neutral luteolin peaking at about 440 nm is observed for the first time. In addition, the monodeprotonated luteolin in PVA film exhibits obvious fluorescence peaking at 500 nm, with a fluorescence quantum yield of as high as 0.4 and a fluorescence lifetime of as long as 2.4 ns. Time-dependent density functional theory calculations have determined that the ESPT of neutral luteolin is barrierless but that of monodeprotonated luteolin needs to surmount a barrier, explaining their distinct emission properties. These results indicate the modulation ability of the PVA film in both ground-state deprotonation and ESPT, broadening the application areas of the solid polymer matrix.
Collapse
Affiliation(s)
- Weili Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Yan Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaolan Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jie Zhao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
3
|
Gießelmann NC, Lenz P, Meinert SM, Simon T, Bauer RPC, Jo W, Claas S, Köhn C, Striker NN, Fröba M, Lehmkühler F. The structure of ice under confinement in periodic mesoporous organosilicas (PMOs). J Chem Phys 2024; 161:034508. [PMID: 39017429 DOI: 10.1063/5.0216697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
We investigated the structure of ice under nanoporous confinement in periodic mesoporous organosilicas (PMOs) with different organic functionalities and pore diameters between 3.4 and 4.9 nm. X-ray scattering measurements of the system were performed at temperatures between 290 and 150 K. We report the emergence of ice I with both hexagonal and cubic characteristics in different porous materials, as well as an alteration of the lattice parameters when compared to bulk ice. This effect is dependent on the pore diameter and the surface chemistry of the respective PMO. Investigations regarding the orientation of hexagonal ice crystals relative to the pore wall using x-ray cross correlation analysis reveal one or more discrete preferred orientation in most of the samples. For a pore diameter of around 3.8 nm, stronger correlation peaks are present in more hydrophilically functionalized pores and seem to be connected to stronger shifts in the lattice parameters.
Collapse
Affiliation(s)
- Niels C Gießelmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Philip Lenz
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sophia-Marie Meinert
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Tamás Simon
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Robert P C Bauer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Freiberg Center for Water Research, Technische Universität Bergakademie Freiberg, Winklerstraße 8, 09599 Freiberg, Germany
| | - Wonhyuk Jo
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sarah Claas
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Christian Köhn
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Nele N Striker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
5
|
Bartoš J, Vyroubalová M, Švajdlenková H. Bulk and confined acetonitrile in mesoporous silica matrices by extrinsic probing via ESR technique: Effects of pore topology, pore size and pore surface composition. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Garrett P, Baiz CR. Dynamic effect of polymers at the surfactant-water interface: an ultrafast study. SOFT MATTER 2022; 18:1793-1800. [PMID: 35170620 DOI: 10.1039/d1sm01651b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfaces play a role in controlling the rates and outcomes of chemical processes. Characterizing the interactions at heterogeneous interfaces is critical to developing a comprehensive model of the role of interfaces and confinement in modulating chemical reactions. Reverse micelles are an ideal model system for exploring the effect of encapsulated species on interfacial environments. Here, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics (MD) simulations to characterize the picosecond interfacial dynamics in reverse micelles (RMs) containing acrylamide monomers and polyacrylamide polymers within the aqueous phase. The ester carbonyl vibrations of the sorbitan monostearate surfactants are examined to extract interfacial hydrogen-bonding populations and dynamics. Hydrogen bond populations at the ester carbonyl positions remain unchanged with the inclusion of either polymer or monomer species. Hydrogen-bond dynamics are not altered with the addition of monomer but are slowed down twofold in the presence of encapsulated polyacrylamide polymer species as a result of polymer chains partially localizing to the interface. These findings imply that kinetics of reactions that occur at interfaces or in confined environments could be modulated by interfacial localization of the different components.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Olivieri JF, Laage D, Hynes JT. A Model Electron Transfer Reaction in Confined Aqueous Solution. Chemphyschem 2021; 22:2247-2255. [PMID: 34427964 DOI: 10.1002/cphc.202100351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Liquid water confined within nanometer-sized channels exhibits a strongly reduced local dielectric constant perpendicular to the wall, especially at the interface, and this has been suggested to induce faster electron transfer kinetics at the interface than in the bulk. We study a model electron transfer reaction in aqueous solution confined between graphene sheets with classical molecular dynamics. We show that the solvent reorganization energy is reduced at the interface compared to the bulk, which explains the larger rate constant. However, this facilitated solvent reorganization is due to the partial desolvation by the graphene sheet of the ions involved in the electron transfer and not to a local dielectric constant reduction effect.
Collapse
Affiliation(s)
- Jean-François Olivieri
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - James T Hynes
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
9
|
Qing L, Long T, Yu H, Li Y, Tang W, Bao B, Zhao S. Quantifying ion desolvation effects on capacitances of nanoporous electrodes with liquid electrolytes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM, de Pablo JJ, Dombrowski J, Elam JW, Felts AM, Galli G, Hack J, He Q, He X, Hoenig E, Iscen A, Kash B, Kung HH, Lewis NHC, Liu C, Ma X, Mane A, Martinson ABF, Mulfort KL, Murphy J, Mølhave K, Nealey P, Qiao Y, Rozyyev V, Schatz GC, Sibener SJ, Talapin D, Tiede DM, Tirrell MV, Tokmakoff A, Voth GA, Wang Z, Ye Z, Yesibolati M, Zaluzec NJ, Darling SB. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chem Rev 2021; 121:9450-9501. [PMID: 34213328 DOI: 10.1021/acs.chemrev.1c00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.
Collapse
Affiliation(s)
- Edward Barry
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Raelyn Burns
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Wei Chen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Guilhem X De Hoe
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Joan Manuel Montes De Oca
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Juan J de Pablo
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - James Dombrowski
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alanna M Felts
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Giulia Galli
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - John Hack
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xiang He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Eli Hoenig
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Aysenur Iscen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Benjamin Kash
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Harold H Kung
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Nicholas H C Lewis
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Chong Liu
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xinyou Ma
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anil Mane
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Karen L Mulfort
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Julia Murphy
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Kristian Mølhave
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Paul Nealey
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Yijun Qiao
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Vepa Rozyyev
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - George C Schatz
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Steven J Sibener
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Dmitri Talapin
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - David M Tiede
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Matthew V Tirrell
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Andrei Tokmakoff
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Gregory A Voth
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zhongyang Wang
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zifan Ye
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Murat Yesibolati
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Nestor J Zaluzec
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Photon Sciences Directorate, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Seth B Darling
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| |
Collapse
|
11
|
Bang JJ, Han D, Shin J, Chung TD, Bae JH. Selective Enhancement of Electrochemical Signal Based on the Size of Alcohols Using Nanoporous Platinum. ChemElectroChem 2021. [DOI: 10.1002/celc.202100250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jae Jin Bang
- Sakti3 Inc. Ann Arbor Michigan 48108 United States
| | - Donghoon Han
- Department of Chemistry The Catholic University of Korea Bucheon, Gyeonggi-do 14662 Republic of Korea
| | - Jinsik Shin
- Graduate School of Analytical Science and Technology Chungnam National University Daejeon 34134 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
- Electrochemistry Laboratory Advanced Institutes of Convergence Technology Suwon, Gyeonggi-do 16229 Republic of Korea
| | - Je Hyun Bae
- Graduate School of Analytical Science and Technology Chungnam National University Daejeon 34134 Republic of Korea
| |
Collapse
|
12
|
Muñoz-Santiburcio D, Marx D. Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores. Chem Rev 2021; 121:6293-6320. [PMID: 34006106 DOI: 10.1021/acs.chemrev.0c01292] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Focus Review, we put the spotlight on very recent insights into the fascinating world of wet chemistry in the realm offered by nanoconfinement of water in mechanically rather rigid and chemically inert planar slit pores wherein only monolayer and bilayer water lamellae can be hosted. We review the effect of confinement on different aspects such as hydrogen bonding, ion diffusion, and charge defect migration of H+(aq) and OH-(aq) in nanoconfined water depending on slit pore width. A particular focus is put on the strongly modulated local dielectric properties as quantified in terms of anisotropic polarization fluctuations across such extremely confined water films and their putative effects on chemical reactions therein. The stunning findings disclosed only recently extend wet chemistry in particular and solvation science in general toward extreme molecular confinement conditions.
Collapse
Affiliation(s)
- Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.,CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
13
|
Olivieri JF, Hynes JT, Laage D. Confined Water's Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering. J Phys Chem Lett 2021; 12:4319-4326. [PMID: 33914550 DOI: 10.1021/acs.jpclett.1c00447] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid water confined within nanometer-sized channels exhibits a surprisingly low dielectric constant along the direction orthogonal to the channel walls. This is typically assumed to result from a pronounced heterogeneity across the sample: the dielectric constant would be bulk-like everywhere except at the interface, where it would be dramatically reduced by strong restrictions on interfacial molecules. Here we study the dielectric properties of water confined within graphene slit channels via classical molecular dynamics simulations. We show that the permittivity reduction is not due to any important alignment of interfacial water molecules, but instead to the long-ranged anisotropic dipole correlations combined with an excluded-volume effect of the low-dielectric confining material. The bulk permittivity is gradually recovered only over several nanometers due to the impact of long-range electrostatics, rather than structural features. This has important consequences for the control of, e.g., ion transport and chemical reactivity in nanoscopic channels and droplets.
Collapse
Affiliation(s)
- Jean-François Olivieri
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - James T Hynes
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Damien Laage
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
14
|
Nho HW, Park JH, Adhikari A, Kwon OH. Acid–base reaction of a cationic hydration probe in vicinity of anionic interface of AOT reverse micelles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Wang F, Fu Y, Ziffer ME, Dai Y, Maehrlein SF, Zhu XY. Solvated Electrons in Solids-Ferroelectric Large Polarons in Lead Halide Perovskites. J Am Chem Soc 2021; 143:5-16. [PMID: 33320656 DOI: 10.1021/jacs.0c10943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvation plays a pivotal role in chemistry and biology. A solid-state analogy of solvation is polaron formation, but the magnitude of Coulomb screening is typically an order of magnitude weaker than that of solvation in aqueous solutions. Here, we describe a new class of polarons, the ferroelectric large polaron, proposed initially by Miyata and Zhu in 2018 (Miyata, K.; Zhu, X.-Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379-381). This type of polaron allows efficient Coulomb screening of an electron or hole by extended ordering of dipoles from symmetry-broken unit cells. The local ordering is reflected in the ferroelectric-like THz dielectric responses of lead halide perovskites (LHPs) and may be partially responsible for their exceptional optoelectronic performances. Despite the likely absence of long-range ferroelectricity in LHPs, a charge carrier may be localized to and/or induce the formation of nanoscale domain boundaries of locally ordered dipoles. Based on the known planar nature of energetically favorable domain boundaries in ferroelectric materials, we propose that a ferroelectric polaron localizes to planar boundaries of transient polar nanodomains. This proposal is supported by dynamic simulations showing sheet-like transient electron or hole wave functions in LHPs. Thus, the Belgian-waffle-shaped ferroelectric polaron in the three-dimensional LHP crystal structure is a large polaron in two dimensions and a small polaron in the perpendicular direction. The ferroelectric large polaron may form in other crystalline solids characterized by dynamic symmetry breaking and polar fluctuations. We suggest that the ability to form ferroelectric large polarons can be a general principle for the efficient screening of charge carriers from scattering with other charge carriers, with charged defects and with longitudinal optical phonons, thus contributing to enhanced optoelectronic properties.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yongping Fu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Mark E Ziffer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yanan Dai
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sebastian F Maehrlein
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - X-Y Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Ito S, Cui Q. Multi-level free energy simulation with a staged transformation approach. J Chem Phys 2020; 153:044115. [PMID: 32752685 DOI: 10.1063/5.0012494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combining multiple levels of theory in free energy simulations to balance computational accuracy and efficiency is a promising approach for studying processes in the condensed phase. While the basic idea has been proposed and explored for quite some time, it remains challenging to achieve convergence for such multi-level free energy simulations as it requires a favorable distribution overlap between different levels of theory. Previous efforts focused on improving the distribution overlap by either altering the low-level of theory for the specific system of interest or ignoring certain degrees of freedom. Here, we propose an alternative strategy that first identifies the degrees of freedom that lead to gaps in the distributions of different levels of theory and then treats them separately with either constraints or restraints or by introducing an intermediate model that better connects the low and high levels of theory. As a result, the conversion from the low level to the high level model is done in a staged fashion that ensures a favorable distribution overlap along the way. Free energy components associated with different steps are mostly evaluated explicitly, and thus, the final result can be meaningfully compared to the rigorous free energy difference between the two levels of theory with limited and well-defined approximations. The additional free energy component calculations involve simulations at the low level of theory and therefore do not incur high computational costs. The approach is illustrated with two simple but non-trivial solution examples, and factors that dictate the reliability of the result are discussed.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
17
|
Sofronov O, Bakker HJ. Slow Proton Transfer in Nanoconfined Water. ACS CENTRAL SCIENCE 2020; 6:1150-1158. [PMID: 32724849 PMCID: PMC7379388 DOI: 10.1021/acscentsci.0c00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The transport of protons in nanoconfined environments, such as in nanochannels of biological or artificial proton conductive membranes, is essential to chemistry, biology, and nanotechnology. In water, proton diffusion occurs by hopping of protons between water molecules. This process involves the rearrangement of many hydrogen bonds and as such can be strongly affected by nanoconfinement. We study the vibrational and structural dynamics of hydrated protons in water nanodroplets stabilized by a cationic surfactant using polarization-resolved femtosecond infrared transient absorption spectroscopy. We determine the time scale of proton hopping in the center of the water nanodroplets from the dynamics of the anisotropy of the transient absorption signals. We find that in small nanodroplets with a diameter <4 nm, proton hopping is more than 10 times slower than in bulk water. Even in relatively large nanodroplets with a diameter of ∼7 nm, we find that the rate of proton hopping is slowed by ∼4 times compared with bulk water.
Collapse
|
18
|
Remsing RC, Klein ML. Lone Pair Rotational Dynamics in Solids. PHYSICAL REVIEW LETTERS 2020; 124:066001. [PMID: 32109086 DOI: 10.1103/physrevlett.124.066001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Traditional classifications of crystalline phases focus on nuclear degrees of freedom. Through the examination of both electronic and nuclear structure, we introduce the concept of an electronic plastic crystal. Such a material is classified by crystalline nuclear structure, while localized electronic degrees of freedom-here lone pairs-exhibit orientational motion at finite temperatures. This orientational motion is an emergent phenomenon arising from the coupling between electronic structure and polarization fluctuations generated by collective motions, such as phonons. Using ab initio molecular dynamics simulations, we predict the existence of electronic plastic crystal motion in halogen crystals and halide perovskites, and suggest that such motion may be found in a broad range of solids with lone pair electrons. Such fluctuations in the charge density should be observable, in principle, via synchrotron scattering.
Collapse
Affiliation(s)
- Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Michael L Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
19
|
Tang W, Yu H, Cai C, Zhao T, Lu C, Zhao S, Lu X. Solvent effects on a derivative of 1,3,4-oxadiazole tautomerization reaction in water: A reaction density functional theory study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Affiliation(s)
- Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
21
|
Kumar N, Chen W, Cheng CA, Deng T, Wang R, Zink JI. Stimuli-Responsive Nanomachines and Caps for Drug Delivery. Enzymes 2018; 43:31-65. [PMID: 30244808 DOI: 10.1016/bs.enz.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we focus on methods that are used to trap and release on command therapeutic drugs from mesoporous silica nanoparticles (MSNs). The pores in the MSNs are large enough to accommodate a wide range of cargo molecules such as anticancer and antibiotic drugs and yet small enough to be blocked by a variety of bulky molecules that act as caps. The caps are designed to be tightly attached to the pore openings and trap the cargo molecules without leakage, but upon application of a designed stimulus detach from the nanoparticles and release the cargo. Of special emphasis in this review are nanomachines that respond to stimuli administered from external sources such as light or magnetic fields, or from chemical stimuli produced by the biological system such as a general change in pH or redox potential, or a highly specific chemical produced by a cancer cell or infectious bacterium. The goal is to release a high local concentration of the cargo only where and when it is needed, thus minimizing off-target side effects. We discuss sophisticated reversible nanomachines but also discuss some useful caps that simply break off from the nanoparticles in response to the selected stimulus. Many ingenious systems have been and are being designed; we primarily highlight those that have been demonstrated to operate in vitro and/or in vivo. In most cases the closed MSNs are endocytosed by diseased or infected cells and opened inside the cells to release the drugs. We begin with an overview of the nanoparticles and nanomachines and then present examples of drug release triggered by internal chemical stimuli from the organism and finally by external light and magnetic field stimuli.
Collapse
Affiliation(s)
- Navnita Kumar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Chi-An Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Tian Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Ruining Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States.
| |
Collapse
|
22
|
Lentz J, Garofalini SH. Structural aspects of the topological model of the hydrogen bond in water on auto-dissociation via proton transfer. Phys Chem Chem Phys 2018; 20:16414-16427. [DOI: 10.1039/c8cp02592d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different H-bond structures of donor and acceptor water molecules significantly affect structure, H-bond lifetimes, and autodissociation via proton transfer.
Collapse
Affiliation(s)
- Jesse Lentz
- Department of Materials Science and Engineering
- Rutgers University
- Piscataway
- USA
| | | |
Collapse
|
23
|
Shevkunov SV. Structure of a Na+ cation hydration shell on heating in a planar nanopore. J STRUCT CHEM+ 2017. [DOI: 10.1134/s0022476617070137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Seo M, Bae JH, Hwang DW, Kwak B, Yun J, Lim SY, Chung TD. Catalytic Electron Transfer at Nanoporous Indium Tin Oxide Electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
26
|
|
27
|
Shin JY, Yamada SA, Fayer MD. Carbon Dioxide in a Supported Ionic Liquid Membrane: Structural and Rotational Dynamics Measured with 2D IR and Pump–Probe Experiments. J Am Chem Soc 2017; 139:11222-11232. [DOI: 10.1021/jacs.7b05759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Shin JY, Yamada SA, Fayer MD. Dynamics of a Room Temperature Ionic Liquid in Supported Ionic Liquid Membranes vs the Bulk Liquid: 2D IR and Polarized IR Pump–Probe Experiments. J Am Chem Soc 2016; 139:311-323. [DOI: 10.1021/jacs.6b10695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Affiliation(s)
- Je Hyun Bae
- Department of Chemistry and Biochemistry; Queens College-CUNY, Flushing; New York 11367 USA
| | - Yun Yu
- Department of Chemistry and Biochemistry; Queens College-CUNY, Flushing; New York 11367 USA
- The Graduate Center; City University of New York; New York NY 10016 USA
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry; Queens College-CUNY, Flushing; New York 11367 USA
- The Graduate Center; City University of New York; New York NY 10016 USA
| |
Collapse
|
30
|
Pafong E, Geske J, Drossel B. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces. J Chem Phys 2016. [DOI: 10.1063/1.4962516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- E. Pafong
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - J. Geske
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - B. Drossel
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
31
|
Burris PC, Laage D, Thompson WH. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores. J Chem Phys 2016; 144:194709. [DOI: 10.1063/1.4949766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Paul C. Burris
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Damien Laage
- Département de Chimie, Ecole Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
32
|
Harvey JA, Thompson WH. Solute location in a nanoconfined liquid depends on charge distribution. J Chem Phys 2015; 143:044701. [DOI: 10.1063/1.4926936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jacob A. Harvey
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
33
|
Higgins DA, Park SC, Tran-Ba KH, Ito T. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:193-216. [PMID: 26132347 DOI: 10.1146/annurev-anchem-071114-040153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.
Collapse
Affiliation(s)
- Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401; ,
| | | | | | | |
Collapse
|
34
|
|
35
|
Phukon A, Sahu K. The strikingly different miscibility of n-octanol in highly-confined and quasi-confined water. Chem Commun (Camb) 2015; 51:14103-6. [DOI: 10.1039/c5cc05982h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
n-Octanol, a water-immiscible alcohol, is found to be significantly miscible with highly-confined water, but immiscible with quasi-confined water.
Collapse
Affiliation(s)
- Aparajita Phukon
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Kalyanasis Sahu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
36
|
Abstract
The liquid interface is a narrow, highly anisotropic region, characterized by rapidly varying density, polarity, and molecular structure. I review several aspects of interfacial solvation and show how these affect reactivity at liquid/liquid interfaces. I specifically consider ion transfer, electron transfer, and SN2 reactions, showing that solvent effects on these reactions can be understood by examining the unique structure and dynamics of the liquid interface region.
Collapse
Affiliation(s)
- Ilan Benjamin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064;
| |
Collapse
|
37
|
Fogarty AC, Duboué-Dijon E, Laage D, Thompson WH. Origins of the non-exponential reorientation dynamics of nanoconfined water. J Chem Phys 2014; 141:18C523. [DOI: 10.1063/1.4896983] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aoife C. Fogarty
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Elise Duboué-Dijon
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Damien Laage
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
38
|
Harvey JA, Thompson WH. Thermodynamic Driving Forces for Dye Molecule Position and Orientation in Nanoconfined Solvents. J Phys Chem B 2014; 119:9150-9. [DOI: 10.1021/jp509051n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob A. Harvey
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H. Thompson
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
39
|
Effect of confinement on the structure and energetics of Zundel cation present inside the hydrophobic carbon nanotubes: an ab initio study. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1576-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Koninti RK, Gavvala K, Sengupta A, Hazra P. Excited State Proton Transfer Dynamics of Topotecan Inside Biomimicking Nanocavity. J Phys Chem B 2014; 119:2363-71. [DOI: 10.1021/jp5066902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raj Kumar Koninti
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Krishna Gavvala
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Abhigyan Sengupta
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Partha Hazra
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| |
Collapse
|
41
|
Guardado-Alvarez TM, Russell MM, Zink JI. Nanovalve activation by surface-attached photoacids. Chem Commun (Camb) 2014; 50:8388-90. [PMID: 24942753 PMCID: PMC4327900 DOI: 10.1039/c4cc03293d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton transfer caused by excitation of a photoacid attached to the surface of a mesoporous silica nanoparticle activates a nanovalve and causes release of trapped molecules. The protonation of an aniline-based stalk releases a noncovalently bound cyclodextrin molecule that blocked a pore. The results show that pH-responsive molecular delivery systems can be externally controlled using light.
Collapse
Affiliation(s)
- T M Guardado-Alvarez
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, USA.
| | | | | |
Collapse
|
42
|
Thompson WH. Structure, dynamics and hydrogen bonding of acetonitrile in nanoscale silica pores. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.926550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Chowdhury R, Saha A, Mandal AK, Jana B, Ghosh S, Bhattacharyya K. Excited State Proton Transfer in the Lysosome of Live Lung Cells: Normal and Cancer Cells. J Phys Chem B 2014; 119:2149-56. [DOI: 10.1021/jp503804y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rajdeep Chowdhury
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhijit Saha
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Amit Kumar Mandal
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Batakrishna Jana
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
44
|
Norton CD, Thompson WH. Reorientation Dynamics of Nanoconfined Acetonitrile: A Critical Examination of Two-State Models. J Phys Chem B 2014; 118:8227-35. [DOI: 10.1021/jp501363q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cassandra D. Norton
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H. Thompson
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
45
|
Carlsson N, Gustafsson H, Thörn C, Olsson L, Holmberg K, Åkerman B. Enzymes immobilized in mesoporous silica: a physical-chemical perspective. Adv Colloid Interface Sci 2014; 205:339-60. [PMID: 24112562 DOI: 10.1016/j.cis.2013.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023]
Abstract
Mesoporous materials as support for immobilized enzymes have been explored extensively during the last two decades, primarily not only for biocatalysis applications, but also for biosensing, biofuels and enzyme-controlled drug delivery. The activity of the immobilized enzymes inside the pores is often different compared to that of the free enzymes, and an important challenge is to understand how the immobilization affects the enzymes in order to design immobilization conditions that lead to optimal enzyme activity. This review summarizes methods that can be used to understand how material properties can be linked to changes in enzyme activity. Real-time monitoring of the immobilization process and techniques that demonstrate that the enzymes are located inside the pores is discussed by contrasting them to the common practice of indirectly measuring the depletion of the protein concentration or enzyme activity in the surrounding bulk phase. We propose that pore filling (pore volume fraction occupied by proteins) is the best standard for comparing the amount of immobilized enzymes at the molecular level, and present equations to calculate pore filling from the more commonly reported immobilized mass. Methods to detect changes in enzyme structure upon immobilization and to study the microenvironment inside the pores are discussed in detail. Combining the knowledge generated from these methodologies should aid in rationally designing biocatalyst based on enzymes immobilized in mesoporous materials.
Collapse
Affiliation(s)
- Nils Carlsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Physical Chemistry, 412 96 Gothenburg, Sweden
| | - Hanna Gustafsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Applied Surface Chemistry, 412 96 Gothenburg, Sweden
| | - Christian Thörn
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Industrial Biotechnology, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Industrial Biotechnology, 412 96 Gothenburg, Sweden
| | - Krister Holmberg
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Applied Surface Chemistry, 412 96 Gothenburg, Sweden.
| | - Björn Åkerman
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Physical Chemistry, 412 96 Gothenburg, Sweden
| |
Collapse
|
46
|
Das A, Chakrabarti J. Solvation in nanoscale solvophobic confinement near liquid–gas phase coexistence. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Juárez-Moreno K, Pestryakov A, Petranovskii V. Engineering of Supported Nanomaterials. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.proche.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Tomkins J, Hanna G. Signatures of nanoconfinement on the linear and nonlinear vibrational spectroscopy of a model hydrogen-bonded complex dissolved in a polar solvent. J Phys Chem B 2013; 117:13619-30. [PMID: 24079369 DOI: 10.1021/jp407469f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The one-dimensional IR (1D-IR) absorption and IR pump-probe spectra of a hydrogen stretch in a model hydrogen-bonded complex dissolved in a polar solvent confined in spherical hydrophobic cavities of different sizes were simulated using ground-state mixed quantum-classical dynamics. Due to a thorough analysis of key properties of the complex and solvent from equilibrium trajectory data, we were able to gain insight into the microscopic details underlying the spectra. Both the 1D-IR and IR pump-probe spectra manifested the effects of confinement on the relative stabilities of the covalent and ionic forms of the complex through pronounced changes in their peak intensities and numbers. However, in contrast to the 1D-IR spectra, the time-resolved pump-probe spectra were found to be uniquely sensitive to the changes in the molecular dynamics as the cavity size is varied. In particular, it was found that the variations in the time evolutions of the peak intensities in the pump-probe spectra reflect the differences in the solvation dynamics associated with the various forms of the complex in different locations within the cavities. The ability to detect these differences underscores the advantage of using pump-probe spectroscopy for studying nanoconfined systems.
Collapse
Affiliation(s)
- Joseph Tomkins
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
49
|
Das A, Chakrabarti J. Microscopic Mechanisms of Confinement-Induced Slow Solvation. J Phys Chem A 2013; 117:10571-5. [DOI: 10.1021/jp405680j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amit Das
- Department
of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| | - J. Chakrabarti
- Department
of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
- Unit
of Nanoscience and Technology-II, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| |
Collapse
|
50
|
Reiter GF, Deb A, Sakurai Y, Itou M, Krishnan VG, Paddison SJ. Anomalous ground state of the electrons in nanoconfined water. PHYSICAL REVIEW LETTERS 2013; 111:036803. [PMID: 23909351 DOI: 10.1103/physrevlett.111.036803] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Indexed: 06/02/2023]
Abstract
Water confined on the scale of 20 Å, is known to have different transport and thermodynamic properties from that of bulk water, and the proton momentum distribution has recently been shown to have qualitatively different properties from that exhibited in bulk water. The electronic ground state of nanoconfined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time, using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nanoconfined water system, Nafion, is so different from that of bulk water that the weakly electrostatically interacting molecule model of water is clearly inapplicable. We argue that this is a generic property of nanoconfinement. The present results demonstrate that the electrons, and hence the protons as well, of nanoconfined water are in a distinctly different quantum state from that of bulk water. Biological cell function must make use of the properties of this state and cannot be expected to be described correctly by empirical models based on the weakly interacting molecules model.
Collapse
Affiliation(s)
- G F Reiter
- Physics Department, University of Houston, Houston, Texas 77204, USA.
| | | | | | | | | | | |
Collapse
|