1
|
Heitland J, Lee JC, Ban L, Abma GL, Fortune WG, Fielding HH, Yoder BL, Signorell R. Valence Electronic Structure of Interfacial Phenol in Water Droplets. J Phys Chem A 2024; 128:7396-7406. [PMID: 39182189 PMCID: PMC11382284 DOI: 10.1021/acs.jpca.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and "on" water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck-Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1-0.2 eV.
Collapse
Affiliation(s)
- Jonas Heitland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jong Chan Lee
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Grite L Abma
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - William G Fortune
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Helen H Fielding
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Danilović D, Nahon L, Garcia GA, Milosavljević AR, Vukmirović N, Dojčilović R, Tošić D, Djoković V, Božanić DK. Velocity Map Imaging Photoelectron Spectroscopy of Silver Iodide Aerosol Particles. Chemphyschem 2024; 25:e202400328. [PMID: 38804589 DOI: 10.1002/cphc.202400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
The valence band electronic structure of isolated silver iodide nanoparticles (AgI NP) was investigated by vacuum-ultraviolet aerosol photoelectron spectroscopy using the velocity map imaging technique (VUV VMI-PES). The VUV VMI-PES results were obtained for polydisperse aerosol produced by aggregation of hydrocolloid of silver iodide particles 8-15 nm in size. The ionization energy of the AgI particles was found to be 6.0±0.1 eV with respect to the vacuum level. The DFT calculations showed that the main contribution to the density of AgI electronic states in the valence region originates from I 5p orbitals. The dependence of the asymmetry parameter on the electron energy showed that the value of the characteristic energy loss of excited photoelectrons was 2.7 eV, which coincided with the band gap of the nanomaterial.
Collapse
Affiliation(s)
- Danijela Danilović
- Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Laurent Nahon
- Synchrotron SOLEIL St. Aubin, BP48, 91192, Gif sur Yvette Cedex, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL St. Aubin, BP48, 91192, Gif sur Yvette Cedex, France
| | | | - Nenad Vukmirović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica118, 11080, Belgrade, Serbia
| | - Radovan Dojčilović
- Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Dragana Tošić
- Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Vladimir Djoković
- Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Dušan K Božanić
- Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| |
Collapse
|
3
|
Wilson KR, Prophet AM. Chemical Kinetics in Microdroplets. Annu Rev Phys Chem 2024; 75:185-208. [PMID: 38382571 DOI: 10.1146/annurev-physchem-052623-120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
4
|
Ban L, Tang H, Heitland J, West CW, Yoder BL, Thanopulos I, Signorell R. Ion imaging of spatially inhomogeneous nanoplasmas in NaCl particles. NANOSCALE 2024; 16:5695-5705. [PMID: 38407309 PMCID: PMC10939055 DOI: 10.1039/d3nr06368b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Studying photoemission from free, unsupported aerosol particles is a powerful method for gaining insight into light-matter interactions at the nanoscale. We used single-shot velocity map imaging to experimentally measure kinetic energy and angular distributions of ions emitted following interaction of sub-micrometer NaCl particles with femtosecond pulses of near infrared (NIR, 800 nm) and ultraviolet (UV, 266 nm) light. We combined this with time-dependent simulations of light propagation through the particles and a rate equation approach to computationally address the origin of the observed ion emission. For both NIR and UV pulses, ion emission is caused by the formation of an under-dense nanoplasma with similar densities, although using an order of magnitude weaker UV intensities. Such conditions result in remarkably similar ion fragments with similar kinetic energies, and no obvious influence of the plasma formation mechanism (photoionization or collisional ionization). Our data suggests that Coulomb explosion does not play a significant role for ion emission, and we discuss alternative mechanisms that can lead to material ablation from under-dense nanoplasma. Finally, we show how finite size effects play an important role in photoemission through generation of spatially inhomogeneous nanoplasmas, which result in asymmetric ion emission that depends on particle size and laser wavelength. By utilizing the single-particle information available from our experiments, we show how finite size effects and inhomogeneous nanoplasma formation can be exploited to retrieve the size and orientation of individual submicrometer aerosol particles.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Hanchao Tang
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Jonas Heitland
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Christopher W West
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Ioannis Thanopulos
- Department of Materials Science, University of Patras, Eupalinou 5, 26504 Rio, Patras, Greece
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| |
Collapse
|
5
|
Asmussen JD, Sishodia K, Bastian B, Abid AR, Ben Ltaief L, Pedersen HB, De S, Medina C, Pal N, Richter R, Fennel T, Krishnan S, Mudrich M. Electron energy loss and angular asymmetry induced by elastic scattering in superfluid helium nanodroplets. NANOSCALE 2023; 15:14025-14031. [PMID: 37559557 DOI: 10.1039/d3nr03295g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Helium nanodroplets are ideal model systems to unravel the complex interaction of condensed matter with ionizing radiation. Here we study the effect of purely elastic electron scattering on angular and energy distributions of photoelectrons emitted from He nanodroplets of variable size (10-109 atoms per droplets). For large droplets, photoelectrons develop a pronounced anisotropy along the incident light beam due to a shadowing effect within the droplets. In contrast, the detected photoelectron spectra are only weakly perturbed. This opens up possibilities for photoelectron spectroscopy of dopants embedded in droplets provided they are smaller than the penetration depth of the light and the trapping range of emitted electrons in liquid helium.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | - Keshav Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, India
| | - Björn Bastian
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | - Abdul R Abid
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | | | - Subhendu De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, India
| | | | | | | | | | - Sivarama Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, India
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Denmark.
| |
Collapse
|
6
|
Ben Ltaief L, Sishodia K, Mandal S, De S, Krishnan SR, Medina C, Pal N, Richter R, Fennel T, Mudrich M. Efficient Indirect Interatomic Coulombic Decay Induced by Photoelectron Impact Excitation in Large Pure Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2023; 131:023001. [PMID: 37505945 DOI: 10.1103/physrevlett.131.023001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023]
Abstract
Ionization of matter by energetic radiation generally causes complex secondary reactions that are hard to decipher. Using large helium nanodroplets irradiated by extreme ultraviolet (XUV) photons, we show that the full chain of processes ensuing primary photoionization can be tracked in detail by means of high-resolution electron spectroscopy. We find that elastic and inelastic scattering of photoelectrons efficiently induces interatomic Coulombic decay (ICD) in the droplets. This type of indirect ICD even becomes the dominant process of electron emission in nearly the entire XUV range in large droplets with radius ≳40 nm. Indirect ICD processes induced by electron scattering likely play an important role in other condensed-phase systems exposed to ionizing radiation as well, including biological matter.
Collapse
Affiliation(s)
- L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - K Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Mandal
- Indian Institute of Science Education and Research, Pune 411008, India
| | - S De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - S R Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - C Medina
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - N Pal
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - T Fennel
- Institute for Physics, University of Rostock, 18051 Rostock, Germany
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Ban L, Tang H, Yoder BL, Signorell R. Time-dependent photoemission from droplets: influence of size and charge on the photophysics near the surface. Faraday Discuss 2022; 236:461-484. [PMID: 35507329 PMCID: PMC9408814 DOI: 10.1039/d1fd00108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
Photoemission from submicrometer droplets containing a mixture of dioctyl phthalate and dioctyl sebacate was investigated by femtosecond and nanosecond photoionization. Photoelectron spectra recorded after ionization with single 4.7 eV femtosecond or nanosecond laser pulses showed marked differences between the two cases. These differences were attributed to ionization of long-lived states which only occurred within the duration of the nanosecond pulse. The tentative assignment of the long-lived states to dioctyl phthalate triplet states is discussed. A nanosecond-femtosecond pump-probe scheme using 4.7 eV (pump) and 3.1 eV (probe) pulses was used to investigate the decay dynamics of these long-lived states. The dynamics showed an accelerated decay rate at higher dioctyl phthalate concentrations. Furthermore, the dependence of the decay dynamics on droplet size and charge was investigated. The decay of the long-lived states was found to be faster in smaller droplets as well as in neutral droplets compared with both positively and negatively charged droplets. Possible mechanisms to explain these observations and the dominance of contributions from the droplets surface are discussed.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland.
| | - Hanchao Tang
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland.
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland.
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Signorell R, Winter B. Photoionization of the aqueous phase: clusters, droplets and liquid jets. Phys Chem Chem Phys 2022; 24:13438-13460. [PMID: 35510623 PMCID: PMC9176186 DOI: 10.1039/d2cp00164k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022]
Abstract
This perspective article reviews specific challenges associated with photoemission spectroscopy of bulk liquid water, aqueous solutions, water droplets and water clusters. The main focus lies on retrieving accurate energetics and photoelectron angular information from measured photoemission spectra, and on the question how these quantities differ in different aqueous environments. Measured photoelectron band shapes, vertical binding energies (ionization energies), and photoelectron angular distributions are influenced by various phenomena. We discuss the influences of multiple energy-dependent electron scattering in aqueous environments, and we discuss different energy referencing methods, including the application of a bias voltage to access absolute energetics of solvent and solute. Recommendations how to account for or minimize the influence of electron scattering are provided. The example of the hydrated electron in different aqueous environments illustrates how one can account for electron scattering, while reliable methods addressing parasitic potentials and proper energy referencing are demonstrated for ionization from the outermost valence orbital of neat liquid water.
Collapse
Affiliation(s)
- Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Bernd Winter
- Molecular Physics Department, Fritz-Haber-Institute der Max-Planck-Gesellschaft, Faradayweg 4-6, 14196 Berlin, Germany.
| |
Collapse
|
9
|
Suchan J, Kolafa J, Slavíček P. Electron-induced fragmentation of water droplets: Simulation study. J Chem Phys 2022; 156:144303. [DOI: 10.1063/5.0088591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transport of free electrons in a water environment is still poorly understood. We show that additional insight can be brought about by investigating fragmentation patterns of finite-size particles upon electron impact ionization. We have developed a composite protocol aiming to simulate fragmentation of water clusters by electrons with kinetic energies in the range of up to 100 eV. The ionization events for atomistically described molecular clusters are identified by a kinetic Monte Carlo procedure. We subsequently model the fragmentation with classical molecular dynamics simulations, calibrated by non-adiabatic quantum mechanics/molecular mechanics simulations of the ionization process. We consider one-electron ionizations, energy transfer via electronic excitation events, elastic scattering, and also the autoionization events through intermolecular Coulombic decay. The simulations reveal that larger water clusters are often ionized repeatedly, which is the cause of substantial fragmentation. After losing most of its energy, low-energy electrons further contribute to fragmentation by electronic excitations. The simultaneous measurement of cluster size distribution before and after the ionization represents a sensitive measure of the energy transferred into the system by an incident electron.
Collapse
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
10
|
Hartweg S, Garcia GA, Božanić DK, Nahon L. Condensation Effects on Electron Chiral Asymmetries in the Photoionization of Serine: From Free Molecules to Nanoparticles. J Phys Chem Lett 2021; 12:2385-2393. [PMID: 33660503 DOI: 10.1021/acs.jpclett.1c00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Structural changes at the molecular level, occurring at the onset of condensation, can be probed by angle-resolved valence photoelectron spectroscopy, which is inherently sensitive to the electronic structure. For larger condensed systems like aerosol particles, the observation of intrinsic angular anisotropies in photoemission (β parameters) is challenging due to the strong reduction of their magnitude by electron transport effects. Here, we use a less common, more sensitive observable in the form of the chiral asymmetry parameter to perform a comparative study of the VUV photoelectron spectroscopy and photoelectron circular dichroism (PECD) between pure gas phase enantiomers of the amino acid serine and their corresponding homochiral nanoparticles. We observe a relatively large (1%) and strongly kinetic energy-dependent asymmetry, discussed in terms of the emergence of local order and conformational changes potentially counterbalancing the loss of angular information due to electron transport scattering. This demonstrates the potential of PECD as a sensitive probe of the condensation effects from the gas phase to bulk-like chiral aerosol particles surpassing the potential of conventional photoemission observables such as β parameters.
Collapse
Affiliation(s)
- Sebastian Hartweg
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Cedex, Gif sur Yvette, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Cedex, Gif sur Yvette, France
| | - Dušan K Božanić
- Department of Radiation Chemistry and Physics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Laurent Nahon
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Cedex, Gif sur Yvette, France
| |
Collapse
|
11
|
Signorell R. Electron Scattering in Liquid Water and Amorphous Ice: A Striking Resemblance. PHYSICAL REVIEW LETTERS 2020; 124:205501. [PMID: 32501058 DOI: 10.1103/physrevlett.124.205501] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
The lack of accurate low-energy electron scattering cross sections for liquid water is a substantial source of uncertainty in the modeling of radiation chemistry and biology. The use of existing amorphous ice scattering cross sections for the lack of liquid data has been discussed controversially for decades. Here, we compare experimental photoemission data of liquid water with corresponding predictions using amorphous ice cross sections, with the aim of resolving the debate regarding the difference of electron scattering in liquid water and amorphous ice. We find very similar scattering properties in the liquid and the ice for electron kinetic energies up to a few hundred electron volts. The scattering cross sections recommended here for liquid water are an extension of the amorphous ice cross sections. Within the framework of currently available experimental data, our work answers one of the most debated questions regarding electron scattering in liquid water.
Collapse
Affiliation(s)
- Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|