1
|
Demont H, Remblière C, Culerrier R, Sauvaget M, Deslandes L, Bernoux M. Downstream signaling induced by several plant Toll/interleukin-1 receptor-containing immune proteins is stable at elevated temperature. Cell Rep 2025; 44:115326. [PMID: 39982818 DOI: 10.1016/j.celrep.2025.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/19/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Plant immunity and, in particular, immune responses induced by nucleotide-binding leucine-rich repeat receptors (NLRs) are often dampened above the optimal plant's growth range, but the underlying molecular mechanism remains elusive. N-terminal Toll/interleukin-1 receptor (TIR) domains are self-sufficient to trigger immune signaling. We showed that the conditional activation of two well-characterized TIR-containing NLRs (TNLs) or their corresponding TIR domains alone induce the same signaling route at permissive temperature (ENHANCED DISEASE SUSCEPTIBLITY 1 [EDS1]/helper NLRs that display an RPW8-like N-terminal CCR domain [RNL] requirement and activation of the salicylic acid sector) in Arabidopsis. Yet, this signaling pathway is maintained under elevated temperatures (30°C) when induced by TIRs only but not full-length TNLs. This work underlines the need to further study how NLRs are impacted by an increase in temperature, which is particularly important to improve the resilience of plant disease resistance in a warming climate.
Collapse
Affiliation(s)
- Héloïse Demont
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Céline Remblière
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Raphaël Culerrier
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Madeline Sauvaget
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Maud Bernoux
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
2
|
Zhang Q, Gao D, Tian L, Feussner K, Li B, Yang L, Yang Q, Zhang Y, Li X, Feussner I, Xu F. Toll/interleukin-1 receptor-only genes contribute to immune responses in maize. PLANT PHYSIOLOGY 2025; 197:kiaf030. [PMID: 39843224 DOI: 10.1093/plphys/kiaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR nucleotide-binding leucine-rich repeat-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are 3 conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3. A genome-wide scan for TIR genes and comparative analysis revealed that these genes exhibit low sequence diversity and do not show copy number variation among 26 diverse inbred lines. ZmTIR1 and ZmTIR3, but not ZmTIR2, specifically trigger cell death and defense gene expression when overexpressed in Nicotiana benthamiana leaves. These responses depend on the critical glutamic acid and cysteine residues predicted to be essential for TIR-mediated NADase and 2',3'-cAMP/cGMP synthetase activity, respectively, as well as the key TIR downstream regulator Enhanced Disease Susceptibility 1 (EDS1). Overexpression of ZmTIR3 in N. benthamiana produces signaling molecules, including 2'cADPR, 2',3'-cAMP, and 2',3'-cGMP, a process that requires the enzymatic glutamic acid and cysteine residues of ZmTIR3. ZmTIR expression in maize is barely detectable under normal conditions but is substantially induced by different pathogens. Importantly, the maize Zmtir3 knockout mutant exhibits enhanced susceptibility to the fungal pathogen Cochliobolus heterostrophus, highlighting the role of ZmTIR3 in maize immunity. Overall, our results unveil the function of the maize ZmTIRs. We propose that the pathogen-inducible ZmTIRs play an important role in maize immunity, likely through their enzymatic activity and via EDS1-mediated signaling.
Collapse
Affiliation(s)
- Qiang Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Derong Gao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lei Tian
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
| | - Bin Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Li SX, Liu Y, Zhang YM, Chen JQ, Shao ZQ. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. NATURE PLANTS 2025; 11:248-262. [PMID: 39821112 DOI: 10.1038/s41477-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.
Collapse
Affiliation(s)
- Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Schütte D, Baier M, Griebel T. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. PLANT SIGNALING & BEHAVIOR 2024; 19:2300239. [PMID: 38170666 PMCID: PMC10766390 DOI: 10.1080/15592324.2023.2300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
24 h cold exposure (4°C) is sufficient to reduce pathogen susceptibility in Arabidopsis thaliana against the virulent Pseudomonas syringae pv. tomato (Pst) strain even when the infection occurs five days later. This priming effect is independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) and can be observed in the immune-compromised eds1-2 null mutant. In contrast, cold priming-reduced Pst susceptibility is strongly impaired in knock-out lines of the stromal and thylakoid ascorbate peroxidases (sAPX/tAPX) highlighting their relevance for abiotic stress-related increased immune resilience. Here, we extended our analysis by generating an eds1 sapx double mutant. eds1 sapx showed eds1-like resistance and susceptibility phenotypes against Pst strains containing the effectors avrRPM1 and avrRPS4. In comparison to eds1-2, susceptibility against the wildtype Pst strain was constitutively enhanced in eds1 sapx. Although a prior cold priming exposure resulted in reduced Pst titers in eds1-2, it did not alter Pst resistance in eds1 sapx. This demonstrates that the genetic sAPX requirement for cold priming of basal plant immunity applies also to an eds1 null mutant background.
Collapse
Affiliation(s)
- Dominic Schütte
- Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Thomas Griebel
- Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wu Y, Xu W, Zhao G, Lei Z, Li K, Liu J, Huang S, Wang J, Zhong X, Yin X, Wang Y, Zhang H, He Y, Ye Z, Meng Y, Chang X, Lin H, Wang X, Gao Y, Chai J, Parker JE, Deng Y, Zhang Y, Gao M, He Z. A canonical protein complex controls immune homeostasis and multipathogen resistance. Science 2024; 386:1405-1412. [PMID: 39509474 DOI: 10.1126/science.adr2138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
The calcium (Ca2+) sensor ROD1 (RESISTANCE OF RICE TO DISEASES1) is a master regulator of immunity in rice. By screening suppressors of rod1 mutants, we show that ROD1 governs immune homeostasis by surveilling the activation of a canonical immune pathway. Mutations in OsTIR (TIR-only protein), OsEDS1 (enhanced disease susceptibility 1), OsPAD4 (phytoalexin deficient 4), and OsADR1 (activated disease resistance 1) all abolish enhanced disease resistance of rod1 plants. OsTIR catalyzes the production of second messengers 2'-(5″-phosphoribosyl)-5'-adenosine monophosphate (pRib-AMP) and diphosphate (pRib-ADP), which trigger formation of an OsEDS1-OsPAD4-OsADR1 (EPA) immune complex. ROD1 interacts with OsTIR and inhibits its enzymatic activity, whereas mutation of ROD1 leads to constitutive activation of the EPA complex. Thus, we unveil an immune network that fine-tunes immune homeostasis and multipathogen resistance in rice.
Collapse
Affiliation(s)
- Yue Wu
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiying Xu
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoyan Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyao Lei
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiyun Liu
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Xiangbin Zhong
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Yin
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuandong Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haochen Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang He
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zian Ye
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yonggang Meng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang 453007, China
| | - Hui Lin
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanyuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Yiwen Deng
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingjun Gao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zuhua He
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Dunken N, Widmer H, Balcke GU, Straube H, Langen G, Charura NM, Saake P, De Quattro C, Schön J, Rövenich H, Wawra S, Khan M, Djamei A, Zurbriggen MD, Tissier A, Witte CP, Zuccaro A. A nucleoside signal generated by a fungal endophyte regulates host cell death and promotes root colonization. Cell Host Microbe 2024; 32:2161-2177.e7. [PMID: 39603244 DOI: 10.1016/j.chom.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
The intracellular colonization of plant roots by the beneficial fungal endophyte Serendipita indica follows a biphasic strategy, including a host cell death phase that enables successful colonization of Arabidopsis thaliana roots. How host cell death is initiated and controlled is largely unknown. Here, we show that two fungal enzymes, the ecto-5'-nucleotidase SiE5NT and the nuclease SiNucA, act synergistically in the apoplast at the onset of cell death to produce deoxyadenosine (dAdo). The uptake of extracellular dAdo but not the structurally related adenosine activates cell death via the equilibrative nucleoside transporter ENT3. We identified a previously uncharacterized Toll-like interleukin 1 receptor (TIR)-nucleotide-binding leucine-rich repeat receptor (NLR) protein, ISI (induced by S. indica), as an intracellular factor that affects host cell death, fungal colonization, and growth promotion. Our data show that the combined activity of two fungal apoplastic enzymes promotes the production of a metabolite that engages TIR-NLR-modulated pathways to induce plant cell death, providing a link to immunometabolism in plants.
Collapse
Affiliation(s)
- Nick Dunken
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Heidi Widmer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Henryk Straube
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover Germany; Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gregor Langen
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Nyasha M Charura
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Concetta De Quattro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Jonas Schön
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany; Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hanna Rövenich
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Matias D Zurbriggen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany; Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany; Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
7
|
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6918-6938. [PMID: 39252595 DOI: 10.1093/jxb/erae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
In reaction to a stimulus, signaling molecules are made, generate a response, and are then degraded. Nucleotides are classically associated with central metabolism and nucleic acid biosynthesis, but there are a number of nucleotides and nucleotide derivatives in plants to which this simple definition of a signaling molecule applies in whole or at least in part. These include cytokinins and chloroplast guanosine tetraposphate (ppGpp), as well as extracellular canonical nucleotides such as extracellular ATP (eATP) and NAD+ (eNAD+). In addition, there is a whole series of compounds derived from NAD+ such as ADP ribose (ADPR), and ATP-ADPR dinucleotides and their hydrolysis products (e.g. pRib-AMP) together with different variants of cyclic ADPR (cADPR, 2´-cADPR, 3´-cADPR), and also cyclic nucleotides such as 3´,5´-cAMP and 2´,3´-cyclic nucleoside monophosphates. Interestingly, some of these compounds have recently been shown to play a central role in pathogen defense. In this review, we highlight these exciting new developments. We also review nucleotide derivatives that are considered as candidates for signaling molecules, for example purine deoxynucleosides, and discuss more controversial cases.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Marco Herde
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
8
|
Zhu N, Feng Y, Shi G, Zhang Q, Yuan B, Qiao Q. Evolutionary analysis of TIR- and non-TIR-NBS-LRR disease resistance genes in wild strawberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1452251. [PMID: 39640992 PMCID: PMC11617207 DOI: 10.3389/fpls.2024.1452251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Introduction NBS-LRR genes (NLRs) are the most extensive category of plant resistance genes (R genes) and play a crucial role in pathogen defense. Understanding the diversity and evolutionary dynamics of NLRs in different plant species is essential for improving disease resistance. This study investigates the NLR gene family in eight diploid wild strawberry species to explore their structural characteristics, evolutionary relationships, and potential for enhancing disease resistance. Methods We conducted a comprehensive genome-wide identification and structural analysis of NLRs across eight diploid wild strawberry species. Phylogenetic analysis was performed to examine the relationships between TIR-NLRs (TNLs), Non-TIR-NLRs (non-TNLs), CC-NLRs (CNLs), and RPW8-NLRs (RNLs). Gene structures were compared, and gene expression was profiled across different NLR subfamilies. Additionally, in vitro leaf inoculation assays with Botrytis cinerea were performed to assess the resistance of various strawberry species. Results Our analysis revealed that non-TNLs constitute over 50% of the NLR gene family in all eight strawberry species, surpassing the proportion of TNLs. Phylogenetic analysis showed that TNLs diverged into two subclades: one grouping with CNLs and the other closely related to RNLs. A significantly higher number of non-TNLs were under positive selection compared to TNLs, indicating their rapid diversification. Gene structure analysis demonstrated that non-TNLs have shorter gene structures than TNLs and exhibit higher expression levels, particularly RNLs. Notably, non-TNLs showed dominant expression under both normal and infected conditions. In vitro leaf inoculation assays revealed that Fragaria pentaphylla and Fragaria nilgerrensis, which have the highest proportion of non-TNLs, exhibited significantly greater resistance to Botrytis cinerea compared to Fragaria vesca, which has the lowest proportion of non-TNLs. Discussion The findings of this study provide important insights into the evolutionary dynamics of NLRs in strawberries, particularly the significant role of non-TNLs in pathogen defense. The rapid diversification and higher expression levels of non-TNLs suggest their potential contribution to enhanced disease resistance. This research highlights the value of non-TNLs in strawberry breeding programs aimed at improving resistance to pathogens such as Botrytis cinerea.
Collapse
Affiliation(s)
- Ni Zhu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yuxi Feng
- School of Agriculture, Yunnan University, Kunming, China
| | - Guangxin Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Qihang Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Bo Yuan
- School of Agriculture, Yunnan University, Kunming, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Qin H, Cheng J, Han GZ, Gong Z. Phylogenomic insights into the diversity and evolution of RPW8-NLRs and their partners in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1032-1046. [PMID: 39312623 DOI: 10.1111/tpj.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Plants use nucleotide-binding leucine-rich repeat receptors (NLRs) to sense pathogen effectors, initiating effector-triggered immunity (ETI). NLRs containing RESISTANCE TO POWDERY MILDEW 8 domain (RNLs) function as "helper" NLRs in flowering plants and support the immune responses mediated by "sensor" NLRs in cooperation with lipase-EP domain fused proteins (EP proteins). Despite their crucial roles in ETI, much remains unclear about the evolutionary trajectories of RNLs and their functional partners EP proteins. Here, we perform phylogenomic analyses of RNLs in 90 plants, covering the major diversity of plants, and identify the presence of RNLs in land plants and green algae, expanding the distribution of RNLs. We uncover a neglected major RNL group in gymnosperms, besides the canonical major group with NRG1s and ADR1s, and observe a drastic increase in RNL repertoire size in conifers. Phylogenetic analyses indicate that RNLs originated multiple times through domain shuffling, and the evolution of RNLs underwent a birth-and-death process. Moreover, we trace the origin of EP proteins back to the last common ancestor of vascular plants. We find that both RNLs and EP proteins evolve mainly under negative selection, revealing strong constraints on their function. Concerted losses and positive correlation in copy number are observed between RNL and EP sublineages, suggesting their cooperation in function. Together, our findings provide insights into the origin and evolution of plant helper NLRs, with implications for predicting novel innate immune signaling modules.
Collapse
Affiliation(s)
- Huiyu Qin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Junyuan Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
10
|
Radić T, Vuković R, Gaši E, Kujundžić D, Čarija M, Balestrini R, Sillo F, Gambino G, Hančević K. Tripartite interactions between grapevine, viruses, and arbuscular mycorrhizal fungi provide insights into modulation of oxidative stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154372. [PMID: 39423687 DOI: 10.1016/j.jplph.2024.154372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine. The 'Merlot' cultivar was infected with three grapevine-associated viruses and subsequently colonized with two AMF inocula, containing one or three species, respectively. Five and fifteen months after AMF inoculation, lipid peroxidation - LPO as an indicator of oxidative stress and indicators of antioxidative response (proline, ascorbate - AsA, superoxide dismutase - SOD, ascorbate- APX and guaiacol peroxidases - GPOD, polyphenol oxidase - PPO, glutathione reductase - GR) were analysed. Expression of genes coding for a stilbene synthase (STS1), an enhanced disease susceptibility (EDS1) and a lipoxygenase (LOX) were determined in the second harvesting. AMF induced reduction of AsA and SOD over both years, which, combined with not AMF-triggered APX and GR, suggests decreased activation of the ascorbate-glutathione cycle. In the mature phase of the AM symbiosis establishment GPOD emerged as an important mechanism for scavenging H2O2 accumulation. These results, together with reduction in STS1 and increase in EDS1 gene expression, suggest more efficient reactive oxygen species scavenging in plants inoculated with AMF. Composition of AMF inocula was important for proline accumulation. Overall, our study improves the knowledge on ubiquitous grapevine-virus-AMF systems in the field, highlighting that established functional AM symbiosis could reduce virus-induced stress.
Collapse
Affiliation(s)
- Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Rosemary Vuković
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Daniel Kujundžić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National research Council (IBBR-CNR), via Amendola 165/A, 70126, Bari, Italy.
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| |
Collapse
|
11
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
13
|
Jiang D, Han Q, Su Y, Cao X, Wu B, Wei C, Chen K, Li X, Zhang B. Glycoside hydrolase PpGH28BG1 modulates benzaldehyde metabolism and enhances fruit aroma and immune responses in peach. PLANT PHYSIOLOGY 2024; 196:1444-1459. [PMID: 39140299 DOI: 10.1093/plphys/kiae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Benzaldehyde (BAld) is one of the most widely distributed volatiles that contributes to flavor and defense in plants. Plants regulate BAld levels through various pathways, including biosynthesis from trans-cinnamic acid (free BAld), release from hydrolysis of glycoside precursors (BAld-H) via multiple enzymatic action steps, and conversion into downstream chemicals. Here, we show that BAld-H content in peach (Prunus persica) fruit is up to 100-fold higher than that of free BAld. By integrating transcriptome, metabolomic, and biochemical approaches, we identified glycoside hydrolase PpGH28BG1 as being involved in the production of BAld-H through the hydrolysis of glycoside precursors. Overexpressing and silencing of PpGH28BG1 significantly altered BAld-H content in peach fruit. Transgenic tomatoes heterologously expressing PpGH28BG1 exhibited a decrease in BAld-H content and an increase in SA accumulation, while maintaining fruit weight, pigmentation, and ethylene production. These transgenic tomato fruits displayed enhanced immunity against Botrytis cinerea compared to wild type (WT). Induced expression of PpGH28BG1 and increased SA content were also observed in peach fruit when exposed to Monilinia fructicola infection. Additionally, elevated expression of PpGH28BG1 promoted fruit softening in transgenic tomatoes, resulting in a significantly increased emission of BAld compared to WT. Most untrained taste panelists preferred the transgenic tomatoes over WT fruit. Our study suggests that it is feasible to enhance aroma and immunity in fruit through metabolic engineering of PpGH28BG1 without causing visible changes in the fruit ripening process.
Collapse
Affiliation(s)
- Dan Jiang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Qingyuan Han
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiangmei Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Boping Wu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunyan Wei
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
14
|
Naz M, Zhang D, Liao K, Chen X, Ahmed N, Wang D, Zhou J, Chen Z. The Past, Present, and Future of Plant Activators Targeting the Salicylic Acid Signaling Pathway. Genes (Basel) 2024; 15:1237. [PMID: 39336828 PMCID: PMC11431604 DOI: 10.3390/genes15091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant activators have emerged as promising alternatives to conventional crop protection chemicals for managing crop diseases due to their unique mode of action. By priming the plant's innate immune system, these compounds can induce disease resistance against a broad spectrum of pathogens without directly inhibiting their proliferation. Key advantages of plant activators include prolonged defense activity, lower effective dosages, and negligible risk of pathogen resistance development. Among the various defensive pathways targeted, the salicylic acid (SA) signaling cascade has been extensively explored, leading to the successful development of commercial activators of systemic acquired resistance, such as benzothiadiazole, for widespread application in crop protection. While the action sites of many SA-targeting activators have been preliminarily mapped to different steps along the pathway, a comprehensive understanding of their precise mechanisms remains elusive. This review provides a historical perspective on plant activator development and outlines diverse screening strategies employed, from whole-plant bioassays to molecular and transgenic approaches. We elaborate on the various components, biological significance, and regulatory circuits governing the SA pathway while critically examining the structural features, bioactivities, and proposed modes of action of classical activators such as benzothiadiazole derivatives, salicylic acid analogs, and other small molecules. Insights from field trials assessing the practical applicability of such activators are also discussed. Furthermore, we highlight the current status, challenges, and future prospects in the realm of SA-targeting activator development globally, with a focus on recent endeavors in China. Collectively, this comprehensive review aims to describe existing knowledge and provide a roadmap for future research toward developing more potent plant activators that enhance crop health.
Collapse
Affiliation(s)
- Misbah Naz
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Dongqin Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Kangcen Liao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Xulong Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Nazeer Ahmed
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Jingjiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| |
Collapse
|
15
|
Tang Z, Shi S, Niu R, Zhou Y, Wang Z, Fu R, Mou R, Chen S, Ding P, Xu G. Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe 2024; 32:1552-1565.e8. [PMID: 39111320 DOI: 10.1016/j.chom.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shaosong Shi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rongrong Fu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
16
|
Feng XY, Li Q, Liu Y, Zhang YM, Shao ZQ. Evolutionary and immune-activating character analyses of NLR genes in algae suggest the ancient origin of plant intracellular immune receptors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2316-2330. [PMID: 38972042 DOI: 10.1111/tpj.16919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins are crucial intracellular immune receptors in plants, responsible for detecting invading pathogens and initiating defense responses. While previous studies on the evolution and function of NLR genes were mainly limited to land plants, the evolutionary trajectory and immune-activating character of NLR genes in algae remain less explored. In this study, genome-wide NLR gene analysis was conducted on 44 chlorophyte species across seven classes and seven charophyte species across five classes. A few but variable number of NLR genes, ranging from one to 20, were identified in five chlorophytes and three charophytes, whereas no NLR gene was identified from the remaining algal genomes. Compared with land plants, algal genomes possess fewer or usually no NLR genes, implying that the expansion of NLR genes in land plants can be attributed to their adaptation to the more complex terrestrial pathogen environments. Through phylogenetic analysis, domain composition analysis, and conserved motifs profiling of the NBS domain, we detected shared and lineage-specific features between NLR genes in algae and land plants, supporting the common origin and continuous evolution of green plant NLR genes. Immune-activation assays revealed that both TNL and RNL proteins from green algae can elicit hypersensitive responses in Nicotiana benthamiana, indicating the molecular basis for immune activation has emerged in the early evolutionary stage of different types of NLR proteins. In summary, the results from this study suggest that NLR proteins may have taken a role as intracellular immune receptors in the common ancestor of green plants.
Collapse
Affiliation(s)
- Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qian Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Wang C, Han M, Min Y, Hu J, Pan Y, Huang L, Nie J. Colletotrichum fructicola co-opts cytotoxic ribonucleases that antagonize host competitive microorganisms to promote infection. mBio 2024; 15:e0105324. [PMID: 38953357 PMCID: PMC11323725 DOI: 10.1128/mbio.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Phytopathogens secrete numerous molecules into the environment to establish a microbial niche and facilitate host infection. The phytopathogenic fungus Colletotrichum fructicola, which causes pear anthracnose, can colonize different plant tissues like leaves and fruits, which are occupied by a diversity of microbes. We speculate that this fungus produces antimicrobial effectors to outcompete host-associated competitive microorganisms. Herein, we identified two secreted ribonucleases, CfRibo1 and CfRibo2, from the C. fructicola secretome. The two ribonucleases both possess ribonuclease activity and showed cytotoxicity in Nicotianan benthamiana without triggering immunity in an enzymatic activity-dependent manner. CfRibo1 and CfRibo2 recombinant proteins exhibited toxicity against Escherichia coli, Saccharomyces cerevisiae, and, importantly, the phyllosphere microorganisms isolated from the pear host. Among these isolated microbial strains, Bacillus altitudinis is a pathogenic bacterium causing pear soft rot. Strikingly, CfRibo1 and CfRibo2 were found to directly antagonize B. altitudinis to facilitate C. fructicola infection. More importantly, CfRibo1 and CfRibo2 functioned as essential virulence factors of C. fructicola in the presence of host-associated microorganisms. Further analysis revealed these two ribonucleases are widely distributed in fungi and are undergoing purifying selection. Our results provide the first evidence of antimicrobial effectors in Colletotrichum fungi and extend the functional diversity of fungal ribonucleases in plant-pest-environment interactions. IMPORTANCE Colletotrichum fructicola is emerging as a devastating pathogenic fungus causing anthracnose in various crops in agriculture, and understanding how this fungus establishes successful infection is of great significance for anthracnose disease management. Fungi are known to produce secreted effectors as weapons to promote virulence. Considerable progress has been made in elucidating how effectors manipulate plant immunity; however, their importance in modulating environmental microbes is frequently neglected. The present study identified two secreted ribonucleases, CfRibo1 and CfRibo2, as antimicrobial effectors of C. fructicola. These two proteins both possess toxicity to pear phyllosphere microorganisms, and they efficiently antagonize competitive microbes to facilitate the infection of pear hosts. This study represents the first evidence of antimicrobial effectors in Colletotrichum fungi, and we consider that CfRibo1 and CfRibo2 could be targeted for anthracnose disease management in diverse crops in the future.
Collapse
Affiliation(s)
- Chunhao Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Mengqing Han
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yanyan Min
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Jiayi Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajun Nie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
19
|
Murakoshi Y, Saso Y, Matsumoto M, Yamanaka K, Yotsui I, Sakata Y, Taji T. CAD1 contributes to osmotic tolerance in Arabidopsis thaliana by suppressing immune responses under osmotic stress. Biochem Biophys Res Commun 2024; 717:150049. [PMID: 38714014 DOI: 10.1016/j.bbrc.2024.150049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acquired osmotolerance induced by initial exposure to mild salt stress is widespread across Arabidopsis thaliana ecotypes, but the mechanism underlying it remains poorly understood. To clarify it, we isolated acquired osmotolerance-deficient 1 (aod1), a mutant highly sensitive to osmotic stress, from ion-beam-irradiated seeds of Zu-0, an ecotype known for its remarkably high osmotolerance. Aod1 showed growth inhibition with spotted necrotic lesions on the rosette leaves under normal growth conditions on soil. However, its tolerance to salt and oxidative stresses was similar to that of the wild type (WT). Genetic and genome sequencing analyses suggested that the gene causing aod1 is identical to CONSTITUTIVELY ACTIVATED CELL DEATH 1 (CAD1). Complementation with the WT CAD1 gene restored the growth and osmotolerance of aod1, indicating that mutated CAD1 is responsible for the observed phenotypes in aod1. Although CAD1 is known to act as a negative regulator of immune response, transcript levels in the WT increased in response to osmotic stress. Aod1 displayed enhanced immune response and cell death under normal growth conditions, whereas the expression profiles of osmotic response genes were comparable to those of the WT. These findings suggest that autoimmunity in aod1 is detrimental to osmotolerance. Overall, our results suggest that CAD1 negatively regulates immune responses under osmotic stress, contributing to osmotolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yusuke Murakoshi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yasutaka Saso
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Minamo Matsumoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kazuha Yamanaka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|
20
|
Lundell S, Biligetu B. Differential gene expression of salt-tolerant alfalfa in response to salinity and inoculation by Ensifer meliloti. BMC PLANT BIOLOGY 2024; 24:633. [PMID: 38971752 PMCID: PMC11227210 DOI: 10.1186/s12870-024-05337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) experiences many negative effects under salinity stress, which may be mediated by recurrent selection. Salt-tolerant alfalfa may display unique adaptations in association with rhizobium under salt stress. RESULTS To elucidate inoculation effects on salt-tolerant alfalfa under salt stress, this study leveraged a salt-tolerant alfalfa population selected through two cycles of recurrent selection under high salt stress. After experiencing 120-day salt stress, mRNA was extracted from 8 random genotypes either grown in 0 or 8 dS/m salt stress with or without inoculation by Ensifer meliloti. Results showed 320 and 176 differentially expressed genes (DEGs) modulated in response to salinity stress or inoculation x salinity stress, respectively. Notable results in plants under 8 dS/m stress included upregulation of a key gene involved in the Target of Rapamycin (TOR) signaling pathway with a concomitant decrease in expression of the SNrK pathway. Inoculation of salt-stressed plants stimulated increased transcription of a sulfate-uptake gene as well as upregulation of the Lysine-27-trimethyltransferase (EZH2), Histone 3 (H3), and argonaute (AGO, a component of miRISC silencing complexes) genes related to epigenetic and post-transcriptional gene control. CONCLUSIONS Salt-tolerant alfalfa may benefit from improved activity of TOR and decreased activity of SNrK1 in salt stress, while inoculation by rhizobiumstimulates production of sulfate uptake- and other unique genes.
Collapse
Affiliation(s)
- Seth Lundell
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N5A8, Canada
| | - Bill Biligetu
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N5A8, Canada.
| |
Collapse
|
21
|
Chia KS, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, Schornack S, Kamoun S, Carella P. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. THE PLANT CELL 2024; 36:2491-2511. [PMID: 38598645 PMCID: PMC11218826 DOI: 10.1093/plcell/koae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.
Collapse
Affiliation(s)
- Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
22
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
23
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Han M, Wang C, Zhu W, Pan Y, Huang L, Nie J. Extracellular perception of multiple novel core effectors from the broad host-range pear anthracnose pathogen Colletotrichum fructicola in the nonhost Nicotiana benthamiana. HORTICULTURE RESEARCH 2024; 11:uhae078. [PMID: 38766536 PMCID: PMC11101317 DOI: 10.1093/hr/uhae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/03/2024] [Indexed: 05/22/2024]
Abstract
Colletotrichum fructicola is emerging as a devastating pathogenic fungus causing anthracnose in a wide range of horticultural crops, particularly fruits. Exploitation of nonhost resistance (NHR) represents a robust strategy for plant disease management. Perception of core effectors from phytopathogens frequently leads to hypersensitive cell death and resistance in nonhost plants; however, such core effectors in C. fructicola and their signaling components in non-hosts remain elusive. Here, we found a virulent C. fructicola strain isolated from pear exhibits non-adaptation in the model plant Nicotiana benthamiana. Perception of secreted molecules from C. fructicola appears to be a dominant factor in NHR, and four novel core effectors-CfCE4, CfCE25, CfCE61, and CfCE66-detected by N. benthamiana were, accordingly, identified. These core effectors exhibit cell death-inducing activity in N. benthamiana and accumulate in the apoplast. With a series of CRISPR/Cas9-edited mutants or gene-silenced plants, we found the coreceptor BAK1 and helper NLRs including ADR1, NRG1, and NRCs mediate perceptions of these core effectors in N. benthamiana. Concurrently, multiple N. benthamiana genes encoding cell surface immune receptors and intracellular immune receptors were greatly induced by C. fructicola. This work represents the first characterization of the repertoire of C. fructicola core effectors responsible for NHR. Significantly, the novel core effectors and their signaling components unveiled in this study offered insights into a continuum of layered immunity during NHR and will be helpful for anthracnose disease management in diverse horticultural crops.
Collapse
Affiliation(s)
- Mengqing Han
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Chunhao Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Wenhui Zhu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajun Nie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
25
|
Henchiri H, Rayapuram N, Alhoraibi HM, Caïus J, Paysant-Le Roux C, Citerne S, Hirt H, Colcombet J, Sturbois B, Bigeard J. Integrated multi-omics and genetic analyses reveal molecular determinants underlying Arabidopsis snap33 mutant phenotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1016-1035. [PMID: 38281242 DOI: 10.1111/tpj.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The secretory pathway is essential for plant immunity, delivering diverse antimicrobial molecules into the extracellular space. Arabidopsis thaliana soluble N-ethylmaleimide-sensitive-factor attachment protein receptor SNAP33 is a key actor of this process. The snap33 mutant displays dwarfism and necrotic lesions, however the molecular determinants of its macroscopic phenotypes remain elusive. Here, we isolated several new snap33 mutants that exhibited constitutive cell death and H2O2 accumulation, further defining snap33 as an autoimmune mutant. We then carried out quantitative transcriptomic and proteomic analyses showing that numerous defense transcripts and proteins were up-regulated in the snap33 mutant, among which genes/proteins involved in defense hormone, pattern-triggered immunity, and nucleotide-binding domain leucine-rich-repeat receptor signaling. qRT-PCR analyses and hormone dosages supported these results. Furthermore, genetic analyses elucidated the diverse contributions of the main defense hormones and some nucleotide-binding domain leucine-rich-repeat receptor signaling actors in the establishment of the snap33 phenotype, emphasizing the preponderant role of salicylic acid over other defense phytohormones. Moreover, the accumulation of pattern-triggered immunity and nucleotide-binding domain leucine-rich-repeat receptor signaling proteins in the snap33 mutant was confirmed by immunoblotting analyses and further shown to be salicylic acid-dependent. Collectively, this study unveiled molecular determinants underlying the Arabidopsis snap33 mutant phenotype and brought new insights into autoimmunity signaling.
Collapse
Affiliation(s)
- Houda Henchiri
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Naganand Rayapuram
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551, Jeddah, Saudi Arabia
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Bénédicte Sturbois
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Jean Bigeard
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Sun Y, Liu F, Zeng M, Zhang X, Cui Y, Chen Z, Wang L, Xu Y, Wu J, Guo S, Dong X, Dong S, Wang Y, Wang Y. The ETI-dependent receptor-like kinase 1 positively regulates effector-triggered immunity by stabilizing NLR-required for cell death 4 in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2024; 242:576-591. [PMID: 38362937 DOI: 10.1111/nph.19596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.
Collapse
Affiliation(s)
- Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Cui
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengya Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Zeng Y, Zheng Z, Hessler G, Zou K, Leng J, Bautor J, Stuttmann J, Xue L, Parker JE, Cui H. Arabidopsis PHYTOALEXIN DEFICIENT 4 promotes the maturation and nuclear accumulation of immune-related cysteine protease RD19. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1530-1546. [PMID: 37976211 DOI: 10.1093/jxb/erad454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.
Collapse
Affiliation(s)
- Yanhong Zeng
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zichao Zheng
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Giuliana Hessler
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Ke Zou
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junchen Leng
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Johannes Stuttmann
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115 Saint-Paul lez Durance, France
| | - Li Xue
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| | - Haitao Cui
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
29
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
30
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Xu A, Wei L, Ke J, Peng C, Li P, Fan C, Yu X, Li B. ETI signaling nodes are involved in resistance of Hawaii 7996 to Ralstonia solanacearum-induced bacterial wilt disease in tomato. PLANT SIGNALING & BEHAVIOR 2023; 18:2194747. [PMID: 36994774 PMCID: PMC10072054 DOI: 10.1080/15592324.2023.2194747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Bacterial wilt caused by the soil-borne pathogen Ralstonia solanacearum is a destructive disease of tomato. Tomato cultivar Hawaii 7996 is well-known for its stable resistance against R. solanacearum. However, the resistance mechanism of Hawaii 7996 has not yet been revealed. Here, we showed that Hawaii 7996 activated root cell death response and exhibited stronger defense gene induction than the susceptible cultivar Moneymaker after R. solanacearum GMI1000 infection. By employing virus-induced gene silencing (VIGS) and CRISPR/Cas9 technologies, we found that SlNRG1-silenced and SlADR1-silenced/knockout mutant tomato partially or completely lost resistance to bacterial wilt, indicating that helper NLRs SlADR1 and SlNRG1, the key nodes of effector-triggered immunity (ETI) pathways, are required for Hawaii 7996 resistance. In addition, while SlNDR1 was dispensable for the resistance of Hawaii 7996 to R. solanacearum, SlEDS1, SlSAG101a/b, and SlPAD4 were essential for the immune signaling pathways in Hawaii 7996. Overall, our results suggested that robust resistance of Hawaii 7996 to R. solanacearum relied on the involvement of multiple conserved key nodes of the ETI signaling pathways. This study sheds light on the molecular mechanisms underlying tomato resistance to R. solanacearum and will accelerate the breeding of tomatoes resilient to diseases.
Collapse
Affiliation(s)
- Ai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Lan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Ke
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Chengfeng Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
32
|
Hashimoto S, Shikanai Y, Kusajima M, Nakamura H, Fujiwara T, Kamiya T. Inhibition of NPR1 Leads to Shoot Growth Improvement under Low-Calcium Conditions in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:1579-1589. [PMID: 37650642 PMCID: PMC10734893 DOI: 10.1093/pcp/pcad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Under low-Ca conditions, plants accumulate salicylic acid (SA) and induce SA-responsive genes. However, the relationship between SA and low-Ca tolerance remains unclear. Here, we demonstrated that the inhibition or suppression of nonexpressor of pathogenesis-related 1 (NPR1) activity, a major regulator of the SA signaling pathway in the defense response, improves shoot growth under low-Ca conditions. Furthermore, mutations in phytoalexin-deficient 4 (PAD4) or enhanced disease susceptibility 1 (EDS1), which are upstream regulators of NPR1, improved shoot growth under low-Ca conditions, suggesting that NPR1 suppressed growth under low-Ca conditions. In contrast, growth of SA induction-deficient 2-2 (sid2-2), which is an SA-deficient mutant, was sensitive to low Ca levels, suggesting that SA accumulation by SID2 was not related to growth inhibition under low-Ca conditions. Additionally, npr1-1 showed low-Ca tolerance, and the application of tenoxicam-an inhibitor of the NPR1-mediated activation of gene expression-also improved shoot growth under low Ca conditions. The low-Ca tolerance of double mutants pad4-1, npr1-1 and eds1-22 npr1-1 was similar to that of the single mutants, suggesting that PAD4 and EDS1 are involved in the same genetic pathway in suppressing growth under low-Ca conditions as NPR1. Cell death and low-Ca tolerance did not correlate among the mutants, suggesting that growth improvement in the mutants was not due to cell death inhibition. In conclusion, we revealed that NPR1 suppresses plant growth under low-Ca conditions and that the other SA-related genes influence plant growth and cell death.
Collapse
Affiliation(s)
| | - Yusuke Shikanai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Miyuki Kusajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hidemitsu Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
33
|
Ogden SC, Nishimura MT, Lapin D. Functional diversity of Toll/interleukin-1 receptor domains in flowering plants and its translational potential. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102481. [PMID: 39492368 DOI: 10.1016/j.pbi.2023.102481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Across the Tree of Life, innate immunity and cell death mechanisms protect hosts from potential pathogens. In prokaryotes, animals, and flowering plants, these functions are often mediated by Toll/interleukin-1 receptor (TIR) domain proteins. Here, we discuss recent analyses of TIR biology in flowering plants, revealing (i) TIR functions beyond pathogen recognition, e.g. in the spatial control of immunity, and (ii) the existence of at least two pathways for TIR signaling in plants. Also, we discuss TIR-based strategies for crop improvement and argue for a need to better understand TIR functions outside of commonly studied dicot pathways for future translational work. Opinions of experts on emerging topics in basic and translational plant TIR research are presented in supplementary video interviews.
Collapse
Affiliation(s)
- Sam C Ogden
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Marc T Nishimura
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA.
| | - Dmitry Lapin
- Department of Biology, Translational Plant Biology, Utrecht University, 3584CH, Utrecht, the Netherlands.
| |
Collapse
|
34
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
35
|
Bhandari DD, Ko DK, Kim SJ, Nomura K, He SY, Brandizzi F. Defense against phytopathogens relies on efficient antimicrobial protein secretion mediated by the microtubule-binding protein TGNap1. Nat Commun 2023; 14:6357. [PMID: 37821453 PMCID: PMC10567756 DOI: 10.1038/s41467-023-41807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Plant immunity depends on the secretion of antimicrobial proteins, which occurs through yet-largely unknown mechanisms. The trans-Golgi network (TGN), a hub for intracellular and extracellular trafficking pathways, and the cytoskeleton, which is required for antimicrobial protein secretion, are emerging as pathogen targets to dampen plant immunity. In this work, we demonstrate that tgnap1-2, a loss-of-function mutant of Arabidopsis TGNap1, a TGN-associated and microtubule (MT)-binding protein, is susceptible to Pseudomonas syringae (Pst DC3000). Pst DC3000 infected tgnap1-2 is capable of mobilizing defense pathways, accumulating salicylic acid (SA), and expressing antimicrobial proteins. The susceptibility of tgnap1-2 is due to a failure to efficiently transport antimicrobial proteins to the apoplast in a partially MT-dependent pathway but independent from SA and is additive to the pathogen-antagonizing MIN7, a TGN-associated ARF-GEF protein. Therefore, our data demonstrate that plant immunity relies on TGNap1 for secretion of antimicrobial proteins, and that TGNap1 is a key immunity element that functionally links secretion and cytoskeleton in SA-independent pathogen responses.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Dae Kwan Ko
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Sang-Jin Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
36
|
Kim SJ, Bhandari DD, Sokoloski R, Brandizzi F. Immune activation during Pseudomonas infection causes local cell wall remodeling and alters AGP accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:541-557. [PMID: 37496362 DOI: 10.1111/tpj.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
The plant cell boundary generally comprises constituents of the primary and secondary cell wall (CW) that are deposited sequentially during development. Although it is known that the CW acts as a barrier against phytopathogens and undergoes modifications to limit their invasion, the extent, sequence, and requirements of the pathogen-induced modifications of the CW components are still largely unknown, especially at the level of the polysaccharide fraction. To address this significant knowledge gap, we adopted the compatible Pseudomonas syringae-Arabidopsis thaliana system. We found that, despite systemic signaling actuation, Pseudomonas infection leads only to local CW modifications. Furthermore, by utilizing a combination of CW and immune signaling-deficient mutants infected with virulent or non-virulent bacteria, we demonstrated that the pathogen-induced changes in CW polysaccharides depend on the combination of pathogen virulence and the host's ability to mount an immune response. This results in a pathogen-driven accumulation of CW hexoses, such as galactose, and an immune signaling-dependent increase in CW pentoses, mainly arabinose, and xylose. Our analyses of CW changes during disease progression also revealed a distinct spatiotemporal pattern of arabinogalactan protein (AGP) deposition and significant modifications of rhamnogalacturonan sidechains. Furthermore, genetic analyses demonstrated a critical role of AGPs, specifically of the Arabinoxylan Pectin Arabinogalactan Protein1, in limiting pathogen growth. Collectively, our results provide evidence for the actuation of significant remodeling of CW polysaccharides in a compatible host-pathogen interaction, and, by identifying AGPs as critical elements of the CW in plant defense, they pinpoint opportunities to improve plants against diverse pathogens.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deepak D Bhandari
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
37
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
38
|
Huang S, Jia A, Ma S, Sun Y, Chang X, Han Z, Chai J. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem Sci 2023; 48:776-787. [PMID: 37394345 DOI: 10.1016/j.tibs.2023.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.
Collapse
Affiliation(s)
- Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany; School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
39
|
Ahn YJ, Kim H, Choi S, Mazo-Molina C, Prokchorchik M, Zhang N, Kim B, Mang H, Koehler N, Kim J, Lee S, Yoon H, Choi D, Kim MS, Segonzac C, Martin GB, Schultink A, Sohn KH. Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. THE NEW PHYTOLOGIST 2023; 239:1935-1953. [PMID: 37334551 DOI: 10.1111/nph.19073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Some nucleotide-binding and leucine-rich repeat receptors (NLRs) indirectly detect pathogen effectors by monitoring their host targets. In Arabidopsis thaliana, RIN4 is targeted by multiple sequence-unrelated effectors and activates immune responses mediated by RPM1 and RPS2. These effectors trigger cell death in Nicotiana benthamiana, but the corresponding NLRs have yet not been identified. To identify N. benthamiana NLRs (NbNLRs) that recognize Arabidopsis RIN4-targeting effectors, we conducted a rapid reverse genetic screen using an NbNLR VIGS library. We identified that the N. benthamiana homolog of Ptr1 (Pseudomonas tomato race 1) recognizes the Pseudomonas effectors AvrRpt2, AvrRpm1, and AvrB. We demonstrated that recognition of the Xanthomonas effector AvrBsT and the Pseudomonas effector HopZ5 is conferred independently by the N. benthamiana homolog of Ptr1 and ZAR1. Interestingly, the recognition of HopZ5 and AvrBsT is contributed unequally by Ptr1 and ZAR1 in N. benthamiana and Capsicum annuum. In addition, we showed that the RLCK XII family protein JIM2 is required for the NbZAR1-dependent recognition of AvrBsT and HopZ5. The recognition of sequence-unrelated effectors by NbPtr1 and NbZAR1 provides an additional example of convergently evolved effector recognition. Identification of key components involved in Ptr1 and ZAR1-mediated immunity could reveal unique mechanisms of expanded effector recognition.
Collapse
Affiliation(s)
- Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Haseong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Carolina Mazo-Molina
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Boyoung Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Hyunggon Mang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Naio Koehler
- Fortiphyte Inc., 3071 Research Drive, Richmond, CA, 94806, USA
| | - Jieun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Hayeon Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Cécile Segonzac
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alex Schultink
- Fortiphyte Inc., 3071 Research Drive, Richmond, CA, 94806, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
40
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
41
|
Locci F, Wang J, Parker JE. TIR-domain enzymatic activities at the heart of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102373. [PMID: 37150050 DOI: 10.1016/j.pbi.2023.102373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Toll/interleukin-1/resistance (TIR) domain proteins contribute to innate immunity in all cellular kingdoms. TIR modules are activated by self-association and in plants, mammals and bacteria, some TIRs have enzymatic functions that are crucial for disease resistance and/or cell death. Many plant TIR-only proteins and pathogen effector-activated TIR-domain NLR receptors are NAD+ hydrolysing enzymes. Biochemical, structural and functional studies established that for both plant TIR-protein types, and certain bacterial TIRs, NADase activity generates bioactive signalling intermediates which promote resistance. A set of plant TIR-catalysed nucleotide isomers was discovered which bind to and activate EDS1 complexes, promoting their interactions with co-functioning helper NLRs. Analysis of TIR enzymes across kingdoms fills an important gap in understanding how pathogen disturbance induces TIR-regulated immune responses.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany; Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany.
| |
Collapse
|
42
|
Wu CH, Derevnina L. The battle within: How pathogen effectors suppress NLR-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102396. [PMID: 37295294 DOI: 10.1016/j.pbi.2023.102396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
To successfully colonise plants, pathogens must circumvent the plant immune system. Intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class of proteins are major components of the plant immune system. NLRs function as disease resistance genes by recognising effectors secreted by diverse pathogens, triggering a localised form of programmed cell death known as the hypersensitive response. To evade detection, effectors have evolved to suppress NLR-mediated immunity by targeting NLRs either directly or indirectly. Here, we compile the latest discoveries related to NLR-suppressing effectors and categorise these effectors based on their mode of action. We discuss the diverse strategies pathogens use to perturb NLR-mediated immunity, and how we can use our understanding of effector activity to help guide new approaches for disease resistance breeding.
Collapse
Affiliation(s)
- Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
43
|
Chai J, Song W, Parker JE. New Biochemical Principles for NLR Immunity in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:468-475. [PMID: 37697447 DOI: 10.1094/mpmi-05-23-0073-hh] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His 'gene-for-gene' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Biochemistry, University of Cologne, Cologne 50674, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wen Song
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| |
Collapse
|
44
|
Ribone AI, Fass M, Gonzalez S, Lia V, Paniego N, Rivarola M. Co-Expression Networks in Sunflower: Harnessing the Power of Multi-Study Transcriptomic Public Data to Identify and Categorize Candidate Genes for Fungal Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2767. [PMID: 37570920 PMCID: PMC10421300 DOI: 10.3390/plants12152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Fungal plant diseases are a major threat to food security worldwide. Current efforts to identify and list loci involved in different biological processes are more complicated than originally thought, even when complete genome assemblies are available. Despite numerous experimental and computational efforts to characterize gene functions in plants, about ~40% of protein-coding genes in the model plant Arabidopsis thaliana L. are still not categorized in the Gene Ontology (GO) Biological Process (BP) annotation. In non-model organisms, such as sunflower (Helianthus annuus L.), the number of BP term annotations is far fewer, ~22%. In the current study, we performed gene co-expression network analysis using eight terabytes of public transcriptome datasets and expression-based functional prediction to categorize and identify loci involved in the response to fungal pathogens. We were able to construct a reference gene network of healthy green tissue (GreenGCN) and a gene network of healthy and stressed root tissues (RootGCN). Both networks achieved robust, high-quality scores on the metrics of guilt-by-association and selective constraints versus gene connectivity. We were able to identify eight modules enriched in defense functions, of which two out of the three modules in the RootGCN were also conserved in the GreenGCN, suggesting similar defense-related expression patterns. We identified 16 WRKY genes involved in defense related functions and 65 previously uncharacterized loci now linked to defense response. In addition, we identified and classified 122 loci previously identified within QTLs or near candidate loci reported in GWAS studies of disease resistance in sunflower linked to defense response. All in all, we have implemented a valuable strategy to better describe genes within specific biological processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA—Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham 1686, Argentina; (A.I.R.); (M.F.); (S.G.); (V.L.); (N.P.)
| |
Collapse
|
45
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
46
|
Li M, Yang Z, Liu J, Chang C. Wheat Susceptibility Genes TaCAMTA2 and TaCAMTA3 Negatively Regulate Post-Penetration Resistance against Blumeria graminis forma specialis tritici. Int J Mol Sci 2023; 24:10224. [PMID: 37373370 DOI: 10.3390/ijms241210224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Blumeria graminis forma specialis tritici (B.g. tritici) is the airborne fungal pathogen that causes powdery mildew disease on hexaploid bread wheat. Calmodulin-binding transcription activators (CAMTAs) regulate plant responses to environments, but their potential functions in the regulation of wheat-B.g. tritici interaction remain unknown. In this study, the wheat CAMTA transcription factors TaCAMTA2 and TaCAMTA3 were identified as suppressors of wheat post-penetration resistance against powdery mildew. Transient overexpression of TaCAMTA2 and TaCAMTA3 enhanced the post-penetration susceptibility of wheat to B.g. tritici, while knockdown of TaCAMTA2 and TaCAMTA3 expression using transient- or virus-induced gene silencing compromised wheat post-penetration susceptibility to B.g. tritici. In addition, TaSARD1 and TaEDS1 were characterized as positive regulators of wheat post-penetration resistance against powdery mildew. Overexpressing TaSARD1 and TaEDS1 confers wheat post-penetration resistance against B.g. tritici, while silencing TaSARD1 and TaEDS1 enhances wheat post-penetration susceptibility to B.g. tritici. Importantly, we showed that expressions of TaSARD1 and TaEDS1 were potentiated by silencing of TaCAMTA2 and TaCAMTA3. Collectively, these results implicated that the Susceptibility genes TaCAMTA2 and TaCAMTA3 contribute to the wheat-B.g. tritici compatibility might via negative regulation of TaSARD1 and TaEDS1 expression.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zige Yang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
47
|
Jin Y, Zhang W, Cong S, Zhuang QG, Gu YL, Ma YN, Filiatrault MJ, Li JZ, Wei HL. Pseudomonas syringae Type III Secretion Protein HrpP Manipulates Plant Immunity To Promote Infection. Microbiol Spectr 2023; 11:e0514822. [PMID: 37067445 PMCID: PMC10269811 DOI: 10.1128/spectrum.05148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins into plant cells to facilitate infection, for which many effectors have been characterized for their interactions. However, few T3SS Hrp (hypersensitive response and pathogenicity) proteins from the T3SS secretion apparatus have been studied for their direct interactions with plants. Here, we show that the P. syringae pv. tomato DC3000 T3SS protein HrpP induces host cell death, suppresses pattern-triggered immunity (PTI), and restores the effector translocation ability of the hrpP mutant. The hrpP-transgenic Arabidopsis lines exhibited decreased PTI responses to flg22 and elf18 and enhanced disease susceptibility to P. syringae pv. tomato DC3000. Transcriptome analysis reveals that HrpP sensing activates salicylic acid (SA) signaling while suppressing jasmonic acid (JA) signaling, which correlates with increased SA accumulation and decreased JA biosynthesis. Both yeast two-hybrid and bimolecular fluorescence complementation assays show that HrpP interacts with mitogen-activated protein kinase kinase 2 (MKK2) on the plant membrane and in the nucleus. The HrpP truncation HrpP1-119, rather than HrpP1-101, retains the ability to interact with MKK2 and suppress PTI in plants. In contrast, HrpP1-101 continues to cause cell death and electrolyte leakage. MKK2 silencing compromises SA signaling but has no effect on cell death caused by HrpP. Overall, our work highlights that the P. syringae T3SS protein HrpP facilitates effector translocation and manipulates plant immunity to facilitate bacterial infection. IMPORTANCE The T3SS is required for the virulence of many Gram-negative bacterial pathogens of plants and animals. This study focuses on the sensing and function of the T3SS protein HrpP during plant interactions. Our findings show that HrpP and its N-terminal truncation HrpP1-119 can interact with MKK2, promote effector translocation, and manipulate plant immunity to facilitate bacterial infection, highlighting the P. syringae T3SS component involved in the fine-tuning of plant immunity.
Collapse
Affiliation(s)
- Ya Jin
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Shen Cong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Yi-Lin Gu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi-Nan Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Melanie J. Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Jun-Zhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Liu Y, Zhang YM, Tang Y, Chen JQ, Shao ZQ. The evolution of plant NLR immune receptors and downstream signal components. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102363. [PMID: 37094492 DOI: 10.1016/j.pbi.2023.102363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Along with the emergence of green plants on this planet one billion years ago, the nucleotide binding site leucine-rich repeat (NLR) gene family originated and diverged into at least three subclasses. Two of them, with either characterized N-terminal toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, serve as major types of immune receptor of effector-triggered immunity (ETI) in plants, whereas the one having a N-terminal Resistance to powdery mildew8 (RPW8) domain, functions as signal transfer component to them. In this review, we briefly summarized the history of identification of diverse NLR subclasses across Viridiplantae lineages during the establishment of NLR category, and highlighted recent advances on the evolution of NLR genes and several key downstream signal components under the background of ecological adaption.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Yao Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
49
|
Ao K, Rohmann PFW, Huang S, Li L, Lipka V, Chen S, Wiermer M, Li X. Puncta-localized TRAF domain protein TC1b contributes to the autoimmunity of snc1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:591-612. [PMID: 36799433 DOI: 10.1111/tpj.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Immune receptors play important roles in the perception of pathogens and initiation of immune responses in both plants and animals. Intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type receptors constitute a major class of receptors in vascular plants. In the Arabidopsis thaliana mutant suppressor of npr1-1, constitutive 1 (snc1), a gain-of-function mutation in the NLR gene SNC1 leads to SNC1 overaccumulation and constitutive activation of defense responses. From a CRISPR/Cas9-based reverse genetics screen in the snc1 autoimmune background, we identified that mutations in TRAF CANDIDATE 1b (TC1b), a gene encoding a protein with four tumor necrosis factor receptor-associated factor (TRAF) domains, can suppress snc1 phenotypes. TC1b does not appear to be a general immune regulator as it is not required for defense mediated by other tested immune receptors. TC1b also does not physically associate with SNC1, affect SNC1 accumulation, or affect signaling of the downstream helper NLRs represented by ACTIVATED DISEASE RESISTANCE PROTEIN 1-L2 (ADR1-L2), suggesting that TC1b impacts snc1 autoimmunity in a unique way. TC1b can form oligomers and localizes to punctate structures of unknown function. The puncta localization of TC1b strictly requires its coiled-coil (CC) domain, whereas the functionality of TC1b requires the four TRAF domains in addition to the CC. Overall, we uncovered the TRAF domain protein TC1b as a novel positive contributor to plant immunity.
Collapse
Affiliation(s)
- Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Shuai Huang
- Department of Molecular Genetics, College of Arts and Sciences, Ohio State University, Columbus, Ohio, 43210, USA
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, D-37077, Goettingen, Germany
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
50
|
Saile SC, El Kasmi F. Small family, big impact: RNL helper NLRs and their importance in plant innate immunity. PLoS Pathog 2023; 19:e1011315. [PMID: 37079491 PMCID: PMC10118176 DOI: 10.1371/journal.ppat.1011315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Affiliation(s)
- Svenja C. Saile
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Farid El Kasmi
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|