1
|
Chen Y, Jia M, Ge L, Li Z, He H, Zhou X, Li F. A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400978. [PMID: 39189522 PMCID: PMC11348178 DOI: 10.1002/advs.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Indexed: 08/28/2024]
Abstract
Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.
Collapse
Affiliation(s)
- Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
2
|
Woo J, Jung S, Kim S, Li Y, Chung H, Roubtsova TV, Zhang H, Caseys C, Kliebenstein D, Kim KN, Bostock RM, Lee YH, Dickman MB, Choi D, Park E, Dinesh-Kumar SP. Attenuation of phytofungal pathogenicity of Ascomycota by autophagy modulators. Nat Commun 2024; 15:1621. [PMID: 38424448 PMCID: PMC10904834 DOI: 10.1038/s41467-024-45839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.
Collapse
Affiliation(s)
- Jongchan Woo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seungmee Jung
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yurong Li
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
- Corteva Agriscience, Johnston, IA, USA
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tatiana V Roubtsova
- Department of Plant Pathology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Honghong Zhang
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Celine Caseys
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Dan Kliebenstein
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Kyung-Nam Kim
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Richard M Bostock
- Department of Plant Pathology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
| | - Doil Choi
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eunsook Park
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA.
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Shen C, Wei C, Wu Y. Barley yellow dwarf Virus-GAV movement protein activating wheat TaATG6-Mediated antiviral autophagy pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107771. [PMID: 37247558 DOI: 10.1016/j.plaphy.2023.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Barley yellow dwarf virus-GAV (BYDV-GAV) is a highly destructive virus that is transmitted by aphids and can cause substantial yield losses in crops such as wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa). Autophagy is an evolutionarily conserved degradation process that eliminates damaged or harmful intracellular substances during stress conditions or specific developmental processes. However, the mechanism of autophagy involved in disease resistance in wheat remains unknown. In this study, we demonstrate that BYDV-GAV infection could induces the upregulation of genes related to the autophagy pathway in wheat, accompanied by the production of autophagosomes. Furthermore, we confirmed the direct interaction between the viral movement protein (MP) and wheat autophagy-related gene 6 (TaATG6) both in vivo and in vitro. Through yeast function complementation experiments, we determined that TaATG6 can restore the autophagy function in a yeast mutant, atg6. Additionally, we identified the interaction between TaATG6 and TaATG8, core factors of the autophagic pathway, using the yeast two-hybrid system. TaATG6 and TaATG8-silenced wheat plants exhibited a high viral content. Overall, our findings suggest that wheat can recognize BYDV-GAV infection and activate the MP-TaATG6-TaATG8 regulatory network of defense responses through the induction of the autophagy pathway.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, 725000, Ankang, China.
| | - Caiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| |
Collapse
|
4
|
Yan H, Zhuang M, Xu X, Li S, Yang M, Li N, Du X, Hu K, Peng X, Huang W, Wu H, Tse YC, Zhao L, Wang H. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis. Autophagy 2023; 19:768-783. [PMID: 35786359 PMCID: PMC9980518 DOI: 10.1080/15548627.2022.2095838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macroautophagy/autophagy, a major catabolic pathway in eukaryotes, participates in plant sexual reproduction including the processes of male gametogenesis and the self-incompatibility response. Rapid pollen tube growth is another essential reproductive process that is metabolically highly demanding to drive the vigorous cell growth for delivery of male gametes for fertilization in angiosperms. Whether and how autophagy operates to maintain the homeostasis of pollen tubes remains unknown. Here, we provide evidence that autophagy is elevated in growing pollen tubes and critically required during pollen tube growth and male fertility in Arabidopsis. We demonstrate that SH3P2, a critical non-ATG regulator of plant autophagy, colocalizes with representative ATG proteins during autophagosome biogenesis in growing pollen tubes. Downregulation of SH3P2 expression significantly disrupts Arabidopsis pollen germination and pollen tube growth. Further analysis of organelle dynamics reveals crosstalk between autophagosomes and prevacuolar compartments following the inhibition of phosphatidylinositol 3-kinase. In addition, time-lapse imaging and tracking of ATG8e-labeled autophagosomes and depolarized mitochondria demonstrate that they interact specifically via the ATG8-family interacting motif (AIM)-docking site to mediate mitophagy. Ultrastructural identification of mitophagosomes and two additional forms of autophagosomes imply that multiple types of autophagy are likely to function simultaneously within pollen tubes. Altogether, our results suggest that autophagy is functionally crucial for mediating mitochondrial quality control and canonical cytoplasm recycling during pollen tube growth.Abbreviations: AIM: ATG8-family interacting motif; ATG8: autophagy related 8; ATG5: autophagy related 5; ATG7: autophagy related 7; BTH: acibenzolar-S-methyl; DEX: dexamethasone; DNP: 2,4-dinitrophenol; GFP: green fluorescent protein; YFP: yellow fluorescent protein; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PVC: prevacuolar compartment; SH3P2: SH3 domain-containing protein 2.
Collapse
Affiliation(s)
- He Yan
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Menglong Zhuang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaoyu Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Shanshan Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Mingkang Yang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Nianle Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Kangwei Hu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaomin Peng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Wei Huang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Hong Wu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Yu Chung Tse
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| |
Collapse
|
5
|
Regressive evolution of an effector following a host jump in the Irish potato famine pathogen lineage. PLoS Pathog 2022; 18:e1010918. [DOI: 10.1371/journal.ppat.1010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/08/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.
Collapse
|
6
|
Genome-Wide Identification and Functional Characterization Reveals the Pivotal Roles of BnaA8.ATG8F in Salt Stress Tolerance and Nitrogen Limitation Adaptation in Allotetraploid Rapeseed. Int J Mol Sci 2022; 23:ijms231911318. [PMID: 36232619 PMCID: PMC9569553 DOI: 10.3390/ijms231911318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy is a common physiological process in organisms, including higher plants. The ATG8 subfamily, the core member of the autophagy-related gene (ATG) family, plays a key role in plant growth and development and nutrient stress responses. However, the core ATG8 homologs and their roles in stress resistance remain elusive in allotetraploid rapeseed (AACC, Brassica napus L.). In this study, we identified 29 ATG8 subgroup members, consisting of three phylogenetic clades, based on the analysis of genomic annotation and conserved motifs. Differential transcriptional responses of BnaATG8s to salt stress, nitrogen limitation, and other nutrient stresses were investigated, and we identified BnaA8.ATG8F as the core ATG8 member through gene co-expression network analysis. Decreased BnaA8.ATG8F expression repressed the salt tolerance of transgenic rapeseed plants by significantly reducing the root Na+ retention under salt stress. Moreover, downregulation of BnaA8.ATG8F increased nitrogen (N) limitation sensitivity of transgenic rapeseed plants through decreasing N uptake, translocation, and enhancing N remobilization under nitrogen starvation. In summary, we identified the core ATG8 homologs and characterized their physiological and molecular mechanisms underlying salt stress tolerance and nitrogen limitation adaptation. Our results may provide elite genetic resources for the genetic improvement of nutrient stress tolerance in rapeseed.
Collapse
|
7
|
Asif N, Lin F, Li L, Zhu X, Nawaz S. Regulation of Autophagy Machinery in Magnaporthe oryzae. Int J Mol Sci 2022; 23:8366. [PMID: 35955497 PMCID: PMC9369213 DOI: 10.3390/ijms23158366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023] Open
Abstract
Plant diseases cause substantial loss to crops all over the world, reducing the quality and quantity of agricultural goods significantly. One of the world's most damaging plant diseases, rice blast poses a substantial threat to global food security. Magnaporthe oryzae causes rice blast disease, which challenges world food security by causing substantial damage in rice production annually. Autophagy is an evolutionarily conserved breakdown and recycling system in eukaryotes that regulate homeostasis, stress adaption, and programmed cell death. Recently, new studies found that the autophagy process plays a vital role in the pathogenicity of M. oryzae and the regulation mechanisms are gradually clarified. Here we present a brief summary of the recent advances, concentrating on the new findings of autophagy regulation mechanisms and summarize some autophagy-related techniques in rice blast fungus. This review will help readers to better understand the relationship between autophagy and the virulence of plant pathogenic fungi.
Collapse
Affiliation(s)
- Nida Asif
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Sehar Nawaz
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
8
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
9
|
Yang F, Miao Y, Liu Y, Botella JR, Li W, Li K, Song CP. Function of Protein Kinases in Leaf Senescence of Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864215. [PMID: 35548290 PMCID: PMC9083415 DOI: 10.3389/fpls.2022.864215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.
Collapse
Affiliation(s)
- Fengbo Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuyue Liu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Xu Y, Fu S, Tao X, Zhou X. Rice stripe virus: Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:351-371. [PMID: 34077238 DOI: 10.1146/annurev-phyto-020620-113020] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice stripe disease caused by Rice stripe virus (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper (Laodelphax striatellus) in a circulative-propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus-host interactions at the molecular level.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Jiang L, Zheng X, Liu Y, Chen J, Lu Y, Yan F. Plant protein P3IP participates in the regulation of autophagy in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2021; 16:1861768. [PMID: 33356829 PMCID: PMC7889025 DOI: 10.1080/15592324.2020.1861768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 05/19/2023]
Abstract
Autophagy, a bulk degradation system conserved among most eukaryotes, is also involved in responses to viral infection in plant. In our previous study, a new host factor P3IP was identified to interact with RSV (rice stripe virus) p3 and mediate its autophagic degradation to limit the viral infection. Here, we further discovered that P3IP of Nicotiana benthamiana (NbP3IP) participated in regulation of autophagy. Overexpression of NbP3IP induced autophagy and down-regulation of NbP3IP reduced autophagy. Combined the functions of autophagy-mediated plant defense against plant virus and regulation autophagy, we indicate that P3IP participates in the regulation of autophagy.
Collapse
Affiliation(s)
- Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiying Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Robert G, Yagyu M, Koizumi T, Naya L, Masclaux-Daubresse C, Yoshimoto K. Ammonium stress increases microautophagic activity while impairing macroautophagic flux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1083-1097. [PMID: 33222335 DOI: 10.1111/tpj.15091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.
Collapse
Affiliation(s)
- Germán Robert
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Instituto Nacional de Tecnología Agropecuaria (INTA) - Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
- Unidad de doble dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
| | - Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Takaya Koizumi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Loreto Naya
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Kohki Yoshimoto
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| |
Collapse
|
14
|
Jiang L, Lu Y, Zheng X, Yang X, Chen Y, Zhang T, Zhao X, Wang S, Zhao X, Song X, Zhang X, Peng J, Zheng H, Lin L, MacFarlane S, Liu Y, Chen J, Yan F. The plant protein NbP3IP directs degradation of Rice stripe virus p3 silencing suppressor protein to limit virus infection through interaction with the autophagy-related protein NbATG8. THE NEW PHYTOLOGIST 2021; 229:1036-1051. [PMID: 32898938 DOI: 10.1111/nph.16917] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 05/06/2023]
Abstract
In plants, autophagy is involved in responses to viral infection. However, the role of host factors in mediating autophagy to suppress viruses is poorly understood. A previously uncharacterized plant protein, NbP3IP, was shown to interact with p3, an RNA-silencing suppressor protein encoded by Rice stripe virus (RSV), a negative-strand RNA virus. The potential roles of NbP3IP in RSV infection were examined. NbP3IP degraded p3 through the autophagy pathway, thereby affecting the silencing suppression activity of p3. Transgenic overexpression of NbP3IP conferred resistance to RSV infection in Nicotiana benthamiana. RSV infection was promoted in ATG5- or ATG7-silenced plants and was inhibited in GAPC-silenced plants where autophagy was activated, confirming the role of autophagy in suppressing RSV infection. NbP3IP interacted with NbATG8f, indicating a potential selective autophagosomal cargo receptor role for P3IP. Additionally, the rice NbP3IP homolog (OsP3IP) also mediated p3 degradation and interacted with OsATG8b and p3. Through identification of the involvement of P3IP in the autophagy-mediated degradation of RSV p3, we reveal a new mechanism to antagonize the infection of RSV, and thereby provide the first evidence that autophagy can play an antiviral role against negative-strand RNA viruses.
Collapse
Affiliation(s)
- Liangliang Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiyin Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Yang
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Ying Chen
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Tianhao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xing Zhao
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Shu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xia Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xijiao Song
- Public Lab, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiangxiang Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Stuart MacFarlane
- Cell and Molecular Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
15
|
Qi H, Xia FN, Xiao S. Autophagy in plants: Physiological roles and post-translational regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:161-179. [PMID: 32324339 DOI: 10.1111/jipb.12941] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway. Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation, and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems, the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination, lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
16
|
Fang X, Yao X, Zhang Y, Tian Z, Wang M, Li P, Cai X. iTRAQ-Based Proteomics Analysis of Autophagy-Mediated Responses against MeJA in Laticifers of Euphorbia kansui L. Int J Mol Sci 2019; 20:E3770. [PMID: 31374948 PMCID: PMC6695884 DOI: 10.3390/ijms20153770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. Methyl jasmonate (MeJA), a plant hormone, mediates diverse developmental process and defense responses which induce a variety of metabolites. In plants, little is known about autophagy-mediated responses against MeJA. In this study, we used high-throughput comparative proteomics to identify proteins of latex in the laticifers. The isobaric tags for relative and absolute quantification (iTRAQ) MS/MS proteomics were performed, and 298 proteins among MeJA treated groups and the control group of Euphorbia kansui were identified. It is interesting to note that 29 significant differentially expressed proteins were identified and their associations with autophagy and ROS pathway were verified for several selected proteins as follows: α-L-fucosidase, β-galactosidase, cysteine proteinase, and Cu/Zn superoxide dismutase. Quantitative real-time PCR analysis of the selected genes confirmed the fact that MeJA might enhance the expression of some genes related to autophagy. The western blotting and immunofluorescence results of ATG8 and ATG18a which are two important proteins for the formation of autophagosomes also demonstrated that MeJA could promote autophagy at the protein level. Using the electron microscope, we observed an increase in autophagosomes after MeJA treatment. These results indicated that MeJA might promote autophagy in E. kansui laticifers; and it was speculated that MeJA mediated autophagy through two possible ways: the increase of ROS induces ATG8 accumulation and then aotophagosome formation, and MeJA promotes ATG18 accumulation and then autophagosome formation. Taken together, our results provide several novel insights for understanding the mechanism between autophagy and MeJA treatment. However, the specific mechanism remains to be further studied in the future.
Collapse
Affiliation(s)
- Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| |
Collapse
|
17
|
Shi L, Wang J, Quan R, Yang F, Shang J, Chen B. CpATG8, a Homolog of Yeast Autophagy Protein ATG8, Is Required for Pathogenesis and Hypovirus Accumulation in the Chest Blight Fungus. Front Cell Infect Microbiol 2019; 9:222. [PMID: 31355148 PMCID: PMC6635641 DOI: 10.3389/fcimb.2019.00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a degradation system in the cell, involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. Autophagy is induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. In this study, by using electron microscopy, we observed that hypovirus CHV1-EP713 infection of Cryphonectria parasitica, the causative agent of chestnut blight disease, caused proliferation of autophagic-like vesicles. This phenomenon could be mimicked by treating the wild-type strain of the fungus EP155 with the autophagy induction drug rapamycin. Some of the hypovirulence-associated traits, including reduced pigmentation and conidiation, were also observed in the rapamycin-treated EP155. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) revealed that genes involved in autophagy were up-regulated in expression. Deletion of cpatg8, a gene encoding a homolog of ATG8 in Saccharomyces cerevisiae, resulted in attenuation of virulence and reduction in sporulation, as well as accumulation of the double-stranded viral RNA. Furthermore, virus-encoded p29 protein was found to co-localize with CpATG8, implying that the viral protein may interfere with the function of CpATG8. Taken together, these findings show that cpatg8 can be regulated by the hypovirus and is required for virulence and development of the fungus and accumulation of viral dsRNA in chestnut blight fungus.
Collapse
Affiliation(s)
- Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rui Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Feng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinjie Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
18
|
Wang FX, Luo YM, Ye ZQ, Cao X, Liang JN, Wang Q, Wu Y, Wu JH, Wang HY, Zhang M, Cheng HQ, Xia GX. iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen Verticillium dahliae in Arabidopsis. Autophagy 2018; 14:598-618. [PMID: 29369001 PMCID: PMC5959329 DOI: 10.1080/15548627.2017.1423438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/09/2023] Open
Abstract
The mechanisms underlying the functional link between autophagy and plant innate immunity remain largely unknown. In this study, we investigated the autophagy-mediated plant defense responses against Verticillium dahliae (V. dahliae) infection by comparative proteomics and cellular analyses. An assessment of the autophagy activity and disease development showed that autophagic processes were tightly related to the tolerance of Arabidopsis plant to Verticillium wilt. An isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics analysis was performed, and we identified a total of 780 differentially accumulated proteins (DAPs) between wild-type and mutant atg10-1 Arabidopsis plants upon V. dahliae infection, of which, 193 ATG8-family-interacting proteins were identified in silico and their associations with autophagy were verified for several selected proteins. Three important aspects of autophagy-mediated defense against V. dahliae infection were revealed: 1) autophagy is required for the activation of upstream defense responses; 2) autophagy-mediated mitochondrial degradation (mitophagy) occurs and is an important player in the defense process; and 3) autophagy promotes the transdifferentiation of perivascular cells and the formation of xylem hyperplasia, which are crucial for protection against this vascular disease. Together, our results provide several novel insights for understanding the functional association between autophagy and plant immune responses.
Collapse
Affiliation(s)
- Fu-Xin Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| | - Yuan-Ming Luo
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Beijing, China
| | - Zi-Qin Ye
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xue Cao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jing-Nan Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yao Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| | - Jia-He Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| | - Min Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| | - Huan-Qing Cheng
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center, Beijing, China
| |
Collapse
|
19
|
Sun X, Huo L, Jia X, Che R, Gong X, Wang P, Ma F. Overexpression of MdATG18a in apple improves resistance to Diplocarpon mali infection by enhancing antioxidant activity and salicylic acid levels. HORTICULTURE RESEARCH 2018; 5:57. [PMID: 30393539 PMCID: PMC6210185 DOI: 10.1038/s41438-018-0059-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Marssonina apple blotch, caused by Diplocarpon mali, is one of the most serious diseases of apple. Autophagy plays a key role in pathogen resistance. We previously showed that MdATG18a has a positive influence on drought tolerance. Herein, we describe how overexpression (OE) of MdATG18a enhances resistance to D. mali infection, probably because less H2O2 but more salicylic acid (SA) is accumulated in the leaves of OE apple plants. Expression of chitinase, β-1,3-glucanase, and SA-related marker genes was induced more strongly by D. mali in OE lines. Transcript levels of other important MdATG genes were also drastically increased by D. mali in OE plants, which indicated increased autophagy activities. Taken together, these results demonstrate that OE of MdATG18a enhances resistance to infection by D. mali and plays positive roles in H2O2-scavenging and SA accumulations. Our findings provide important information for designing strategies which could induce autophagy to minimize the impact of this disease on apple production.
Collapse
Affiliation(s)
- Xun Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| |
Collapse
|
20
|
New advances in autophagy in plants: Regulation, selectivity and function. Semin Cell Dev Biol 2017; 80:113-122. [PMID: 28734771 DOI: 10.1016/j.semcdb.2017.07.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 01/01/2023]
Abstract
Autophagy is a major and conserved pathway for delivering unwanted proteins or damaged organelles to the vacuole for degradation and recycling. In plants, it functions as a housekeeping process to maintain cellular homeostasis under normal conditions and is induced by stress and senescence; it thus plays important roles in development, stress tolerance and metabolism. Autophagy can both execute bulk degradation and be highly selective in targeting cargos under specific environmental conditions or during certain developmental processes. Here, we review recent research on autophagy in plants, and discuss new insights into its core mechanism, regulation, selectivity and physiological roles. Potential future directions are also highlighted.
Collapse
|
21
|
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J 2017; 283:3534-3555. [PMID: 26991113 DOI: 10.1111/febs.13712] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The efficient utilization and subsequent reuse of cell components is a key factor in determining the proper growth and functioning of all cells under both optimum and stress conditions. The process of intracellular and intercellular recycling is especially important for the appropriate control of cellular metabolism and nutrient management in immobile organisms, such as plants. Therefore, the accurate recycling of amino acids, lipids, carbohydrates or micro- and macronutrients available in the plant cell becomes a critical factor that ensures plant survival and growth. Plant cells possess two main degradation mechanisms: a ubiquitin-proteasome system and autophagy, which, as a part of an intracellular trafficking system, is based on vesicle transport. This review summarizes knowledge of both the ubiquitin-proteasome system and autophagy pathways, describes the cross-talk between the two and discusses the relationships between autophagy and the vesicular transport systems.
Collapse
Affiliation(s)
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Woo J, Hong J, Dinesh‐Kumar SP. Bioluminescence Resonance Energy Transfer (BRET)‐Based Synthetic Sensor Platform for Drug Discovery. ACTA ACUST UNITED AC 2017; 88:19.30.1-19.30.12. [DOI: 10.1002/cpps.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jongchan Woo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California Davis California
| | - Jason Hong
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California Davis California
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California Davis California
| |
Collapse
|
23
|
Tremblay A, Seabolt S, Zeng H, Zhang C, Böckler S, Tate DN, Duong VT, Yao N, Lu H. A Role of the FUZZY ONIONS LIKE Gene in Regulating Cell Death and Defense in Arabidopsis. Sci Rep 2016; 6:37797. [PMID: 27898102 PMCID: PMC5127180 DOI: 10.1038/srep37797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Programmed cell death (PCD) is critical for development and responses to environmental stimuli in many organisms. FUZZY ONIONS (FZO) proteins in yeast, flies, and mammals are known to affect mitochondrial fusion and function. Arabidopsis FZO-LIKE (FZL) was shown as a chloroplast protein that regulates chloroplast morphology and cell death. We cloned the FZL gene based on the lesion mimic phenotype conferred by an fzl mutation. Here we provide evidence to support that FZL has evolved new function different from its homologs from other organisms. We found that fzl mutants showed enhanced disease resistance to the bacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. Besides altered chloroplast morphology and cell death, fzl showed the activation of reactive oxygen species (ROS) and autophagy pathways. FZL and the defense signaling molecule salicylic acid form a negative feedback loop in defense and cell death control. FZL did not complement the yeast strain lacking the FZO1 gene. Together these data suggest that the Arabidopsis FZL gene is a negative regulator of cell death and disease resistance, possibly through regulating ROS and autophagy pathways in the chloroplast.
Collapse
Affiliation(s)
- Arianne Tremblay
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Savanna Seabolt
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Hongyun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Stefan Böckler
- Institut für Zellbiologie, Universität Bayreuth, Bayreuth 95440, Germany
| | - Dominique N. Tate
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Vy Thuy Duong
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
24
|
Bao Y, Mugume Y, Bassham DC. Biochemical Methods to Monitor Autophagic Responses in Plants. Methods Enzymol 2016; 588:497-513. [PMID: 28237117 DOI: 10.1016/bs.mie.2016.09.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of autophagy in plants is rapidly increasing, due to its pivotal and fundamental roles in responding to stressful stimuli, recycling nutrients during senescence, and maintaining growth under normal conditions. Assays for detecting autophagy in plants have generally been based on microscopic observations, providing qualitative information on autophagy activity. Here, we discuss biochemical assays for detecting autophagy, which have the potential for providing more quantitative information, with a focus on immunoblotting with antibodies against ATG8, NBR1, or epitope tags fused to ATG proteins.
Collapse
Affiliation(s)
- Y Bao
- Iowa State University, Ames, IA, United States
| | - Y Mugume
- Iowa State University, Ames, IA, United States
| | - D C Bassham
- Iowa State University, Ames, IA, United States.
| |
Collapse
|
25
|
Seo E, Woo J, Park E, Bertolani SJ, Siegel JB, Choi D, Dinesh-Kumar SP. Comparative analyses of ubiquitin-like ATG8 and cysteine protease ATG4 autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4. Autophagy 2016; 12:2054-2068. [PMID: 27540766 PMCID: PMC5103345 DOI: 10.1080/15548627.2016.1217373] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA USA
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - Jongchan Woo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA USA
| | - Eunsook Park
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA USA
| | - Steven J. Bertolani
- Department of Chemistry and the Genome Center, University of California, Davis, CA USA
| | - Justin B. Siegel
- Department of Chemistry and the Genome Center, University of California, Davis, CA USA
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA USA
| |
Collapse
|
26
|
Wang A, Zhou X. ER Stress, UPR and Virus Infections in Plants. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123154 DOI: 10.1007/978-3-319-32919-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The endoplasmic reticulum (ER) endomembrane is a central site for protein synthesis. Perturbation of ER homeostasis can result in an accumulation of unfolded proteins within the ER lumen, causing ER stress and the unfolded protein response (UPR). In humans, ER stress and UPR are closely associated with a vast number of diseases, including viral diseases. In plants, two arms that govern the UPR signaling network have been described: one that contains two ER membrane–associated transcription factors (bZIP17 and bZIP28) and the other that encompasses a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60). Although early studies mainly focus on the essential roles of the UPR in abiotic stresses, the significance of UPR in plant diseases caused by virus infections has recently drawn much attention. This chapter summarizes the latest scenario of ER stress and UPR in virus-infected plant cells, highlights the emerging roles of the IRE1 pathway in virus infections, and outlines exciting future directions to spark more research interest in the UPR field in plants.
Collapse
Affiliation(s)
- Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario Canada
| | - Xueping Zhou
- State Key Laboratory for Biology of Plan, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
New Insight into the Mechanism and Function of Autophagy in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:1-40. [PMID: 26614870 DOI: 10.1016/bs.ircmb.2015.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a degradation pathway that is conserved throughout eukaryotic organisms and plays important roles in the tolerance of abiotic and biotic stresses. It functions as a housekeeping process to remove unwanted cell components under normal conditions, and is induced during stress and senescence to break down damaged cellular contents and to recycle materials. The target components are engulfed into specialized transport structures termed autophagosomes and are subsequently delivered to the vacuole for degradation. Here, we review milestones in the study of autophagy in plants, discuss recent advances in our understanding of the mechanism and physiological roles of plant autophagy, and highlight potential future directions of research.
Collapse
|
28
|
Yue J, Sun H, Zhang W, Pei D, He Y, Wang H. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC PLANT BIOLOGY 2015; 15:95. [PMID: 25888209 PMCID: PMC4393579 DOI: 10.1186/s12870-015-0472-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. RESULTS We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. CONCLUSIONS Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are implicated in immunity to powdery mildew, playing a weak, positive role in the Pm21-triggered resistance response and a negative role in the basal resistance of susceptible plants.
Collapse
Affiliation(s)
- Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Hong Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Wei Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Dan Pei
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Yang He
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Huazhong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
29
|
Minina EA, Bozhkov PV, Hofius D. Autophagy as initiator or executioner of cell death. TRENDS IN PLANT SCIENCE 2014; 19:692-7. [PMID: 25156061 DOI: 10.1016/j.tplants.2014.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 05/23/2023]
Abstract
Autophagy plays multiple, often antagonistic roles in plants. In particular, cytoprotective functions of autophagy are well balanced by cell death functions to compensate for the absence of apoptosis culminating in phagocytic clearance of dead cells. If autophagy is indeed required for plant programmed cell death (PCD), then what place does it occupy in the PCD pathways? Recent studies have examined the effects of impaired autophagy on pathogen-induced hypersensitive response (HR) and developmental PCD. While HR death was efficiently suppressed, inhibition of autophagy induced a switch from vacuolar PCD essential for development to necrosis. We therefore propose a dual role for autophagy in plant PCD: as an effector of HR PCD lying upstream of the 'point-of-no-return', and also as a downstream mechanism for clearance of terminally differentiated cells during developmental PCD.
Collapse
Affiliation(s)
- Elena A Minina
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden.
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden.
| |
Collapse
|
30
|
|
31
|
Pei D, Zhang W, Sun H, Wei X, Yue J, Wang H. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. PLANT CELL REPORTS 2014; 33:1697-710. [PMID: 24996626 DOI: 10.1007/s00299-014-1648-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 05/02/2023]
Abstract
The genes coding for wheat ATG4 and ATG8 were cloned and their roles in autophagy were verified. Implications of ATG4/ATG8 in wheat responses to stresses were suggested by expression profiling. Autophagy-related proteins ATG4 and ATG8 are crucial for autophagy biogenesis. ATG4 processes ATG8 precursor to expose its C-terminal glycine for phosphatidyl ethanolamine (PE) lipidation. ATG8, in the form of ATG8-PE adduct, functions in the organization dynamics of autophagic membranes. Here, we report the identification of two/nine members of the ATG4/ATG8 family from common wheat (Triticum aestivum L.). Expression of each wheat ATG4/ATG8 could complement the autophagy activity of yeast atg4/atg8 mutant cells. GFP fusion proteins of ATG8s, especially of ATG8s with innate C-terminal-exposed glycines, localized to punctate autophagic membranes. Both of purified ATG4s could cleave ATG8s in vitro, but they had different activities and different preferences for ATG8 substrates. Two times of transcript accumulation, an early one and a late one, of ATG4s/ATG8s were detected in the early phases of the Pm21- and Pm3f-triggered wheat incompatible reactions to the powdery mildew causal fungus Blumeria graminis f. sp. tritici (Bgt), and fluorescence microscopy also revealed a Bgt-induced enhanced wheat autophagy level in the Pm21-triggered incompatible reaction. Only one time of Bgt-induced transcript accumulation of ATG4s/ATG8s, corresponding to but much higher than the late one in incompatible reactions, was detected in a susceptible line isogenic to the Pm21 resistance line. These results suggested positive roles of ATG4/ATG8-associated autophagy process in the early stage and possible negative roles in the late stage of wheat immunity response to Bgt. In addition, expression of wheat ATG4s/ATG8s was also found to be upregulated by abiotic stress factors and distinctively regulated by different phytohormones.
Collapse
Affiliation(s)
- Dan Pei
- School of Life Sciences, Tianjin Normal University, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, China,
| | | | | | | | | | | |
Collapse
|
32
|
Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. THE PLANT CELL 2014; 26:4084-101. [PMID: 25281689 PMCID: PMC4247578 DOI: 10.1105/tpc.114.129999] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/28/2014] [Accepted: 09/18/2014] [Indexed: 05/18/2023]
Abstract
Selective autophagy has been extensively studied in various organisms, but knowledge regarding its functions in plants, particularly in organelle turnover, is limited. We have recently discovered ATG8-INTERACTING PROTEIN1 (ATI1) from Arabidopsis thaliana and showed that following carbon starvation it is localized on endoplasmic reticulum (ER)-associated bodies that are subsequently transported to the vacuole. Here, we show that following carbon starvation ATI1 is also located on bodies associating with plastids, which are distinct from the ER ATI bodies and are detected mainly in senescing cells that exhibit plastid degradation. Additionally, these plastid-localized bodies contain a stroma protein marker as cargo and were observed budding and detaching from plastids. ATI1 interacts with plastid-localized proteins and was further shown to be required for the turnover of one of them, as a representative. ATI1 on the plastid bodies also interacts with ATG8f, which apparently leads to the targeting of the plastid bodies to the vacuole by a process that requires functional autophagy. Finally, we show that ATI1 is involved in Arabidopsis salt stress tolerance. Taken together, our results implicate ATI1 in autophagic plastid-to-vacuole trafficking through its ability to interact with both plastid proteins and ATG8 of the core autophagy machinery.
Collapse
Affiliation(s)
- Simon Michaeli
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arik Honig
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hanna Levanony
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Peled-Zehavi
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
33
|
Gorovits R, Moshe A, Ghanim M, Czosnek H. Degradation mechanisms of the Tomato yellow leaf curl virus coat protein following inoculation of tomato plants by the whitefly Bemisia tabaci. PEST MANAGEMENT SCIENCE 2014; 70:1632-9. [PMID: 24464776 DOI: 10.1002/ps.3737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/16/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV) is a begomovirus infecting tomato cultures worldwide. TYLCV is transmitted to plants by the whitefly Bemisia tabaci. Once in the plant, the virus is subjected to attack by the host-plant defences, which may include sequestration in aggregates, proteolysis, ubiquitination, 26S proteasome degradation and autophagy. Elucidating how the virus avoids destruction will make it possible to understand infection and possibly devise countermeasures. RESULTS The accumulation of viral coat protein (CP) and of viral DNA in plants is a marker of a successful virus transmission by B. tabaci. In response to infection, tomato tissues display multiple ways of degrading TYLCV proteins and DNA. In this study it is shown that CP (in soluble and insoluble states) is the target of protease digestion, 26S proteasome degradation and autophagy. The highest degradation capacity was detected among soluble proteins and proteins in large aggregates/inclusion bodies; cytoplasmic extracts displayed higher activity than nuclear fractions. The very same fractions possessed the highest capacity to degrade viral genomic DNA. Separately, 26S proteasome degradation was associated with large aggregates (more pronounced in the nuclear than in the cytoplasmic fractions), which are indicators of a successful abduction of plants by viruses. Autophagy/lysosome/vacuole degradation was a characteristic of intermediate aggregates, sequestering the CP in the cytoplasm and retarding the development of large aggregates. Chloroplast proteases were active in soluble as well as in insoluble protein extracts. CONCLUSIONS To the best of the authors' knowledge, this study is the first attempt to identify elements of the virus-targeted degradation machinery, which is a part of the plant response to virus invasion.
Collapse
Affiliation(s)
- Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Centre for Agricultural Biotechnology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
34
|
Williams B, Verchot J, Dickman MB. When supply does not meet demand-ER stress and plant programmed cell death. FRONTIERS IN PLANT SCIENCE 2014; 5:211. [PMID: 24926295 DOI: 10.3389/fpls.2014.00211/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/29/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
Collapse
Affiliation(s)
- Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology Brisbane, QLD, Australia
| | - Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University College Station, TX, USA
| |
Collapse
|
35
|
Degradation of organelles or specific organelle components via selective autophagy in plant cells. Int J Mol Sci 2014; 15:7624-38. [PMID: 24802874 PMCID: PMC4057695 DOI: 10.3390/ijms15057624] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a cellular mechanism dedicated to the degradation and recycling of unnecessary cytosolic components by their removal to the lytic compartment of the cell (the vacuole in plants). Autophagy is generally induced by stresses causing energy deprivation and its operation occurs by special vesicles, termed autophagosomes. Autophagy also operates in a selective manner, recycling specific components, such as organelles, protein aggregates or even specific proteins, and selective autophagy is implicated in both cellular housekeeping and response to stresses. In plants, selective autophagy has recently been shown to degrade mitochondria, plastids and peroxisomes, or organelle components such as the endoplasmic-reticulum (ER) membrane and chloroplast-derived proteins such as Rubisco. This ability places selective-autophagy as a major factor in cellular steady-state maintenance, both under stress and favorable environmental conditions. Here we review the recent advances documented in plants for this cellular process and further discuss its impact on plant physiology.
Collapse
|
36
|
Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 2014; 21:1399-408. [PMID: 24786830 DOI: 10.1038/cdd.2014.50] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants.
Collapse
Affiliation(s)
- N S Coll
- 1] Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA [2] Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - A Smidler
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M Puigvert
- Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - C Popa
- Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - M Valls
- 1] Centre for Research in Agricultural Genomics, Barcelona, Spain [2] Department of Genetics, Universitat de Barcelona, Barcelona, Spain
| | - J L Dangl
- 1] Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA [2] Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, USA [3] Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA [4] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA [5] Carolina Center for Genome Sciences University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Masclaux-Daubresse C, Clément G, Anne P, Routaboul JM, Guiboileau A, Soulay F, Shirasu K, Yoshimoto K. Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in Arabidopsis. THE PLANT CELL 2014; 26:1857-1877. [PMID: 24808053 PMCID: PMC4079355 DOI: 10.1105/tpc.114.124677] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/21/2014] [Accepted: 04/13/2014] [Indexed: 05/18/2023]
Abstract
Autophagy is a fundamental process in the plant life story, playing a key role in immunity, senescence, nutrient recycling, and adaptation to the environment. Transcriptomics and metabolomics of the rosette leaves of Arabidopsis thaliana autophagy mutants (atg) show that autophagy is essential for cell homeostasis and stress responses and that several metabolic pathways are affected. Depletion of hexoses, quercetins, and anthocyanins parallel the overaccumulation of several amino acids and related compounds, such as glutamate, methionine, glutathione, pipecolate, and 2-aminoadipate. Transcriptomic data show that the pathways for glutathione, methionine, raffinose, galacturonate, and anthocyanin are perturbed. Anthocyanin depletion in atg mutants, which was previously reported as a possible defect in flavonoid trafficking to the vacuole, appears due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in flavonoid biosynthesis. Overexpression of the PRODUCTION OF ANTHOCYANIN PIGMENT1 transcription factor restores anthocyanin accumulation in vacuoles of atg mutants. Transcriptome analyses reveal connections between autophagy and (1) salicylic acid biosynthesis and response, (2) cytokinin perception, (3) oxidative stress and plant defense, and possible interactions between autophagy and the COP9 signalosome machinery. The metabolic and transcriptomic signatures identified for the autophagy mutants are discussed and show consistencies with the observed phenotypes.
Collapse
Affiliation(s)
- Céline Masclaux-Daubresse
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Gilles Clément
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Pauline Anne
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Jean-Marc Routaboul
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Anne Guiboileau
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Fabienne Soulay
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Ken Shirasu
- RIKEN, Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kohki Yoshimoto
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France RIKEN, Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
38
|
Teh OK, Hofius D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1297-312. [PMID: 24420567 DOI: 10.1093/jxb/ert441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants respond to pathogen attack with dynamic rearrangements of the endomembrane system and rapid redirection of membrane traffic to facilitate effective host defence. Mounting evidence indicates the involvement of endocytic, secretory, and vacuolar trafficking pathways in immune receptor activation, signal transduction, and execution of multiple defence responses including programmed cell death (PCD). Autophagy is a conserved intracellular trafficking and degradation process and has been implicated in basal immunity as well as in some forms of immune receptor-mediated vacuolar cell death. However, the regulatory interplay of autophagy and other membrane trafficking pathways in PCD and defence responses remains obscure. This review therefore highlights recent advances in the understanding of autophagic and membrane trafficking during plant immunity, and discusses emerging molecular links and functional interconnections.
Collapse
Affiliation(s)
- Ooi-Kock Teh
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center of Plant Biology, SE-75007 Uppsala, Sweden
| | | |
Collapse
|
39
|
Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 2014; 9:e89951. [PMID: 24587146 PMCID: PMC3938563 DOI: 10.1371/journal.pone.0089951] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/25/2014] [Indexed: 12/13/2022] Open
Abstract
Tomato yellow leaf curl Sardinia virus (TYLCSV), a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
| | - Chiara Napoli
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
| | - Luca Sardo
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
- Viral Recombination Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Gian Paolo Accotto
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
- * E-mail:
| |
Collapse
|
40
|
Tintor N, Saijo Y. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:65. [PMID: 24616730 PMCID: PMC3933923 DOI: 10.3389/fpls.2014.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 05/03/2023]
Abstract
Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways.
Collapse
Affiliation(s)
- Nico Tintor
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Yusuke Saijo
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Yusuke Saijo, Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Ikoma, Japan e-mail:
| |
Collapse
|
41
|
Williams B, Verchot J, Dickman MB. When supply does not meet demand-ER stress and plant programmed cell death. FRONTIERS IN PLANT SCIENCE 2014; 5:211. [PMID: 24926295 PMCID: PMC4045240 DOI: 10.3389/fpls.2014.00211] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/29/2014] [Indexed: 05/10/2023]
Abstract
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
Collapse
Affiliation(s)
- Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State UniversityStillwater, OK, USA
| | - Martin B. Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, USA
- *Correspondence: Martin B. Dickman, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA e-mail:
| |
Collapse
|
42
|
Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases. Proc Natl Acad Sci U S A 2013; 111:863-8. [PMID: 24379391 DOI: 10.1073/pnas.1318207111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a-AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants.
Collapse
|
43
|
Pu Y, Bassham DC. Links between ER stress and autophagy in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e24297. [PMID: 23603973 PMCID: PMC3907440 DOI: 10.4161/psb.24297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/23/2023]
Abstract
Autophagy is a major pathway for the delivery of proteins or organelles to be degraded in the vacuole and recycled. It can be induced by abiotic stresses, senescence, and pathogen infection. Recent research has shown that autophagy is activated by ER stress. Here we review the major progress that has been made in the study of autophagy and ER stress in plants, and describe the links between ER stress and autophagy to guide further study on how autophagy is regulated in response to ER stress.
Collapse
|
44
|
Kwon SI, Cho HJ, Kim SR, Park OK. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:1722-36. [PMID: 23404918 PMCID: PMC3613451 DOI: 10.1104/pp.112.208108] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/08/2013] [Indexed: 05/18/2023]
Abstract
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD.
Collapse
|
45
|
Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, Roy CR. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012; 338:1072-6. [PMID: 23112293 PMCID: PMC3682818 DOI: 10.1126/science.1227026] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells can use the autophagy pathway to defend against microbes that gain access to the cytosol or reside in pathogen-modified vacuoles. It remains unclear if pathogens have evolved specific mechanisms to manipulate autophagy. Here, we found that the intracellular pathogen Legionella pneumophila could interfere with autophagy by using the bacterial effector protein RavZ to directly uncouple Atg8 proteins attached to phosphatidylethanolamine on autophagosome membranes. RavZ hydrolyzed the amide bond between the carboxyl-terminal glycine residue and an adjacent aromatic residue in Atg8 proteins, producing an Atg8 protein that could not be reconjugated by Atg7 and Atg3. Thus, intracellular pathogens can inhibit autophagy by irreversibly inactivating Atg8 proteins during infection.
Collapse
Affiliation(s)
- Augustine Choy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Julia Dancourt
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Brian Mugo
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tamara J. O'Connor
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Ralph R. Isberg
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
46
|
Kim SH, Kwon C, Lee JH, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells 2012; 34:413-23. [PMID: 22772908 PMCID: PMC3887786 DOI: 10.1007/s10059-012-0098-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022] Open
Abstract
Autophagy, or self-consuming of cytoplasmic constituents in a lytic compartment, plays a crucial role in nutrient recycling, development, cell homeostasis, and defense against pathogens and toxic products. Autophagy in plant cells uses a conserved machinery of core Autophagy-related (Atg) proteins. Recently, research on plant autophagy has been expanding and other components interacting with the core Atg proteins are being revealed. In addition, growing evidence suggests that autophagy communicates with other cellular pathways such as the ubiquitin-proteasome system, protein secretory pathway, and endocytic pathway. An increase in our understanding of plant autophagy will undoubtedly help test the hypothesized functions of plant autophagy in programmed cell death, vacuole biogenesis, and responses to biotic, abiotic, and nutritional stresses. In this review, we summarize recent progress on these topics and suggest topics for future research, after inspecting common phenotypes of current Arabidopsis atg mutants.
Collapse
Affiliation(s)
- Soon-Hee Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735,
Korea
| | | | | | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 609-735,
Korea
| |
Collapse
|
47
|
Abstract
The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | | |
Collapse
|
48
|
Guiboileau A, Masclaux-Daubresse C. L’autophagie chez les plantes : mécanismes, régulations et fonctions. C R Biol 2012; 335:375-88. [DOI: 10.1016/j.crvi.2012.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 12/20/2022]
|
49
|
Abstract
Plants have developed sophisticated mechanisms to survive when in unfavorable environments. Autophagy is a macromolecule degradation pathway that recycles damaged or unwanted cell materials upon encountering stress conditions or during specific developmental processes. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly increased. Most of the essential machinery required for autophagy seems to be conserved from yeast to plants. Plant autophagy has been shown to function in various stress responses, pathogen defense, and senescence. Some of its potential upstream regulators have also been identified. Here, we describe recent advances in our understanding of autophagy in plants, discuss areas of controversy, and highlight potential future directions in autophagy research.
Collapse
Affiliation(s)
- Yimo Liu
- Department of Genetics, Development, and Cell Biology and Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
50
|
Han S, Yu B, Wang Y, Liu Y. Role of plant autophagy in stress response. Protein Cell 2011; 2:784-91. [PMID: 22058033 PMCID: PMC4875296 DOI: 10.1007/s13238-011-1104-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022] Open
Abstract
Autophagy is a conserved pathway for the bulk degradation of cytoplasmic components in all eukaryotes. This process plays a critical role in the adaptation of plants to drastic changing environmental stresses such as starvation, oxidative stress, drought, salt, and pathogen invasion. This paper summarizes the current knowledge about the mechanism and roles of plant autophagy in various plant stress responses.
Collapse
Affiliation(s)
- Shaojie Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Bingjie Yu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|