1
|
Du P, Li J, Hua M, Zhu L, Chen C, Zeng H. Potential Contributions of Human Endogenous Retroviruses in Innate Immune Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1225-1233. [PMID: 39230265 DOI: 10.4049/jimmunol.2300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The phenomenon wherein innate immune cells adopt long-term inflammatory phenotypes following the first stimuli is named trained immunity and can improve host defense against infections. Transcriptional and epigenetic reprogramming are critical mechanisms of trained immunity; however, the regulatory networks are not entirely clear at present. The human endogenous retroviruses (HERVs) provide large amounts of transcriptional regulators in the regulatory pathways. In this study, we analyzed published large omics data to explore the roles of such "dark matter" of the human genome in trained and tolerant macrophages. We collected 80 RNA sequencing data and 62 sequencing data to detect histone modifications and active regulatory regions from nine published studies on trained and tolerant macrophages. By analyzing the characteristics of transcription and epigenetic modification of HERVs, as well as their association with gene expression, we found that 15.3% of HERVs were transcribed nonrandomly from noncoding regions and enriched in specific HERV families and specific chromosomes, such as chromosomes 11, 15, 17, and 19, and they were highly related with the expression of adjacent genes. We found that 295 differentially expressed HERVs are located in 50-kbp flanking regions of 142 differentially expressed genes. We found epigenetic changes of these HERVs and that overlap with predicted enhancers and identified 35 enhancer-like HERVs. The related genes were highly involved in the activation and inflammatory responses, such as the TLR pathway. Other pathways including phosphoinositide signaling and transport of folate and K+ might be also related with trained immunity, which require further study. These results demonstrated that HERVs might play important roles in trained immunity.
Collapse
Affiliation(s)
- Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Jiarui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
3
|
Wu MJ, Kondo H, Kammula AV, Shi L, Xiao Y, Dhiab S, Xu Q, Slater CJ, Avila OI, Merritt J, Kato H, Kattel P, Sussman J, Gritti I, Eccleston J, Sun Y, Cho HM, Olander K, Katsuda T, Shi DD, Savani MR, Smith BC, Cleary JM, Mostoslavsky R, Vijay V, Kitagawa Y, Wakimoto H, Jenkins RW, Yates KB, Paik J, Tassinari A, Saatcioglu DH, Tron AE, Haas W, Cahill D, McBrayer SK, Manguso RT, Bardeesy N. Mutant IDH1 inhibition induces dsDNA sensing to activate tumor immunity. Science 2024; 385:eadl6173. [PMID: 38991060 DOI: 10.1126/science.adl6173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hiroshi Kondo
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Ashwin V Kammula
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yi Xiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofiene Dhiab
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Qin Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Chloe J Slater
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Universite Paris-Saclay, Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Omar I Avila
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Joshua Merritt
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hiroyuki Kato
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Prabhat Kattel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jonathan Sussman
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilaria Gritti
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jason Eccleston
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Sun
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
| | - Hyo Min Cho
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kira Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Takeshi Katsuda
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diana D Shi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Milan R Savani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey C Smith
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Raul Mostoslavsky
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Vindhya Vijay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Kathleen B Yates
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | - Wilhelm Haas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert T Manguso
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Chen M, Huang X, Wang C, Wang S, Jia L, Li L. Endogenous retroviral solo-LTRs in human genome. Front Genet 2024; 15:1358078. [PMID: 38606358 PMCID: PMC11007075 DOI: 10.3389/fgene.2024.1358078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from the infection and integration of exogenetic retroviruses. HERVs account for 8% of human genome, and the majority of HERVs are solitary LTRs (solo-LTRs) due to homologous recombination. Multiple findings have showed that solo-LTRs could provide an enormous reservoir of transcriptional regulatory sequences involved in diverse biological processes, especially carcinogenesis and cancer development. The link between solo-LTRs and human diseases still remains poorly understood. This review focuses on the regulatory modules of solo-LTRs, which contribute greatly to the diversification and evolution of human genes. More importantly, although inactivating mutations, insertions and deletions have been identified in solo-LTRs, the inherited regulatory elements of solo-LTRs initiate the expression of chimeric lncRNA transcripts, which have been reported to play crucial roles in human health and disease. These findings provide valuable insights into the evolutionary and functional mechanisms underlying the presence of HERVs in human genome. Taken together, in this review, we will present evidences showing the regulatory and encoding capacity of solo-LTRs as well as the significant impact on various aspects of human biology.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaolong Huang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Shibo Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
5
|
Kawase M, Ichiyanagi K. Mouse retrotransposons: sequence structure, evolutionary age, genomic distribution and function. Genes Genet Syst 2024; 98:337-351. [PMID: 37989301 DOI: 10.1266/ggs.23-00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Retrotransposons are transposable elements that are transposed via transcription and reverse transcription. Their copies have accumulated in the genome of mammals, occupying approximately 40% of mammalian genomic mass. These copies are often involved in numerous phenomena, such as chromatin spatial organization, gene expression, development and disease, and have been recognized as a driving force in evolution. Different organisms have gained specific retrotransposon subfamilies and retrotransposed copies, such as hundreds of Mus-specific subfamilies with diverse sequences and genomic locations. Despite this complexity, basic information is still necessary for present-day genomic and epigenomic studies. Herein, we describe the characteristics of each subfamily of Mus-specific retrotransposons in terms of sequence structure, phylogenetic relationships, evolutionary age, and preference for A or B compartments of chromatin.
Collapse
Affiliation(s)
- Masaki Kawase
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
6
|
Hernández-Pelegrín L, Ros VID, Herrero S, Crava CM. Non-retroviral Endogenous Viral Elements in Tephritid Fruit Flies Reveal Former Viral Infections Not Related to Known Circulating Viruses. MICROBIAL ECOLOGY 2023; 87:7. [PMID: 38036897 PMCID: PMC10689555 DOI: 10.1007/s00248-023-02310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
A wide variety of insect-specific non-retroviral RNA viruses specifically infect insects. During viral infection, fragments of viral sequences can integrate into the host genomes creating non-retroviral endogenous viral elements (nrEVEs). Although the exact function of nrEVEs is so far unknown, some studies suggest that nrEVEs may interfere with virus replication by producing PIWI-interacting RNAs (piRNAs) that recognize and degrade viral RNAs through sequence complementarity. In this article, we identified the nrEVEs repertoire of ten species within the dipteran family Tephritidae (true fruit flies), which are considered a major threat to agriculture worldwide. Our results suggest that each of these species contains nrEVEs, although in limited numbers, and that nrEVE integration may have occurred both before and after speciation. Furthermore, the majority of nrEVEs originated from viruses with negative single-stranded RNA genomes and represent structural viral functions. Notably, these nrEVEs exhibit low similarity to currently known circulating viruses. To explore the potential role of nrEVEs, we investigated their transcription pattern and the production of piRNAs in different tissues of Ceratitis capitata. We successfully identified piRNAs that are complementary to the sequence of one nrEVE in C. capitata, thereby highlighting a potential link between nrEVEs and the piRNA pathway. Overall, our results provide valuable insights into the comparative landscape of nrEVEs in true fruit flies, contributing to the understanding of the intimate relation between fruit flies and their past and present viral pathogens.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain
| | - Cristina M Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain.
| |
Collapse
|
7
|
Sakurai T, Kusama K, Imakawa K. Progressive Exaptation of Endogenous Retroviruses in Placental Evolution in Cattle. Biomolecules 2023; 13:1680. [PMID: 38136553 PMCID: PMC10741562 DOI: 10.3390/biom13121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Viviparity is made possible by the placenta, a structure acquired relatively recently in the evolutionary history of eutherian mammals. Compared to oviparity, it increases the survival rate of the fetus, owing to the eutherian placenta. Questions such as "How was the placenta acquired?" and "Why is there diversity in placental morphology among mammalian species?" remain largely unsolved. Our present understanding of the molecules regulating placental development remains unclear, owing in no small part to the persistent obscurity surrounding the molecular mechanisms underlying placental acquisition. Numerous genes associated with the development of eutherian placental morphology likely evolved to function at the fetal-maternal interface in conjunction with those participating in embryogenesis. Therefore, identifying these genes, how they were acquired, and how they came to be expressed specifically at the fetal-maternal interface will shed light on some crucial molecular mechanisms underlying placental evolution. Exhaustive studies support the hypothesis that endogenous retroviruses (ERVs) could be evolutional driving forces for trophoblast cell fusion and placental structure in mammalian placentas including those of the bovine species. This review focuses on bovine ERVs (BERVs) and their expression and function in the placenta.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Koriyama 963-8611, Fukushima, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-Ku, Kumamoto 862-8652, Japan;
| |
Collapse
|
8
|
Pumpitakkul V, Chetruengchai W, Srichomthong C, Phokaew C, Pootakham W, Sonthirod C, Nawae W, Tongsima S, Wangkumhang P, Wilantho A, Utara Y, Thongpakdee A, Sanannu S, Maikaew U, Khuntawee S, Changpetch W, Phromwat P, Raschasin K, Sarnkhaeveerakul P, Supapannachart P, Buthasane W, Pukazhenthi BS, Koepfli KP, Suriyaphol P, Tangphatsornruang S, Suriyaphol G, Shotelersuk V. Comparative genomics and genome-wide SNPs of endangered Eld's deer provide breeder selection for inbreeding avoidance. Sci Rep 2023; 13:19806. [PMID: 37957263 PMCID: PMC10643696 DOI: 10.1038/s41598-023-47014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Eld's deer, a conserved wildlife species of Thailand, is facing inbreeding depression, particularly in the captive Siamese Eld's deer (SED) subspecies. In this study, we constructed genomes of a male SED and a male Burmese Eld's deer (BED), and used genome-wide single nucleotide polymorphisms to evaluate the genetic purity and the inbreeding status of 35 SED and 49 BED with limited pedigree information. The results show that these subspecies diverged approximately 1.26 million years ago. All SED were found to be purebred. A low proportion of admixed SED genetic material was observed in some BED individuals. Six potential breeders from male SED with no genetic relation to any female SED and three purebred male BED with no relation to more than 10 purebred female BED were identified. This study provides valuable insights about Eld's deer populations and appropriate breeder selection in efforts to repopulate this endangered species while avoiding inbreeding.
Collapse
Affiliation(s)
- Vichayanee Pumpitakkul
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wanapinun Nawae
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Yongchai Utara
- Zoological Park Organization of Thailand, Animal Conservation and Research Institute, Bangkok, 10800, Thailand
| | - Ampika Thongpakdee
- Zoological Park Organization of Thailand, Animal Conservation and Research Institute, Bangkok, 10800, Thailand
| | - Saowaphang Sanannu
- Zoological Park Organization of Thailand, Animal Conservation and Research Institute, Bangkok, 10800, Thailand
| | - Umaporn Maikaew
- Khao Kheow Open Zoo, Zoological Park Organization of Thailand, Chonburi, 20110, Thailand
| | - Suphattharaphonnaphan Khuntawee
- Ubon Ratchathani Zoo, Zoological Park Organization of Thailand, Ubon Ratchathani District, Ubon Ratchathani, 34000, Thailand
| | - Wirongrong Changpetch
- Nakhon Ratchasima Zoo, Zoological Park Organization of Thailand, Nakhon Ratchasima, 30000, Thailand
| | - Phairot Phromwat
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani, 61160, Thailand
| | - Kacharin Raschasin
- Chulabhorn Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Sisaket, 33140, Thailand
| | - Phunyaphat Sarnkhaeveerakul
- Banglamung Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Chonburi, 20150, Thailand
| | - Pannawat Supapannachart
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
| | - Prapat Suriyaphol
- Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand.
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Barnes M, Price DC. Endogenous Viral Elements in Ixodid Tick Genomes. Viruses 2023; 15:2201. [PMID: 38005880 PMCID: PMC10675110 DOI: 10.3390/v15112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The documentation of endogenous viral elements (EVEs; virus-derived genetic material integrated into the genome of a nonviral host) has offered insights into how arthropods respond to viral infection via RNA interference pathways. Small non-coding RNAs derived from EVE loci serve to direct RNAi pathways in limiting replication and infection from cognate viruses, thus benefiting the host's fitness and, potentially, vectorial capacity. Here we use informatic approaches to analyze nine available genome sequences of hard ticks (Acari: Ixodidae; Rhipicephalus sanguineus, R. microplus, R. annulatus, Ixodes ricinus, I. persulcatus, I. scapularis, Hyalomma asiaticum, Haemaphysalis longicornis, and Dermacentor silvarum) to identify endogenous viral elements and to illustrate the shared ancestry of all elements identified. Our results highlight a broad diversity of viral taxa as having given rise to 1234 identified EVEs in ticks, with Mononegavirales (specifically Rhabdoviridae) well-represented in this subset of hard ticks. Further investigation revealed extensive adintovirus integrations in several Ixodes species, the prevalence of Bunyavirales EVEs (notably not observed in mosquitoes), and the presence of several elements similar to known emerging human and veterinary pathogens. These results will inform subsequent work on current and past associations with tick species with regard to the viruses from which their "viral fossils" are derived and may serve as a reference for quality control of various tick-omics data that may suffer from misidentification of EVEs as viral genetic material.
Collapse
Affiliation(s)
| | - Dana C. Price
- Center for Vector Biology, Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
10
|
Koga A, Nishihara H, Tanabe H, Tanaka R, Kayano R, Matsumoto S, Endo T, Srikulnath K, O'Neill RJ. Kangaroo endogenous retrovirus (KERV) forms megasatellite DNA with a simple repetition pattern in which the provirus structure is retained. Virology 2023; 586:56-66. [PMID: 37487326 DOI: 10.1016/j.virol.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
The kangaroo endogenous retrovirus (KERV) was previously reported to have undergone a rapid copy number increase in the red-necked wallaby; however, the mode of amplification was left to be clarified. The present study revealed that the long terminal repeat (LTR) (0.6 kb) and internal region (2.0 kb) of a provirus are repeated alternately, forming megasatellite DNA which we named kervRep. This repetition pattern was the same as that observed for walbRep, megasatellite DNA originating from another endogenous retrovirus. Their formation process can be explained using a simple model: pairing slippage followed by homologous recombination. This model features that the initial step is triggered by the presence of two identical sequences within a short distance; the possession of LTRs by endogenous retroviruses fulfills this condition. The discovery of two cases suggests that formation of this type of satellite DNA is one of non-negligible effects of endogenous retroviruses on their host genomes.
Collapse
Affiliation(s)
- Akihiko Koga
- Center for Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan; Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan
| | - Rieko Tanaka
- Saitama Children's Zoo, Higashimatsuyama 355-0065, Japan
| | - Rika Kayano
- Saitama Children's Zoo, Higashimatsuyama 355-0065, Japan
| | | | | | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
11
|
Chabukswar S, Grandi N, Lin LT, Tramontano E. Envelope Recombination: A Major Driver in Shaping Retroviral Diversification and Evolution within the Host Genome. Viruses 2023; 15:1856. [PMID: 37766262 PMCID: PMC10536682 DOI: 10.3390/v15091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are integrated into host DNA as the result of ancient germ line infections, primarily by extinct exogenous retroviruses. Thus, vertebrates' genomes contain thousands of ERV copies, providing a "fossil" record for ancestral retroviral diversity and its evolution within the host genome. Like other retroviruses, the ERV proviral sequence consists of gag, pro, pol, and env genes flanked by long terminal repeats (LTRs). Particularly, the env gene encodes for the envelope proteins that initiate the infection process by binding to the host cellular receptor(s), causing membrane fusion. For this reason, a major element in understanding ERVs' evolutionary trajectory is the characterization of env changes over time. Most of the studies dedicated to ERVs' env have been aimed at finding an "actual" physiological or pathological function, while few of them have focused on how these genes were once acquired and modified within the host. Once acquired into the organism, genome ERVs undergo common cellular events, including recombination. Indeed, genome recombination plays a role in ERV evolutionary dynamics. Retroviral recombination events that might have been involved in env divergence include the acquisition of env genes from distantly related retroviruses, env swapping facilitating multiple cross-species transmission over millions of years, ectopic recombination between the homologous sequences present in different positions in the chromosomes, and template switching during transcriptional events. The occurrence of these recombinational events might have aided in shaping retroviral diversification and evolution until the present day. Hence, this review describes and discusses in detail the reported recombination events involving ERV env to provide the basis for further studies in the field.
Collapse
Affiliation(s)
- Saili Chabukswar
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| |
Collapse
|
12
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
13
|
Li Z, Wang Q, Lv N, Xu G, Yang X, Zhu B. Genome-wide identification of endogenous retrovirus elements and their active transcription in mink genome. MLIFE 2023; 2:201-208. [PMID: 38817617 PMCID: PMC10989824 DOI: 10.1002/mlf2.12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Mammalian endogenous retroviruses (ERVs) are ancient retroviruses that have been integrated into genomes. ERVs were believed to be inactive until the discovery of ERV transcription in the mouse genome. However, the transcription level and function of ERV elements in mammalian genomes are not well understood. In this study, we performed the first genome-wide scanning of ERV loci in the American mink (Neogale vison) genome (NeoERV) followed by transcriptomic analysis to detect actively transcribed NeoERV elements. A total of 365,791 NeoERV loci were identified, and161,205 (44%) of these loci were found to be actively transcribed based on transcriptomic data from three types of tissues (amygdala, trachea and lung). More than one third of the actively transcribed NeoERV loci were tissue-specific. Furthermore, some of the active loci were associated with host gene transcription, and the level of NeoERV transcription was positively correlated with that of host genes, specifically when active loci were located in overlapped gene regions. An in-depth analysis of the envelope protein coding env gene showed that, in general, its transcription level was higher than that of NeoERVs, which is believed to be associated with host immunity.
Collapse
Affiliation(s)
- Zheng Li
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Wang
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Jiangxi Science and Technology Normal UniversityNanchangChina
| | - Na Lv
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Guojin Xu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xuemei Yang
- Beijing Pediatric Research InstituteBeijingChina
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- Department of Pathogenic Biology, School of Basic Medical SciencesSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
14
|
Tsangaras K, Mayer J, Mirza O, Dayaram A, Higgins DP, Bryant B, Campbell-Ward M, Sangster C, Casteriano A, Höper D, Beer M, Greenwood AD. Evolutionarily Young African Rhinoceros Gammaretroviruses. J Virol 2023; 97:e0193222. [PMID: 37022231 PMCID: PMC10134878 DOI: 10.1128/jvi.01932-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
High-throughput sequences were generated from DNA and cDNA from four Southern white rhinoceros (Ceratotherium simum simum) located in the Taronga Western Plain Zoo in Australia. Virome analysis identified reads that were similar to Mus caroli endogenous gammaretrovirus (McERV). Previous analysis of perissodactyl genomes did not recover gammaretroviruses. Our analysis, including the screening of the updated white rhinoceros (Ceratotherium simum) and black rhinoceros (Diceros bicornis) draft genomes identified high-copy orthologous gammaretroviral ERVs. Screening of Asian rhinoceros, extinct rhinoceros, domestic horse, and tapir genomes did not identify related gammaretroviral sequences in these species. The newly identified proviral sequences were designated SimumERV and DicerosERV for the white and black rhinoceros retroviruses, respectively. Two long terminal repeat (LTR) variants (LTR-A and LTR-B) were identified in the black rhinoceros, with different copy numbers associated with each (n = 101 and 373, respectively). Only the LTR-A lineage (n = 467) was found in the white rhinoceros. The African and Asian rhinoceros lineages diverged approximately 16 million years ago. Divergence age estimation of the identified proviruses suggests that the exogenous retroviral ancestor of the African rhinoceros ERVs colonized their genomes within the last 8 million years, a result consistent with the absence of these gammaretroviruses from Asian rhinoceros and other perissodactyls. The black rhinoceros germ line was colonized by two lineages of closely related retroviruses and white rhinoceros by one. Phylogenetic analysis indicates a close evolutionary relationship with ERVs of rodents including sympatric African rats, suggesting a possible African origin of the identified rhinoceros gammaretroviruses. IMPORTANCE Rhinoceros genomes were thought to be devoid of gammaretroviruses, as has been determined for other perissodactyls (horses, tapirs, and rhinoceros). While this may be true of most rhinoceros, the African white and black rhinoceros genomes have been colonized by evolutionarily young gammaretroviruses (SimumERV and DicerosERV for the white and black rhinoceros, respectively). These high-copy endogenous retroviruses (ERVs) may have expanded in multiple waves. The closest relative of SimumERV and DicerosERV is found in rodents, including African endemic species. Restriction of the ERVs to African rhinoceros suggests an African origin for the rhinoceros gammaretroviruses.
Collapse
Affiliation(s)
- Kyriakos Tsangaras
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Jens Mayer
- Institute of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Omar Mirza
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Anisha Dayaram
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Benn Bryant
- Taronga Western Plains Zoo, Dubbo, New South Wales, Australia
| | | | - Cheryl Sangster
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Andrea Casteriano
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Alex D. Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Chu L, Su F, Han GZ, Wang J. Jawless vertebrates do not escape retrovirus infection. Virology 2023; 583:52-55. [PMID: 37148648 DOI: 10.1016/j.virol.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
On occasion, retroviruses infect the genome of germline cell, forming endogenous retroviruses (ERVs), which provide molecular fossils for studying the deep evolution of retroviruses. While ERVs have been extensively characterized in the genomes of jawed vertebrates, much remains contentious and unexplored about the diversity and evolution of ERVs within jawless vertebrates. Here, we report the discovery of a novel ERV lineage, designated EbuERVs, in the genome of a hagfish Eptatretus burgeri. Phylogenetic analyses show that EbuERVs pertain to epsilon-retroviruses and might have derived from cross-species transmission from jawed vertebrates. EbuERVs are estimated to have invaded in the hagfish genome at least tens of millions of years ago. Evolutionary dynamics analyses indicate that EbuERVs might have experienced one proliferation peak and have been not active in transposition anymore. However, some EbuERVs can transcribe in embryo and might serve as lncRNA. Overall, these findings expand the distribution of retroviruses from jawed vertebrates to jawless vertebrates.
Collapse
Affiliation(s)
- Lingyu Chu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Fang Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
16
|
Calero-Layana M, López-Cruz C, Ocaña A, Tejera E, Armijos-Jaramillo V. Evolutionary analysis of endogenous intronic retroviruses in primates reveals an enrichment in transcription binding sites associated with key regulatory processes. PeerJ 2022; 10:e14431. [PMID: 36575684 PMCID: PMC9790151 DOI: 10.7717/peerj.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background Endogenous retroviruses (ERVs) are the result of the integration of retroviruses into host DNA following germline infection. Endogenous retroviruses are made up of three main genes: gag, pol, and env, each of which encodes viral proteins that can be conserved or not. ERVs have been observed in a wide range of vertebrate genomes and their functions are associated with viral silencing and gene regulation. Results In this work, we studied the evolutionary history of endogenous retroviruses associated with five human genes (INPP5B, DET1, PSMA1, USH2A, and MACROD2), which are located within intron sections. To verify the retroviral origin of the candidates, several approaches were used to detect and locate ERV elements. Both orthologous and paralogous genes were identified by Ensembl and then analyzed for ERV presence using RetroTector. A phylogenetic tree was reconstructed to identify the minimum time point of ERV acquisition. From that search, we detected ERVs throughout the primate lineage and in some other groups. Also, we identified the minimum origin of the ERVs from the parvorder Catarrhini to the Homininae subfamily. Conclusions With the data collected, and by observing the transcription factors annotated inside ERVs, we propose that these elements play a relevant role in gene expression regulation and they probably possess important features for tumorigenesis control.
Collapse
Affiliation(s)
- Melissa Calero-Layana
- Ingeniería en Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Americas, Quito, Ecuador
| | - Carmen López-Cruz
- Ingeniería en Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Americas, Quito, Ecuador
| | - Agustín Ocaña
- Ingeniería en Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Americas, Quito, Ecuador
| | - Eduardo Tejera
- Ingeniería en Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Americas, Quito, Ecuador,Grupo de Bio-Quimioinformática, Universidad de las Americas, Quito, Ecuador
| | - Vinicio Armijos-Jaramillo
- Ingeniería en Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Americas, Quito, Ecuador,Grupo de Bio-Quimioinformática, Universidad de las Americas, Quito, Ecuador
| |
Collapse
|
17
|
Frank JA, Singh M, Cullen HB, Kirou RA, Benkaddour-Boumzaouad M, Cortes JL, Garcia-Perez J, Coyne CB, Feschotte C. Evolution and antiviral activity of a human protein of retroviral origin. Science 2022; 378:422-428. [PMID: 36302021 PMCID: PMC10542854 DOI: 10.1126/science.abq7871] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenous retroviruses are abundant components of mammalian genomes descended from ancient germline infections. In several mammals, the envelope proteins encoded by these elements protect against exogenous viruses, but this activity has not been documented with endogenously expressed envelopes in humans. We report that the human genome harbors a large pool of envelope-derived sequences with the potential to restrict retroviral infection. To test this, we characterized an envelope-derived protein, Suppressyn. We found that Suppressyn is expressed in human preimplantation embryos and developing placenta using its ancestral retroviral promoter. Cell culture assays showed that Suppressyn, and its hominoid orthologs, could restrict infection by extant mammalian type D retroviruses. Our data support a generalizable model of retroviral envelope co-option for host immunity and genome defense.
Collapse
Affiliation(s)
- John A. Frank
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Harrison B. Cullen
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Raphael A. Kirou
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Meriem Benkaddour-Boumzaouad
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
| | - Jose L. Cortes
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- Eppendorf; Iberica, Spain
| | - Jose Garcia-Perez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital; Edinburgh, UK
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| |
Collapse
|
18
|
Zhang Q, Pan J, Cong Y, Mao J. Transcriptional Regulation of Endogenous Retroviruses and Their Misregulation in Human Diseases. Int J Mol Sci 2022; 23:ijms231710112. [PMID: 36077510 PMCID: PMC9456331 DOI: 10.3390/ijms231710112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Endogenous retroviruses (ERVs), deriving from exogenous retroviral infections of germ line cells occurred millions of years ago, represent ~8% of human genome. Most ERVs are highly inactivated because of the accumulation of mutations, insertions, deletions, and/or truncations. However, it is becoming increasingly apparent that ERVs influence host biology through genetic and epigenetic mechanisms under particular physiological and pathological conditions, which provide both beneficial and deleterious effects for the host. For instance, certain ERVs expression is essential for human embryonic development. Whereas abnormal activation of ERVs was found to be involved in numbers of human diseases, such as cancer and neurodegenerative diseases. Therefore, understanding the mechanisms of regulation of ERVs would provide insights into the role of ERVs in health and diseases. Here, we provide an overview of mechanisms of transcriptional regulation of ERVs and their dysregulation in human diseases.
Collapse
|
19
|
Lei B, Song H, Xu F, Wei Q, Wang F, Tan G, Ma H. When does hepatitis B virus meet long-stranded noncoding RNAs? Front Microbiol 2022; 13:962186. [PMID: 36118202 PMCID: PMC9479684 DOI: 10.3389/fmicb.2022.962186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) infection in humans and its associated diseases are long-standing problems. HBV can produce a large number of non-self-molecules during its life cycle, which acts as targets for innate immune recognition and initiation. Among these, interferon and its large number of downstream interferon-stimulated gene molecules are important early antiviral factors. However, the development of an effective antiviral immune response is not simple and depends not only on the delicate regulation of the immune response but also on the various mechanisms of virus-related immune escape and immune tolerance. Therefore, despite there being a relatively well-established consensus on the major pathways of the antiviral response and their component molecules, the complete clearance of HBV remains a challenge in both basic and clinical research. Long-noncoding RNAs (lncRNAs) are generally >200 bp in length and perform different functions in the RNA strand encoding the protein. As an important part of the IFN-inducible genes, interferon-stimulated lncRNAs are involved in the regulation of several HBV infection-related pathways. This review traces the basic elements of such pathways and characterizes the various recent targets of lncRNAs, which not only complement the regulatory mechanisms of pathways related to chronic HBV infection, fibrosis, and cancer promotion but also present with new potential therapeutic targets for controlling HBV infection and the malignant transformation of hepatocytes.
Collapse
Affiliation(s)
- Bingxin Lei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Wei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Guangyun Tan,
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
- Haichun Ma,
| |
Collapse
|
20
|
Abstract
The origin and deep evolution of retroviruses remain largely unclear. It has been proposed that retroviruses might have originated from a Ty3/Gypsy retrotransposon, but all known Ty3/Gypsy retrotransposons are only distantly related to retroviruses. Retroviruses and some plant Athila/Tat elements (within Ty3/Gypsy retrotransposons) independently evolved a dual RNase H domain and an env/env-like gene. Here, we reported the discovery of a novel lineage of retrotransposons, designated Odin retrotransposons, in the genomes of eight sea anemones (order Actinaria) within the Cnidaria phylum. Odin retrotransposons exhibited unique genome features, encoding a dual RNase H domain (like retroviruses) but no env gene (like most Ty3/Gypsy retrotransposons). Phylogenetic analyses based on reverse transcriptase showed that Odin retrotransposons formed a sister group to lokiretroviruses, and lokiretroviruses and Odin retrotransposons together were sister to canonical retroviruses. Moreover, phylogenetic analyses based on RNase H and integrase also supported the hypothesis that Odin retrotransposons were sisters to lokiretroviruses. Lokiretroviruses and canonical retroviruses did not form a monophyletic group, indicating that lokiretroviruses and canonical retroviruses might represent two distinct virus families. Taken together, the discovery of Odin retrotransposons narrowed down the evolutionary gaps between retrotransposons and canonical retroviruses and lokiretroviruses.
Collapse
|
21
|
Wang ZZ, Ye XQ, Huang JH, Chen XX. Virus and endogenous viral element-derived small non-coding RNAs and their roles in insect-virus interaction. CURRENT OPINION IN INSECT SCIENCE 2022; 49:85-92. [PMID: 34974161 DOI: 10.1016/j.cois.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
RNA interference pathways mediated by different types of small non-coding RNAs (siRNAs, miRNAs and piRNAs) are conserved biological responses to exotic stresses, including viral infection. Aside from the well-established siRNA pathway, the miRNA pathway and the piRNA pathway process viral sequences, exogenously or endogenously, into miRNAs and piRNAs, respectively. During the host-virus interaction, viral sequences, including both coding and non-coding sequences, can be integrated as endogenous viral elements (EVEs) and thereby become present within the germline of a non-viral organism. In recent years, significant progress has been made in characterizing the biogenesis and function of viruses and EVEs associated with snRNAs. Overall, the siRNA pathway acts as the primarily antiviral defense against a wide range of exogenous viruses; the miRNA pathways associated with viruses or EVEs function in antiviral response and host gene regulation; EVE derived piRNAs with a ping-pong signature have the potential to limit cognate viral infection.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Detection and Characterisation of an Endogenous Betaretrovirus in Australian Wild Deer. Viruses 2022; 14:v14020252. [PMID: 35215845 PMCID: PMC8877266 DOI: 10.3390/v14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of past retroviral infections that once invaded the host’s germline and were vertically transmitted. ERV sequences have been reported in mammals, but their distribution and diversity in cervids are unclear. Using next-generation sequencing, we identified a nearly complete genome of an endogenous betaretrovirus in fallow deer (Dama dama). Further genomic analysis showed that this provirus, tentatively named cervid endogenous betaretrovirus 1 (CERV β1), has typical betaretroviral genome features (gag-pro-pol-env) and the betaretrovirus-specific dUTPase domain. In addition, CERV β1 pol sequences were detected by PCR in the six non-native deer species with wild populations in Australia. Phylogenetic analyses demonstrated that CERV β1 sequences from subfamily Cervinae clustered as sister taxa to ERV-like sequences in species of subfamily Muntiacinae. These findings, therefore, suggest that CERV β1 endogenisation occurred after the split of these two subfamilies (between 3.3 and 5 million years ago). Our results provide important insights into the evolution of betaretroviruses in cervids.
Collapse
|
23
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Genome-Wide Characterization of Zebrafish Endogenous Retroviruses Reveals Unexpected Diversity in Genetic Organizations and Functional Potentials. Microbiol Spectr 2021; 9:e0225421. [PMID: 34908463 PMCID: PMC8672886 DOI: 10.1128/spectrum.02254-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs) occupy a substantial fraction of mammalian genomes. However, whether ERVs extensively exist in ancient vertebrates remains unexplored. Here, we performed a genome-wide characterization of ERVs in a zebrafish (Danio rerio) model. Approximately 3,315 ERV-like elements (DrERVs) were identified as Gypsy, Copia, Bel, and class I−III groups. DrERVs accounted for approximately 2.3% of zebrafish genome and were distributed in all 25 chromosomes, with a remarkable bias on chromosome 4. Gypsy and class I are the two most abundant groups with earlier insertion times. The vast majority of the DrERVs have varied structural defects. A total of 509 gag and 71 env genes with coding potentials were detected. The env-coding elements were well-characterized and classified into four subgroups. A ERV-E4.8.43-DanRer element shows high similarity with HERV9NC-int in humans and analogous sequences were detected in species spanning from fish to mammals. RNA-seq data showed that hundreds of DrERVs were expressed in embryos and tissues under physiological conditions, and most of them exhibited stage and tissue specificity. Additionally, 421 DrERVs showed strong responsiveness to virus infection. A unique group of DrERVs with immune-relevant genes, such as fga, ddx41, ftr35, igl1c3, and tbk1, instead of intrinsic viral genes were identified. These DrERVs are regulated by transcriptional factors binding at the long terminal repeats. This study provided a survey of the composition, phylogeny, and potential functions of ERVs in a fish model, which benefits the understanding of the evolutionary history of ERVs from fish to mammals. IMPORTANCE Endogenous retroviruses (ERVs) are relics of past infection that constitute up to 8% of the human genome. Understanding the genetic evolution of the ERV family and the interplay of ERVs and encoded RNAs and proteins with host function has become a new frontier in biology. Fish, as the most primitive vertebrate host for retroviruses, is an indispensable integral part for such investigations. In the present study, we report the genome-wide characterization of ERVs in zebrafish, an attractive model organism of ancient vertebrates from multiple perspectives, including composition, genomic organization, chromosome distribution, classification, phylogeny, insertion time, characterization of gag and env genes, and expression profiles in embryos and tissues. The result helps uncover the evolutionarily conserved and fish-specific ERVs, as well as the immune-relevant ERVs in response to virus infection. This study demonstrates the previously unrecognized abundance, diversification, and extensive activity of ERVs at the early stage of ERV evolution.
Collapse
|
25
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
26
|
Yang L, Malhotra R, Chikhi R, Elleder D, Kaiser T, Rong J, Medvedev P, Poss M. Recombination marks the evolutionary dynamics of a recently endogenized retrovirus. Mol Biol Evol 2021; 38:5423-5436. [PMID: 34480565 PMCID: PMC8662619 DOI: 10.1093/molbev/msab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Raunaq Malhotra
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rayan Chikhi
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Elleder
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 1083, 14220, Czech Republic Vídeňská Prague
| | - Theodora Kaiser
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse Rong
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul Medvedev
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
27
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han SJ, Chen EY, Constantinides MG, Link VM, Lim AI, Enamorado M, Cataisson C, Gil L, Rao I, Farley TK, Koroleva G, Attig J, Yuspa SH, Fischbach MA, Kassiotis G, Belkaid Y. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 2021; 184:3794-3811.e19. [PMID: 34166614 PMCID: PMC8381240 DOI: 10.1016/j.cell.2021.05.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Y Chen
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael G Constantinides
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIH Center for Human Immunology, Bethesda, MD 20896, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe Cataisson
- In Vitro Pathogenesis Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis Gil
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indira Rao
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | | | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Stuart H Yuspa
- In Vitro Pathogenesis Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Multiple Infiltration and Cross-Species Transmission of Foamy Viruses across the Paleozoic to the Cenozoic Era. J Virol 2021; 95:e0048421. [PMID: 33910951 DOI: 10.1128/jvi.00484-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses that can infect humans and other animals. In this study, by integrating transcriptomic and genomic data, we discovered 412 FVs from 6 lineages in amphibians, which significantly increased the known set of FVs in amphibians. Among these lineages, salamander FVs maintained a coevolutionary pattern with their hosts that could be dated back to the Paleozoic era, while in contrast, frog FVs were much more likely acquired from cross-species (class-level) transmission in the Cenozoic era. In addition, we found that three distinct FV lineages had integrated into the genome of a salamander. Unexpectedly, we identified a lineage of endogenous FVs in caecilians that expressed all complete major genes, demonstrating the potential existence of an exogenous form of FV outside of mammals. Our discovery of rare phenomena in amphibian FVs has significantly increased our understanding of the macroevolution of the complex retrovirus. IMPORTANCE Foamy viruses (FVs) represent, more so than other viruses, the best model of coevolution between a virus and a host. This study represents the largest investigation so far of amphibian FVs and reveals 412 FVs of 6 distinct lineages from three major orders of amphibians. Besides a coevolutionary pattern, cross-species and repeated infections were also observed during the evolution of amphibian FVs. Remarkably, expressed FVs including a potential exogenous form were discovered, suggesting that active FVs might be underestimated in nature. These findings revealed that the multiple origins and complex evolution of amphibian FVs started from the Paleozoic era.
Collapse
|
30
|
Fu B, Ma H, Liu D. Functions and Regulation of Endogenous Retrovirus Elements during Zygotic Genome Activation: Implications for Improving Somatic Cell Nuclear Transfer Efficiency. Biomolecules 2021; 11:829. [PMID: 34199637 PMCID: PMC8229993 DOI: 10.3390/biom11060829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs), previously viewed as deleterious relics of ancestral retrovirus infections, are silenced in the vast majority of cells to minimize the risk of retrotransposition. Counterintuitively, bursts of ERV transcription usually occur during maternal-to-zygotic transition (MZT) in preimplantation embryos; this is regarded as a major landmark event in the zygotic genome activation (ZGA) process, indicating that ERVs play an active part in ZGA. Evolutionarily, the interaction between ERVs and hosts is mutually beneficial. The endogenization of retrovirus sequences rewires the gene regulatory network during ZGA, and ERV repression may lower germline fitness. Unfortunately, owing to various limitations of somatic cell nuclear transfer (SCNT) technology, both developmental arrest and ZGA abnormalities occur in a high percentage of cloned embryos, accompanied by ERV silencing, which may be caused by the activation failure of upstream ERV inducers. In this review, we discuss the functions and regulation of ERVs during the ZGA process and the feasibility of temporal control over ERVs in cloned embryos via exogenous double homeobox (DUX). We hypothesize that further accurate characterization of the ERV-rewired gene regulatory network during ZGA may provide a novel perspective on the development of preimplantation embryos.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
31
|
Lefebvre M, Vignier N, Pitard B, Botelho-Nevers E, Wyplosz B, Cohen R, Epaulard O. COVID-19 vaccines: Frequently asked questions and updated answers. Infect Dis Now 2021; 51:319-333. [PMID: 33681861 PMCID: PMC7910656 DOI: 10.1016/j.idnow.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
At the end of December 2019, China notified the World Health Organization about a viral pneumonia epidemic soon to be named COVID-19, of which the infectious agent, SARS-CoV-2, was rapidly identified. Less than one year later, published phase 3 clinical trials underlined the effectiveness of vaccines utilizing hitherto unusual technology consisting in injection of the messenger RNA (m-RNA) of a viral protein. In the meantime, numerous clinical trials had failed to identify a maximally effective antiviral treatment, and mass vaccination came to be considered as the strategy most likely to put an end to the pandemic. The objective of this text is to address and hopefully answer the questions being put forward by healthcare professionals on the different anti-SARS-CoV-2 vaccines as regards their development, their modes of action, their effectiveness, their limits, and their utilization in different situations; we are proposing a report on both today's state of knowledge, and the 14 February 2021 recommendations of the French health authorities.
Collapse
Affiliation(s)
- M Lefebvre
- Service des maladies infectieuses et tropicales, centre de prévention des maladies infectieuses et transmissibles, centre hospitalo-universitaire Hôtel-Dieu, Inserm CIC1413, 1, place Alexis-Ricordeau, 44000 Nantes, France.
| | - N Vignier
- Centre d'investigation clinique Antilles Guyane, CIC Inserm 1424, DRISP, centre hospitalier Andrée-Rosemon, Cayenne, French Guyana; Inserm, Sorbonne université, institut Pierre-Louis d'épidémiologie et de santé publique, IPLESP, 75012 Paris, France; Department of infectious disease, Groupe hospitalier Sud Ile-de-France, 77000 Melun, France
| | - B Pitard
- Université de Nantes, CNRS ERL6001, Inserm 1232, CRCINA, Nantes, France
| | - E Botelho-Nevers
- Service d'infectiologie, centre hospitalo-universitaire de Saint-Étienne, CIC 1408 Inserm, 42055 Saint-Étienne, France; Centre international de recherche en infectiologie (CIRI), Team GIMAP, université Lyon, université Jean-Monnet, université Claude-Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, 42023 Saint-Étienne, France
| | - B Wyplosz
- Service des maladies infectieuses et tropicales, Assistance publique-hôpitaux de Paris, Centre hospitalier universitaire Bicêtre, Paris, France
| | - R Cohen
- InfoVac, centre hospitalier intercommunal de Créteil, service de pédiatrie, 40, avenue de Verdun, 94000 Créteil, France
| | - O Epaulard
- Service des maladies infectieuses, centre hospitalo-universitaire Grenoble Alpes, Grenoble, France, CIC 1406 Inserm, Grenoble, France
| |
Collapse
|
32
|
Wang J, Han GZ. Frequent Retroviral Gene Co-option during the Evolution of Vertebrates. Mol Biol Evol 2021; 37:3232-3242. [PMID: 32667990 DOI: 10.1093/molbev/msaa180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endogenous retroviruses are ubiquitous in the vertebrate genomes. On occasion, hosts recruited retroviral genes to mediate their own biological functions, a process formally known as co-option or exaptation. Much remains unknown about the extent of retroviral gene co-option in vertebrates, although more than ten retroviral gene co-option events have been documented. Here, we use a phylogenomic approach to analyze more than 700 vertebrate genomes to uncover retroviral gene co-option taking place during the evolution of vertebrates. We identify a total of 177 independent retroviral gene co-option events in vertebrates, a majority of which have not been reported previously. Among these retroviral gene co-option events, 93 and 84 involve gag and env genes, respectively. More than 78.0% (138 out of 177) of retroviral gene co-option occurred within mammals. The gag and env co-option events share a generally similar temporal pattern with less frequent retroviral gene co-option identified in the deep branches, suggesting that retroviral gene co-option might have not been maintained for very long time periods. Moreover, we find co-opted retroviral genes are subject to different selection pressure, implying potentially diverse cellular functionality. Our study provides a comprehensive picture of co-opted retroviral genes during the evolution of vertebrates and has implications in understanding the ancient evolution of vertebrate-retrovirus interaction.
Collapse
Affiliation(s)
- Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Pischedda E, Crava C, Carlassara M, Zucca S, Gasmi L, Bonizzoni M. ViR: a tool to solve intrasample variability in the prediction of viral integration sites using whole genome sequencing data. BMC Bioinformatics 2021; 22:45. [PMID: 33541262 PMCID: PMC7863434 DOI: 10.1186/s12859-021-03980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Several bioinformatics pipelines have been developed to detect sequences from viruses that integrate into the human genome because of the health relevance of these integrations, such as in the persistence of viral infection and/or in generating genotoxic effects, often progressing into cancer. Recent genomics and metagenomics analyses have shown that viruses also integrate into the genome of non-model organisms (i.e., arthropods, fish, plants, vertebrates). However, rarely studies of endogenous viral elements (EVEs) in non-model organisms have gone beyond their characterization from reference genome assemblies. In non-model organisms, we lack a thorough understanding of the widespread occurrence of EVEs and their biological relevance, apart from sporadic cases which nevertheless point to significant roles of EVEs in immunity and regulation of expression. The concomitance of repetitive DNA, duplications and/or assembly fragmentations in a genome sequence and intrasample variability in whole-genome sequencing (WGS) data could determine misalignments when mapping data to a genome assembly. This phenomenon hinders our ability to properly identify integration sites. Results To fill this gap, we developed ViR, a pipeline which solves the dispersion of reads due to intrasample variability in sequencing data from both single and pooled DNA samples thus ameliorating the detection of integration sites. We tested ViR to work with both in silico and real sequencing data from a non-model organism, the arboviral vector Aedes albopictus. Potential viral integrations predicted by ViR were molecularly validated supporting the accuracy of ViR results. Conclusion ViR will open new venues to explore the biology of EVEs, especially in non-model organisms. Importantly, while we generated ViR with the identification of EVEs in mind, its application can be extended to detect any lateral transfer event providing an ad-hoc sequence to interrogate.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Cristina Crava
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.,ERI BIOTECMED, Universitat de Valencia, 46010, Valencia, Spain
| | - Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | | | - Leila Gasmi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
34
|
Unexpected Discovery and Expression of Amphibian Class II Endogenous Retroviruses. J Virol 2021; 95:JVI.01806-20. [PMID: 33177199 DOI: 10.1128/jvi.01806-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of past retroviral infections. Fossil records of class II retroviruses have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Through genomic mining of all available amphibian genomes, we identified, for the first time, class II ERVs in amphibians. The class II ERVs were found only in Gymnophiona (caecilians) and not in the genomes of the other amphibian orders, Anura (frogs and toads) and Caudata (salamanders and newts), which are phylogenetically closely related. Therefore, the ERV endogenization occurred after the split of Gymnophiona, Anura, and Caudata (323 million years ago). Investigation of phylogenetic relationship and genomic structure revealed that the ERVs may originate from alpha- or betaretroviruses. We offer evidence that class II ERVs infiltrated amphibian genomes recently and may still have infectious members. Remarkably, certain amphibian class II ERVs can be expressed in diverse tissues. This discovery closes the major gap in the retroviral fossil record of class II ERVs and provides important insights into the evolution of class II ERVs in vertebrates.IMPORTANCE Class II retroviruses, largely distributed among mammals and birds, are of particular importance for medicine and economics. Class II ERVs have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Here, for the first time, we discovered class II ERVs in amphibians. We also revealed that the ERVs may originate from alpha- or betaretroviruses. We revealed that class II ERVs were integrated into amphibian genomes recently and certain amphibian class II ERVs can be expressed in diverse tissues. Our discovery closes the major gap in the retroviral fossil record of class II ERVs, and also indicates that amphibians may be still infected by class II retroviruses.
Collapse
|
35
|
Casseb J, Janini LM, Barros Kanzaki LI, Lopes LR, Paiva AM. Is the human T-cell lymphotropic virus type 2 in the process of endogenization into the human genome? J Virus Erad 2020; 6:100009. [PMID: 33294211 PMCID: PMC7695812 DOI: 10.1016/j.jve.2020.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Human T-cell lymphotropic virus type 2 (HTLV-2) infection has been shown to be endemic among intravenous drug users in parts of North America, Europe and Southeast Asia and in a number of Amerindian populations. Despite a 65% genetic similarity and common host humoral response, the human T-cell lymphotropic viruses type 1 (HTLV-1) and 2 display different mechanisms of host interaction and capacity for disease development. While HTLV-1 pathogenicity is well documented, HTLV-2 etiology in human disease is not clearly established. From an evolutionary point of view, its introduction and integration into the germ cell chromosomes of host species could be considered as the final stage of parasitism and evasion from host immunity. The extraordinary abundance of endogenous viral sequences in all vertebrate species genomes, including the hominid family, provides evidence of this invasion. Some of these gene sequences still retain viral characteristics and the ability to replicate and hence are potentially able to elicit responses from the innate and adaptive host immunity, which could result in beneficial or pathogenic effects. Taken together, this data may indicate that HTLV-2 is more likely to progress towards endogenization as has happened to the human endogenous retroviruses millions of years ago. Thus, this intimate association (HTLV-2/human genome) may provide protection from the immune system with better adaptation and low pathogenicity.
Collapse
Affiliation(s)
- Jorge Casseb
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil
| | - Luiz Mario Janini
- Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo - Unifesp, Sao Paulo, SP, Brazil
| | - Luis Isamu Barros Kanzaki
- Laboratory of Bioprospection, Department of Pharmacy, Faculty of Health. Sciences, University of Brasilia, DF, Brazil
| | - Luciano Rodrigo Lopes
- Bioinformatics and Biomedical Data Science Division, Health Informatics Department, Federal University of Sao Paulo - Unifesp, São Paulo, SP, Brazil
| | - Arthur Maia Paiva
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil.,University Hospital Alberto Antunes / Federal University of Alagoas, Brazil
| |
Collapse
|
36
|
High levels of LINE-1 transposable elements expressed in Kaposi's sarcoma-associated herpesvirus-related primary effusion lymphoma. Oncogene 2020; 40:536-550. [PMID: 33188297 DOI: 10.1038/s41388-020-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) is a gamma herpesvirus associated with several human malignancies. Transposable elements (TEs) are ubiquitous in eukaryotic genomes, occupying about 45% of the human genome. TEs have been linked with a variety of disorders and malignancies, though the precise nature of their contribution to many of them has yet to be elucidated. Global transcriptome analysis for differentially expressed TEs in KSHV-associated primary effusion lymphoma (PEL) cells (BCBL1 and BC3) revealed large number of differentially expressed TEs. These differentially expressed TEs include LTR transposons, long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs). Further analysis of LINE-1 (L1) elements revealed expression upregulation, hypo-methylation, and transition into open chromatin in PEL. In agreement with high L1 expression, PEL cells express ORF1 protein and possess high reverse transcriptase (RT)-activity. Interestingly, inhibition of this RT-activity suppressed PEL cell growth. Collectively, we identified high expression of TEs, and specifically of L1 as a critical component in the proliferation of PEL cells. This observation is relevant for the treatment of KSHV-associated malignancies since they often develop in AIDS patients that are treated with RT inhibitors with potent inhibition for both HIV and L1 RT activity.
Collapse
|
37
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|
38
|
Abstract
Genetic alleles that contribute to enhanced susceptibility or resistance to viral infections and virally induced diseases have often been first identified in mice before humans due to the significant advantages of the murine system for genetic studies. Herein we review multiple discoveries that have revealed significant insights into virus-host interactions, all made using genetic mapping tools in mice. Factors that have been identified include innate and adaptive immunity genes that contribute to host defense against pathogenic viruses such as herpes viruses, flaviviruses, retroviruses, and coronaviruses. Understanding the genetic mechanisms that affect infectious disease outcomes will aid the development of personalized treatment and preventive strategies for pathogenic infections.
Collapse
Affiliation(s)
- Melissa Kane
- Center for Microbial Pathogenesis, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Tatyana V Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
39
|
Skirmuntt EC, Escalera-Zamudio M, Teeling EC, Smith A, Katzourakis A. The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annu Rev Virol 2020; 7:103-119. [PMID: 32432980 DOI: 10.1146/annurev-virology-092818-015613] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a small genome size, bats have comparable diversity of retroviral and non-retroviral endogenous sequences to other mammals. These include Class I and Class II retroviral sequences, foamy viruses, and deltaretroviruses, as well as filovirus, bornavirus, and parvovirus endogenous viral elements. Some of these endogenous viruses are sufficiently preserved in bat genomes to be expressed, with potential effects for host biology. It is clear that the bat immune system differs when compared with other mammals, yet the role that virus-derived endogenous elements may have played in the evolution of bat immunity is poorly understood. In this review, we discuss some of the bat-specific immune mechanisms that may have resulted in a virus-tolerant phenotype and link these to the long-standing virus-host coevolution that may have allowed a large diversity of endogenous retroviruses and other endogenous viral elements to colonize bat genomes. We also consider the possible effects of endogenization in the evolution of the bat immune system.
Collapse
Affiliation(s)
- Emilia C Skirmuntt
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| | | | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Adrian Smith
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| |
Collapse
|
40
|
Chen Y, Wei X, Zhang G, Holmes EC, Cui J. Identification and evolution of avian endogenous foamy viruses. Virus Evol 2019; 5:vez049. [PMID: 31777663 PMCID: PMC6875641 DOI: 10.1093/ve/vez049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A history of long-term co-divergence means that foamy viruses (family Retroviridae) provide an ideal framework to understanding virus-host evolution over extended time periods. Endogenous foamy viruses (EndFVs) are rare, and to date have only been described in a limited number of mammals, amphibians, reptiles and fish genomes. By screening 414 avian genomes we identified EndFVs in two bird species: the Maguari Stork (Ciconia maguari) and the Oriental Stork (Ciconia boyciana). Analyses of phylogenetic relationships, genome structures and flanking sequences revealed a single origin of EndFVs in Ciconia species. In addition, the marked incongruence between the virus and host phylogenies suggested that this integration event occurred independently in birds. In sum, by providing evidence that birds can be infected with foamy viruses, we fill the last major gap in the taxonomic distribution of foamy viruses and their animal hosts.
Collapse
Affiliation(s)
- Yicong Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Wei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jie Cui
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
The piRNA Response to Retroviral Invasion of the Koala Genome. Cell 2019; 179:632-643.e12. [PMID: 31607510 DOI: 10.1016/j.cell.2019.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this "innate" piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity.
Collapse
|
42
|
Endogenous Retrovirus-Derived Long Noncoding RNA Enhances Innate Immune Responses via Derepressing RELA Expression. mBio 2019; 10:mBio.00937-19. [PMID: 31363026 PMCID: PMC6667616 DOI: 10.1128/mbio.00937-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endogenous retroviruses are transposable genetic elements comprising 8% to 10% of the human and mouse genomes. Although most ERVs have been inactivated due to deleterious mutations, some are still transcribed. However, the biological functions of transcribed ERVs are largely unknown. Here, we identified a full-length ERV-derived lncRNA, designated lnc-EPAV, as a positive regulator of host innate immune responses. We found that silencing lnc-EPAV impaired virus-induced cytokine production, resulting in increased viral replication in cells. The lnc-EPAV-deficient mice exhibited enhanced susceptibility to viral challenge. We also found that lnc-EPAV regulated expression of RELA, an NF-κB subunit that plays a critical role in antiviral responses. ERV-derived lncRNA coordinated with a transcription repressor, SFPQ, to control Rela transcription. Our report provides new insights into the previously unrecognized immune gene regulatory mechanism of ERV-derived lncRNAs. Endogenous retroviruses (ERVs) are transposable elements that cause host genome instability and usually play deleterious roles in disease such as tumorigenesis. Recent advances also suggest that this “enemy within” may encode a viral mimic to induce antiviral immune responses through viral sensors. Here, through whole-genome transcriptome analysis with RNA sequencing (RNA-Seq), we discovered that a full-length ERV-derived long noncoding RNA (lncRNA), designated lnc-EPAV (ERV-derived lncRNA positively regulates antiviral responses), was a positive regulator of NF-κB signaling. lnc-EPAV expression was rapidly upregulated by viral RNA mimics or RNA viruses to facilitate the expression of RELA, an NF-κB subunit that plays a crucial role in antiviral responses. Transcriptome analysis of lnc-EPAV-silenced macrophages showed that lnc-EPAV was critical for RELA target gene expression and innate immune responses. Consistently, lnc-EPAV-deficient mice exhibited reduced expression of type I interferons (IFNs) and, consequently, increased viral loads and mortality following lethal RNA virus infection. Mechanistically, lnc-EPAV promoted expression of RELA by competitively binding to and displacing SFPQ, a transcriptional repressor of Rela. Altogether, our work demonstrates an alternative mechanism by which ERVs regulate antiviral immune responses.
Collapse
|
43
|
Convergent Co-option of the Retroviral gag Gene during the Early Evolution of Mammals. J Virol 2019; 93:JVI.00542-19. [PMID: 31068420 DOI: 10.1128/jvi.00542-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
Endogenous retroviruses, records of past retroviral infections, are ubiquitous in vertebrate genomes. On occasion, vertebrate hosts have co-opted retroviral genes for their own biological functions. Here, we perform a phylogenomic survey of retroviral gag gene homologs within vertebrate genomes and identify two ancient co-opted retroviral gag genes, designated wucaishi1 (wcs1) and wucaishi2 (wcs2), in mammals. Conserved synteny and evolutionary analyses suggest that the wcs1 and wcs2 co-options occurred before the origin of modern placental mammals (∼100 million years ago) and before the origin of modern marsupials (∼80 million years ago), respectively. We found that the wcs genes were lost or pseudogenized multiple times during the evolutionary course of mammals. While the wcs1 gene is mainly subject to negative selection in placental mammals (except in Perissodactyla), the wcs2 gene underwent positive selection in marsupials. Moreover, analyses of transcriptome-sequencing (RNA-seq) data suggest that the wcs1 and the wcs2 genes are expressed in a wide range of tissues. The convergent wcs co-option in mammals implies the retroviral gag gene might have been repurposed more frequently than previously thought.IMPORTANCE Retroviruses occasionally can infect host germ lines, forming endogenous retroviruses. Vertebrates, in turn, recruited retroviral genes for their own biological functions, a process formally known as co-option or exaptation. To date, co-opted retroviral gag genes have rarely been reported. In this study, we identified two co-opted retroviral gag genes, designated wucaishi1 (wcs1) and wucaishi2 (wcs2), in mammals. The co-option of wcs1 and wcs2 occurred before the origin of modern placentals and before the origin of modern marsupials, respectively. Our study indicates that retroviral gag gene co-option might have occurred more frequently than previously thought during the evolutionary course of vertebrates.
Collapse
|
44
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
45
|
Nataf S, Uriagereka J, Benitez-Burraco A. The Promoter Regions of Intellectual Disability-Associated Genes Are Uniquely Enriched in LTR Sequences of the MER41 Primate-Specific Endogenous Retrovirus: An Evolutionary Connection Between Immunity and Cognition. Front Genet 2019; 10:321. [PMID: 31031802 PMCID: PMC6473030 DOI: 10.3389/fgene.2019.00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Social behavior and neuronal connectivity in rodents have been shown to be shaped by the prototypical T lymphocyte-derived pro-inflammatory cytokine Interferon-gamma (IFNγ). It has also been demonstrated that STAT1 (Signal Transducer And Activator Of Transcription 1), a transcription factor (TF) crucially involved in the IFNγ pathway, binds consensus sequences that, in humans, are located with a high frequency in the LTRs (Long Terminal Repeats) of the MER41 family of primate-specific HERVs (Human Endogenous Retroviruses). However, the putative role of an IFNγ/STAT1/MER41 pathway in human cognition and/or behavior is still poorly documented. Here, we present evidence that the promoter regions of intellectual disability-associated genes are uniquely enriched in LTR sequences of the MER41 HERVs. This observation is specific to MER41 among more than 130 HERVs examined. Moreover, we have not found such a significant enrichment in the promoter regions of genes that associate with autism spectrum disorder (ASD) or schizophrenia. Interestingly, ID-associated genes exhibit promoter-localized MER41 LTRs that harbor TF binding sites (TFBSs) for not only STAT1 but also other immune TFs such as, in particular, NFKB1 (Nuclear Factor Kappa B Subunit 1) and STAT3 (Signal Transducer And Activator Of Transcription 3). Moreover, IL-6 (Interleukin 6) rather than IFNγ, is identified as the main candidate cytokine regulating such an immune/MER41/cognition pathway. Of note, differences between humans and chimpanzees are observed regarding the insertion sites of MER41 LTRs in the promoter regions of ID-associated genes. Finally, a survey of the human proteome has allowed us to map a protein-protein network which links the identified immune/MER41/cognition pathway to FOXP2 (Forkhead Box P2), a key TF involved in the emergence of human speech. Our work suggests that together with the evolution of immune genes, the stepped self-domestication of MER41 in the genomes of primates could have contributed to cognitive evolution. We further propose that non-inherited forms of ID might result from the untimely or quantitatively inappropriate expression of immune signals, notably IL-6, that putatively regulate cognition-associated genes via promoter-localized MER41 LTRs.
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Lyon, France
- Claude Bernard University Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures and Cultures, University of Maryland, College Park, MD, United States
| | - Antonio Benitez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
46
|
Wei X, Chen Y, Duan G, Holmes EC, Cui J. A reptilian endogenous foamy virus sheds light on the early evolution of retroviruses. Virus Evol 2019; 5:vez001. [PMID: 30838130 PMCID: PMC6393741 DOI: 10.1093/ve/vez001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) represent host genomic 'fossils' of ancient viruses. Foamy viruses, including those that form endogenous copies, provide strong evidence for virus-host co-divergence across the vertebrate phylogeny. Endogenous foamy viruses (EFVs) have previously been discovered in mammals, amphibians, and fish. Here we report a novel endogenous foamy virus, termed ERV-Spuma-Spu, in genome of the tuatara (Sphenodon punctatus), an endangered reptile species endemic to New Zealand. Phylogenetic analyses revealed that foamy viruses have likely co-diverged with their hosts over many millions of years. The discovery of ERV-Spuma-Spu fills a major gap in the fossil record of foamy viruses and provides important insights into the early evolution of retroviruses.
Collapse
Affiliation(s)
- Xiaoman Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yicong Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangqian Duan
- University of Chinese Academy of Sciences, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jie Cui
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
47
|
Whole-Genome Analysis of Domestic Chicken Selection Lines Suggests Segregating Variation in ERV Makeups. Genes (Basel) 2019; 10:genes10020162. [PMID: 30791656 PMCID: PMC6410134 DOI: 10.3390/genes10020162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/04/2023] Open
Abstract
Retroviruses have invaded vertebrate hosts for millions of years and left an extensive endogenous retrovirus (ERV) record in the host genomes, which provides a remarkable source for an evolutionary perspective on retrovirus-host associations. Here we identified ERV variation across whole-genomes from two chicken lines, derived from a common founder population subjected to 50 years of bi-directional selection on body weight, and a distantly related domestic chicken line as a comparison outgroup. Candidate ERV loci, where at least one of the chicken lines indicated distinct differences, were analyzed for adjacent host genomic landscapes, selective sweeps, and compared by sequence associations to reference assembly ERVs in phylogenetic analyses. Current data does not support selection acting on specific ERV loci in the domestic chicken lines, as determined by presence inside selective sweeps or composition of adjacent host genes. The varying ERV records among the domestic chicken lines associated broadly across the assembly ERV phylogeny, indicating that the observed insertion differences result from pre-existing and segregating ERV loci in the host populations. Thus, data suggest that the observed differences between the host lineages are best explained by substantial standing ERV variation within host populations, and indicates that even truncated, presumably old, ERVs have not yet become fixed in the host population.
Collapse
|
48
|
Fu B, Ma H, Liu D. Endogenous Retroviruses Function as Gene Expression Regulatory Elements During Mammalian Pre-implantation Embryo Development. Int J Mol Sci 2019; 20:ijms20030790. [PMID: 30759824 PMCID: PMC6387303 DOI: 10.3390/ijms20030790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/13/2023] Open
Abstract
Pre-implantation embryo development encompasses several key developmental events, especially the activation of zygotic genome activation (ZGA)-related genes. Endogenous retroviruses (ERVs), which are regarded as “deleterious genomic parasites”, were previously considered to be “junk DNA”. However, it is now known that ERVs, with limited conservatism across species, mediate conserved developmental processes (e.g., ZGA). Transcriptional activation of ERVs occurs during the transition from maternal control to zygotic genome control, signifying ZGA. ERVs are versatile participants in rewiring gene expression networks during epigenetic reprogramming. Particularly, a subtle balance exists between ERV activation and ERV repression in host–virus interplay, which leads to stage-specific ERV expression during pre-implantation embryo development. A large portion of somatic cell nuclear transfer (SCNT) embryos display developmental arrest and ZGA failure during pre-implantation embryo development. Furthermore, because of the close relationship between ERV activation and ZGA, exploring the regulatory mechanism underlying ERV activation may also shed more light on the enigma of SCNT embryo development in model animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| |
Collapse
|
49
|
Nimble and Ready to Mingle: Transposon Outbursts of Early Development. Trends Genet 2018; 34:806-820. [DOI: 10.1016/j.tig.2018.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
50
|
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, Stoye J, Tristem M, Johnson WE. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 2018; 15:59. [PMID: 30153831 PMCID: PMC6114882 DOI: 10.1186/s12977-018-0442-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.
Collapse
Affiliation(s)
- Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697, USA
| | - Thierry Heidmann
- Department of Molecular Physiology and Pathology of Infectious and Endogenous Retroviruses, CNRS UMR 9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jonathan Stoye
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, 02467, USA.
| |
Collapse
|