1
|
Wan J, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Sun D, He Y, Zhao X, Wu Y, Zhang S, Huang J, Wu Z, Yu Y, Zhang L, Zhu D, Jia R, Liu M, Chen S. Identification and subcellular localization of proteins that interact with Duck plague virus pUL14 in infected host cells. Poult Sci 2024; 104:104649. [PMID: 39675104 PMCID: PMC11714410 DOI: 10.1016/j.psj.2024.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Duck plague (DP), which is caused by duck plague virus (DPV), is an infectious disease that severely harms the waterfowl breeding industry. The UL14 protein (pUL14) is a tegument protein encoded by the UL14 gene, which is located in the unique long (UL) region of the DPV genome. DPV pUL14 plays a crucial role in viral replication, likely by interacting with host and viral proteins that have yet to be identified. In this study, glutathione-S-transferase (GST) pull-down combined with liquid chromatography-mass spectrometry (LC-MS/MS) was employed to identify pUL14-interacting proteins in DPV-infected cells. A total of 281 host proteins and 58 viral proteins that interacted with pUL14 were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the identified proteins could be assigned to several different subcellular locations and functional classes. These proteins are associated mainly with the regulation of biological processes, RNA biosynthetic processes, and nuclear export. In addition, four viral proteins of interest, the α-gene transducing factor (α-TIF) pUL48, the nuclear egress complex (NEC) proteins pUL31/34, and pUL51, a protein involved in secondary envelopment, were validated by coimmunoprecipitation (co-IP) to interact with DPV pUL14. Additionally, the nuclear export signal (NES) was identified in a leucine-rich region at aa 77-87 (77VQTKIEEQLAI87) of DPV pUL14. The interactome data between DPV pUL14 and host/viral proteins contribute to understanding the role of DPV pUL14 in the replication of DPV.
Collapse
Affiliation(s)
- Jieyu Wan
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou 225100, PR China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - YanLing Yu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China
| | - Ling Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
2
|
Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Jia R, Chen S, Liu M, Zhu D. Functions of the UL51 protein during the herpesvirus life cycle. Front Microbiol 2024; 15:1457582. [PMID: 39252835 PMCID: PMC11381400 DOI: 10.3389/fmicb.2024.1457582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The herpesvirus UL51 protein is a multifunctional tegument protein involved in the regulation of multiple aspects of the viral life cycle. This article reviews the biological characteristics of the UL51 protein and its functions in herpesviruses, including participating in the maintenance of the viral assembly complex (cVAC) during viral assembly, affecting the production of mature viral particles and promoting primary and secondary envelopment, as well as its positive impact on viral cell-to-cell spread (CCS) through interactions with multiple viral proteins and its key role in the proliferation and pathogenicity of the virus in the later stage of infection. This paper discusses how the UL51 protein participates in the life cycle of herpesviruses and provides new ideas for further research on UL51 protein function.
Collapse
Affiliation(s)
- Xiaolan Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Chen H, Lye MF, Gorgulla C, Ficarro SB, Cuny GD, Scott DA, Wu F, Rothlauf PW, Wang X, Fernandez R, Pesola JM, Draga S, Marto JA, Hogle JM, Arthanari H, Coen DM. A small molecule exerts selective antiviral activity by targeting the human cytomegalovirus nuclear egress complex. PLoS Pathog 2023; 19:e1011781. [PMID: 37976321 PMCID: PMC10691697 DOI: 10.1371/journal.ppat.1011781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/01/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.
Collapse
Affiliation(s)
- Han Chen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming F. Lye
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Structural Biology, St. Jude’s Children’s Research Hospital, Memphis Tennessee United States of America
| | - Scott B. Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States of America
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Medicinal Chemistry Core, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Fan Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul W. Rothlauf
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoou Wang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosio Fernandez
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sorin Draga
- Virtual Discovery, Inc. Chestnut Hill, Massachusetts United States of America
- Non-Governmental Research Organization Biologic, Bucharest Romania
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Klupp BG, Mettenleiter TC. The Knowns and Unknowns of Herpesvirus Nuclear Egress. Annu Rev Virol 2023; 10:305-323. [PMID: 37040797 DOI: 10.1146/annurev-virology-111821-105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
7
|
Davidson KA, Nakamura M, Verboon JM, Parkhurst SM. Centralspindlin proteins Pavarotti and Tumbleweed along with WASH regulate nuclear envelope budding. J Cell Biol 2023; 222:e202211074. [PMID: 37163553 PMCID: PMC10174194 DOI: 10.1083/jcb.202211074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Nuclear envelope (NE) budding is a nuclear pore-independent nuclear export pathway, analogous to the egress of herpesviruses, and required for protein quality control, synapse development, and mitochondrial integrity. The physical formation of NE buds is dependent on the Wiskott-Aldrich Syndrome protein, Wash, its regulatory complex (SHRC), and Arp2/3, and requires Wash's actin nucleation activity. However, the machinery governing cargo recruitment and organization within the NE bud remains unknown. Here, we identify Pavarotti (Pav) and Tumbleweed (Tum) as new molecular components of NE budding. Pav and Tum interact directly with Wash and define a second nuclear Wash-containing complex required for NE budding. Interestingly, we find that the actin-bundling activity of Pav is required, suggesting a structural role in the physical and/or organizational aspects of NE buds. Thus, Pav and Tum are providing exciting new entry points into the physical machineries of this alternative nuclear export pathway for large cargos during cell differentiation and development.
Collapse
Affiliation(s)
- Kerri A. Davidson
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
8
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
10
|
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses 2023; 15:v15030768. [PMID: 36992477 PMCID: PMC10051318 DOI: 10.3390/v15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions.
Collapse
|
11
|
Benedyk TH, Connor V, Caroe ER, Shamin M, Svergun DI, Deane JE, Jeffries CM, Crump CM, Graham SC. Herpes simplex virus 1 protein pUL21 alters ceramide metabolism by activating the interorganelle transport protein CERT. J Biol Chem 2022; 298:102589. [PMID: 36243114 PMCID: PMC9668737 DOI: 10.1016/j.jbc.2022.102589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.
Collapse
Affiliation(s)
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Eve R Caroe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Thorsen MK, Draganova EB, Heldwein EE. The nuclear egress complex of Epstein-Barr virus buds membranes through an oligomerization-driven mechanism. PLoS Pathog 2022; 18:e1010623. [PMID: 35802751 PMCID: PMC9299292 DOI: 10.1371/journal.ppat.1010623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/20/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
During replication, herpesviral capsids are translocated from the nucleus into the cytoplasm by an unusual mechanism, termed nuclear egress, that involves capsid budding at the inner nuclear membrane. This process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid. Although the NEC is essential for capsid nuclear egress across all three subfamilies of the Herpesviridae, most studies to date have focused on the NEC homologs from alpha- and beta- but not gammaherpesviruses. Here, we report the crystal structure of the NEC from Epstein-Barr virus (EBV), a prototypical gammaherpesvirus. The structure resembles known structures of NEC homologs yet is conformationally dynamic. We also show that purified, recombinant EBV NEC buds synthetic membranes in vitro and forms membrane-bound coats of unknown geometry. However, unlike other NEC homologs, EBV NEC forms dimers in the crystals instead of hexamers. The dimeric interfaces observed in the EBV NEC crystals are similar to the hexameric interfaces observed in other NEC homologs. Moreover, mutations engineered to disrupt the dimeric interface reduce budding. Putting together these data, we propose that EBV NEC-mediated budding is driven by oligomerization into membrane-bound coats. Herpesviruses, which infect most of the world’s population for life, translocate their capsids from the nucleus, where they are formed, into the cytoplasm, where they mature into infectious virions, by an unusual mechanism, termed nuclear egress. During nuclear budding, an early step in this process, the inner nuclear membrane is deformed around the capsid by the complex of two viral proteins termed the nuclear egress complex (NEC). The NEC is conserved across all three subfamilies of Herpesviruses and essential for nuclear egress. However, most studies to date have focused on the NEC homologs from alpha- and betaherpesviruses while less is known about the NEC from gammaherpesviruses. Here, we determined the crystal structure of the NEC from Epstein-Barr virus (EBV), a prototypical gammaherpesvirus, and investigated its membrane budding properties in vitro. Our data show that the ability to vesiculate membranes by forming membrane-bound coats and the structure are conserved across the NEC homologs from all three subfamilies. However, the EBV NEC may employ a distinct membrane-budding mechanism due to its structural flexibility and the ability to form coats of different geometry.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Nahas KL, Connor V, Scherer KM, Kaminski CF, Harkiolaki M, Crump CM, Graham SC. Near-native state imaging by cryo-soft-X-ray tomography reveals remodelling of multiple cellular organelles during HSV-1 infection. PLoS Pathog 2022; 18:e1010629. [PMID: 35797345 PMCID: PMC9262197 DOI: 10.1371/journal.ppat.1010629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles.
Collapse
Affiliation(s)
- Kamal L. Nahas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Beamline B24, Diamond Light Source, Didcot, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
‘Come Together’—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises both Essential and Accessory Functions. Cells 2022; 11:cells11111837. [PMID: 35681532 PMCID: PMC9180862 DOI: 10.3390/cells11111837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocytoplasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway mediating the transition across the two leaflets of the nuclear membrane. The entire process involves a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cellular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus far, the function and characteristics of herpesviral core NECs have been well studied and point to the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation and egress. This review provides closer insight into (i) sequence and structure conservation of herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral drug targets. Finally, this article provides new insights into the conservation, function and antiviral targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove proteins during the assembly, egress and maturation of infectious virus.
Collapse
|
15
|
Intranuclear HSV-1 DNA ejection induces major mechanical transformations suggesting mechanoprotection of nucleus integrity. Proc Natl Acad Sci U S A 2022; 119:2114121119. [PMID: 35197285 PMCID: PMC8892323 DOI: 10.1073/pnas.2114121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Maintaining nuclear integrity is essential to cell survival when exposed to mechanical stress. Herpesviruses, like most DNA and some RNA viruses, put strain on the nuclear envelope as hundreds of viral DNA genomes replicate and viral capsids assemble. It remained unknown, however, how nuclear mechanics is affected at the initial stage of herpesvirus infection-immediately after viral genomes are ejected into the nuclear space-and how nucleus integrity is maintained despite an increased strain on the nuclear envelope. With an atomic force microscopy force volume mapping approach on cell-free reconstituted nuclei with docked herpes simplex type 1 (HSV-1) capsids, we explored the mechanical response of the nuclear lamina and the chromatin to intranuclear HSV-1 DNA ejection into an intact nucleus. We discovered that chromatin stiffness, measured as Young's modulus, is increased by ∼14 times, while nuclear lamina underwent softening. Those transformations could be associated with a mechanism of mechanoprotection of nucleus integrity facilitating HSV-1 viral genome replication. Indeed, stiffening of chromatin, which is tethered to the lamina meshwork, helps to maintain nuclear morphology. At the same time, increased lamina elasticity, reflected by nucleus softening, acts as a "shock absorber," dissipating the internal mechanical stress on the nuclear membrane (located on top of the lamina wall) and preventing its rupture.
Collapse
|
16
|
Human Cytomegalovirus Nuclear Egress Complex Subunit, UL53, Associates with Capsids and Myosin Va, but Is Not Important for Capsid Localization towards the Nuclear Periphery. Viruses 2022; 14:v14030479. [PMID: 35336886 PMCID: PMC8949324 DOI: 10.3390/v14030479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
After herpesviruses encapsidate their genomes in replication compartments (RCs) within the nuclear interior, capsids migrate to the inner nuclear membrane (INM) for nuclear egress. For human cytomegalovirus (HCMV), capsid migration depends at least in part on nuclear myosin Va. It has been reported for certain herpesviruses that the nucleoplasmic subunit of the viral nuclear egress complex (NEC) is important for this migration. To address whether this is true for HCMV, we used mass spectrometry and multiple other methods to investigate associations among the HCMV NEC nucleoplasmic subunit, UL53, myosin Va, major capsid protein, and/or capsids. We also generated complementing cells to derive and test HCMV mutants null for UL53 or the INM NEC subunit, UL50, for their importance for these associations and, using electron microscopy, for intranuclear distribution of capsids. We found modest associations among the proteins tested, which were enhanced in the absence of UL50. However, we found no role for UL53 in the interactions of myosin Va with capsids or the percentage of capsids outside RC-like inclusions in the nucleus. Thus, UL53 associates somewhat with myosin Va and capsids, but, contrary to reports regarding its homologs in other herpesviruses, is not important for migration of capsids towards the INM.
Collapse
|
17
|
An ESCRT/VPS4 envelopment trap to examine the mechanism of alphaherpesvirus assembly and transport in neurons. J Virol 2022; 96:e0217821. [PMID: 35045266 DOI: 10.1128/jvi.02178-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and egress of alphaherpesviruses, including Herpes simplex virus type 1 (HSV-1) and Pseudorabies virus (PRV), within neurons is poorly understood. A key unresolved question is the structure of the viral particle that moves by anterograde transport along the axon, and two alternative mechanisms have been described. In the "Married" model capsids acquire their envelopes in the cell body, then traffic along axons as enveloped virions within a bounding organelle. In the "Separate" model non-enveloped capsids travel from the cell body into and along the axon, eventually encountering their envelopment organelles at a distal site such as the nerve cell terminal. Here we describe an "envelopment trap" to test these models using the dominant negative terminal ESCRT component VPS4-EQ. GFP-tagged VPS4-EQ was used to arrest HSV-1 or PRV capsid envelopment, inhibit downstream trafficking and GFP-label envelopment intermediates. We found that GFP-VPS4-EQ inhibited trafficking of HSV-1 capsids into and along the neurites and axons of mouse CAD cells and rat embryonic primary cortical neurons, consistent with egress via the married pathway. In contrast, transport of HSV-1 capsids was unaffected in the neurites of human SK-N-SH neuroblastoma cells, consistent with the separate mechanism. Unexpectedly, PRV (generally thought to utilize the married pathway) also appeared to employ the separate mechanism in SK-N-SH cells. We propose that apparent differences in the methods of HSV-1 and PRV egress are more likely a reflection of the host neuron in which transport is studied, rather than true biological differences between the viruses themselves. IMPORTANCE Alphaherpesviruses, including Herpes simplex virus type 1 (HSV-1) and Pseudorabies virus (PRV), are pathogens of the nervous system. They replicate in the nerve cell body then travel great distances along axons to reach nerve termini and spread to adjacent epithelial cells, however key aspects of how these viruses travel along axons remain controversial. Here we test two alternative mechanisms for transport, the married and separate models, by blocking envelope assembly, a critical step in viral egress. When we arrest formation of the viral envelope using a mutated component of the cellular ESCRT apparatus we find that entry of viral particles into axons is blocked in some types of neuron, but not others. This approach allows us to determine whether envelope assembly occurs prior to entry of viruses into axons, or afterwards, and thus to distinguish between the alternative models for viral transport.
Collapse
|
18
|
Schweininger J, Kriegel M, Häge S, Conrad M, Alkhashrom S, Lösing J, Weiler S, Tillmanns J, Egerer-Sieber C, Decker A, Lenac Roviš T, Eichler J, Sticht H, Marschall M, Muller YA. The crystal structure of the varicella-zoster Orf24-Orf27 nuclear egress complex spotlights multiple determinants of herpesvirus subfamily specificity. J Biol Chem 2022; 298:101625. [PMID: 35074430 PMCID: PMC8867122 DOI: 10.1016/j.jbc.2022.101625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, β-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein–Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in β- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.
Collapse
|
19
|
Reconstituted virus–nucleus system reveals mechanics of herpesvirus genome uncoating. QRB DISCOVERY 2021. [PMID: 37529281 PMCID: PMC10392623 DOI: 10.1017/qrd.2021.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
The viral replication cycle is controlled by information transduced through both molecular and mechanical interactions. Viral infection mechanics remains largely unexplored, however, due to the complexity of cellular mechanical responses over the course of infection as well as a limited ability to isolate and probe these responses. Here, we develop an experimental system consisting of herpes simplex virus type 1 (HSV-1) capsids bound to isolated and reconstituted cell nuclei, which allows direct probing of capsid–nucleus mechanics with atomic force microscopy (AFM). Major mechanical transformations occur in the host nucleus when pressurised viral DNA ejects from HSV-1 capsids docked at the nuclear pore complexes (NPCs) on the nuclear membrane. This leads to structural rearrangement of the host chromosome, affecting its compaction. This in turn regulates viral genome replication and transcription dynamics as well as the decision between a lytic or latent course of infection. AFM probing of our reconstituted capsid–nucleus system provides high-resolution topographical imaging of viral capsid docking at the NPCs as well as force volume mapping of the infected nucleus surface, reflecting mechanical transformations associated with chromatin compaction and stiffness of nuclear lamina (to which chromatin is tethered). This experimental system provides a novel platform for investigation of virus–host interaction mechanics during viral genome penetration into the nucleus.
Collapse
|
20
|
Role of HSV-1 Capsid Vertex-Specific Component (CVSC) and Viral Terminal DNA in Capsid Docking at the Nuclear Pore. Viruses 2021; 13:v13122515. [PMID: 34960783 PMCID: PMC8704396 DOI: 10.3390/v13122515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/18/2023] Open
Abstract
Penetration of the viral genome into a host cell nucleus is critical for initiation of viral replication for most DNA viruses and a few RNA viruses. For herpesviruses, viral DNA ejection into a nucleus occurs when the capsid docks at the nuclear pore complex (NPC) basket with the correct orientation of the unique capsid portal vertex. It has been shown that capsid vertex-specific component (CVSC) proteins, which are located at the twelve vertices of the human herpes simplex virus type 1 (HSV-1) capsid, interact with nucleoporins (Nups) of NPCs. However, it remained unclear whether CVSC proteins determine capsid-to-NPC binding. Furthermore, it has been speculated that terminal DNA adjacent to the portal complex of DNA-filled C-capsids forms a structural motif with the portal cap (which retains DNA in the capsid), which mediates capsid-NPC binding. We demonstrate that terminal viral DNA adjacent to the portal proteins does not present a structural element required for capsid-NPC binding. Our data also show that level of CVSC proteins on the HSV-1 capsid affects level of NPC binding. To elucidate the capsid-binding process, we use an isolated, reconstituted cell nucleus system that recapitulates capsid-nucleus binding in vivo without interference from trafficking kinetics of capsids moving toward the nucleus. This allows binding of non-infectious capsid maturation intermediates with varying levels of vertex-specific components. This experimental system provides a platform for investigating virus-host interaction at the nuclear membrane.
Collapse
|
21
|
Mechanical Capsid Maturation Facilitates the Resolution of Conflicting Requirements for Herpesvirus Assembly. J Virol 2021; 96:e0183121. [PMID: 34878808 PMCID: PMC8865421 DOI: 10.1128/jvi.01831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
Collapse
|
22
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
23
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Benedyk TH, Muenzner J, Connor V, Han Y, Brown K, Wijesinghe KJ, Zhuang Y, Colaco S, Stoll GA, Tutt OS, Svobodova S, Svergun DI, Bryant NA, Deane JE, Firth AE, Jeffries CM, Crump CM, Graham SC. pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. PLoS Pathog 2021; 17:e1009824. [PMID: 34398933 PMCID: PMC8389370 DOI: 10.1371/journal.ppat.1009824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/26/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication. Herpes simplex virus (HSV)-1 is a highly prevalent human virus that causes life-long infections. While the most common symptom of HSV-1 infection is orofacial lesions (‘cold sores’), HSV-1 infection can also cause fatal encephalitis and it is a leading cause of infectious blindness. The HSV-1 genome encodes many proteins that dramatically remodel the environment of infected cells to promote virus replication and spread, including enzymes that add phosphate groups (kinases) to cellular and viral proteins in order to fine-tune their function. Here we identify that pUL21 is an HSV-1 protein that binds directly to protein phosphatase 1 (PP1), a highly abundant cellular enzyme that removes phosphate groups from proteins. We demonstrate that pUL21 stimulates the specific dephosphorylation of both cellular and viral proteins, including a component of the viral nuclear egress complex that is essential for efficient assembly of new HSV-1 particles. Furthermore, our in vitro evolution experiments demonstrate that pUL21 antagonises the activity of the HSV-1 kinase pUS3. Our work highlights the precise control that herpesviruses exert upon the protein environment within infected cells, and specifically the careful balance of kinase and phosphatase activity that HSV-1 requires for optimal replication and spread.
Collapse
Affiliation(s)
- Tomasz H. Benedyk
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Julia Muenzner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yue Han
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Yunhui Zhuang
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Susanna Colaco
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Guido A. Stoll
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Owen S. Tutt
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Neil A. Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CMC); (SCG)
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CMC); (SCG)
| |
Collapse
|
25
|
UL25 capsid binding facilitates mechanical maturation of the Herpesvirus capsid and allows retention of pressurized DNA. J Virol 2021; 95:e0075521. [PMID: 34346766 DOI: 10.1128/jvi.00755-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maturation process that occurs in most viruses is evolutionarily driven as it resolves several conflicting virion assembly requirements. During herpesvirus assembly in a host cell nucleus, micron-long double-stranded herpes DNA is packaged into a nanometer-sized procapsid. This leads to strong confinement of the viral genome with resulting tens of atmospheres of intra-capsid DNA pressure. Yet, the procapsid is unstable due to weak, reversible interactions between its protein subunits, which ensures free energy minimization and reduces assembly errors. In this work we show that herpesviruses resolve these contradictory capsid requirements through a mechanical capsid maturation process facilitated by multi-functional auxiliary protein UL25. Through mechanical interrogation of herpes simplex virus type 1 (HSV-1) capsid with atomic force microscopy nano-indentation, we show that UL25 binding at capsid vertices post-assembly provides the critical capsid reinforcement required for stable DNA encapsidation; the absence of UL25 binding leads to capsid rupture. Furthermore, we demonstrate that gradual capsid reinforcement is a feasible maturation mechanism facilitated by progressive UL25 capsid binding, which is likely correlated with DNA packaging progression. This work provides insight into elegantly programmed viral assembly machinery where targeting of capsid assembly mechanics presents a new antiviral strategy that is resilient to development of drug resistance. Importance: Most viruses undergo a maturation process from a weakly assembled particle to a stable virion. Herpesvirus capsid undergoes mechanical maturation to withstand tens of atmospheres of DNA pressure. We demonstrate that this mechanical capsid maturation is mainly facilitated through binding of auxiliary protein UL25 in HSV-1 capsid vertices. We show that UL25 binding provides the critical capsid reinforcement required for stable DNA encapsidation. Our data also suggests that gradual capsid reinforcement by progressive UL25 binding is a feasible capsid maturation mechanism, correlated with DNA packaging progression.
Collapse
|
26
|
Dorsch AD, Hölper JE, Franzke K, Zaeck LM, Mettenleiter TC, Klupp BG. Role of Vesicle-Associated Membrane Protein-Associated Proteins (VAP) A and VAPB in Nuclear Egress of the Alphaherpesvirus Pseudorabies Virus. Viruses 2021; 13:v13061117. [PMID: 34200728 PMCID: PMC8229525 DOI: 10.3390/v13061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.
Collapse
Affiliation(s)
- Anna D. Dorsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
- Correspondence:
| |
Collapse
|
27
|
Andriasyan V, Yakimovich A, Petkidis A, Georgi F, Witte R, Puntener D, Greber UF. Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells. iScience 2021; 24:102543. [PMID: 34151222 PMCID: PMC8192562 DOI: 10.1016/j.isci.2021.102543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Imaging across scales reveals disease mechanisms in organisms, tissues, and cells. Yet, particular infection phenotypes, such as virus-induced cell lysis, have remained difficult to study. Here, we developed imaging modalities and deep learning procedures to identify herpesvirus and adenovirus (AdV) infected cells without virus-specific stainings. Fluorescence microscopy of vital DNA-dyes and live-cell imaging revealed learnable virus-specific nuclear patterns transferable to related viruses of the same family. Deep learning predicted two major AdV infection outcomes, non-lytic (nonspreading) and lytic (spreading) infections, up to about 20 hr prior to cell lysis. Using these predictive algorithms, lytic and non-lytic nuclei had the same levels of green fluorescent protein (GFP)-tagged virion proteins but lytic nuclei enriched the virion proteins faster, and collapsed more extensively upon laser-rupture than non-lytic nuclei, revealing impaired mechanical properties of lytic nuclei. Our algorithms may be used to infer infection phenotypes of emerging viruses, enhance single cell biology, and facilitate differential diagnosis of non-lytic and lytic infections. Artificial intelligence identifies HSV- and AdV-infected cells without specific probes. Imaging lytic-infected cells reveals nuclear envelope rupture and AdV dissemination. Live cell imaging and neural networks presciently pinpoint lytic-infected cells. Lytic-infected cell nuclei have mechanical properties distinct from non-lytic nuclei.
Collapse
Affiliation(s)
- Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.,University College London, London WC1E 6BT, UK.,Artificial Intelligence for Life Sciences CIC, London N8 7FJ, UK
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Daniel Puntener
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.,Roche Diagnostics International Ltd, Rotkreuz 6343, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
28
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
29
|
Draganova EB, Heldwein EE. Virus-derived peptide inhibitors of the herpes simplex virus type 1 nuclear egress complex. Sci Rep 2021; 11:4206. [PMID: 33603021 PMCID: PMC7893173 DOI: 10.1038/s41598-021-83402-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022] Open
Abstract
Herpesviruses infect a majority of the human population, establishing lifelong latent infections for which there is no cure. Periodic viral reactivation spreads infection to new hosts while causing various disease states particularly detrimental in the immunocompromised. Efficient viral replication, and ultimately the spread of infection, is dependent on the nuclear egress complex (NEC), a conserved viral heterodimer that helps translocate viral capsids from the nucleus to the cytoplasm where they mature into infectious virions. Here, we have identified peptides, derived from the capsid protein UL25, that are capable of inhibiting the membrane-budding activity of the NEC from herpes simplex virus type 1 in vitro. We show that the inhibitory ability of the peptides depends on their length and the propensity to form an α-helix but not on the exact amino acid sequence. Current therapeutics that target viral DNA replication machinery are rendered ineffective by drug resistance due to viral mutations. Our results establish a basis for the development of an alternative class of inhibitors against nuclear egress, an essential step in herpesvirus replication, potentially expanding the current repertoire of available therapeutics.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
30
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
31
|
Abstract
The dynamics of nuclear envelope has a critical role in multiple cellular processes. However, little is known regarding the structural changes occurring inside the nucleus or at the inner and outer nuclear membranes. For viruses assembling inside the nucleus, remodeling of the intranuclear membrane plays an important role in the process of virion assembly. Here, we monitored the changes associated with viral infection in the case of nudiviruses. Our data revealed dramatic membrane remodeling inside the nuclear compartment during infection with Oryctes rhinoceros nudivirus, an important biocontrol agent against coconut rhinoceros beetle, a devastating pest for coconut and oil palm trees. Based on these findings, we propose a model for nudivirus assembly in which nuclear packaging occurs in fully enveloped virions. Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection.
Collapse
|
32
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
33
|
Wu L, Cheng A, Wang M, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Front Microbiol 2020; 11:1908. [PMID: 32849477 PMCID: PMC7427429 DOI: 10.3389/fmicb.2020.01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alphaherpesviruses are zoonotic pathogens that can cause a variety of diseases in humans and animals and severely damage health. Alphaherpesvirus infection is a slow and orderly process that can lie dormant for the lifetime of the host but may be reactivated when the immune system is compromised. All alphaherpesviruses feature a protein layer called the tegument that lies between the capsid and the envelope. Virus protein (VP) 22 is one of the most highly expressed tegument proteins; there are more than 2,000 copies of this protein in each viral particle. VP22 can interact with viral proteins, cellular proteins, and chromatin, and these interactions play important roles. This review summarizes the latest literature and discusses the roles of VP22 in viral gene transcription, protein synthesis, virion assembly, and viral cell-to-cell spread with the purpose of enhancing understanding of the life cycle of herpesviruses and other pathogens in host cells. The molecular interaction information herein provides important reference data.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Verboon JM, Nakamura M, Davidson KA, Decker JR, Nandakumar V, Parkhurst SM. Drosophila Wash and the Wash regulatory complex function in nuclear envelope budding. J Cell Sci 2020; 133:jcs243576. [PMID: 32503943 PMCID: PMC7358131 DOI: 10.1242/jcs.243576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear envelope (NE) budding is a recently described phenomenon wherein large macromolecular complexes are packaged inside the nucleus and extruded through the nuclear membranes. Although a general outline of the cellular events occurring during NE budding is now in place, little is yet known about the molecular machinery and mechanisms underlying the physical aspects of NE bud formation. Using a multidisciplinary approach, we identify Wash, its regulatory complex (SHRC), capping protein and Arp2/3 as new molecular components involved in the physical aspects of NE bud formation in a Drosophila model system. Interestingly, Wash affects NE budding in two ways: indirectly through general nuclear lamina disruption via an SHRC-independent interaction with Lamin B leading to inefficient NE bud formation, and directly by blocking NE bud formation along with its SHRC, capping protein and Arp2/3. In addition to NE budding emerging as an important cellular process, it shares many similarities with herpesvirus nuclear egress mechanisms, suggesting new avenues for exploration in both normal and disease biology.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kerri A Davidson
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Vivek Nandakumar
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
35
|
Draganova EB, Zhang J, Zhou ZH, Heldwein EE. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 2020; 9:56627. [PMID: 32579107 PMCID: PMC7340501 DOI: 10.7554/elife.56627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
During herpesvirus infection, egress of nascent viral capsids from the nucleus is mediated by the viral nuclear egress complex (NEC). NEC deforms the inner nuclear membrane (INM) around the capsid by forming a hexagonal array. However, how the NEC coat interacts with the capsid and how curved coats are generated to enable budding is yet unclear. Here, by structure-guided truncations, confocal microscopy, and cryoelectron tomography, we show that binding of the capsid protein UL25 promotes the formation of NEC pentagons rather than hexagons. We hypothesize that during nuclear budding, binding of UL25 situated at the pentagonal capsid vertices to the NEC at the INM promotes formation of NEC pentagons that would anchor the NEC coat to the capsid. Incorporation of NEC pentagons at the points of contact with the vertices would also promote assembly of the curved hexagonal NEC coat around the capsid, leading to productive egress of UL25-decorated capsids.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Jiayan Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
36
|
Marschall M, Häge S, Conrad M, Alkhashrom S, Kicuntod J, Schweininger J, Kriegel M, Lösing J, Tillmanns J, Neipel F, Eichler J, Muller YA, Sticht H. Nuclear Egress Complexes of HCMV and Other Herpesviruses: Solving the Puzzle of Sequence Coevolution, Conserved Structures and Subfamily-Spanning Binding Properties. Viruses 2020; 12:v12060683. [PMID: 32599939 PMCID: PMC7354485 DOI: 10.3390/v12060683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric nuclear egress complex (core NEC). These core NECs serve as hexameric lattice-structured platforms for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina as well as membrane-rearranging functions (multicomponent NEC). The regulation of nuclear egress has been profoundly analyzed for murine and human cytomegaloviruses (CMVs) on a mechanistic basis, followed by the description of core NEC crystal structures, first for HCMV, then HSV-1, PRV and EBV. Interestingly, the highly conserved structural domains of these proteins stand in contrast to a very limited sequence conservation of the key amino acids within core NEC-binding interfaces. Even more surprising, although a high functional consistency was found when regarding the basic role of NECs in nuclear egress, a clear specification was identified regarding the limited, subfamily-spanning binding properties of core NEC pairs and NEC multicomponent proteins. This review summarizes the evolving picture of the relationship between sequence coevolution, structural conservation and properties of NEC interaction, comparing HCMV to α-, β- and γ-herpesviruses. Since NECs represent substantially important elements of herpesviral replication that are considered as drug-accessible targets, their putative translational use for antiviral strategies is discussed.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
- Correspondence: ; Tel.: +49-9131-85-26089
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| | - Sewar Alkhashrom
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Johannes Schweininger
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Mark Kriegel
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Frank Neipel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Jutta Eichler
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| |
Collapse
|
37
|
Lang J, Bohn P, Bhat H, Jastrow H, Walkenfort B, Cansiz F, Fink J, Bauer M, Olszewski D, Ramos-Nascimento A, Duhan V, Friedrich SK, Becker KA, Krawczyk A, Edwards MJ, Burchert A, Huber M, Friebus-Kardash J, Göthert JR, Hardt C, Probst HC, Schumacher F, Köhrer K, Kleuser B, Babiychuk EB, Sodeik B, Seibel J, Greber UF, Lang PA, Gulbins E, Lang KS. Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nat Commun 2020; 11:1338. [PMID: 32165633 PMCID: PMC7067866 DOI: 10.1038/s41467-020-15072-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.
Collapse
Affiliation(s)
- Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Patrick Bohn
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Holger Jastrow
- Institute of Anatomy, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Bernd Walkenfort
- Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Feyza Cansiz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Ana Ramos-Nascimento
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Infectious Diseases, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstr., Marburg, D-35043, Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hospital Hygiene, Philipps-University Marburg, Hans-Meerwein Str. 2, Marburg, D-35043, Germany
| | - Justa Friebus-Kardash
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, Mainz, D-55131, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstr. 4, CH-3012, Bern, Switzerland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Karl S Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.
| |
Collapse
|
38
|
The ESCRT-II Subunit EAP20/VPS25 and the Bro1 Domain Proteins HD-PTP and BROX Are Individually Dispensable for Herpes Simplex Virus 1 Replication. J Virol 2020; 94:JVI.01641-19. [PMID: 31748394 DOI: 10.1128/jvi.01641-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Capsid envelopment during assembly of the neurotropic herpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) in the infected cell cytoplasm is thought to involve the late-acting cellular ESCRT (endosomal sorting complex required for transport) components ESCRT-III and VPS4 (vacuolar protein sorting 4). However, HSV-1, unlike members of many other families of enveloped viruses, does not appear to require the ESCRT-I subunit TSG101 or the Bro1 domain-containing protein ALIX (Alg-2-interacting protein X) to recruit and activate ESCRT-III. Alternative cellular factors that are known to be capable of regulating ESCRT-III function include the ESCRT-II complex and other members of the Bro1 family. We therefore used small interfering RNA (siRNA) to knock down the essential ESCRT-II subunit EAP20/VPS25 (ELL-associated protein 20/vacuolar protein sorting 25) and the Bro1 proteins HD-PTP (His domain-containing protein tyrosine phosphatase) and BROX (Bro1 domain and CAAX motif containing). We demonstrated reductions in levels of the targeted proteins by Western blotting and used quantitative microscopic assays to confirm loss of ESCRT-II and HD-PTP function. We found that in single-step replication experiments, the final yields of HSV-1 were unchanged following loss of EAP20, HD-PTP, or BROX.IMPORTANCE HSV-1 is a pathogen of the human nervous system that uses its own virus-encoded proteins and the normal cellular ESCRT machinery to drive the construction of its envelope. How HSV-1 structural proteins interact with ESCRT components and which subsets of cellular ESCRT proteins are utilized by the virus remain largely unknown. Here, we demonstrate that an essential component of the ESCRT-II complex and two ESCRT-associated Bro1 proteins are dispensable for HSV-1 replication.
Collapse
|
39
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|
40
|
Abstract
The Herpesviridae are structurally complex DNA viruses whose capsids undergo primary envelopment at the inner nuclear membrane and secondary envelopment at organelles in the cytoplasm. In both locations, there is evidence that envelope formation and scission involve the participation of multiple viral proteins and also the cellular ESCRT apparatus. It nevertheless appears that the best-understood viral strategies for ESCRT recruitment, those adopted by the retroviruses and many other families of enveloped RNA viruses, are not utilized by the Herpesviridae, at least during envelopment in the cytoplasm. Thus, although a large number of herpesvirus proteins have been assigned roles in envelopment, there is a dearth of candidates for the acquisition of the ESCRT complex and the control of envelope scission. This review summarizes our current understanding of ESCRT association by enveloped viruses, examines what is known of herpesvirus ESCRT utilization in the nucleus and cytoplasm, and identifies candidate cellular and viral proteins that could link enveloping herpesviruses to cellular ESCRT components.
Collapse
|
41
|
Wild P, Leisinger S, de Oliveira AP, Doehner J, Schraner EM, Fraevel C, Ackermann M, Kaech A. Nuclear envelope impairment is facilitated by the herpes simplex virus 1 Us3 kinase. F1000Res 2019; 8:198. [PMID: 31249678 PMCID: PMC6584977 DOI: 10.12688/f1000research.17802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.
Collapse
Affiliation(s)
- Peter Wild
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | - Sabine Leisinger
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | | | - Jana Doehner
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| | - Elisabeth M. Schraner
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Cornel Fraevel
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Mathias Ackermann
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Andres Kaech
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
42
|
Caspase-Dependent Suppression of Type I Interferon Signaling Promotes Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2018. [PMID: 29514903 DOI: 10.1128/jvi.00078-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An important component of lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is the ability of the virus to evade the innate immune response, specifically type I interferon (IFN) responses that are triggered by recognition of viral nucleic acids. Inhibition of type I IFN responses by the virus promotes viral replication. Here, we report that KSHV uses a caspase-dependent mechanism to block type I IFN, in particular IFN-β, responses during lytic infection. Inhibition of caspases during KSHV reactivation resulted in increased TBK1/IKKε-dependent phosphorylation of IRF3 as well as elevated levels of IFN-β transcription and secretion. The increased secretion of IFN-β upon caspase inhibition reduced viral gene expression, viral DNA replication, and virus production. Blocking IFN-β production or signaling restored viral replication. Overall, our results show that caspase-mediated regulation of pathogen sensing machinery is an important mechanism exploited by KSHV to evade innate immune responses.IMPORTANCE KSHV is the causative agent of Kaposi's sarcoma (KS), an AIDS-defining tumor that is one of the most common causes of cancer death in sub-Saharan Africa. In this study, we examined the role of a set of cellular proteases, called caspases, in the regulation of immune responses during KSHV infection. We demonstrate that caspases prevent the induction and secretion of the antiviral factor IFN-β during replicative KSHV infection. The reduced IFN-β production allows for high viral gene expression and viral replication. Therefore, caspases are important for maintaining KSHV replication. Overall, our results suggest that KSHV utilizes caspases to evade innate immune responses, and that inhibiting caspases could boost the innate immune response to this pathogen and potentially be a new antiviral strategy.
Collapse
|
43
|
A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress. J Virol 2018; 92:JVI.01849-17. [PMID: 29298889 DOI: 10.1128/jvi.01849-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 02/01/2023] Open
Abstract
Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress.IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved.
Collapse
|
44
|
LaMassa N, Arenas-Mena C, Phillips GR. Electron microscopic characterization of nuclear egress in the sea urchin gastrula. J Morphol 2018; 279:609-615. [PMID: 29383750 DOI: 10.1002/jmor.20796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/02/2018] [Accepted: 01/13/2018] [Indexed: 11/08/2022]
Abstract
Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress.
Collapse
Affiliation(s)
- Nicole LaMassa
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Cesar Arenas-Mena
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, United States of America
| | - Greg R Phillips
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, United States of America
| |
Collapse
|
45
|
Milbradt J, Sonntag E, Wagner S, Strojan H, Wangen C, Lenac Rovis T, Lisnic B, Jonjic S, Sticht H, Britt WJ, Schlötzer-Schrehardt U, Marschall M. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97. Viruses 2018; 10:v10010035. [PMID: 29342872 PMCID: PMC5795448 DOI: 10.3390/v10010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Tihana Lenac Rovis
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Berislav Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - William J Britt
- Departments of Pediatrics and Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
46
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
47
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 09/29/2023] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus before they are translocated to the perinuclear space by budding, acquiring tegument and envelope, or releasing to the cytoplasm in a "naked" state via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" are essential steps for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of an alternative exit route. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols that lead to improved spatial and temporal resolution. Results: Scanning electron microscopy showed the Golgi complex as a compact entity in a juxtanuclear position covered by a membrane on the cis face. Transmission electron microscopy revealed that Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data strongly suggest that virions are intraluminally transported from the perinuclear space via Golgi complex-endoplasmic reticulum transitions into Golgi cisternae for packaging into transport vacuoles. Furthermore, virions derived by budding at nuclear membranes are infective as has been shown for HSV-1 Us3 deletion mutants, which almost entirely accumulate in the perinuclear space. Therefore, de-envelopment followed by re-envelopment is not essential for production of infective progeny virus.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
48
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols. Results: The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on the cis face. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
49
|
Marschall M, Muller YA, Diewald B, Sticht H, Milbradt J. The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids. Rev Med Virol 2017; 27. [PMID: 28664574 DOI: 10.1002/rmv.1934] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nuclear replication represents a common hallmark of herpesviruses achieved by a number of sequentially unrolled regulatory processes. A rate-limiting step is provided by nucleo-cytoplasmic capsid export, for which a defined multiregulatory protein complex, namely, the nuclear egress complex (NEC), is assembled comprising both viral and cellular components. The NEC regulates at least 3 aspects of herpesviral nuclear replication: (1) multimeric recruitment of NEC-associated effector proteins, (2) reorganization of the nuclear lamina and membranes, and (3) the docking to nuclear capsids. Here, we review published data and own experimental work that characterizes the NEC of HCMV and other herpesviruses. METHODS A systematic review of information on nuclear egress of HCMV compared to selected alpha-, beta-, and gamma-herpesviruses: proteomics-based approaches, high-resolution imaging techniques, and functional investigations. RESULTS A large number of reports on herpesviral NECs have been published during the last two decades, focusing on protein-protein interactions, nuclear localization, regulatory phosphorylation, and functional validation. The emerging picture provides an illustrated example of well-balanced and sophisticated protein networking in virus-host interaction. CONCLUSIONS Current evidence refined the view about herpesviral NECs. Datasets published for HCMV, murine CMV, herpes simplex virus, and Epstein-Barr virus illustrate the marked functional consistency in the way herpesviruses achieve nuclear egress. However, this compares with only limited sequence conservation of core NEC proteins and a structural conservation restricted to individual domains. The translational use of this information might help to define a novel antiviral strategy on the basis of NEC-directed small molecules.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany
| | - Benedikt Diewald
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
50
|
Vesicular Nucleo-Cytoplasmic Transport-Herpesviruses as Pioneers in Cell Biology. Viruses 2016; 8:v8100266. [PMID: 27690080 PMCID: PMC5086602 DOI: 10.3390/v8100266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses use a vesicle-mediated transfer of intranuclearly assembled nucleocapsids through the nuclear envelope (NE) for final maturation in the cytoplasm. The molecular basis for this novel vesicular nucleo-cytoplasmic transport is beginning to be elucidated in detail. The heterodimeric viral nuclear egress complex (NEC), conserved within the classical herpesviruses, mediates vesicle formation from the inner nuclear membrane (INM) by polymerization into a hexagonal lattice followed by fusion of the vesicle membrane with the outer nuclear membrane (ONM). Mechanisms of capsid inclusion as well as vesicle-membrane fusion, however, are largely unclear. Interestingly, a similar transport mechanism through the NE has been demonstrated in nuclear export of large ribonucleoprotein complexes during Drosophila neuromuscular junction formation, indicating a widespread presence of a novel concept of cellular nucleo-cytoplasmic transport.
Collapse
|