1
|
Italia V, Jons A, Kaparthi B, Faulk B, Maccarini M, Bertoncello P, Meissner K, Martin DK, Bondos SE. Chemical and temporal manipulation of early steps in protein assembly tunes the structure and intermolecular interactions of protein-based materials. Protein Sci 2025; 34:e70000. [PMID: 39840718 PMCID: PMC11751906 DOI: 10.1002/pro.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/30/2025]
Abstract
The Drosophila intrinsically disordered protein Ultrabithorax (Ubx) undergoes a series of phase transitions, beginning with noncovalent interactions between apparently randomly organized monomers, and evolving over time to form increasingly ordered coacervates. This assembly process ends when specific dityrosine covalent bonds lock the monomers in place, forming macroscale materials. Inspired by this hierarchical, multistep assembly process, we analyzed the impact of protein concentration, assembly time, and subphase composition on the early, noncovalent stages of Ubx assembly, which are extremely sensitive to their environment. We discovered that in low salt buffers, we can generate a new type of Ubx material from early coacervates using 5-fold less protein, and 100-fold less assembly time. Comparison of the new materials with standard Ubx fibers also revealed differences in the extent of wrinkling on the fiber surface. A new image analysis technique based on autocorrelation of scanning electron microscopy (SEM) images was developed to quantify these structural differences. These differences extend to the molecular level: new materials form more dityrosine covalent cross-links per monomer, but without requiring the specific tyrosine residues necessary for crosslinking previously established materials. We conclude that varying the assembly conditions represents a facile and inexpensive process for creating new materials. Most new biopolymers are created by changing the composition of the monomers or the method used to drive assembly. In contrast, in this study we used the same monomers and assembly approach, but altered the assembly time and chemical environment to create a new material with unique properties.
Collapse
Affiliation(s)
| | - Amanda Jons
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
- Interdisciplinary Graduate Program in GeneticsTexas A&M UniversityCollege StationTexasUSA
| | - Bhavika Kaparthi
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
| | - Britt Faulk
- Department of Medical Physiology, School of MedicineTexas A&M UniversityBryanTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Marco Maccarini
- University Grenoble Alpes, SyNaBi, TIMC‐IMAG/CNRS/INSERM, UMR 5525GrenobleFrance
| | | | - Ken Meissner
- Department of PhysicsSwansea UniversitySwanseaUK
- Present address:
Department of Metallurgical, Materials, and Biomedical EngineeringUniversity of Texas at El PasoEl PasoTexasUSA
| | - Donald K. Martin
- University Grenoble Alpes, SyNaBi, TIMC‐IMAG/CNRS/INSERM, UMR 5525GrenobleFrance
| | - Sarah E. Bondos
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
- Interdisciplinary Graduate Program in GeneticsTexas A&M UniversityCollege StationTexasUSA
- Department of Medical Physiology, School of MedicineTexas A&M UniversityBryanTexasUSA
| |
Collapse
|
2
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Yadav S, Perkins AJP, Liyanagedera SBW, Bougas A, Laohakunakorn N. ATP Regeneration from Pyruvate in the PURE System. ACS Synth Biol 2025; 14:247-256. [PMID: 39754602 PMCID: PMC11744923 DOI: 10.1021/acssynbio.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP in situ. Successful ATP regeneration requires a high initial concentration of ∼10 mM phosphate buffer, which surprisingly does not affect the protein synthesis activity of PURE. The pathway can function independently or in combination with the existing creatine-based system in PURE; the combined system produces up to 233 μg/mL of mCherry, an enhancement of 78% compared to using the creatine system alone. The results are reproducible across multiple batches of homemade PURE and importantly also generalize to commercial systems such as PURExpress from New England Biolabs. These results demonstrate a rational bottom-up approach to engineering PURE, paving the way for applications in cell-free synthetic biology and synthetic cell construction.
Collapse
Affiliation(s)
- Surendra Yadav
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Alexander J. P. Perkins
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Sahan B. W. Liyanagedera
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Anthony Bougas
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Nadanai Laohakunakorn
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| |
Collapse
|
4
|
Hayes T, Rao R, Akin H, Sofroniew NJ, Oktay D, Lin Z, Verkuil R, Tran VQ, Deaton J, Wiggert M, Badkundri R, Shafkat I, Gong J, Derry A, Molina RS, Thomas N, Khan YA, Mishra C, Kim C, Bartie LJ, Nemeth M, Hsu PD, Sercu T, Candido S, Rives A. Simulating 500 million years of evolution with a language model. Science 2025:eads0018. [PMID: 39818825 DOI: 10.1126/science.ads0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
More than three billion years of evolution have produced an image of biology encoded into the space of natural proteins. Here we show that language models trained at scale on evolutionary data can generate functional proteins that are far away from known proteins. We present ESM3, a frontier multimodal generative language model that reasons over the sequence, structure, and function of proteins. ESM3 can follow complex prompts combining its modalities and is highly responsive to alignment to improve its fidelity. We have prompted ESM3 to generate fluorescent proteins. Among the generations that we synthesized, we found a bright fluorescent protein at a far distance (58% sequence identity) from known fluorescent proteins, which we estimate is equivalent to simulating five hundred million years of evolution.
Collapse
Affiliation(s)
| | - Roshan Rao
- EvolutionaryScale, PBC, New York, NY, USA
| | - Halil Akin
- EvolutionaryScale, PBC, New York, NY, USA
| | | | | | - Zeming Lin
- EvolutionaryScale, PBC, New York, NY, USA
| | | | - Vincent Q Tran
- Arc Institute, Palo Alto, CA, USA
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Jun Gong
- EvolutionaryScale, PBC, New York, NY, USA
| | | | | | | | | | | | | | | | | | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA
- University of California, Berkeley, Berkeley, CA, USA
| | - Tom Sercu
- EvolutionaryScale, PBC, New York, NY, USA
| | | | | |
Collapse
|
5
|
Jin Q, Feng X, Hong M, Wang K, Chen X, Cheng J, Kuang Y, Si X, Xu M, Huang X, Guang S, Zhu C. Peri-centrosomal localization of small interfering RNAs in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2818-7. [PMID: 39825209 DOI: 10.1007/s11427-024-2818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.
Collapse
Affiliation(s)
- Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jiewei Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaoyue Si
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
6
|
Lewis B, Oludiran A, Progulske-Fox A, Dunn W. Labelling of a live obligate anaerobe using fluorescent D-amino acids. Anaerobe 2025:102939. [PMID: 39814196 DOI: 10.1016/j.anaerobe.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The probing of live bacteria via the incorporation of fluorescent D-amino acids (FDAAs) during peptidoglycan synthesis has been shown to be practical for visualizing both gram-positive and gram-negative bacterial species. This study demonstrates the reliability and applications of FDAA labelling for the fluorescent imaging of an obligate anaerobe.
Collapse
Affiliation(s)
- Benjamin Lewis
- Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610
| | - Adenrele Oludiran
- Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610
| | - Ann Progulske-Fox
- Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610
| | - William Dunn
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
7
|
Kapucu GK, Trimbuch T, Rosenmund C, Weber-Boyvat M. Bimolecular Fluorescence Complementation (BiFC) Technique for Exocytic Proteins in Murine Hippocampal Neurons. Methods Mol Biol 2025; 2887:281-294. [PMID: 39806162 DOI: 10.1007/978-1-0716-4314-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy. In this chapter, we provide a detailed overview of the BiFC method and its application in studying protein-protein interactions in mouse hippocampal neurons. We discuss experimental procedures, including virus construct design, neuronal transduction, and imaging optimization. Additionally, we explore complementary assays for result validation and address potential challenges associated with BiFC experiments in the neuronal system. Overall, the BiFC offers researchers a valuable approach for investigating the spatial and temporal dynamics of protein interactions in living neuronal cells.
Collapse
Affiliation(s)
- Gözdem Karapinar Kapucu
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Weber-Boyvat
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Hiraoka K, Ninomiya S, Rankin-Turner S, Suzuki N, Akashi S. Sodiation of Enhanced Green Fluorescent Protein (EGFP) in Basic Solution Studied by Electrospray Mass Spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5111. [PMID: 39757144 DOI: 10.1002/jms.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025]
Abstract
In our previous work, the sodiation of melittin, cytochrome c, and ubiquitin in a 1 mM NaOH water/methanol solution was studied by electrospray mass spectrometry. It was suggested that the α-helix is more resistant to sodiation than the β-sheet. In this study, sodiation of enhanced green fluorescent protein (EGFP) composed of a β-barrel was studied in 1% CH3COOH (AcOH) or 1 mM NaOH water/methanol solution by electrospray mass spectrometry. Although EGFP was denatured in an acidic solution, it maintains a near-native structure in a basic solution. For the 1% AcOH solution, the protonated EGFP, [EGFP + nH - mH + mNa]n+, with n = 14 - 36 and m = 0 was detected. For 1 mM NaOH, the number n for [EGFP + nH - mH + mNa]n+ was found to increase with the sodiation number m and vice versa for [EGFP + nH - mH + mNa]n-. Namely, Na+ adducts counteract the negative charges of deprotonated acidic residues. The protonated EGFP detected as major ions for basic 1 mM NaOH was ascribed to the more surface-active H3O+(aq) than OH-(aq).
Collapse
Affiliation(s)
- Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Satoshi Ninomiya
- Clean Energy Research Center, University of Yamanashi, Kofu, Yamanashi, Japan
| | | | - Noa Suzuki
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Osakabe H, Suzuki M, Shimizu T, Minoda H. Effect of the surrounding environment on electron beam irradiation damage of enhanced green fluorescent protein. Ultramicroscopy 2025; 268:114082. [PMID: 39615243 DOI: 10.1016/j.ultramic.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/22/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
Fluorescent proteins exhibit fluorescence and photoconversion, which are used to study biological phenomena. Among these, enhanced green fluorescent protein (EGFP) emits cathodoluminescence when irradiated with electron beams; this phenomenon has numerous applications in new research tools for biological phenomena. However, bleaching during electron irradiation is a major problem. Generally, the presence of water is important for biological samples, and structural observations are often performed under cryogenic conditions. One of the advantages of cryogenic conditions is the stabilization of the sample due to cooling. However, it is unclear which factor is more effective: the presence of water molecules or cryogenic preservation. To explore the stabilizing factors of the sample structure, we prepared four environments around the sample-dry at room temperature, wet at room temperature, dry at low temperature, and under cryogenic conditions-and investigated the electron beam irradiation damage by measuring the fluorescence emission spectra. Emission intensity from EGFP was attenuated, and the peak was red-shifted by electron beam irradiation; however, the intensity attenuation was fast under dry conditions at low temperature and slow under wet conditions at room temperature. These results imply that sample cooling has no significant effect on the stability of the EGFP chromophore and that the presence of water molecules is extremely important.
Collapse
Affiliation(s)
- Haruyoshi Osakabe
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mihiro Suzuki
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toshiki Shimizu
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hiroki Minoda
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
10
|
Yue Z, Li Y, Cai H, Yao H, Li D, Ni A, Li T. Structure-based design of covalent nanobody binders for a thermostable green fluorescence protein. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719878 DOI: 10.3724/abbs.2024233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies. In this study, we report the crystal structure of TGP in complex with Sb92, a synthetic nanobody identified from a previous in vitro screening, revealing Sb92's precise three-dimensional epitope. This structural insight, alongside the previously characterized Sb44-TGP complex, allows us to rationally design disulfide bonds between the antigen and the antibody for tighter interactions. Using biochemical analysis, we identify two bridged complexes (TGP A18C-Sb44 V100C and TGP E118C-Sb92 S57C), with the TGP-Sb92 disulfide pair showing high resistance to reducing agents. Our study expands the toolkit available for TGP and should encourage its wider applications.
Collapse
Affiliation(s)
- Zhihao Yue
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongmin Cai
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hebang Yao
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dianfan Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aimin Ni
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingting Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Jiang X, Tian L, Chen W, Wang Q. High-efficiency production of plant-derived pigment dopaxanthin in Escherichia coli by combination engineering. Microb Cell Fact 2024; 23:331. [PMID: 39696377 DOI: 10.1186/s12934-024-02597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Dopaxanthin is a natural pigment betaxanthins family member with the highest antioxidant and free radical scavenging activities. However, its relatively low content in plants limited the wide range of applications. Cost-efficient microbial production, therefore, showed an attractive alternative. RESULTS Here, an Escherichia coli strain equipped with the de novo biosynthetic pathway for hyperproducing dopaxanthin was constructed by combining metabolic engineering and protein engineering. Firstly, a high-performance rate-limiting levodopa 4,5-dioxygenase (DODA) was mined and characterized based on sequence similarity searching followed by whole-cell catalysis and de novo synthesis strategy. Then, the catalytic efficiency of DODA was increased 34 times with directed evolution. The mutated DODA significantly facilitated the production of dopaxanthin, with an increase of 40.17% in plasmid expression and 64.11% in genome expression, respectively. Finally, through connecting the blocked pathway from 3-dehydroshikimate to levodopa (L-DOPAOPA) and enhancing the expression level of DODA, a titer of dopaxanthin of 22.87 g/L was achieved from glucose as feedstock, which is 286 times higher than that in the previous report. CONCLUSION This work not only established a promising platform for the environmentally friendly production of dopaxanthin but also laid a foundation for the commercialization of other betalain.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Liyan Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wujiu Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
12
|
Aslopovsky VR, Scherbinin AV, Bochenkova AV. Enhancing Two-Photon Absorption of Green Fluorescent Protein by Quantum Entanglement. J Phys Chem B 2024. [PMID: 39668340 DOI: 10.1021/acs.jpcb.4c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Exploring the electronic states of molecules through excitation with entangled and classical photon pairs offers new insights into the nature of light-matter interactions and stimulates the development of quantum spectroscopy. Here, we address the importance of temporal entanglement of light in two-photon absorption (TPA) upon the S0 → S1 transition by the green fluorescent protein (GFP)─a key molecular unit in the bioimaging of living cells. By invoking a two-level model applicable when permanent dipole pathways dominate the two-photon transition, we derive a convenient closed-form analytical expression for the entangled TPA strength. For the first time, we disclose specific molecular properties that cause classical and entangled two-photon absorptions to be qualitatively different when exciting the same state. We reveal a new nonclassical contribution to the TPA strength, which is defined by the magnitude and directional alignment of permanent dipole moments in the initial and final states. Using high-level electronic structure theory, we show that the nonclassical contribution is intrinsically larger than the classical counterpart in GFP, leading to an enhancement of the TPA strength due to quantum entanglement by several orders of magnitude. We also present evidence that the classical and quantum TPA strengths can be modulated differently by the protein environment and demonstrate how to control the outcome by alterations in the local electric field of the protein caused by a single amino acid replacement. Our findings establish physical grounds for enhancing TPA in photoactive proteins by quantum entanglement, facilitating the rational design of high-efficiency biomarkers for future applications that utilize quantum light.
Collapse
Affiliation(s)
| | - Andrei V Scherbinin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
13
|
Cook MA, Phelps SM, Tutol JN, Adams DA, Dodani SC. Illuminating anions in biology with genetically encoded fluorescent biosensors. Curr Opin Chem Biol 2024; 84:102548. [PMID: 39657518 DOI: 10.1016/j.cbpa.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Anions are critical to all life forms. Anions can be absorbed as nutrients or biosynthesized. Anions shape a spectrum of fundamental biological processes at the organismal, cellular, and subcellular scales. Genetically encoded fluorescent biosensors can capture anions in action across time and space dimensions with microscopy. The firsts of such technologies were reported more than 20 years for monoatomic chloride and polyatomic cAMP anions. However, the recent boom of anion biosensors illuminates the unknowns and opportunities that remain for toolmakers and end users to meet across the aisle to spur innovations in biosensor designs and applications for discovery anion biology. In this review, we will canvas progress made over the last three years for biologically relevant anions that are classified as halides, oxyanions, carboxylates, and nucleotides.
Collapse
Affiliation(s)
- Mariah A Cook
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Derik A Adams
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
14
|
Nam KH. Data of crystal structure of the monomeric red fluorescent protein DsRed. Data Brief 2024; 57:110905. [PMID: 39376484 PMCID: PMC11456790 DOI: 10.1016/j.dib.2024.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
The monomeric red fluorescent protein DsRed (mDsRed) is an optical probe widely used in multicolor applications in flow cytometry and fluorescence microscopy. Although the crystal structure of monomeric DsRed has been determined, its molecular dynamics have not been fully elucidated. To better understand its molecular flexibility, the crystal structure of mDsRed was recently determined, and its structure and temperature factors were analyzed. Solvent-accessible hole connected with the mDsRed chromophore was observed on the mDsRed surface structure. Electron density map analysis showed the tyrosine-ring group of the mDsRed chromophore in a cis-conformation, exhibiting flexibility with a nonplanar configuration between the tyrosine and imidazoline rings of the chromophore. Temperature factor analysis indicated that the top and bottom of the β-barrel are relatively flexible. These structural findings extended our understanding of the molecular flexibility of mDsRed. The detailed data collection and structure determination reported in this study can be used for future structural analyses.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
15
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
16
|
Bandaranayake UK, Sato H, Suzuki M. Development of molecular sensors based on fluorescent proteins for polarized macrophages identification. ANAL SCI 2024; 40:2133-2145. [PMID: 39235677 DOI: 10.1007/s44211-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Macrophages are a type of white blood cells that play key roles in innate immune responses as a part of cellular immunity for host defence and tissue homeostasis. To perform diverse functions, macrophages show high plasticity by transforming to polarized states. They are mainly identified as unpolarized, pro-inflammatory and antiinflammatory states and termed as M0, M1 and M2 macrophages respectively. Discriminating polarized states is important due to strict implication with inflammatory conditions resulting in many diseases as chronic inflammation, neurodegeneration, and cancer etc. Many polarization protein markers have been identified and applied to investigate expression profiles through PCR and other techniques with antibodies. However, they are time and cost consuming and sometimes show insufficient performances. We focused on the mannose receptor (CD206) as representative marker of M2 macrophage recognising terminal mannose. We developed dose dependent mannosylated fluorescent proteins (FPs) by conjugations with mannose derivative for around 20 modifiable sites on FPs surfaces. Maximum modifications did not spoil various features of FPs. We found further sensitive and specific discriminations among M2, M1 and M0 macrophages after treating polarized macrophages with adequately conditioned FPs compared to already established approaches using anti CD206 antibody through flow cytometric analysis. These results might be derived from direct ligand utilizations and increased avidity due to multivalent bindings with abundantly modified multimeric FPs. Our strategy is simple but addresses disadvantages of preceding methods. Moreover, this strategy is applicable to detect other cell surface receptors as FPs can be modified with ligands or recognizable aptamer like molecules.
Collapse
Affiliation(s)
- Udari Kalpana Bandaranayake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Hiroki Sato
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Miho Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
17
|
Bijjam R, Shorter S, Bratt AM, O'Leary VB, Ntziachristos V, Ovsepian SV. Neurotoxin-Derived Optical Probes for Elucidating Molecular and Developmental Biology of Neurons and Synaptic Connections : Toxin-Derived Optical Probes for Neuroimaging. Mol Imaging Biol 2024; 26:912-925. [PMID: 39348040 PMCID: PMC11634926 DOI: 10.1007/s11307-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Botulinum neurotoxins (BoNTs) and tetanus toxin (TeTX) are the deadliest biological substances that cause botulism and tetanus, respectively. Their astonishing potency and capacity to enter neurons and interfere with neurotransmitter release at presynaptic terminals have attracted much interest in experimental neurobiology and clinical research. Fused with reporter proteins or labelled with fluorophores, BoNTs and TeTX and their non-toxic fragments also offer remarkable opportunities to visualize cellular processes and functions in neurons and synaptic connections. This study presents the state-of-the-art optical probes derived from BoNTs and TeTX and discusses their applications in molecular and synaptic biology and neurodevelopmental research. It reviews the principles of the design and production of probes, revisits their applications with advantages and limitations and considers prospects for future improvements. The versatile characteristics of discussed probes and reporters make them an integral part of the expanding toolkit for molecular neuroimaging, promoting the discovery process in neurobiology and translational neurosciences.
Collapse
Affiliation(s)
- Rohini Bijjam
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alison M Bratt
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Biological and Medical Imaging and Healthcare, Helmholtz Zentrum München (GmbH), 85764, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, 0159, Tbilisi, Georgia.
| |
Collapse
|
18
|
Fatima A, Bressan G, Ashworth EK, Page PCB, Bull JN, Meech SR. Substituent effects on the photophysics of the kaede chromophore. Phys Chem Chem Phys 2024; 26:29048-29059. [PMID: 39552575 DOI: 10.1039/d4cp03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kaede is the prototype of the optical highlighter proteins, which are an important subclass of the fluorescent proteins that can be permanently switched from green to red emitting forms by UV irradiation. This transformation has important applications in bioimaging. Optimising brightness, i.e. enhancing fluorescence characteristics, in these proteins is an important objective. At room temperature, the excited state dynamics of the red form of the kaede chromophore are dominated by a broad distribution of conformers with distinct excited state kinetics. Here, we investigate substituent effects on the photophysics of this form of the kaede chromophore. While an electron withdrawing substituent (nitro) red shifts the electronic spectra, the modified chromophores showed no significant solvatochromism. The lack of solvatochromism suggests small changes in permanent dipole moment between ground and excited electronic states, which is consistent with quantum chemical calculations. Ultrafast fluorescence and transient absorption spectroscopy reveal correlations between radiative and nonradiative decay rates of different conformers in the chromophores. The most significant effect of the substituents is to modify the distribution of conformers. The results are discussed in the context of enhancing brightness of optical highlighter proteins.
Collapse
Affiliation(s)
- Anam Fatima
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | - Philip C B Page
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
19
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
21
|
Peng W, Tutol JN, Phelps SM, Kam H, Lynd JK, Dodani SC. Directed Evolution of a Genetically Encoded Indicator for Chloride. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624492. [PMID: 39717147 PMCID: PMC11666241 DOI: 10.1101/2024.11.25.624492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Inarguably, the green fluorescent protein (GFP) family is an exemplary model for protein engineering, accessing a range of unparalleled functions and utility in biology. The first variant to recognize and provide an optical output of chloride in living cells was serendipitously uncovered more than 25 years ago. Since then, researchers have actively expanded the potential of GFP indicators for chloride through site-directed and combinatorial site-saturation mutagenesis, along with chimeragenesis. However, to date, the power of directed evolution has yet to be unleashed. As a proof-of-concept, here, we use random mutagenesis paired with anion walking to engineer a chloride-insensitive fluorescent protein named OFPxm into a functional indicator named ChlorOFF. The sampled mutational landscape unveils an evolutionary convergent solution at one position in the anion binding pocket and nine other mutations across eight positions, of which only one has been previously linked to chloride sensing potential in the GFP family.
Collapse
|
22
|
Leone F, Favale O, Bruno MDL, Bartolino R, Annesi F, Caligiuri V, De Luca A. Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. MATERIALS HORIZONS 2024. [PMID: 39555610 DOI: 10.1039/d4mh00861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Biodegradable alternatives to classic solid-state components are rapidly taking place in front-end photonic systems like metamaterials, meta-surfaces and photonic crystals. From this point of view, numerous solutions have been proposed involving eco-friendly compounds. Among them, the Luria Bertani agar (LBA) growth medium has been recently proposed as a functional option with the remarkable advantage of allowing the growth of fluorescent protein expressing bacteria. Such a possibility promises to lead to development of a new generation of biological and eco-sustainable optical sources based on meta-surfaces. There is, however, still a main drawback to address, related to the highly scattering nature of these compounds. To ensure adequate nutritive elements for cell growth, LBA hosts several compounds like NaCl, yeast extracts and tryptone. The presence of these components leads to very scattering LBA films, thus hindering its performance as an optical polymer. A trade-off arises between nutritive capacity and optical performance. In this paper, we successfully address this trade-off, demonstrating that a reduction of the basic nutrients (net Agar concentration) of LBA largely enhances the optical properties of the film as a photonic polymer without compromising its cell-viability. We considered two new LBA formulations with two- (LB2A) and four-fold (LB4A) reduction of the nutrients and replicated a square-lattice meta-surface used as a benchmark architecture. We demonstrated that both the replica molding performances and the optical properties (absorption, scattering and diffraction efficiency) of LBA formulations increase with decreasing nutrient concentration, without losing their cell-growth capability. To demonstrate this fundamental aspect, we inoculated the most critical case of LB4A with green-fluorescent-protein-expressing E. coli bacteria, verifying both their vitality and good photoluminescence properties. These results overcome one of the main limitations of LBA as a functional biopolymer for optical applications, unlocking its use in a new generation of biological quantum optical frameworks for all-biological weak and strong light-matter interactions.
Collapse
Affiliation(s)
- Francesca Leone
- Department of Physics, University of Calabria, via P. Bucci 31c, 87036, Rende (CS), Italy.
- CNR Nanotec UOS Rende, via P. Bucci, 31c, 87036, Rende (CS), Italy.
| | - Olga Favale
- Department of Physics, University of Calabria, via P. Bucci 31c, 87036, Rende (CS), Italy.
- CNR Nanotec UOS Rende, via P. Bucci, 31c, 87036, Rende (CS), Italy.
| | - Mauro Daniel Luigi Bruno
- Department of Physics, University of Calabria, via P. Bucci 31c, 87036, Rende (CS), Italy.
- CNR Nanotec UOS Rende, via P. Bucci, 31c, 87036, Rende (CS), Italy.
| | | | | | - Vincenzo Caligiuri
- Department of Physics, University of Calabria, via P. Bucci 31c, 87036, Rende (CS), Italy.
- CNR Nanotec UOS Rende, via P. Bucci, 31c, 87036, Rende (CS), Italy.
- Optoelectronics, Istituto Italiano di Tecnologia, via Morego 30, Genova, 16163, Italy
- LASCAMM - CR INSTM, Unità INSTM of Calabria Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Antonio De Luca
- Department of Physics, University of Calabria, via P. Bucci 31c, 87036, Rende (CS), Italy.
- CNR Nanotec UOS Rende, via P. Bucci, 31c, 87036, Rende (CS), Italy.
| |
Collapse
|
23
|
Selinidis MA, Corliss AC, Chappell J, Silberg JJ. Ribozyme-Mediated Gene-Fragment Complementation for Nondestructive Reporting of DNA Transfer within Soil. ACS Synth Biol 2024; 13:3539-3547. [PMID: 39145471 DOI: 10.1021/acssynbio.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Enzymes that produce volatile metabolites can be coded into genetic circuits to report nondisruptively on microbial behaviors in hard-to-image soils. However, these enzyme reporters remain challenging to apply in gene transfer studies due to leaky off states that can lead to false positives. To overcome this problem, we designed a reporter that uses ribozyme-mediated gene-fragment complementation of a methyl halide transferase (MHT) to regulate the synthesis of methyl halide gases. We split the mht gene into two nonfunctional fragments and attached these to a pair of splicing ribozyme fragments. While the individual mht-ribozyme fragments did not produce methyl halides when transcribed alone in Escherichia coli, coexpression resulted in a spliced transcript that translated the MHT reporter. When cells containing one mht-ribozyme fragment transcribed from a mobile plasmid were mixed with cells that transcribed the second mht-ribozyme fragment, methyl halides were only detected following rare conjugation events. When conjugation was performed in soil, it led to a 16-fold increase in methyl halides in the soil headspace. These findings show how ribozyme-mediated gene-fragment complementation can achieve tight control of protein reporter production, a level of control that will be critical for monitoring the effects of soil conditions on gene transfer and the fidelity of biocontainment measures developed for environmental applications.
Collapse
Affiliation(s)
- Malyn A Selinidis
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Andrew C Corliss
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - James Chappell
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
24
|
Torres-Vanegas JD, Rincon-Tellez N, Guzmán-Sastoque P, Valderrama-Rincon JD, Cruz JC, Reyes LH. Production and purification of outer membrane vesicles encapsulating green fluorescent protein from Escherichia coli: a step towards scalable OMV technologies. Front Bioeng Biotechnol 2024; 12:1436352. [PMID: 39610937 PMCID: PMC11602331 DOI: 10.3389/fbioe.2024.1436352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Outer membrane vesicles (OMVs) are spherical structures that contain a small fraction of the periplasm of Gram-negative bacteria, surrounded by its outer membrane. They are naturally produced and detached from the bacterial surface, participate in diverse biological processes, and their diameter size is in the range of 10-300 nm. OMVs have gained interest in different applications, such as the development of biosensors, vaccines, protein chips, and the encapsulation of heterologous proteins and peptides expressed by these microorganisms. However, the use of OMVs in these applications is limited due to the low yields and high purification costs. In this study, we produced green fluorescent protein (GFP) encapsulated into OMVs using Escherichia coli JC8031 transformed with pTRC99A-ssTorA-GFP to establish the production and purification route. Results showed that the motility of the strain prevents its immobilization in alginate, which hampers the purification of OMVs. To address this issue, a zeolite-based column was used to chromatographically separate the OMVs from smaller particles. Further experiments will be focused on standardizing the production and purification of OMVs at a scalable level.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogota, Colombia
| | - Nicolas Rincon-Tellez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogota, Colombia
- Department of Biological Sciences, Universidad de Los Andes, Bogota, Colombia
| | | | | | - Juan C. Cruz
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogota, Colombia
- Department of Biomedical Engineering, Universidad de Los Andes, Bogota, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogota, Colombia
| |
Collapse
|
25
|
Vukovic D, Winkelvoß D, Kapp JN, Hänny AC, Bürgisser H, Riermeier L, Udovcic A, Tiefenboeck P, Plückthun A. Protein degradation kinetics measured by microinjection and live-cell fluorescence microscopy. Sci Rep 2024; 14:27153. [PMID: 39511251 PMCID: PMC11544240 DOI: 10.1038/s41598-024-76224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
We have developed a method combining microinjection and automated fluorescence microscopy to continuously assess the degradation rate, subcellular localization and intracellular concentration of protein analytes at the single-cell level. Cells are unperturbed and grown in unaltered environmental conditions and show high viability. The injection of analytes at defined ratios and concentrations allows for a clearly defined starting point of degradation, without the entanglement of biosynthesis/uptake, often encountered in existing methods. The possibility to evaluate, add, or remove post-translational modifications prior to injection represents a powerful tool to assess minute protein degradation rate changes with high precision and allowed us to determine the absolute degradation rates caused by N-degron pathway engagement, with a focus on the role of acetylation. The low degradation rate of eGFP was found to be caused by inefficient N-terminal proteasomal unfolding. We moreover quantified the surprisingly strong influences of commonly used peptide tags and detected high variation between fluorescent proteins with regard to both protein degradation and subcellular localization. Furthermore, we have validated the use of chemically coupled dyes as robust reporters for protein degradation, and elucidated the significance of their membrane-permeability, thereby extending the applicability of our method to any protein of interest.
Collapse
Affiliation(s)
- David Vukovic
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Dorothea Winkelvoß
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Anna-Carina Hänny
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Héloïse Bürgisser
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Luca Riermeier
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Anto Udovcic
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Peter Tiefenboeck
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Prentice JA, Kasivisweswaran S, van de Weerd R, Bridges AA. Biofilm dispersal patterns revealed using far-red fluorogenic probes. PLoS Biol 2024; 22:e3002928. [PMID: 39585926 PMCID: PMC11627390 DOI: 10.1371/journal.pbio.3002928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/09/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious due to the limitations of traditional fluorescent proteins, which lose functionality in large, oxygen-deprived biofilms. To overcome this challenge, we developed a cell-labeling strategy utilizing fluorogen-activating proteins (FAPs) and cognate far-red dyes, which remain functional throughout biofilm development, enabling long-term imaging. Using this approach, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. We reveal that dispersal initiates at the biofilm periphery and approximately 25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression during cell departure and regional heterogeneity in cell motions. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate. Moreover, we demonstrate the broad applicability of FAPs as a powerful tool for high-resolution studies of microbial dynamics in complex environments.
Collapse
Affiliation(s)
- Jojo A. Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sandhya Kasivisweswaran
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Andrew A. Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
27
|
Huang K, Song Q, Fang M, Yao D, Shen X, Xu X, Chen X, Zhu L, Yang Y, Ren A. Structural basis of a small monomeric Clivia fluorogenic RNA with a large Stokes shift. Nat Chem Biol 2024; 20:1453-1460. [PMID: 38816645 PMCID: PMC11511665 DOI: 10.1038/s41589-024-01633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
RNA-based fluorogenic modules have revolutionized the spatiotemporal localization of RNA molecules. Recently, a fluorophore named 5-((Z)-4-((2-hydroxyethyl)(methyl)amino)benzylidene)-3-methyl-2-((E)-styryl)-3,5-dihydro-4H-imidazol-4-one (NBSI), emitting in red spectrum, and its cognate aptamer named Clivia were identified, exhibiting a large Stokes shift. To explore the underlying molecular basis of this unique RNA-fluorophore complex, we determined the tertiary structure of Clivia-NBSI. The overall structure uses a monomeric, non-G-quadruplex compact coaxial architecture, with NBSI sandwiched at the core junction. Structure-based fluorophore recognition pattern analysis, combined with fluorescence assays, enables the orthogonal use of Clivia-NBSI and other fluorogenic aptamers, paving the way for both dual-emission fluorescence and bioluminescence imaging of RNA molecules within living cells. Furthermore, on the basis of the structure-based substitution assay, we developed a multivalent Clivia fluorogenic aptamer containing multiple minimal NBSI-binding modules. This innovative design notably enhances the recognition sensitivity of fluorophores both in vitro and in vivo, shedding light on future efficient applications in various biomedical and research contexts.
Collapse
Affiliation(s)
- Kaiyi Huang
- Department of Cardiology, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qianqian Song
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mengyue Fang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Deqiang Yao
- Institute of Aging and Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaochen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xianjun Chen
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Linyong Zhu
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Aiming Ren
- Department of Cardiology, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.
- Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Kalyviotis K, Pantazis P. Primed conversion: The emerging player of precise and nontoxic photoconversion. J Microsc 2024; 296:154-161. [PMID: 37937409 DOI: 10.1111/jmi.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
In 2015, we reported primed conversion, a novel way to convert green-to-red photoconvertible fluorescent proteins, which emerges as a powerful tool for precision optical imaging. Primed conversion uses the intercept of blue and red-to-far-red light instead of traditional violet or near-UV light illumination which offers a series of advantages. Here, we review the fundamental principles and applications of primed conversion with a focus on its use in single-cell labelling and lineage tracing. We provide a historical perspective of lineage tracing techniques, thereby covering basic principles of fluorescence, photoconvertible fluorescent proteins, and eventually primed conversion. We then present the molecular requirements for primed conversion to take place and showcase how it can be used for dual-colour high-fidelity lineage tracing. Further, we discuss potential future developments of the primed conversion imaging toolkit that can benefit the study of both development and disease progression.
Collapse
|
29
|
High-resolution structure of a novel fluorogenic RNA aptamer. Nat Chem Biol 2024; 20:1402-1403. [PMID: 38844575 DOI: 10.1038/s41589-024-01652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
|
30
|
Nguyen HN, Huynh U, Zastrow ML. Fluorescent protein-based Zn 2+ sensors reveal distinct responses of aerobic and anaerobic Escherichia coli cultures to excess Zn 2. J Biol Chem 2024; 300:107840. [PMID: 39357830 PMCID: PMC11550654 DOI: 10.1016/j.jbc.2024.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Zinc ions are required by all known organisms. Maintaining zinc homeostasis by preventing toxic overload while ensuring sufficient acquisition for cellular functions is crucial for survival and growth of bacteria. Bacteria, however, frequently encounter and must survive in various environments. During infection in host animals, for example, bacteria are exposed to acidic conditions in the stomach and anaerobic conditions in the intestines, but the effects of oxygen on zinc homeostasis in Escherichia coli have not been well-studied. Previously, we reported a flavin-binding fluorescent protein-based zinc sensor, CreiLOVN41C, which can respond to changes in labile Zn2+ levels in bacteria under both aerobic and anaerobic conditions. Here, we combined the use of CreiLOVN41C with established oxygen-dependent fluorescent protein-based sensors, inductively coupled plasma-mass spectrometry, and growth curves to evaluate how oxygen levels affect zinc uptake in E. coli. Inductively coupled plasma-mass spectrometry results showed that cells grown aerobically with added zinc acquired more zinc, but no additional zinc was accumulated when cells were grown anaerobically. Using oxygen-independent CreiLOVN41C and the oxygen-dependent ZapCY series of sensors, intracellular labile zinc was detected in E. coli grown with varied zinc under varied conditions. Although little to no endogenous zinc was detected by any sensor in E. coli cells grown with up to 2 mM added zinc, CreiLOVN41C revealed that when Zn2+ was added and detected by cells in real-time, anaerobic cells required more Zn2+ to similarly saturate the sensor. Overall, this work reveals that zinc uptake in E. coli is impacted by oxygen levels during cell growth.
Collapse
Affiliation(s)
- Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Uyen Huynh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas, United States.
| |
Collapse
|
31
|
Song Y, Lee Y. Brief guide to flow cytometry. Mol Cells 2024; 47:100129. [PMID: 39426684 PMCID: PMC11570313 DOI: 10.1016/j.mocell.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Flow cytometry is a powerful analytical technique for measuring the physical and chemical properties of cells or particles as they flow through a beam of light in a fluid stream. It is widely used in several research fields for a wide variety of purposes. This article provides a concise guide to the principles and utilization of flow cytometry. Step-by-step instructions, from instrument setup to data analysis, are intended to help researchers successfully apply flow cytometry in their studies.
Collapse
Affiliation(s)
- Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
32
|
Pham TA, Boquet-Pujadas A, Mondal S, Unser M, Barbastathis G. Deep-prior ODEs augment fluorescence imaging with chemical sensors. Nat Commun 2024; 15:9172. [PMID: 39448575 PMCID: PMC11502814 DOI: 10.1038/s41467-024-53232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
To study biological signalling, great effort goes into designing sensors whose fluorescence follows the concentration of chemical messengers as closely as possible. However, the binding kinetics of the sensors are often overlooked when interpreting cell signals from the resulting fluorescence measurements. We propose a method to reconstruct the spatiotemporal concentration of the underlying chemical messengers in consideration of the binding process. Our method fits fluorescence data under the constraint of the corresponding chemical reactions and with the help of a deep-neural-network prior. We test it on several GCaMP calcium sensors. The recovered concentrations concur in a common temporal waveform regardless of the sensor kinetics, whereas assuming equilibrium introduces artifacts. We also show that our method can reveal distinct spatiotemporal events in the calcium distribution of single neurons. Our work augments current chemical sensors and highlights the importance of incorporating physical constraints in computational imaging.
Collapse
Affiliation(s)
- Thanh-An Pham
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| | - Aleix Boquet-Pujadas
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland.
| | - Sandip Mondal
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael Unser
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland
| | - George Barbastathis
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
33
|
Chen Y, Huang Z, Cai E, Zhong S, Li H, Ju W, Yang J, Chen W, Tang C, Wang P. Novel Vibrational Proteins. Anal Chem 2024; 96:16481-16486. [PMID: 39434664 DOI: 10.1021/acs.analchem.4c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Genetically encoded green fluorescent protein (GFP) and its brighter and redder variants have tremendously revolutionized modern molecular biology and life science by enabling direct visualization of gene regulated protein functions on microscopic and nanoscopic scales. However, the current fluorescent proteins (FPs) only emit a few colors with an emission width of about 30-50 nm. Here, we engineer novel vibrational proteins (VPs) that undergo much finer vibrational transitions and emit rather narrow vibrational spectra (0.1-0.3 nm, roughly 3-10 cm-1). In response to an amber stop codon (UAG), a terminal alkyne bearing an unnatural amino acid (UAA, pEtF) is directly incorporated in place of Tyr64 in the chromophore of pr-Kaede by genetic code expansion. Essentially, the UAA64 further conjugates into a large π system with the contiguous two editable amino acid residues (His63 and Gly65), resulting in a programmable Raman resonance shift of the embedded alkyne. In the proof-of-concept experiment, we constructed a series of novel pEtF-VP mutants and observed fine Raman shifts of the alkynyl group in different chromophores. The genetically encoded novel VPs, could potentially label tens of proteins in the future.
Collapse
Affiliation(s)
- Yage Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhiliang Huang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
| | - Erli Cai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuchen Zhong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Science, Center for Quantitate Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | - Wei Ju
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
| | - Jie Yang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Science, Center for Quantitate Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ping Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
- Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| |
Collapse
|
34
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC. Nat Chem Biol 2024:10.1038/s41589-024-01758-3. [PMID: 39394268 DOI: 10.1038/s41589-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
The protein kinase C (PKC) family of serine and threonine kinases, consisting of three distinctly regulated subfamilies, has been established as critical for various cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs, is unclear. Here we present a sensitive excitation ratiometric C kinase activity reporter (ExRai-CKAR2) that enables the detection of minute changes (equivalent to 0.2% of maximum stimulation) in subcellular PKC activity. Using ExRai-CKAR2 with an enhanced diacylglycerol (DAG) biosensor, we uncover that G-protein-coupled receptor stimulation triggers sustained PKC activity at the endoplasmic reticulum and lysosomes, differentially mediated by Ca2+-sensitive conventional PKC and DAG-sensitive novel PKC, respectively. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or partitioning defective complexes, further enabled us to detect previously inaccessible endogenous atypical PKC activity in three-dimensional organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Broughton DP, Holod CG, Camilo-Contreras A, Harris DR, Brewer SH, Phillips-Piro CM. Modulating the pH dependent photophysical properties of green fluorescent protein. RSC Adv 2024; 14:32284-32291. [PMID: 39421683 PMCID: PMC11484174 DOI: 10.1039/d4ra05058d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
The photophysical properties of the β-barrel superfolder green fluorescent protein (sfGFP) arise from the chromophore that forms post-translationally in the interior of the protein. Specifically, the protonation state of the side chain of tyrosine 66 in the chromophore, in addition to the network of hydrogen bonds between the chromophore and surrounding residues, is directly related to the electronic absorbance and emission properties of the protein. The pH dependence of the photophysical properties of this protein were modulated by the genetic, site-specific incorporation of 3-nitro-l-tyrosine (mNO2Y) at site 66 in sfGFP. The altered photophysical properties of this noncanonical amino acid (ncAA) sfGFP construct were assessed by absorbance and fluorescence spectroscopies. Notably, a comparison of the pK a of the 3-nitrophenol side chain of mNO2Y incorporated in the protein relative to the phenol side chain of the tyrosine at site 66 in the native chromophore as well as the pK a of the 3-nitrophenol side chain of the free ncAA were measured and are compared. A structural analysis of the ncAA containing sfGFP construct is presented to yield molecular insight into the origin of the altered absorbance and fluorescence properties of the protein.
Collapse
Affiliation(s)
- David P Broughton
- Department of Chemistry, Franklin & Marshall College P.O. Box 3003 Lancaster PA 17604-3003 USA
| | - Chloe G Holod
- Department of Chemistry, Franklin & Marshall College P.O. Box 3003 Lancaster PA 17604-3003 USA
| | | | - Darcy R Harris
- Department of Chemistry, Franklin & Marshall College P.O. Box 3003 Lancaster PA 17604-3003 USA
| | - Scott H Brewer
- Department of Chemistry, Franklin & Marshall College P.O. Box 3003 Lancaster PA 17604-3003 USA
| | | |
Collapse
|
36
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
37
|
Zuo F, Jiang L, Su N, Zhang Y, Bao B, Wang L, Shi Y, Yang H, Huang X, Li R, Zeng Q, Chen Z, Lin Q, Zhuang Y, Zhao Y, Chen X, Zhu L, Yang Y. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nat Chem Biol 2024; 20:1272-1281. [PMID: 38783134 DOI: 10.1038/s41589-024-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.
Collapse
Affiliation(s)
- Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Limei Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Huimin Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilong Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengda Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
38
|
Harla I, Pawluś W, Zarębski M, Dobrucki JW. Induction of DNA single- and double-strand breaks by excited intra- or extracellular green fluorescent protein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113001. [PMID: 39180910 DOI: 10.1016/j.jphotobiol.2024.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Green fluorescent protein (GFP) has opened vast new avenues in studies of live cells and is generally perceived as a benign, nontoxic and harmless fluorescent tag. We demonstrat that excited GFP is capable of inducing substantial DNA damage in cells expressing fusion proteins. In the presence of GFP, even low doses of blue light (12 μJ) induce single strand breaks (SSBs). When the fluorescence of GFP located in the cell nucleus or in the cytoplasm is excited by a much higher dose (17 mJ), DNA double-strand breaks (DSBs) are also induced. Such breaks are induced even when GFP is placed and illuminated in culture medium outside of living cells. We demonstrate that DNA damage is induced by singlet oxygen, which is generated by excited GFP. Although short exposures of live cells to exciting light typically used in fluorescence microscopy induce SSBs but carry little risk of inducing DNA double-strand breaks, larger doses, which may be used in FRAP, FLIM, FCS and super-resolution fluorescence microscopy studies, are capable of inducing not only numerous SSBs but also DSBs.
Collapse
Affiliation(s)
- Izabela Harla
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Weronika Pawluś
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jurek W Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
39
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
40
|
Gill JK, Shaw GS. Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape. Chembiochem 2024; 25:e202400193. [PMID: 38632088 DOI: 10.1002/cbic.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Förster resonance energy transfer (FRET) is a fluorescence technique that allows quantitative measurement of protein interactions, kinetics and dynamics. This review covers the use of FRET to study the structures and mechanisms of ubiquitination and related proteins. We survey FRET assays that have been developed where donor and acceptor fluorophores are placed on E1, E2 or E3 enzymes and ubiquitin (Ub) to monitor steady-state and real-time transfer of Ub through the ubiquitination cascade. Specialized FRET probes placed on Ub and Ub-like proteins have been developed to monitor Ub removal by deubiquitinating enzymes (DUBs) that result in a loss of a FRET signal upon cleavage of the FRET probes. FRET has also been used to understand conformational changes in large complexes such as multimeric E3 ligases and the proteasome, frequently using sophisticated single molecule methods. Overall, FRET is a powerful tool to help unravel the intricacies of the complex ubiquitination system.
Collapse
Affiliation(s)
- Jashanjot Kaur Gill
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| |
Collapse
|
41
|
Valbuena FM, Krahn AH, Tokamov SA, Greene AC, Fehon RG, Glick BS. Yellow and oxidation-resistant derivatives of a monomeric superfolder GFP. Mol Biol Cell 2024; 35:mr8. [PMID: 39141403 PMCID: PMC11481703 DOI: 10.1091/mbc.e24-01-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Fluorescent proteins (FPs) are essential tools in biology. The utility of FPs depends on their brightness, photostability, efficient folding, monomeric state, and compatibility with different cellular environments. Despite the proliferation of available FPs, derivatives of the originally identified Aequorea victoria green fluorescent protein often show superior behavior as fusion tags. We recently generated msGFP2, an optimized monomeric superfolder variant of A. victoria GFP. Here, we describe two derivatives of msGFP2. The monomeric variant msYFP2 is a yellow superfolder FP with high photostability. The monomeric variant moxGFP2 lacks cysteines but retains significant folding stability, so it works well in the lumen of the secretory pathway. These new FPs are useful for common imaging applications.
Collapse
Affiliation(s)
- Fernando M. Valbuena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Adam H. Krahn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Sherzod A. Tokamov
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Annie C. Greene
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
42
|
Zhang K, Zhou T, Dicko C, Ye L, Bülow L. Preparation and Utilization of a Highly Discriminative Absorbent Imprinted with Fetal Hemoglobin. Polymers (Basel) 2024; 16:2734. [PMID: 39408446 PMCID: PMC11479342 DOI: 10.3390/polym16192734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Development in hemoglobin-based oxygen carriers (HBOCs) that may be used as alternatives to donated blood requires an extensive supply of highly pure hemoglobin (Hb) preparations. Therefore, it is essential to fabricate inexpensive, stable and highly selective absorbents for Hb purification. Molecular imprinting is an attractive technology for preparing such materials for targeted molecular recognition and rapid separations. In this case study, we developed human fetal hemoglobin (HbF)-imprinted polymer beads through the fusion of surface imprinting and Pickering emulsion polymerization. HbF was firstly covalently coupled to silica nanoparticles through its surface-exposed amino groups. The particle-supported HbF molecules were subsequently employed as templates for the synthesis of molecularly imprinted polymers (MIPs) with high selectivity for Hb. After removing the silica support and HbF, the resulting MIPs underwent equilibrium and kinetic binding experiments with both adult Hb (HbA) and HbF. These surface-imprinted MIPs exhibited excellent selectivity for both HbA and HbF, facilitating the one-step isolation of recombinant Hb from crude biological samples. The saturation capacities of HbA and HbF were found to be 15.4 and 17.1 mg/g polymer, respectively. The present study opens new possibilities for designed resins for tailored protein purification, separation and analysis.
Collapse
Affiliation(s)
| | | | | | | | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden; (K.Z.); (T.Z.); (C.D.); (L.Y.)
| |
Collapse
|
43
|
Kinoshita Y, Shigeno M, Ishino K, Minato H, Yamada N, Hosoi H. Unified Role of the 145th Residue on the Fluorescence Lifetime of Fluorescent Proteins from the Jellyfish Aequorea victoria. J Phys Chem B 2024; 128:9061-9073. [PMID: 39267290 DOI: 10.1021/acs.jpcb.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Finding a unified fluorescence mechanism is essential to develop and utilize fluorescent proteins appropriately. Here, we report the unified role of the 145th residue on the fluorescence efficiency of fluorescent proteins developed from the jellyfish Aequorea victoria by demonstrating the difference and similarity between two representative fluorescent proteins, enhanced green fluorescent protein (eGFP), and enhanced yellow fluorescent protein (eYFP). We determined the fluorescence lifetimes of the 19 different Y145 mutants of eGFP and eYFP by picosecond time-resolved fluorescence spectroscopy. We found that the effect of the 145th mutation on the fluorescence lifetime is significant for eYFP but moderate for eGFP. We compared known crystal structures to clarify the observed difference between eGFP and eYFP. As a result, we conclude that the efficiency of the steric restriction of the chromophore motion by the 145th side chain is essentially the same for both eGFP and eYFP. Meanwhile, the restriction of the chromophore motion by hydrogen bonds is more pronounced for eGFP than for YFP. Balance of the steric effect and hydrogen bonding controls the lifetime of the Y145 mutants for eGFP and eYFP. Furthermore, the steric restriction is induced by the electrostatic effect; the different 145th residue induces a different electrostatic environment around the chromophore. The finding in this study reasonably explains the reported lifetimes of other fluorescent proteins and allows the prediction of the lifetime of unknown fluorescent proteins from jellyfish.
Collapse
Affiliation(s)
- Yuna Kinoshita
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Mamoru Shigeno
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Kana Ishino
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruna Minato
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Natsumi Yamada
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| |
Collapse
|
44
|
Savinov A, Swanson S, Keating AE, Li GW. High-throughput discovery of inhibitory protein fragments with AlphaFold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572389. [PMID: 38187731 PMCID: PMC10769210 DOI: 10.1101/2023.12.19.572389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind to protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length proteins in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. Comparisons with experimental measurements establish that our approach is a sensitive predictor of fragment function: Evaluating inhibitory fragments from known protein-protein interaction interfaces, we find 87% are predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. Deep mutational scanning experiments support the predicted binding modes and uncover superior inhibitory peptides in high throughput. Further, FragFold is able to predict previously unknown protein binding modes, explaining prior genetic and biochemical data. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Elayan IA, Brown A. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. J Phys Chem A 2024; 128:7511-7523. [PMID: 39192559 DOI: 10.1021/acs.jpca.3c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ2PA). The absorbed photons either have equivalent (ω1 = ω2) or different frequencies (ω1 ≠ ω2), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S0 to S1, to investigate σD-2PA and σND-2PA of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σND-2PA for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σND-2PA are quantitatively larger than σD-2PA, where chromophores with the largest values of σD-2PA show greater potential for σND-2PA improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
46
|
Talei Franzesi G, Gupta I, Hu M, Piatkveich K, Yildirim M, Zhao JP, Eom M, Han S, Park D, Andaraarachchi H, Li Z, Greenhagen J, Islam AM, Vashishtha P, Yaqoob Z, Pak N, Wissner-Gross AD, Martin-Alarcon D, Veinot J, So PT, Kortshagen U, Yoon YG, Sur M, Boyden ES. In Vivo Optical Clearing of Mammalian Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611421. [PMID: 39282466 PMCID: PMC11398509 DOI: 10.1101/2024.09.05.611421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.
Collapse
|
47
|
Barykina NV, Carey EM, Oliinyk OS, Nimmerjahn A, Verkhusha VV. Destabilized near-infrared fluorescent nanobodies enable background-free targeting of GFP-based biosensors for imaging and manipulation. Nat Commun 2024; 15:7788. [PMID: 39242569 PMCID: PMC11379940 DOI: 10.1038/s41467-024-51857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Near-infrared (NIR) probes are highly sought after as fluorescent tags for multicolor cellular and in vivo imaging. Here we develop small NIR fluorescent nanobodies, termed NIR-FbLAG16 and NIR-FbLAG30, enabling background-free visualization of various GFP-derived probes and biosensors. We also design a red-shifted variant, NIR-Fb(718), to simultaneously target several antigens within the NIR spectral range. Leveraging the antigen-stabilizing property of the developed NIR-Fbs, we then create two modular systems for precise control of gene expression in GFP-labeled cells. Applying the NIR-Fbs in vivo, we target cells expressing GFP and the calcium biosensor GCaMP6 in the somatosensory cortex of transgenic mice. Simultaneously tracking calcium activity and the reference signal from NIR-FbLAGs bound to GCaMP6 enables ratiometric deep-brain in vivo imaging. Altogether, NIR-FbLAGs present a promising approach for imaging and manipulating various processes in live cells and behaving animals expressing GFP-based probes.
Collapse
Affiliation(s)
- Natalia V Barykina
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA
| | - Erin M Carey
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Vladislav V Verkhusha
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA.
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
48
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
49
|
Shi Z, Gao X, Zhang W, Chen B, Wang M, Liao K, Wang Z, Ren L, Zhai Y, Qiu Y, Wang X, Lin Y. Novel Bimolecular Fluorescence Complementation (BiFC) Assay for Visualization of the Protein-Protein Interactions and Cellular Protein Complex Localizations. Mol Biotechnol 2024; 66:2548-2557. [PMID: 37751129 DOI: 10.1007/s12033-023-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Investigations of protein-protein interactions (PPIs) are of paramount importance for comprehending cellular processes within biological systems. The bimolecular fluorescence complementation (BiFC) assay presents a convenient methodology for visualizing PPIs within live cells. While a range of fluorescent proteins have been introduced into the BiFC system, there is a growing demand for new fluorescent proteins to accommodate the expanding requirements of researchers. This study describes the introduction of Tagged blue fluorescent protein 2 (TagBFP2) into the BiFC assay to verify the interaction between two proteins, with Enhanced yellow fluorescent protein (EYFP) employed as a positive control. Both fluorescent proteins demonstrated optimal performance in this study. Compared to EYFP, the BiFC system utilizing TagBFP2 yielded a higher signal-to-noise ratio, which facilitated differentiation of the signal of PPIs from noise and enabled employment of other fluorescent proteins within the BiFC assay. Notably, the utilization of a fluorescent secondary antibody in immunofluorescence applications or the tagging of an interest protein with a fluorescent protein occupied the green or yellow channel. Overall, the present article introduces a BiFC assay that is highly straightforward, reliable, and replicable, with the ability to be completed within 1 week. This method requires neither expensive instrumentation nor technical skills of a high order.
Collapse
Affiliation(s)
- Zhonggang Shi
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Xing Gao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Wenrui Zhang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Binghong Chen
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Mengying Wang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Keman Liao
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People's Republic of China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People's Republic of China
| | - Yujia Zhai
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
| | - Yongming Qiu
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China.
- Department of Neurosurgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, People's Republic of China.
| | - Yingying Lin
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
50
|
Anderson MR, Dargatz CJ, Banerjee T, DeVore NM. Green, yellow, or cyan? Introduction of color change mutations into a green thermostable fluorescent protein and characterization during an introduction to biochemistry lab course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:549-558. [PMID: 38850239 DOI: 10.1002/bmb.21841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/19/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Green fluorescent protein has long been a favorite protein for demonstrating protein purification in the biochemistry lab course. The protein's vivid green color helps demonstrate to students the concept(s) behind affinity or ion exchange chromatography. We designed a series of introduction to biochemistry labs utilizing a thermostable green protein (TGP-E) engineered to have unusually high thermostability. This protein allows students to proceed through purification and characterization without the need to keep protein samples on ice. The 5-week lab series begins with an introduction to molecular biology techniques during weeks 1 and 2, where site-directed mutagenesis is used introduce, a single nucleotide change that shifts the fluorescent spectra of TGP-E to either cyan (CTP-E) or yellow (YTP-E). Students identify successful mutagenesis reaction by the color of a small expression sample after induction with IPTG. Next, students purify either the TGP-E (control-typically one group volunteers), YTP-E, or CTP-E protein as a 1-week lab. During the following week's lab, students run SDS-PAGE to verify protein purity, bicinchoninic acid assay to quantify protein yield, and absorbance and fluorescence spectra to characterize their protein's fluorescent character. The final lab in the series investigates the thermostability of YTP-E and CTP-E compared with TGP-E using a fluorescence plate reader. This 5-week series of experiments provide students with experience in several key biochemistry techniques and allows the students to compare properties of mutations. At the end of the course, the students will write a research report and give a short presentation over their results.
Collapse
Affiliation(s)
- Matthew R Anderson
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Cammi J Dargatz
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Tuhina Banerjee
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Natasha M DeVore
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| |
Collapse
|