1
|
Altinbasak I, Alp Y, Sanyal R, Sanyal A. Theranostic nanogels: multifunctional agents for simultaneous therapeutic delivery and diagnostic imaging. NANOSCALE 2024; 16:14033-14056. [PMID: 38990143 DOI: 10.1039/d4nr01423e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In recent years, there has been a growing interest in multifunctional theranostic agents capable of delivering therapeutic payloads while facilitating simultaneous diagnostic imaging of diseased sites. This approach offers a comprehensive strategy particularly valuable in dynamically evolving diseases like cancer, where combining therapy and diagnostics provides crucial insights for treatment planning. Nanoscale platforms, specifically nanogels, have emerged as promising candidates due to their stability, tunability, and multifunctionality as carriers. As a well-studied subgroup of soft polymeric nanoparticles, nanogels exhibit inherent advantages due to their size and chemical compositions, allowing for passive and active targeting of diseased tissues. Moreover, nanogels loaded with therapeutic and diagnostic agents can be designed to respond to specific stimuli at the disease site, enhancing their efficacy and specificity. This capability enables fine-tuning of theranostic platforms, garnering significant clinical interest as they can be tailored for personalized treatments. The ability to monitor tumor progression in response to treatment facilitates the adaptation of therapies according to individual patient responses, highlighting the importance of designing theranostic platforms to guide clinicians in making informed treatment decisions. Consequently, the integration of therapy and diagnostics using theranostic platforms continues to advance, offering intelligent solutions to address the challenges of complex diseases such as cancer. In this context, nanogels capable of delivering therapeutic payloads and simultaneously armed with diagnostic modalities have emerged as an attractive theranostic platform. This review focuses on advances made toward the fabrication and utilization of theranostic nanogels by highlighting examples from recent literature where their performances through a combination of therapeutic agents and imaging methods have been evaluated.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
2
|
Verma R, Kumar S. Computational study on 2D three-phase lag bioheat model during cryosurgery using RBF meshfree method. J Therm Biol 2023; 114:103575. [PMID: 37344016 DOI: 10.1016/j.jtherbio.2023.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/23/2023]
Abstract
Biological tissue has a multidimensional and non-homogeneous inner structure by nature. The temperature distribution and freezing front locations in biological tissue are crucial to optimizing the damage to tissue during cryosurgery. There is a need for a good mathematical model and effective simulation techniques to predict the effectiveness of the therapy. The present study concerns the numerical study of phase change phenomena during cryosurgery using the three-phase lag (TPL) bioheat model in arbitrary soft tissue domains, i.e., circular (Γ1), ameba-like (Γ2), and multiconnected (Γ3). We employ the effective heat capacity formulation to solve the nonlinear governing equation. The Gaussian radial basis function and Crank-Nicolson finite difference approximation are applied for spatial and time derivatives, respectively. Using the present algorithm, we study the impact of phase lag (τv) due to thermal displacement involved in the TPL model on phase change interface position and thermal distribution in all three domains. The obtained results may be beneficial in the field of oncology.
Collapse
Affiliation(s)
- Rohit Verma
- Department of Mathematics, S.V. National Institute of Technology, Surat 395007 Gujarat, India.
| | - Sushil Kumar
- Department of Mathematics, S.V. National Institute of Technology, Surat 395007 Gujarat, India.
| |
Collapse
|
3
|
Kasiński A, Świerczek A, Zielińska-Pisklak M, Kowalczyk S, Plichta A, Zgadzaj A, Oledzka E, Sobczak M. Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems-Synthesis and Characterization. Int J Mol Sci 2023; 24:6906. [PMID: 37108074 PMCID: PMC10138940 DOI: 10.3390/ijms24086906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to develop an innovative, dual-stimuli-responsive smart hydrogel local drug delivery system (LDDS), potentially useful as an injectable simultaneous chemotherapy and magnetic hyperthermia (MHT) antitumor treatment device. The hydrogels were based on a biocompatible and biodegradable poly(ε-caprolactone-co-rac-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-rac-lactide) (PCLA-PEG-PCLA, PCLA) triblock copolymer, synthesized via ring-opening polymerization (ROP) in the presence of a zirconium(IV) acetylacetonate (Zr(acac)4) catalyst. The PCLA copolymers were successfully synthesized and characterized using NMR and GPC techniques. Furthermore, the gel-forming and rheological properties of the resulting hydrogels were thoroughly investigated, and the optimal synthesis conditions were determined. The coprecipitation method was applied to create magnetic iron oxide nanoparticles (MIONs) with a low diameter and a narrow size distribution. The magnetic properties of the MIONs were close to superparamagnetic upon TEM, DLS, and VSM analysis. The particle suspension placed in an alternating magnetic field (AMF) of the appropriate parameters showed a rapid increase in temperature to the values desired for hyperthermia. The MIONs/hydrogel matrices were evaluated for paclitaxel (PTX) release in vitro. The release was prolonged and well controlled, displaying close to zero-order kinetics; the drug release mechanism was found to be anomalous. Furthermore, it was found that the simulated hyperthermia conditions had no effect on the release kinetics. As a result, the synthesized smart hydrogels were discovered to be a promising antitumor LDDS, allowing simultaneous chemotherapy and hyperthermia treatment.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Agata Świerczek
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Monika Zielińska-Pisklak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Sebastian Kowalczyk
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Str., 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Str., 00-664 Warsaw, Poland
| | - Anna Zgadzaj
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| |
Collapse
|
4
|
Analytical and numerical analysis of the dual-pulse lag heat transfer in a three-dimensional tissue subjected to a moving multi-point laser beam. J Therm Biol 2023; 112:103431. [PMID: 36796889 DOI: 10.1016/j.jtherbio.2022.103431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
An extensive algorithm based on both analytical and numerical solution methodologies is proposed to obtain transient temperature distributions in a three-dimensional living tissue subjected to a moving single-point and multi-point laser beam by considering metabolic heat generation and blood perfusion rate. Here, the dual-phase lag/Pennes equation is analytically solved by using the method of Fourier series and the Laplace transform. The ability to model single-point or multi-point laser beams as an arbitrary function of place and time is a significant advantage of the proposed analytical approach, which can be used to solve similar heat transfer problems in other living tissues. Besides, the related heat conduction problem is numerically solved based on the finite element method. The effects of laser beam transitional speed, laser power, and the number of laser points on the temperature distribution within the skin tissue are investigated. Moreover, the temperature distribution predicted by the dual-phase lag model is compared with that of the Pennes model under different working conditions. For the studied cases, it is observed that the maximum tissue temperature decreased about 63% by an increase of 6mm/s in the speed of the laser beam. An increase in the laser power from 0.8W/cm3 to 1.2W/cm3 results in a 28 °C increase in the maximum temperature of the skin tissue. It is observed that the maximum temperature predicted by the dual-phase lag model is always lower than that of the Pennes model and the temperature variations over time are sharper, while their results are entirely consistent over the simulation time. The obtained numerical results indicated that the dual-phase lag model is preferred in heating processes occurring at short intervals. Among the investigated parameters, the laser beam speed has the most considerable effect on the difference between the results of the Pennes and the dual-phase lag models.
Collapse
|
5
|
Lambidis E, Chen CC, Baikoghli M, Imlimthan S, Khng YC, Sarparanta M, Cheng RH, Airaksinen AJ. Development of 68Ga-Labeled Hepatitis E Virus Nanoparticles for Targeted Drug Delivery and Diagnostics with PET. Mol Pharm 2022; 19:2971-2979. [PMID: 35857429 PMCID: PMC9346612 DOI: 10.1021/acs.molpharmaceut.2c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Targeted delivery of diagnostics and therapeutics offers
essential
advantages over nontargeted systemic delivery. These include the reduction
of toxicity, the ability to reach sites beyond biological barriers,
and the delivery of higher cargo concentrations to diseased sites.
Virus-like particles (VLPs) can efficiently be used for targeted delivery
purposes. VLPs are derived from the coat proteins of viral capsids.
They are self-assembled, biodegradable, and homogeneously distributed.
In this study, hepatitis E virus (HEV) VLP derivatives, hepatitis
E virus nanoparticles (HEVNPs), were radiolabeled with gallium-68,
and consequently, the biodistribution of the labeled [68Ga]Ga-DOTA-HEVNPs was studied in mice. The results indicated that
[68Ga]Ga-DOTA-HEVNPs can be considered as promising theranostic
nanocarriers, especially for hepatocyte-targeting therapies.
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Chun-Chieh Chen
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - You Cheng Khng
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland.,Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
6
|
Pattyn A, Kratkiewicz K, Alijabbari N, Carson PL, Littrup P, Fowlkes JB, Duric N, Mehrmohammadi M. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies. Med Phys 2022; 49:6120-6136. [PMID: 35759729 DOI: 10.1002/mp.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND As of 2022, breast cancer continues to be the most diagnosed cancer worldwide. This problem persists within the United States as well, as the American Cancer Society has reported that ∼12.5% of women will be diagnosed with invasive breast cancer over the course of their lifetime. Therefore, a clinical need continues to exist to address this disease from a treatment and therapeutic perspective. Current treatments for breast cancer and cancers more broadly include surgery, radiation, and chemotherapy. Adjuncts to these methods have been developed to improve the clinical outcomes for patients. One such adjunctive treatment is mild hyperthermia therapy (MHTh), which has been shown to be successful in the treatment of cancers by increasing effectiveness and reduced dosage requirements for radiation and chemotherapies. MHTh-assisted treatments can be performed with invasive thermal devices, noninvasive microwave induction, heating and recirculation of extracted patient blood, or whole-body hyperthermia with hot blankets. PURPOSE One common method for inducing MHTh is by using microwave for heat induction and magnetic resonance imaging for temperature monitoring. However, this leads to a complex, expensive, and inaccessible therapy platform. Therefore, in this work we aim to show the feasibility of a novel all-acoustic MHTh system that uses focused ultrasound (US) to induce heating while also using US tomography (UST) to provide temperature estimates. Changes in sound speed (SS) have been shown to be strongly correlated with temperature changes and can therefore be used to indirectly monitor heating throughout the therapy. Additionally, these SS estimates allow for heterogeneous SS-corrected phase delays when heating complex and heterogeneous tissue structures. METHODS Feasibility to induce localized heat in tissue was investigated in silico with a simulated breast model, including an embedded tumor using continuous wave US. Here, both heterogenous acoustic and thermal properties were modeled in addition to blood perfusion. We further demonstrate, with ex vivo tissue phantoms, the feasibility of using ring-based UST to monitor temperature by tracking changes in SS. Two phantoms (lamb tissue and human abdominal fat) with latex tubes containing varied temperature flowing water were imaged. The measured SS of the water at each temperature were compared against values that are reported in literature. RESULTS Results from ex vivo tissue studies indicate successful tracking of temperature under various phantom configurations and ranges of water temperature. The results of in silico studies show that the proposed system can heat an acoustically and thermally heterogenous breast model to the clinically relevant temperature of 42°C while accounting for a reasonable time needed to image the current cross section (200 ms). Further, we have performed an initial in silico study demonstrating the feasibility of adjusting the transmit waveform frequency to modify the effective heating height at the focused region. Lastly, we have shown in a simpler 2D breast model that MHTh level temperatures can be maintained by adjusting the transmit pressure intensity of the US ring. CONCLUSIONS This work has demonstrated the feasibility of using a 256-element ring array transducer for temperature monitoring; however, future work will investigate minimizing the difference between measured SS and the values shown in literature. A hypothesis attributes this bias to potential volumetric average artifacts from the ray-based SS inversion algorithm that was used, and that moving to a waveform-based SS inversion algorithm will greatly improve the SS estimates. Additionally, we have shown that an all-acoustic MHTh system is feasible via in silico studies. These studies have indicated that the proposed system can heat a tumor within a heterogenous breast model to 42°C within a narrow time frame. This holds great promise for increasing the accessibility and reducing the complexity of a future all-acoustic MHTh system.
Collapse
Affiliation(s)
- Alexander Pattyn
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Naser Alijabbari
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Paul L Carson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Littrup
- Delphinus Medical Technologies, Novi, Michigan, USA.,Ascension Providence Rochester Radiology, Rochester, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nebojsa Duric
- Delphinus Medical Technologies, Novi, Michigan, USA.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
7
|
Elkayal HA, Ismail NE. Efficient focusing of microwave hyperthermia for small deep-seated breast tumors treatment using particle swarm optimization. Comput Methods Biomech Biomed Engin 2021; 24:985-994. [PMID: 34132607 DOI: 10.1080/10255842.2020.1863379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Focused microwave hyperthermia is a technique with advantage of high accuracy and low side effects for breast tumor treatments. In this study, an efficient focusing technique for noninvasive microwave hyperthermia treatment for breast tumors is presented. Particle Swarm Optimization (PSO) is used to find the optimum excitations (phases and amplitudes) of a three dimension (3D) Micro-Strip Patch (MSP) antenna array operating at 2.45 GHz. The antenna excitations are optimized to maximize the power loss density and the Specific Absorption Rate (SAR) at the tumor location, to reach the required hyperthermia temperature (above 42 °C) at the tumor location without causing hot spots in healthy tissues. The technique is tested on a challenging scenario of a 3D realistic breast model having a tumor less than 1 cm3 volume and embedded in different locations deep in the glandular tissue of a very dense breast. The results confirmed the capability of the focusing technique.
Collapse
Affiliation(s)
- Heba Abdelhamid Elkayal
- Electrical Department, Faculty of Engineering, Pharos University in Alexandria (PUA), Alexandria, Egypt
| | - Nour Eldin Ismail
- Electrical Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. NANOTECHNOLOGY 2021; 32:192001. [PMID: 33524960 DOI: 10.1088/1361-6528/abe1ed] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) represent a relatively simple nanosystem to be synthesised and functionalized. AuNPs offer numerous advantages over different nanomaterials, primarily due to highly optimized protocols for their production with sizes in the range 1-150 nm and shapes, spherical, nanorods (AuNRs), nanocages, nanostars or nanoshells (AuNSs), just to name a few. AuNPs possess unique properties both from the optical and chemical point of view. AuNPs can absorb and scatter light with remarkable efficiency. Their outstanding interaction with light is due to the conduction electrons on the metal surface undergoing a collective oscillation when they are excited by light at specific wavelengths. This oscillation, known as a localized surface plasmon resonance, causes the absorption and scattering intensities of AuNPs to be significantly higher than identically sized non-plasmonic nanoparticles. In addition, AuNP absorption and scattering properties can be tuned by controlling the particle size, shape, and the local refractive index near the particle surface. By the chemical side, AuNPs offer the advantage of functionalization with therapeutic agents through covalent and ionic binding, which can be useful for biomedical applications, with particular emphasis on cancer treatments. Functionalized AuNPs exhibit good biocompatibility and controllable distribution patterns when delivered in cells and tissues, which make them particularly fine candidates for the basis of innovative therapies. Currently, major available AuNP-based cancer therapeutic approaches are the photothermal therapy (PTT) or photodynamic therapy (PDT). PTT and PDT rely upon irradiation of surface plasmon resonant AuNPs (previously delivered in cancer cells) by light, in particular, in the near-infrared range. Under irradiation, AuNPs surface electrons are excited and resonate intensely, and fast conversion of light into heat takes place in about 1 ps. The cancer cells are destroyed by the induced hyperthermia, i.e. the condition under which cells are subject to temperature in the range of 41 °C-47 °C for tens of minutes. The review is focused on the description of the optical and thermal properties of AuNPs that underlie their continuous and progressive exploitation for diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Mario D'Acunto
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Edi Gabellieri
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Gianluca Presciuttini
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| |
Collapse
|
9
|
Alqarni SA, Willmore WG, Albert J, Smelser CW. Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro. APPLIED OPTICS 2021; 60:2400-2411. [PMID: 33690341 DOI: 10.1364/ao.411576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Localized hyperthermia therapy involves heating a small volume of tissue in order to kill cancerous cells selectively and with limited damage to healthy cells and surrounding tissue. However, these features are only achievable through real-time control of the tissue temperature and heated volume, both of which are difficult to obtain with current heating systems and techniques. This work introduces an optical fiber-based active heater that acts both as a miniature heat source and as a thermometer. The heat-induced damage in the tissue is caused by the conductive heat transfer from the surface of the device, while the heat is generated in an absorptive coating on the fiber by near-infrared light redirected from the fiber core to the surface by a tilted fiber Bragg grating inscribed in the fiber core. Simultaneous monitoring of the reflection spectrum of the grating provides a measure of the local temperature. Localized temperature increases between 0°C and 100°C in 10 mm-long/5 mm-diameter cylindrical volumes are obtained with continuous-wave pump power levels up to 1.8 W. Computational and experimental results further indicate that the temperature rise and dimensions of the heated volume can be maintained at a nearly stable level determined by the input optical power.
Collapse
|
10
|
Barman C, Rath P, Bhattacharya A. A Non-Fourier Bioheat Transfer Model for Cryosurgery of Tumor Tissue with Minimum Collateral Damage. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105857. [PMID: 33280936 DOI: 10.1016/j.cmpb.2020.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Incorporation of non-Fourier heat conduction while studying heat transfer phenomena in biological materials has emerged has an important approach as it predicts better and more realistic results than Fourier based models. In this article we have proposed a non-Fourier computational model and applied the same to simulate cryosurgery of lung tumor and attempted minimization of freezing damage of healthy lung tissue using pulsed laser irradiation. METHODS A non-Fourier bioheat transfer model for phase change in biological tissues is solved via a Fourier heat conduction based solution approach. A unified model is proposed combining all variants of bioheat models: Fourier's heat conduction based Pennes' bioheat model, hyperbolic heat conduction model and dual phase lag model. The proposed model takes into account the different thermophysical properties of frozen and unfrozen regions. In order to mimic the actual biotransport process, the blood perfusion and metabolic heat generation are switched off in the frozen region. Implicit source based enthalpy method is used to model phase change process. A new iterative enthalpy update equation is developed for capturing evolution of freezing front implicitly. Finite Volume based numerical discretization technique is used to discretize the governing PDE. The resulting discrete algebraic equation set is solved implicitly by Tri-diagonal Matrix Algorithm. The proposed model is verified with existing results from the literature. RESULTS For Fourier heat conduction, freezing time of 99.99% of tumor is 1247s, which increases to 1267s for τq= 5s (τT= 0s) and again reduces to 1255s for τq= 5s and τT= 3s. τq and τT are phase lag parameters for non-Fourier heat conduction. For τq= 5s and τT= 0.05s, the freezing damage of healthy tissue decreases by 23.76% when pulsed laser irradiation (Io = 106 W/m2) is used to warm the neighboring healthy tissue. CONCLUSIONS So non-Fourier bioheat transport models are better and more accurate in predicting temperature history, freezing time and freezing front propagation as compared to Fourier based models. Pulsed laser irradiation can prove to be a very efficient technique in minimizing collateral damage during cryosurgery.
Collapse
Affiliation(s)
- C Barman
- Heat Transfer Laboratory, School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India, 752050
| | - P Rath
- Heat Transfer Laboratory, School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India, 752050.
| | - A Bhattacharya
- Heat Transfer Laboratory, School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India, 752050
| |
Collapse
|
11
|
Tekin V, Aweda T, Kozgus Guldu O, Biber Muftuler FZ, Bartels J, Lapi SE, Unak P. A novel anti-angiogenic radio/photo sensitizer for prostate cancer imaging and therapy: 89Zr-Pt@TiO 2-SPHINX, synthesis and in vitro evaluation. Nucl Med Biol 2021; 94-95:20-31. [PMID: 33482596 DOI: 10.1016/j.nucmedbio.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common malignancy and leading cause of cancer deaths in men. Thus, the development of novel strategies for performing combined prostate cancer imaging and therapy methods is crucial and could have a significant impact on patient care. This current study aimed to design a multimodality nanoconjugate to be used for both PET and optical imaging and as a therapeutic radio/photo sensitizer and anti-angiogenesis agent. Initial characterization of this novel nanoconjugate was performed via HPLC, FTIR, TEM and DLS analyses. Pt@TiO2-SPHINX was further evaluated using fluorometric and radiochromatographic methods. Cytotoxicity, cell uptake and internalization were also investigated as well as therapy with photodynamic/radio therapy combinations. Both nanoparticles and nanoconjugates were robustly synthesized according to literature methods. Radiochemistry and cell culture assays showed high 89Zr radiolabeling efficiency with sufficient stability for studies at later time points. Pt@TiO2-SPHINX was shown to target prostate cancer cells (PC3 and LNCaP), and was non-toxic to normal prostate cells (RWPE-1). This finding was supported by the WST-8 assay and AFM images. The uptake of the compound in prostate cancer cells is significantly higher than prostate normal cells and according to ELISA results, Pt@TiO2-SPHINX can increase anti-angiogenic VEGFA165b. Additionally, Pt@TiO2-SPHINX dramatically decreased the cell viability of prostate cancer cells when photodynamic and radio therapy were performed at the same time. In vitro results are promising for future studies of Pt@TiO2-SPHINX as a PET imaging agent and anti-angiogenic radio sensitizer.
Collapse
Affiliation(s)
- Volkan Tekin
- Institute of Nuclear Science, Ege University, Izmir, Turkey.
| | - Tolulope Aweda
- Department of Radiology, University of Alabama at Birmingham, AL, United States of America
| | | | | | - Jennifer Bartels
- Department of Radiology, University of Alabama at Birmingham, AL, United States of America
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, AL, United States of America
| | - Perihan Unak
- Institute of Nuclear Science, Ege University, Izmir, Turkey
| |
Collapse
|
12
|
Guinart A, Perry HL, Wilton-Ely JDET, Tetley TD. Gold nanomaterials in the management of lung cancer. Emerg Top Life Sci 2020; 4:627-643. [PMID: 33270840 PMCID: PMC7752036 DOI: 10.1042/etls20200332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023]
Abstract
Lung cancer (LC) is one of the most deadly cancers worldwide, with very low survival rates, mainly due to poor management, which has barely changed in recent years. Nanomedicines, especially gold nanomaterials, with their unique and size-dependent properties offer a potential solution to many challenges in the field. The versatility afforded by the shape, size, charge and surface chemistry of gold nanostructures allows them to be adapted for many applications in the diagnosis, treatment and imaging of LC. In this review, a survey of the most recent advances in the field is presented with an emphasis on the optical properties of gold nanoscale materials and their use in cancer management. Gold nanoparticle toxicology has also been a focus of interest for many years but the studies have also sometimes arrived at contradictory conclusions. To enable extrapolation and facilitate the development of medicines based on gold nanomaterials, it must be assumed that each design will have its own unique characteristics that require evaluation before translation to the clinic. Advances in the understanding and recognition of the molecular signatures of LC have aided the development of personalised medicines. Tailoring the treatment to each case should, ideally increase the survival outcomes as well as reduce medical costs. This review seeks to present the potential of gold nanomaterials in LC management and to provide a unified view, which will be of interest to those in the field as well as researchers considering entering this highly important area of research.
Collapse
Affiliation(s)
- Ainoa Guinart
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Hannah L Perry
- Department of Chemistry, Imperial College London, London, U.K
| | | | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London, U.K
| |
Collapse
|
13
|
Roriz P, Silva S, Frazão O, Novais S. Optical Fiber Temperature Sensors and Their Biomedical Applications. SENSORS 2020; 20:s20072113. [PMID: 32283622 PMCID: PMC7180865 DOI: 10.3390/s20072113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/08/2023]
Abstract
The use of sensors in the real world is on the rise, providing information on medical diagnostics for healthcare and improving quality of life. Optical fiber sensors, as a result of their unique properties (small dimensions, capability of multiplexing, chemical inertness, and immunity to electromagnetic fields) have found wide applications, ranging from structural health monitoring to biomedical and point-of-care instrumentation. Furthermore, these sensors usually have good linearity, rapid response for real-time monitoring, and high sensitivity to external perturbations. Optical fiber sensors, thus, present several features that make them extremely attractive for a wide variety of applications, especially biomedical applications. This paper reviews achievements in the area of temperature optical fiber sensors, different configurations of the sensors reported over the last five years, and application of this technology in biomedical applications.
Collapse
Affiliation(s)
- Paulo Roriz
- CIDESD (ISMAI), N2i (IPMAIA), LABIOMEP (Porto Biomechanics Laboratory), 447-690 Maia, Portugal;
| | - Susana Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (S.S.); (S.N.)
| | - Orlando Frazão
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (S.S.); (S.N.)
- Department of Physics and Astronomy, Faculty of Sciences of University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- Correspondence:
| | - Susana Novais
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (S.S.); (S.N.)
| |
Collapse
|
14
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
15
|
Linsley CS, Zhu M, Quach VY, Wu BM. Preparation of photothermal palmitic acid/cholesterol liposomes. J Biomed Mater Res B Appl Biomater 2018; 107:1384-1392. [PMID: 30281908 DOI: 10.1002/jbm.b.34230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 01/28/2023]
Abstract
Indocyanine green (ICG) is the only FDA-approved near-infrared dye and it is currently used clinically for diagnostic applications. However, there is significant interest in using ICG for triggered drug delivery applications and heat ablation therapy. Unfortunately, free ICG has a short half-life in vivo and is rapidly cleared from circulation. Liposomes have been frequently used to improve ICG's stability and overall time of effectiveness in vivo, but they have limited stability due to the susceptibility of phospholipids to hydrolysis and oxidation. In this study, nonphospholipid liposomes were used to encapsulate ICG, and the resulting liposomes were characterized for size, encapsulation efficiency, stability, and photothermal response. Using the thin-film hydration method, an ICG encapsulation efficiency of 54% was achieved, and the liposomes were stable for up to 12 weeks, with detectable levels of encapsulated ICG up to week 4. Additionally, ICG-loaded liposomes were capable of rapidly producing a significant photothermal response upon exposure to near-infrared light, and this photothermal response was able to induce changes in the mechanical properties of thermally responsive hydrogels. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1384-1392, 2019.
Collapse
Affiliation(s)
- Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Max Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Viola Y Quach
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.,Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
16
|
Detection of Intracellular Gold Nanoparticles: An Overview. MATERIALS 2018; 11:ma11060882. [PMID: 29795017 PMCID: PMC6025619 DOI: 10.3390/ma11060882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
Abstract
Photothermal therapy (PTT) takes advantage of unique properties of gold nanoparticles (AuNPs) (nanospheres, nanoshells (AuNSs), nanorods (AuNRs)) to destroy cancer cells or tumor tissues. This is made possible thanks principally to both to the so-called near-infrared biological transparency window, characterized by wavelengths falling in the range 700–1100 nm, where light has its maximum depth of penetration in tissue, and to the efficiency of cellular uptake mechanisms of AuNPs. Consequently, the possible identification of intracellular AuNPs plays a key role for estimating the effectiveness of PTT treatments. Here, we review the recognized detection techniques of such intracellular probes with a special emphasis to the exploitation of near-infrared biological transparency window.
Collapse
|
17
|
Jahns M, MacDougall D, Adamson RBA. Thermoacoustic Lensing in Ultrasound Imaging of Nonechogenic Tissue During High-intensity Focused Ultrasound Exposure. ULTRASONIC IMAGING 2018; 40:143-157. [PMID: 29332489 DOI: 10.1177/0161734617752477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a ray-tracing theory to describe the effects of thermoacoustic lensing during high-intensity focused ultrasound (HIFU) on ultrasound images of reflectors lying distal to the HIFU focal region and discuss the application of thermal lensing effects to dose monitoring in HIFU therapy. By analyzing the effects of thermal and geometric delays of acoustic rays passing through a region of tissue undergoing localized heating, we show how the shape of a reflector distal to the heated region can be predicted and present experimental measurements in good agreement with the model. We also apply the model in reverse to estimate the thermal profile of a heated region based on a measured change in the shape of a distal reflector during HIFU delivery. As an example, we apply this technique to the measurements of thermal diffusion in porcine fat. An interesting aspect of the technique is that it can be applied to measure temperature in nonechogenic tissues as long as there is an observable reflector in the ultrasound images that is located distal to the region of localized heating.
Collapse
Affiliation(s)
- Matthew Jahns
- 1 School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dan MacDougall
- 1 School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert B A Adamson
- 1 School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- 2 Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Abstract
The term hyperthermia broadly refers to either an abnormally high fever or the treatment of a disease by the induction of fever. Its effect depends on the temperature and exposure time. The increasing number of applications and clinical trials at universities, clinics, and hospitals prove the feasibility and applicability of clinical therapeutic hyperthermia. This chapter aims to outline and discuss the means by which electromagnetic energy and other techniques can provide elevation of temperature within the human body. Because of the individual characteristic of each type of treatment, different modalities of heating systems have evolved. The chapter concludes with a discussion of challenges and opportunities for further improvement in technology and routine clinical application.
Collapse
Affiliation(s)
- Riadh W Y Habash
- School of Electrical Engineering and Computer Science, and McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Affiliation(s)
- Ankush Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
20
|
Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J Therm Biol 2017; 71:41-51. [PMID: 29301699 DOI: 10.1016/j.jtherbio.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
This research article determines an exact analytical expression for 2-D thermal field in single layer living tissues under a therapeutic condition by means of Fourier and non-Fourier heat transfer approaches. An actual spatially dependent initial condition has been adopted to analyze the heat propagation in tissues. The exact analytical determination for this actual initial condition for temperature may be difficult. However, in this study, an approximate analytical method has newly been established for an appropriate initial condition. With this initial expression, an exact temperature distribution for 2-D heat conduction in plane co-ordinates has been investigated for the predefined therapeutic boundary condition to have knowledge for practical aspects of the thermal therapy. Laplace Transform Method (LTM) in conjunction with the Inversion Theorem is used for the analytical solution treatment. We have utilized both Pennes' bioheat equation (PBHE) and thermal wave model of bioheat equation (TWMBHE) for the analysis. The influence of thermo-biological behavior on 2-D heat conduction in tissues has been studied with the variation of several dependable parameters in relation to the Hyperthermia treatment protocol in a moderate temperature range (42-45°C). The result in the present study has been evidenced for the biological heat transfer for the enforcement of different circumstances and also has been validated with the published value where the maximum temperature deviation of 2.6% has been recorded. We conclude that the temperature curve for TWMBHE model shows a higher waveform nature for low thermal relaxation time and this wavy nature gradually diminishes with an increase in relaxation time. The maximum peak temperature attains 46.3°C for the relaxation time = 2s and with the increase in the relaxation time the peak temperature gradually falls. The impact of blood perfusion rate on the relaxation time has also been established in this paper.
Collapse
|
21
|
Liu S, Doughty A, West C, Tang Z, Zhou F, Chen WR. Determination of temperature distribution in tissue for interstitial cancer photothermal therapy. Int J Hyperthermia 2017; 34:756-763. [PMID: 28826269 DOI: 10.1080/02656736.2017.1370136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Temperature increase in tumour tissue during photothermal therapy (PTT) is a significant factor in determining the outcomes of the treatment. Therefore, controlling and optimising temperature distribution in target tissue is crucial for PTT. In this study, we developed a unique ex vivo device to study the temperature distribution during PTT to be used as a guide for the desired photothermal effects for cancer treatment. METHODS Bovine liver tissue buried inside agarose gel served as a phantom tumour surrounded by normal tissue. A thermostatic incubator was used to simulate tissue environment in live animals. The temperature distributions were measured by thermocouples with needle probes at different locations inside the target tissue, during laser irradiation using an 805-nm laser. RESULTS The results obtained using the ex vivo device were verified by comparing the tissue temperature directly measured in animal tumours irradiated under the same conditions. With this model, the spatial distribution of temperature in target tissue can be monitored in real time. A two-dimensional temperature distribution in target tissue allows us to establish the correlations among laser parameters, temperature distribution and tumour size. In addition, the optimal temperature range for tumour destruction and immunological stimulation was determined using metastatic rat mammary tumour model. CONCLUSION The device and method developed in this study can provide guidance for choosing the appropriate treatment parameters for optimal photothermal effects, particularly when combined with immunotherapy, for cancer treatment.
Collapse
Affiliation(s)
- Shaojie Liu
- a School of Physics and Telecommunication Engineering , South China Normal University , Guangzhou , Guangdong , China.,b Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research , University of Central Oklahoma , Edmond , OK , USA
| | - Austin Doughty
- b Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research , University of Central Oklahoma , Edmond , OK , USA
| | - Connor West
- b Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research , University of Central Oklahoma , Edmond , OK , USA
| | - Zhilie Tang
- a School of Physics and Telecommunication Engineering , South China Normal University , Guangzhou , Guangdong , China
| | - Feifan Zhou
- b Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research , University of Central Oklahoma , Edmond , OK , USA
| | - Wei R Chen
- b Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research , University of Central Oklahoma , Edmond , OK , USA.,c Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| |
Collapse
|
22
|
Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ. Hyperthermia: How Can It Be Used? Oman Med J 2016; 31:89-97. [PMID: 27168918 DOI: 10.5001/omj.2016.19] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hyperthermia (HT) is a method used to treat tumors by increasing the temperature of the cells. The treatment can be applied in combination with other verified cancer treatments using several different procedures. We sought to present an overview of the different HT tumor treatment, recent advances in the field, and combinational treatment sequences and outcomes. We used a computer-aided search to identify articles that contained the keywords hyperthermia, cancer treatment, chemotherapy, radiotherapy, nanoparticle, and cisplatin. There are three types of HT treatment, which each need the use of applicators that are in contact with or in the proximity of the patient for the purpose of heating. Heating can be achieved using different types of energy (including microwaves, radio waves, and ultrasound). However, the source of energy will depend on the cancer type and location. The temperature used will also vary. HT is rarely used alone, and can be combined with other cancer treatments. When used in combination with other treatments, improved survival rates have been observed. However, despite in vitro and in vivo studies that support the use of concurrent hypothermia treatments, contradictory results suggest there is a need for more studies to identify other hidden effects of HT.
Collapse
Affiliation(s)
- Zhaleh Behrouzkia
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Joveini
- Student Research Committee, Urmia University of Medical Science, Urmia, Iran
| | - Behnaz Keshavarzi
- Student Research Committee, Urmia University of Medical Science, Urmia, Iran
| | - Nazila Eyvazzadeh
- Radiation Research Center, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Zohdi Aghdam
- Medical Physics Department, Faculty of ParaMedicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
23
|
Chen CC, Xing L, Stark M, Ou T, Holla P, Xiao K, Kamita SG, Hammock BD, Lam K, Cheng RH. Chemically activatable viral capsid functionalized for cancer targeting. Nanomedicine (Lond) 2016; 11:377-90. [PMID: 26786134 DOI: 10.2217/nnm.15.207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To design a theranostic capsule using the virus-like nanoparticle of the hepatitis E virus modified to display breast cancer cell targeting functional group (LXY30). METHODS Five surface-exposed residues were mutated to cysteine to allow conjugation to maleimide-linked chemical groups via thiol-selective linkages. Engineered virus-like nanoparticles were then covalently conjugated to a breast cancer recognized ligand, LXY30 and an amine-coupled near-infrared fluorescence dye. RESULTS LXY30-HEV VLP was checked for its binding and entry to a breast cancer cell line and for tumor targeting in vivo to breast cancer tissue in mice. The engineered virus-like nanoparticle not only targeted cancer cells, but also appeared immune silent to native hepatitis E virus antibodies due to epitope disruption at the antibody-binding site. CONCLUSION These results demonstrate the production of a theranostic capsule suitable for cancer diagnostics and therapeutics based on surface modification of a highly stable virus-like nanoparticle.
Collapse
Affiliation(s)
- Chun-Chieh Chen
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Li Xing
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Marie Stark
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Tingwei Ou
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Prasida Holla
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Kai Xiao
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Shizuo G Kamita
- Department of Entomology & Nematology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology & Nematology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Kit Lam
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - R Holland Cheng
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
24
|
Linsley CS, Quach VY, Agrawal G, Hartnett E, Wu BM. Visible light and near-infrared-responsive chromophores for drug delivery-on-demand applications. Drug Deliv Transl Res 2015; 5:611-24. [PMID: 26423655 PMCID: PMC5016096 DOI: 10.1007/s13346-015-0260-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The need for temporal-spatial control over the release of biologically active molecules has motivated efforts to engineer novel drug delivery-on-demand strategies actuated via light irradiation. Many systems, however, have been limited to in vitro proof-of-concept due to biocompatibility issues with the photo-responsive moieties or the light wavelength, intensity, and duration. To overcome these limitations, this paper describes a light actuated drug delivery-on-demand strategy that uses visible and near-infrared (NIR) light and biocompatible chromophores: cardiogreen, methylene blue, and riboflavin. All three chromophores are capable of significant photothermal reaction upon exposure to NIR and visible light, and the amount of temperature change is dependent upon light intensity, wavelength as well as chromophore concentration. Pulsatile release of bovine serum albumin (BSA) from thermally responsive hydrogels was achieved over 4 days. These findings have the potential to translate light-actuated drug delivery-on-demand systems from the bench to clinical applications that require explicit control over the presentation of biologically active molecules.
Collapse
Affiliation(s)
- Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V., P.O. Box: 951600, Los Angeles, CA, 90095-1600, USA
| | - Viola Y Quach
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V., P.O. Box: 951600, Los Angeles, CA, 90095-1600, USA
| | - Gaurav Agrawal
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V., P.O. Box: 951600, Los Angeles, CA, 90095-1600, USA
| | - Elyse Hartnett
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V., P.O. Box: 951600, Los Angeles, CA, 90095-1600, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V., P.O. Box: 951600, Los Angeles, CA, 90095-1600, USA.
- Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Liang XM, Sekar PK, Zhao G, Zhou X, Shu Z, Huang Z, Ding W, Zhang Q, Gao D. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor. Sci Rep 2015; 5:10377. [PMID: 25993037 PMCID: PMC4438607 DOI: 10.1038/srep10377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/07/2015] [Indexed: 11/09/2022] Open
Abstract
An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.
Collapse
Affiliation(s)
- Xin M Liang
- 1] Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China [2] USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui 230027, China [3] Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA [4] CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Praveen K Sekar
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gang Zhao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoming Zhou
- School of Mechanical, Electronic, and Industrial Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhiquan Shu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Zhongping Huang
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA
| | - Weiping Ding
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
MacEwan S, Chilkoti A. Controlled apoptosis by a thermally toggled nanoscale amplifier of cellular uptake. NANO LETTERS 2014; 14:2058-2064. [PMID: 24611762 PMCID: PMC3985949 DOI: 10.1021/nl5002313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Indexed: 05/29/2023]
Abstract
Internalization into cancer cells is a significant challenge in the delivery of many anticancer therapeutics. Drug carriers can address this challenge by facilitating cellular uptake of cytotoxic cargo in the tumor, while preventing cellular uptake in healthy tissues. Here we describe an extrinsically controlled drug carrier, a nanopeptifier, that amplifies cellular uptake by modulating the activity of cell-penetrating peptides with thermally toggled self-assembly of a genetically encoded polypeptide nanoparticle. When appended with a proapoptotic peptide, the nanopeptifier creates a cytotoxic switch, inducing apoptosis only in its self-assembled state. The nanopeptifier provides a new approach to tune the cellular uptake and activity of anticancer therapeutics by an extrinsic thermal trigger.
Collapse
Affiliation(s)
- Sarah
R. MacEwan
- Department
of Biomedical Engineering and Research Triangle MRSEC, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department
of Biomedical Engineering and Research Triangle MRSEC, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
Deng ZS, Liu J. Chemothermal therapy for localized heating and ablation of tumor. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:409-26. [PMID: 23965596 DOI: 10.1260/2040-2295.4.3.409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation) are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.
Collapse
Affiliation(s)
- Zhong-Shan Deng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
28
|
Dillon CR, Todd N, Payne A, Parker DL, Christensen DA, Roemer RB. Effects of MRTI sampling characteristics on estimation of HIFU SAR and tissue thermal diffusivity. Phys Med Biol 2013; 58:7291-307. [PMID: 24077026 DOI: 10.1088/0031-9155/58/20/7291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While the non-invasive and three-dimensional nature of magnetic-resonance temperature imaging (MRTI) makes it a valuable tool for high-intensity focused ultrasound (HIFU) treatments, random and systematic errors in MRTI measurements may propagate into temperature-based parameter estimates used for pretreatment planning. This study assesses the MRTI effects of zero-mean Gaussian noise (SD = 0.0-2.0 °C), temporal sampling (tacq = 1.0-8.0 s), and spatial averaging (Res = 0.5-2.0 mm isotropic) on HIFU temperature measurements and temperature-based estimates of the amplitude and full width half maximum (FWHM) of the HIFU specific absorption rate and of tissue thermal diffusivity. The ultrasound beam used in simulations and ex vivo pork loin experiments has lateral and axial FWHM dimensions of 1.4 mm and 7.9 mm respectively. For spatial averaging simulations, beams with lateral FWHM varying from 1.2-2.2 mm are also assessed. Under noisy conditions, parameter estimates are improved by fitting to data from larger voxel regions. Varying the temporal sampling results in minimal changes in measured temperatures (<2% change) and parameter estimates (<5% change). For the HIFU beams studied, a spatial resolution of 1 × 1 × 3 mm(3) or smaller is required to keep errors in temperature and all estimated parameters less than 10%. By quantifying the errors associated with these sampling characteristics, this work provides researchers with appropriate MRTI conditions for obtaining estimates of parameters essential to pretreatment modeling of HIFU thermal therapies.
Collapse
Affiliation(s)
- C R Dillon
- Department of Bioengineering, University of Utah, 36 S Wasatch Drive Rm 3100, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
29
|
Qin S, Fite BZ, Gagnon MKJ, Seo JW, Curry FR, Thorsen F, Ferrara KW. A physiological perspective on the use of imaging to assess the in vivo delivery of therapeutics. Ann Biomed Eng 2013; 42:280-98. [PMID: 24018607 DOI: 10.1007/s10439-013-0895-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022]
Abstract
Our goal is to provide a physiological perspective on the use of imaging to optimize and monitor the accumulation of nanotherapeutics within target tissues, with an emphasis on evaluating the pharmacokinetics of organic particles. Positron emission tomography (PET), magnetic resonance imaging (MRI) and ultrasound technologies, as well as methods to label nanotherapeutic constructs, have created tremendous opportunities for preclinical optimization of therapeutics and for personalized treatments in challenging disease states. Within the methodology summarized here, the accumulation of the construct is estimated directly from the image intensity. Particle extravasation is then estimated based on classical physiological measures. Specifically, the transport of nanotherapeutics is described using the concept of apparent permeability, which is defined as the net flux of solute across a blood vessel wall per unit surface area of the blood vessel and per unit solute concentration difference across the blood vessel wall. The apparent permeability to small molecule MRI constructs is accurately shown to be far larger than that estimated for proteins such as albumin or nanoconstructs such as liposomes. Further, the quantitative measurements of vascular permeability are shown to facilitate detection of the transition from a pre-malignant to a malignant cancer and to quantify the delivery enhancement resulting from interventions such as ultrasound. While PET-based estimates facilitate quantitative comparisons of many constructs, high field MRI proves useful in the visualization of model drugs within small lesions and in the evaluation of the release and intracellular trafficking of nanoparticles and cargo.
Collapse
Affiliation(s)
- Shengping Qin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA,
| | | | | | | | | | | | | |
Collapse
|
30
|
Lai CY, Fite BZ, Ferrara KW. Ultrasonic enhancement of drug penetration in solid tumors. Front Oncol 2013; 3:204. [PMID: 23967400 PMCID: PMC3746679 DOI: 10.3389/fonc.2013.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/25/2013] [Indexed: 12/22/2022] Open
Abstract
Increasing the penetration of drugs within solid tumors can be accomplished through multiple ultrasound-mediated mechanisms. The application of ultrasound can directly change the structure or physiology of tissues or can induce changes in a drug or vehicle in order to enhance delivery and efficacy. With each ultrasonic pulse, a fraction of the energy in the propagating wave is absorbed by tissue and results in local heating. When ultrasound is applied to achieve mild hyperthermia, the thermal effects are associated with an increase in perfusion or the release of a drug from a temperature-sensitive vehicle. Higher ultrasound intensities locally ablate tissue and result in increased drug accumulation surrounding the ablated region of interest. Further, the mechanical displacement induced by the ultrasound pulse can result in the nucleation, growth and collapse of gas bubbles. As a result of such cavitation, the permeability of a vessel wall or cell membrane can be increased. Finally, the radiation pressure of the propagating pulse can translate particles or tissues. In this perspective, we will review recent progress in ultrasound-mediated tumor delivery and the opportunities for clinical translation.
Collapse
Affiliation(s)
- Chun-Yen Lai
- Department of Biomedical Engineering, University of California Davis , Davis, CA , USA
| | | | | |
Collapse
|
31
|
Abstract
Hyperthermia means overheating of the living object completely or partly. Hyperthermia, the procedure of raising the temperature of a part of or the whole body above the normal for a defined period of time, is applied alone or as an adjunctive with various established cancer treatment modalities such as radiotherapy and chemotherapy. The fact that is the hyperthermia is not generally accepted as conventional therapy. The problem is its controversial performance. The controversy is originated from the complications of the deep heating and the focusing of the heat effect. The idea of oncothermia solves the selective deep action on nearly cellular resolution. We would like to demonstrate the force and perspectives of oncothermia as a highly specialized hyperthermia in clinical oncology. Our aim is to prove the ability of oncothermia to be a candidate to become a widely accepted modality of the standard cancer care. We would like to show the proofs and the challenges of the hyperthermia and oncothermia applications to provide the presently available data and summarize the knowledge in the topic. Like many early-stage therapies, oncothermia lacks adequate treatment experience and long-range, comprehensive statistics that can help us optimize its use for all indications.
Collapse
|
32
|
Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:672873. [PMID: 23662149 PMCID: PMC3638606 DOI: 10.1155/2013/672873] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022]
Abstract
Hyperthermia means overheating of the living object completely or partly. Hyperthermia, the procedure of raising the temperature of a part of or the whole body above normal for a defined period of time, is applied alone or as an adjunctive with various established cancer treatment modalities such as radiotherapy and chemotherapy. However, hyperthermia is not generally accepted as conventional therapy. The problem is its controversial performance. The controversy is originated from the complications of the deep heating and the focusing of the heat effect. The idea of oncothermia solves the selective deep action on nearly cellular resolution. We would like to demonstrate the force and perspectives of oncothermia, as a highly specialized hyperthermia in clinical oncology. Our aim is to prove the ability of oncothermia to be a candidate to become a widely accepted modality of the standard cancer care. We would like to show the proofs and the challenges of the hyperthermia and oncothermia applications to provide the presently available data and summarize the knowledge in the topic. Like many early stage therapies, oncothermia lacks adequate treatment experience and long-range, comprehensive statistics that can help us optimize its use for all indications.
Collapse
|
33
|
MacEwan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:31-48. [PMID: 22977001 DOI: 10.1002/wnan.1197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted delivery of cancer therapeutics and imaging agents aims to enhance the accumulation of these molecules in a solid tumor while avoiding uptake in healthy tissues. Tumor-specific accumulation has been pursued with passive targeting by the enhanced permeability and retention effect, as well as with active targeting strategies. Active targeting is achieved by functionalization of carriers to allow specific interactions between the carrier and the tumor environment. Functionalization of carriers with ligands that specifically interact with overexpressed receptors on cancer cells represents a classic approach to active tumor targeting. Cell-penetrating peptides (CPPs) provide a non-specific and receptor-independent mechanism to enhance cellular uptake that offers an exciting alternative to traditional active targeting approaches. While the non-specificity of CPP-mediated internalization has the intriguing potential to make this approach applicable to a wide range of tumor types, their promiscuity is, however, a significant barrier to their clinical utility for systemically administered applications. Many approaches have been investigated to selectively turn on the function of systemically delivered CPP-functionalized carriers specifically in tumors to achieve targeted delivery of cancer therapeutics and imaging agents.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
34
|
MacEwan SR, Chilkoti A. Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake. NANO LETTERS 2012; 12:3322-8. [PMID: 22625178 PMCID: PMC3405287 DOI: 10.1021/nl301529p] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell-penetrating peptides (CPPs) are a class of molecules that enable efficient internalization of a wide variety of cargo in diverse cell types, making them desirable for delivery of anticancer drugs to solid tumors. For CPPs to be useful, it is important to be able to turn their function on in response to an external trigger that can be spatially localized in vivo. Here we describe an approach to turning on CPP function by modulation of the local density of arginine (Arg) residues by temperature-triggered micelle assembly of diblock copolymer elastin-like polypeptides (ELP(BC)s). A greater than 8-fold increase in cellular uptake occurs when Arg residues are presented on the corona of ELP(BC) micelles, as compared to the same ELP(BC) at a temperature in which it is a soluble unimer. This approach is the first to demonstrate digital 'off-on' control of CPP activity by an extrinsic thermal trigger in a clinically relevant temperature range by modulation of the interfacial density of Arg residues on the exterior of a nanoparticle.
Collapse
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708
- Center for Biologically Inspired Materials and Material Systems, Duke University, Box 90271 Durham, NC 27708
- To whom correspondence should be addressed.
| |
Collapse
|
35
|
Sassaroli E, Li KCP, O'Neill BE. Modeling focused ultrasound exposure for the optimal control of thermal dose distribution. ScientificWorldJournal 2012; 2012:252741. [PMID: 22593669 PMCID: PMC3349131 DOI: 10.1100/2012/252741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/02/2012] [Indexed: 11/17/2022] Open
Abstract
Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments.
Collapse
Affiliation(s)
- E. Sassaroli
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, 6565 Fannin Street, MS B5-011, Houston, TX 77030, USA
| | - K. C. P. Li
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, 6565 Fannin Street, MS B5-011, Houston, TX 77030, USA
| | - B. E. O'Neill
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, 6565 Fannin Street, MS B5-011, Houston, TX 77030, USA
| |
Collapse
|
36
|
Yue K, Zheng S, Luo Y, Zhang X, Tang J. Determination of the 3D temperature distribution during ferromagnetic hyperthermia under the influence of blood flow. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Noble metal nanoparticles applications in cancer. JOURNAL OF DRUG DELIVERY 2011; 2012:751075. [PMID: 22007307 PMCID: PMC3189598 DOI: 10.1155/2012/751075] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/02/2011] [Indexed: 12/11/2022]
Abstract
Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.
Collapse
|
38
|
|
39
|
He X. Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed Eng J 2011; 5:47-73. [PMID: 21769301 PMCID: PMC3137158 DOI: 10.2174/1874120701105010047] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 12/25/2022] Open
Abstract
This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.
Collapse
Affiliation(s)
- Xiaoming He
- Multiscale Biothermostability Engineering Laboratory, Department of Mechanical Engineering and Biomedical Engineering Program, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| |
Collapse
|
40
|
Jiang Y, Ou J, Zhang Z, Qin QH. Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:721-9. [PMID: 21221727 DOI: 10.1007/s10856-010-4225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/21/2010] [Indexed: 05/23/2023]
Abstract
In this paper, a calcium zinc iron silicon oxide composite (CZIS) was prepared using the sol-gel method. X-ray diffraction (XRD) was then employed to test the CZIS composite. The results from the test showed that the CZIS had three prominent crystalline phases: Ca(2)Fe(1.7)Zn(0.15)Si(0.15)O(5), Ca(2)SiO(4), and ZnFe(2)O(4). Calorimetric measurements were then performed using a magnetic induction furnace. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis were conducted to confirm the growth of a precipitated hydroxyapatite phase after immersion in simulated body fluid (SBF). Cell culture experiments were also carried out, showing that the CZIS composite more visibly promoted osteoblast proliferation than ZnFe(2)O(4) glass ceramic and HA, and osteoblasts adhered and spread well on the surfaces of composite samples.
Collapse
Affiliation(s)
- Yumin Jiang
- College of Materials Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | | | | | | |
Collapse
|
41
|
Farnam JL, Smith BC, Johnson BR, Estrada R, Edelman TL, Farah R, Cressman ENK. Thermochemical ablation in an ex-vivo porcine liver model using acetic acid and sodium hydroxide: proof of concept. J Vasc Interv Radiol 2011; 21:1573-8. [PMID: 20801679 DOI: 10.1016/j.jvir.2010.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 05/19/2010] [Accepted: 06/03/2010] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To establish proof of concept in tissue, using the exothermic neutralization reaction of acetic acid and sodium hydroxide in ex vivo porcine liver and to conduct an initial probe into the relationships of volume and concentration of reagents to temperatures and the areas affected. MATERIALS AND METHODS A total of 0.5 mL or 2 mL of either 5 mole/L or 10 mole/L acid and base solutions was injected simultaneously into the periphery of ex vivo porcine liver using a prototype injection device. Tissue temperature was recorded at the injection site for 5 minutes using a type T thermocouple temperature probe inserted parallel to and near the tip of the injection device. The injections were repeated for infrared thermography, and ablated tissues were sectioned quickly and imaged. A gross photograph was captured in each case to provide correlation. RESULTS Maximum temperatures (17°C baseline) ranged from 42.1° ± α3.34°C to 61.7° ± α10°C (P<.05) when injecting 0.5 mL of 5 mole/L reactants and 2 mL of 10 mole/L reactants, respectively. The maximum temperature measured by infrared imaging ranged from 31°-47°C. Using an infrared viewing scale from 19°-40°C, the cross-sectional area of tissue heating above baseline measured from 1.07 cm(2)± 0.45 to 4.95 cm(2)± 0.28 (P <05). CONCLUSIONS The reaction of acetic acid and sodium hydroxide releases significant heat energy at the site of injection, and histologic changes are consistent with coagulation necrosis. Increased reagent concentration and volume were associated with larger temperature changes and larger areas of hyperthermia at gross pathology and infrared imaging.
Collapse
Affiliation(s)
- Joseph L Farnam
- Department of Radiology, University of Minnesota Medical Center MMC 292, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Moros EG, Peñagaricano J, Novàk P, Straube WL, Myerson RJ. Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer. Int J Hyperthermia 2010; 26:699-709. [PMID: 20849263 DOI: 10.3109/02656736.2010.493915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews systems and techniques to deliver simultaneous thermoradiotherapy of breast cancer. It first covers the clinical implementation of simultaneous delivery of superficial (microwave or ultrasound) hyperthermia and external photon beam radiotherapy, first using a Cobalt-60 teletherapy unit and later medical linear accelerators. The parallel development and related studies of the Scanning Ultrasound Reflector Linear Arrays System (SURLAS), an advanced system specifically designed and developed for simultaneous thermoradiotherapy, follows. The performance characteristics of the SURLAS are reviewed and power limitation problems at high acoustic frequencies (>3 MHz) are discussed along with potential solutions. Next, the feasibility of simultaneous SURLAS hyperthermia and intensity modulated radiation therapy/image-guided radiotherapy (IMRT/IGRT) is established based on published and newly presented studies. Finally, based on the encouraging clinical results thus far, it is concluded that new trials employing the latest technologies are warranted along with further developments in treatment planning.
Collapse
Affiliation(s)
- Eduardo G Moros
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
43
|
Chen X, Diederich CJ, Wootton JH, Pouliot J, Hsu IC. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int J Hyperthermia 2010; 26:39-55. [DOI: 10.3109/02656730903341332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Yi M, Panchawagh HV, Podhajsky RJ, Mahajan RL. Micromachined Hot-Wire Thermal Conductivity Probe for Biomedical Applications. IEEE Trans Biomed Eng 2009; 56:2477-84. [PMID: 19403359 DOI: 10.1109/tbme.2009.2020991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Yi
- Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
45
|
Deng Z, Liu J. Minimally invasive thermotherapy method for tumor treatment based on an exothermic chemical reaction. MINIM INVASIV THER 2009; 16:341-6. [DOI: 10.1080/13645700701709494] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Visaria R, Bischof JC, Loren M, Williams B, Ebbini E, Paciotti G, Griffin R. Nanotherapeutics for enhancing thermal therapy of cancer. Int J Hyperthermia 2009; 23:501-11. [DOI: 10.1080/02656730701611241] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
47
|
Abstract
A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated vascularized finite tissue and by making a few simplifying assumptions. Two linear coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared with the widely employed empirical Pennes' BHTM. The comparison showed that the Pennes' perfusion term wC(p)(1-epsilon) should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 Phone: 626 2001, FAX: (612) 626 2004,
| | - J. Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 Phone: 626 2001, FAX: (612) 626 2004,
| |
Collapse
|
48
|
Feng Y, Tinsley Oden J, Rylander MN. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. J Biomech Eng 2008; 130:041016. [PMID: 18601458 DOI: 10.1115/1.2947320] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ultimate goal of cancer treatment utilizing thermotherapy is to eradicate tumors and minimize damage to surrounding host tissues. To achieve this goal, it is important to develop an accurate cell damage model to characterize the population of cell death under various thermal conditions. The traditional Arrhenius model is often used to characterize the damaged cell population under the assumption that the rate of cell damage is proportional to exp(-EaRT), where Ea is the activation energy, R is the universal gas constant, and T is the absolute temperature. However, this model is unable to capture transition phenomena over the entire hyperthermia and ablation temperature range, particularly during the initial stage of heating. Inspired by classical statistical thermodynamic principles, we propose a general two-state model to characterize the entire cell population with two distinct and measurable subpopulations of cells, in which each cell is in one of the two microstates, viable (live) and damaged (dead), respectively. The resulting cell viability can be expressed as C(tau,T)=exp(-Phi(tau,T)kT)(1+exp(-Phi(tau,T)kT)), where k is a constant. The in vitro cell viability experiments revealed that the function Phi(tau,T) can be defined as a function that is linear in exposure time tau when the temperature T is fixed, and linear as well in terms of the reciprocal of temperature T when the variable tau is held as constant. To determine parameters in the function Phi(tau,T), we use in vitro cell viability data from the experiments conducted with human prostate cancerous (PC3) and normal (RWPE-1) cells exposed to thermotherapeutic protocols to correlate with the proposed cell damage model. Very good agreement between experimental data and the derived damage model is obtained. In addition, the new two-state model has the advantage that is less sensitive and more robust due to its well behaved model parameters.
Collapse
Affiliation(s)
- Yusheng Feng
- Computational Bioengineering and Nanotechnology Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
49
|
Orel VE, Kudryavets YI, Satz S, Bezdenezhnih NA, Danko ML, Khranovskaya NN, Romanov AV, Dzyatkovskaya NN, Burlaka AP. Mechanochemically Activated Doxorubicin Nanoparticles in Combination with 40 MHz Frequency Irradiation on A-549 Lung Carcinoma Cells. Drug Deliv 2008; 12:171-8. [PMID: 16025847 DOI: 10.1080/10717540590932007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Targeting of mechanochemically activated doxorubicin (MA DOXO) nanoparticles, conventional doxorubicin, and electromagnetic irradiation (EMI) at A-549 lung carcinoma cells in vitro was investigated. Conventional DOXO was micronized using an input energy of 20 W/g for 5 min resulting in positively charged MA DOXO particles 10 times smaller than conventional DOXO. Mechanochemical activation gives rise to additional free quinone radicals. High performance liquid chromatograph analyses demonstrate that conventional and MA DOXO are quantitatively similar. Tumor cells were exposed to 40 MHz electromagnetic irradiation at a power density of 2 W/cm2. The lethal dose LD50 values of MA DOXO were 5 times greater than conventional doxorubicin. MA DOXO in combination with EMI at 37 degrees C demonstrates improved drug delivery to A-549 human lung carcinoma and greater cell kill than does conventional DOXO.
Collapse
Affiliation(s)
- V E Orel
- Physics-Technical Department, Institute of Oncology, Academy of Medical Sciences, Kyiv, Ukraine.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shellman YG, Howe WR, Miller LA, Goldstein NB, Pacheco TR, Mahajan RL, LaRue SM, Norris DA. Hyperthermia Induces Endoplasmic Reticulum-Mediated Apoptosis in Melanoma and Non-Melanoma Skin Cancer Cells. J Invest Dermatol 2008; 128:949-56. [DOI: 10.1038/sj.jid.5701114] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|