1
|
Kharaz YA, Zamboulis DE, Fang Y, Welting TJM, Peffers MJ, Comerford EJ. Small RNA signatures of the anterior cruciate ligament from patients with knee joint osteoarthritis. Front Mol Biosci 2023; 10:1266088. [PMID: 38187089 PMCID: PMC10768046 DOI: 10.3389/fmolb.2023.1266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The anterior cruciate ligament (ACL) is susceptible to degeneration, resulting in joint pain, reduced mobility, and osteoarthritis development. There is currently a paucity of knowledge on how anterior cruciate ligament degeneration and disease leads to osteoarthritis. Small non-coding RNAs (sncRNAs), such as microRNAs and small nucleolar RNA (snoRNA), have diverse roles, including regulation of gene expression. Methods: We profiled the sncRNAs of diseased osteoarthritic ACLs to provide novel insights into osteoarthritis development. Small RNA sequencing from the ACLs of non- or end-stage human osteoarthritic knee joints was performed. Significantly differentially expressed sncRNAs were defined, and bioinformatics analysis was undertaken. Results and Discussion: A total of 184 sncRNAs were differentially expressed: 68 small nucleolar RNAs, 26 small nuclear RNAs (snRNAs), and 90 microRNAs. We identified both novel and recognized (miR-206, -365, and -29b and -29c) osteoarthritis-related microRNAs and other sncRNAs (including SNORD72, SNORD113, and SNORD114). Significant pathway enrichment of differentially expressed miRNAs includes differentiation of the muscle, inflammation, proliferation of chondrocytes, and fibrosis. Putative mRNAs of the microRNA target genes were associated with the canonical pathways "hepatic fibrosis signaling" and "osteoarthritis." The establishing sncRNA signatures of ACL disease during osteoarthritis could serve as novel biomarkers and potential therapeutic targets in ACL degeneration and osteoarthritis development.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Nishiyama N, Masuda T, Nakagawa J, Terami K, Nakaura T. Optimization of wrist tendon detection in virtual monochromatic images using dual energy-computed tomography. Jpn J Radiol 2023; 41:1397-1404. [PMID: 37460747 DOI: 10.1007/s11604-023-01467-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/05/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES To evaluate the depiction of wrist tendons in virtual monochromatic images (VMIs) during a dual-energy CT (DE-CT) with the VMI image of conventional equivalent to 120 kVp. MATERIALS AND METHODS Using Catphan600 and phantom analysis software for CT evaluation, measurements of VMI in a DE-CT were performed corresponding to the tube voltages of single-energy CT at 120 kVp. Using a Discovery CT750 HD CT scanner (GE Healthcare) with DE-CT technology, 73 patients were scanned. We calculated the CT number, image noise, visual score, and contrast noise ratio (CNR) at the extensor pollicis tendon, extensor digitorum tendon, and flexor tendon in 11 VMIs from the DE-CT and VMI image of conventional equivalent to 120 kVp. The results from the optimal VMIs were then compared with that of the VMI image of the conventional equivalent to 120 kVp. RESULTS The highest CT number and CNR for the tendon were for the 140 keV VMI in the DE-CT compared to the other energy levels. There were significantly higher CT numbers, CNR values, and visual scores for each tendon at 140 keV VMI with the DE-CT (p < 0.01) compared with a VMI image of conventional equivalent to 120 kVp. CONCLUSION Energy level of the VMIs during DE-CT for the best wrist tendon delineation was 140 keV. This value of 140 keV for the DE-CT was significantly higher than the CT number and CNR for the extensor pollicis, extensor digitorum, and flexor tendon compared with a VMI image of conventional equivalent to 120 kVp.
Collapse
Affiliation(s)
- Norimi Nishiyama
- Department of Radiological Technologist, Okayama Saiseikai General Hospital, 2-25, Kokutai-cho, Kita-ku, Okayama-shi, Okayama, 700-8511, Japan
| | - Takanori Masuda
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | - Junnichi Nakagawa
- Department of Radiological Technologist, Okayama Saiseikai General Hospital, 2-25, Kokutai-cho, Kita-ku, Okayama-shi, Okayama, 700-8511, Japan
| | - Keisuke Terami
- Department of Radiological Technologist, Okayama Saiseikai General Hospital, 2-25, Kokutai-cho, Kita-ku, Okayama-shi, Okayama, 700-8511, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| |
Collapse
|
3
|
Lake SP, Snedeker JG, Wang VM, Awad H, Screen HRC, Thomopoulos S. Guidelines for ex vivo mechanical testing of tendon. J Orthop Res 2023; 41:2105-2113. [PMID: 37312619 PMCID: PMC10528429 DOI: 10.1002/jor.25647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories.
Collapse
Affiliation(s)
- Spencer P. Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Vincent M. Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Hani Awad
- Department of Orthopaedics, Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Hazel R. C. Screen
- School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Lane RA, Migotsky N, Havlioglu N, Iannucci LE, Shen H, Lake S, Sakiyama-Elbert SE, Thomopoulos S, Gelberman RH. The effects of NF-κB suppression on the early healing response following intrasynovial tendon repair in a canine model. J Orthop Res 2023; 41:2295-2304. [PMID: 37094977 PMCID: PMC10524774 DOI: 10.1002/jor.25576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The highly variable clinical outcomes noted after intrasynovial tendon repair have been associated with an early inflammatory response leading to the development of fibrovascular adhesions. Prior efforts to broadly suppress this inflammatory response have been largely unsuccessful. Recent studies have shown that selective inhibition of IkappaB kinase beta (IKK-β), an upstream activator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) signaling, mitigates the early inflammatory response and leads to improved tendon healing outcomes. In the current study, we test the hypothesis that oral treatment with the IKK-β inhibitor ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinenitrile an inhibitor) will modulate the postoperative inflammatory response and improve intrasynovial flexor tendon healing. To test this hypothesis, the flexor digitorum profundus tendon of 21 canines was transected and repaired within the intrasynovial region and assessed after 3 and 14 days. Histomorphometry, gene expression analyses, immunohistochemistry, and quantitative polarized light imaging were used to examine ACHP-mediated changes. ACHP led to reduction in phosphorylated p-65, indicating that NF-κB activity was suppressed. ACHP enhanced expression of inflammation-related genes at 3 days and suppressed expression of these genes at 14 days. Histomorphometry revealed enhanced cellular proliferation and neovascularization in ACHP-treated tendons compared with time-matched controls. These findings demonstrate that ACHP effectively suppressed NF-κB signaling and modulated early inflammation, leading to increased cellular proliferation and neovascularization without stimulating the formation of fibrovascular adhesions. Together, these data suggest that ACHP treatment accelerated the inflammatory and proliferative phases of tendon healing following intrasynovial flexor tendon repair. Clinical Significance: Using a clinically relevant large-animal model, this study revealed that targeted inhibition of nuclear factor kappa-light chain enhancer of activated B cells signaling with ACHP provides a new therapeutic strategy for enhancing the repair of sutured intrasynovial tendons.
Collapse
Affiliation(s)
- Ryan A. Lane
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St Louis, Missouri, USA
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St Louis, Missouri, USA
| | - Leanne E. Iannucci
- Department of Biomedical Engineering, Washington University, St Louis, Missouri, USA
| | - Hua Shen
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Spencer Lake
- Mechanical Engineering & Materials Science, Washington University, St Louis, Missouri, USA
| | | | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Richard H. Gelberman
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| |
Collapse
|
5
|
Ren Z, Duan Z, Zhang Z, Fu R, Zhu C, Fan D. Instantaneous self-healing and strongly adhesive self-adaptive hyaluronic acid-based hydrogel for controlled drug release to promote tendon wound healing. Int J Biol Macromol 2023; 242:125001. [PMID: 37224906 DOI: 10.1016/j.ijbiomac.2023.125001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
The treatment of tendon injuries is an important healthcare challenge. Irregular wounds, hypocellularity, and prolonged inflammation impede the rate of healing for tendon injuries. To address these problems, a high-tenacity shape-adaptive, mussel-like hydrogel (PH/GMs@bFGF&PDA) was designed and constructed with polyvinyl alcohol (PVA) and hyaluronic acid grafted with phenylboronic acid (BA-HA) by encapsulating polydopamine and gelatin microspheres containing basic fibroblast growth factor (GMs@bFGF). The shape-adaptive PH/GMs@bFGF&PDA hydrogel can quickly adapt to irregular tendon wounds, and the strong adhesion (101.46 ± 10.88 kPa) can keep the hydrogel adhered to the wound at all times. In addition, the high tenacity and self-healing properties allow the hydrogel to move with the tendon without fracture. Additionally, even if fractured, it can quickly self-heal and continue to adhere to the tendon wound, while slowly releasing basic fibroblast growth factor during the inflammatory phase of the tendon repair process, promoting cell proliferation, migration and shortening the inflammatory phase. In acute tendon injury and chronic tendon injury models, PH/GMs@bFGF&PDA significantly alleviated inflammation and promoted collagen I secretion, enhancing wound healing through the synergistic effects of its shape-adaptive and high-adhesion properties.
Collapse
Affiliation(s)
- Zhen Ren
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhuo Zhang
- Plastic and Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710069, Shaanxi, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
6
|
Varillas-Delgado D, Morencos E, Gutierrez-Hellín J, Aguilar-Navarro M, Maestro A, Perucho T, Coso JD. Association of the CKM rs8111989 Polymorphism with Injury Epidemiology in Football Players. Int J Sports Med 2023; 44:145-152. [PMID: 36368655 DOI: 10.1055/a-1945-8982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The influence of the rs8111989 polymorphism in the muscle-specific creatine kinase gene (CKM) on injury incidence is unknown. The aim was to investigate CKM polymorphism on injury incidence in high-performance football players. A cohort of 109 high-performance players was genotyped by using saliva samples. Injury incidence was similar in players with the GG, GA, and AA genotypes and did not modify incidence during training or match exposure (p=0.583 and p=0.737 respectively). GG players had a higher frequency of slight-severity injuries (60.0 vs. 10.2 vs. 24.2%, p<0.001), while GA players had a higher frequency of severe injuries (16.7 vs. 30.8 vs. 10.0%, p=0.021). GA players also had a higher frequency of muscle tears (34.8 vs. 59.0 vs. 20.0%, p<0.001). Muscle contracture was a more frequent injury in players with the GG genotype (40.0%, p<0.001). G allele carriers had lower frequencies of gradual-onset injuries (4.1 vs. 16.7%, p=0.035) and recurrent injuries (6.1 vs. 16.7%, p=0.003) than AA players. A allele carriers had higher frequency of severe injuries (10.0 vs. 21.9%, p=0.044) than GG players. Genotypes in the CKM rs8111989 polymorphism did not affect injury incidence in high-performance football players. Players with the GA genotype were more prone to severe injuries and muscle tears when compared to GG and AA players.
Collapse
Affiliation(s)
| | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain.,Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | | | | | | | - Juan Del Coso
- Exercise Physiology Laboratory, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
7
|
Dyer OL, Wheatley BB, Seeley MA. Short-term vancomycin and buffer soaking does not change rabbit achilles tendon tensile material properties. Clin Biomech (Bristol, Avon) 2023; 102:105874. [PMID: 36621306 DOI: 10.1016/j.clinbiomech.2023.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Allograft tendons are commonly used during orthopedic surgery to reconstruct tissue that is severely damaged. Soaking the tendon in an antibiotic solution, specifically vancomycin, has been shown to lower the risk of post-operative infections. While some material properties of tendon and ligament after antibiotic soaking have previously been characterized, extensive sub-failure allograft tendon material properties after soaking in antibiotic solutions have not. METHODS Forty tendons were dissected from rabbits and soaked in either a phosphate buffered saline (PBS) only solution or vancomycin and PBS solution for five or 30 min. Immediately after soaking, quasi-static tensile experiments were performed in a materials testing system. FINDINGS Tissue nominal stress, Lagrange strain, toe-region properties and elastic modulus were characterized. For all forty tendons, the average elastic modulus was found to be 455 ± 37 MPa, the average transition strain (from toe-region to linear elastic region) was 0.0487 ± 0.0035, and the average transition stress was 9.71 ± 0.79 MPa. No statistically significant differences in any of these material properties were found across soaking medium or soaking time. INTERPRETATION From these results, we conclude that soaking an allograft tendon in antibiotic solution for up to 30 min prior to implantation does not change the tensile material properties of tendons, supporting current clinical practice.
Collapse
Affiliation(s)
- Olivia L Dyer
- Musculoskeletal Institute, Geisinger, Danville, PA, United States of America.
| | - Benjamin B Wheatley
- Department of Mechanical Engineering, Bucknell University, Lewisburg, PA, United States of America.
| | - Mark A Seeley
- Musculoskeletal Institute, Geisinger, Danville, PA, United States of America.
| |
Collapse
|
8
|
Nyland J, Pyle B, Krupp R, Kittle G, Richards J, Brey J. ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. J Exp Orthop 2022; 9:121. [PMID: 36515744 PMCID: PMC9751252 DOI: 10.1186/s40634-022-00561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clinical commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of progression to a non-contact macrotraumatic ACL rupture. METHODS Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports training were reviewed and synthesized into a comprehensive intervention plan. RESULTS With consideration for biopsychosocial model health factors, proper nutrition and modified sports training with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture among youth and adolescent athletes. CONCLUSION Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of these concepts. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- J Nyland
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA.
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.
| | - B Pyle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - R Krupp
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - G Kittle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - J Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - J Brey
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics (Basel) 2022; 7:biomimetics7030131. [PMID: 36134935 PMCID: PMC9496066 DOI: 10.3390/biomimetics7030131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
Collapse
|
10
|
Kharaz YA, Goljanek‐Whysall K, Nye G, Hurst JL, McArdle A, Comerford EJ. Age-related changes in microRNAs expression in cruciate ligaments of wild-stock house mice. Physiol Rep 2022; 10:e15426. [PMID: 35993414 PMCID: PMC9393909 DOI: 10.14814/phy2.15426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023] Open
Abstract
Cruciate ligaments (CL) of the knee joint are injured following trauma or aging. MicroRNAs (miRs) are potential therapeutic targets in musculoskeletal disorders, but there is little known about the role of miRs and their expression ligaments during aging. This study aimed to (1) identify if mice with normal physical activity, wild-stock house mice are an appropriate model to study age-related changes in the knee joint and (2) investigate the expression of miRs in aging murine cruciate ligaments. Knee joints were collected from 6 and 24 months old C57BL/6 and wild-stock house mice (Mus musculus domesticus) for ligament and cartilage (OARSI) histological analysis. Expression of miR targets in CLs was determined in 6-, 12-, 24-, and 30-month-old wild-stock house mice, followed by the analysis of predicted mRNA target genes and Ingenuity Pathway Analysis. Higher CL and knee OARSI histological scores were found in 24-month-old wild-stock house mice compared with 6- and 24-month-old C57BL/6 and 6-month-old wild-stock house mice (p < 0.05). miR-29a and miR-34a were upregulated in 30-month-old wild-stock house mice in comparison with 6-, 12-, and 24-month-old wild-stock house mice (p < 0.05). Ingenuity Pathway Analysis on miR-29a and 34a targets was associated with inflammation through interleukins, TGFβ and Notch genes, and p53 signaling. Collagen type I alpha 1 chain (COL1A1) correlated negatively with both miR-29a (r = -0.35) and miR-34a (r = -0.33). The findings of this study support wild-stock house mice as an appropriate aging model for the murine knee joint. This study also indicated that miR-29a and miR-34a may be potential regulators of COL1A1 gene expression in murine CLs.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Katarzyna Goljanek‐Whysall
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
- School of MedicineIRC Laureate, Physiology, Human Biology Building, NUI GalwayGalwayIreland
| | - Gareth Nye
- Chester Medical SchoolUniversity of ChesterChesterUK
| | - Jane L. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst CampusUniversity of LiverpoolNestonUK
| | - Anne McArdle
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst CampusUniversity of LiverpoolNestonUK
| |
Collapse
|
11
|
Computed Tomography Imaging under Artificial Intelligence Reconstruction Algorithm Used in Recovery of Sports Injury of the Knee Anterior Cruciate Ligament. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1199841. [PMID: 35685654 PMCID: PMC9167137 DOI: 10.1155/2022/1199841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to analyze the influence of artificial intelligence (AI) reconstruction algorithm on computed tomography (CT) images and the application of CT image analysis in the recovery of knee anterior cruciate ligament (ACL) sports injuries. A total of 90 patients with knee trauma were selected for enhanced CT scanning and randomly divided into three groups. Group A used the filtered back projection (FBP) reconstruction algorithm, and the tube voltage was set to 120 kV during CT scanning. Group B used the iDose4 reconstruction algorithm, and the tube voltage was set to 120 kV during CT scanning. In group C, the iDose4 reconstruction algorithm was used, and the tube voltage was set to 100 kV during CT scanning. The noise, signal-to-noise ratio (SNR), carrier-to-noise ratio (CNR), CT dose index volume (CTDI), dose length product (DLP), and effective radiation dose (ED) of the three groups of CT images were compared. The results showed that the noise of groups B and C was smaller than that of group A (P < 0.05), and the SNR and CNR of groups B and C were higher than those of group A. The images of patients in group A with the FBP reconstruction algorithm were noisy, and the boundaries were not clear. The noise of the images obtained by the iDose4 reconstruction algorithm in groups B and C was improved, and the image resolution was also higher. The agreement between arthroscopy and CT scan results was 96%. Therefore, the iterative reconstruction algorithm of iDose4 can improve the image quality. It was of important value in the diagnosis of knee ACL sports injury.
Collapse
|
12
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
13
|
Middendorf JM, Ita ME, Winkelstein BA, H Barocas V. Local tissue heterogeneity may modulate neuronal responses via altered axon strain fields: insights about innervated joint capsules from a computational model. Biomech Model Mechanobiol 2021; 20:2269-2285. [PMID: 34514531 PMCID: PMC9289994 DOI: 10.1007/s10237-021-01506-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
In innervated collagenous tissues, tissue scale loading may contribute to joint pain by transmitting force through collagen fibers to the embedded mechanosensitive axons. However, the highly heterogeneous collagen structures of native tissues make understanding this relationship challenging. Recently, collagen gels with embedded axons were stretched and the resulting axon signals were measured, but these experiments were unable to measure the local axon strain fields. Computational discrete fiber network models can directly determine axon strain fields due to tissue scale loading. Therefore, this study used a discrete fiber network model to identify how heterogeneous collagen networks (networks with multiple collagen fiber densities) change axon strain due to tissue scale loading. In this model, a composite cylinder (axon) was embedded in a Delaunay network (collagen). Homogeneous networks with a single collagen volume fraction and two types of heterogeneous networks with either a sparse center or dense center were created. Measurements of fiber forces show higher magnitude forces in sparse regions of heterogeneous networks and uniform force distributions in homogeneous networks. The average axon strain in the sparse center networks decreases when compared to homogeneous networks with similar collagen volume fractions. In dense center networks, the average axon strain increases compared to homogeneous networks. The top 1% of axon strains are unaffected by network heterogeneity. Based on these results, the interaction of tissue scale loading, collagen network heterogeneity, and axon strains in native musculoskeletal tissues should be considered when investigating the source of joint pain.
Collapse
Affiliation(s)
- Jill M Middendorf
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, USA
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Al Makhzoomi AK, Kirk TB, Allison GT. A multiscale study of morphological changes in tendons following repeated cyclic loading. J Biomech 2021; 128:110790. [PMID: 34634539 DOI: 10.1016/j.jbiomech.2021.110790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
The response of white New Zealand rabbit Achilles tendons to load was assessed using mechanical measures and confocal arthroscopy (CA). The progression of fatigue-loading-induced damage of the macro- (tenocyte morphology, fiber anisotropy and waviness), as well as the mechanical profile, were assessed within the same non-viable intact tendon in response to prolonged cyclic and static loading (up to four hours) at different strain levels (3%, 6% and 9%). Strain-mediated repeated loading induced a significant decline in mechanical function (p < 0.05) with increased strain and cycles. Mechanical and structural resilience was lost with repeated loading (p < 0.05) at macroscales. The lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes and loss of spindle shape in tenocytes. This is the first study to provide a clear concurrent assessment of form (morphology) and function (mechanics) of tendons undergoing different strain-mediated repeated loading at multiple-scale assessments. This study identifies a variety of multiscale properties that may contribute to the understanding of mechanisms of tendon pathology.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia.
| | - Thomas B Kirk
- School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Garry T Allison
- Research Office, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Logerstedt DS, Ebert JR, MacLeod TD, Heiderscheit BC, Gabbett TJ, Eckenrode BJ. Effects of and Response to Mechanical Loading on the Knee. Sports Med 2021; 52:201-235. [PMID: 34669175 DOI: 10.1007/s40279-021-01579-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Mechanical loading to the knee joint results in a differential response based on the local capacity of the tissues (ligament, tendon, meniscus, cartilage, and bone) and how those tissues subsequently adapt to that load at the molecular and cellular level. Participation in cutting, pivoting, and jumping sports predisposes the knee to the risk of injury. In this narrative review, we describe different mechanisms of loading that can result in excessive loads to the knee, leading to ligamentous, musculotendinous, meniscal, and chondral injuries or maladaptations. Following injury (or surgery) to structures around the knee, the primary goal of rehabilitation is to maximize the patient's response to exercise at the current level of function, while minimizing the risk of re-injury to the healing tissue. Clinicians should have a clear understanding of the specific injured tissue(s), and rehabilitation should be driven by knowledge of tissue-healing constraints, knee complex and lower extremity biomechanics, neuromuscular physiology, task-specific activities involving weight-bearing and non-weight-bearing conditions, and training principles. We provide a practical application for prescribing loading progressions of exercises, functional activities, and mobility tasks based on their mechanical load profile to knee-specific structures during the rehabilitation process. Various loading interventions can be used by clinicians to produce physical stress to address body function, physical impairments, activity limitations, and participation restrictions. By modifying the mechanical load elements, clinicians can alter the tissue adaptations, facilitate motor learning, and resolve corresponding physical impairments. Providing different loads that create variable tensile, compressive, and shear deformation on the tissue through mechanotransduction and specificity can promote the appropriate stress adaptations to increase tissue capacity and injury tolerance. Tools for monitoring rehabilitation training loads to the knee are proposed to assess the reactivity of the knee joint to mechanical loading to monitor excessive mechanical loads and facilitate optimal rehabilitation.
Collapse
Affiliation(s)
- David S Logerstedt
- Department of Physical Therapy, University of the Sciences in Philadelphia, Philadelphia, PA, USA.
| | - Jay R Ebert
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia.,Orthopaedic Research Foundation of Western Australia, Perth, WA, Australia.,Perth Orthopaedic and Sports Medicine Research Institute, Perth, WA, Australia
| | - Toran D MacLeod
- Department of Physical Therapy, Sacramento State University, Sacramento, CA, USA
| | - Bryan C Heiderscheit
- Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, QLD, Australia.,Centre for Health Research, University of Southern Queensland, Ipswich, QLD, Australia
| | - Brian J Eckenrode
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| |
Collapse
|
16
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
17
|
Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6. Cell Tissue Bank 2021; 23:237-246. [PMID: 34013429 DOI: 10.1007/s10561-021-09935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are important in regenerative medicine and tissue engineering and will be a very sensible choice for repair and regeneration of tendon. New biological practices, such as cellular therapy using stem cells, are promising for facilitating or expediting tendon therapy. Before using these cells clinically, it is best to check and confirm the optimal conditions for differentiation of these cells in the laboratory. Hence, in the present study, the impacts of PDGF-BB and GDF-6 supplementation on adipose-derived MSCs (ASCs) culture were studied. The frozen ASC were recovered and expanded in basic culture medium (DMEM with 10%FBS). The cells after passage five (P5) were treated with basic medium containing L-Prolin, Ascorbic Acid and only PDGF-BB or GDF-6 (20 ng/ml) or both of them (mix) as 3 groups for 14 days to investigate efficiency of ASCs differentiation towards tenocytes. The cells culturing in basic medium were used as control group. To validate tenogenic differentiation, H&E and Sirius Red staining were used to assess cell morphology and collagen production, respectively. In addition, mRNA levels of collagen I and III, Scleraxis and Tenomodulin as tenogenic markers were analyzed using qPCR. In all test groups, cells appeared slenderer, elongated cytoplasmic attributes compared to the control cells. The intensity of Sirius Red staining was significantly higher in GDF-6, PDGF-BB alone, than in group without supplements. The optical density was higher in the GDF-6 than PDGF-BB and mix-group. QPCR results showed that Col I and III gene expression was increased in all groups compared to the control. SCX expression was significantly increased only in the PDGF-BB group. TNMD mRNA expression was not significant among groups. In this study, we have corroborated that human ASCs are reactionary to tenogenic induction by GDF-6 and PDGF-BB alone or in combination. These outcomes will help greater insight into GDF-6 and PDGF-BB driven tenogenesis of ASCs and new directions of discovery in the design of ASC-based treatments for tendon healing.
Collapse
|
18
|
Shen H, Yoneda S, Sakiyama-Elbert SE, Zhang Q, Thomopoulos S, Gelberman RH. Flexor Tendon Injury and Repair. The Influence of Synovial Environment on the Early Healing Response in a Canine Model. J Bone Joint Surg Am 2021; 103:e36. [PMID: 33475308 PMCID: PMC8192118 DOI: 10.2106/jbjs.20.01253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Environmental conditions strongly influence the healing capacity of connective tissues. Well-vascularized extrasynovial tendons typically undergo a robust wound-healing process following transection and repair. In contrast, avascular intrasynovial tendons do not mount an effective repair response. The current study tests the hypothesis that flexor tendons, as a function of their synovial environment, exhibit unique inflammatory, angiogenic, and metabolic responses to injury and repair. METHODS Flexor tendons present a distinct opportunity to test the study hypothesis, as they have proximal regions that are extrasynovial and distal regions that are intrasynovial. In an internally controlled study design, the second and fifth forepaw flexor tendons were transected and repaired in either the extrasynovial or the intrasynovial anatomical region. Histological, gene expression, and proteomics analyses were performed at 3 and 7 days to define the early biological events that drive synovial environment-dependent healing responses. RESULTS Uninjured intrasynovial tendons were avascular, contained high levels of proteoglycans, and expressed inflammatory factors, complement proteins, and glycolytic enzymes. In contrast, extrasynovial tendons were well vascularized, contained low levels of proteoglycans, and were enriched in inflammation inhibitors and oxidative phosphorylation enzymes. The response to injury and repair was markedly different between the 2 tendon regions. Extrasynovial tendons displayed a robust and rapid neovascularization response, increased expression levels of complement proteins, and an acute shift in metabolism to glycolysis, whereas intrasynovial tendons showed minimal vascularity and muted inflammatory and metabolic responses. CONCLUSIONS The regional molecular profiles of intact and healing flexor tendons revealed extensive early differences in innate immune response, metabolism, vascularization, and expression of extracellular matrix as a function of the synovial environment. These differences reveal mechanisms through which extrasynovial tendons heal more effectively than do intrasynovial tendons. CLINICAL RELEVANCE To improve outcomes after operative repair, future treatment strategies should promote features of extrasynovial healing, such as enhanced vascularization and modulation of the complement system and/or glucose metabolism.
Collapse
Affiliation(s)
- Hua Shen
- Washington University in St. Louis, St. Louis, Missouri
| | - Susumu Yoneda
- Washington University in St. Louis, St. Louis, Missouri
- University of the Ryukyus, Okinawa, Japan
| | | | - Qiang Zhang
- Washington University in St. Louis, St. Louis, Missouri
| | | | | |
Collapse
|
19
|
Citeroni MR, Mauro A, Ciardulli MC, Di Mattia M, El Khatib M, Russo V, Turriani M, Santer M, Della Porta G, Maffulli N, Forsyth NR, Barboni B. Amnion-Derived Teno-Inductive Secretomes: A Novel Approach to Foster Tendon Differentiation and Regeneration in an Ovine Model. Front Bioeng Biotechnol 2021; 9:649288. [PMID: 33777919 PMCID: PMC7991318 DOI: 10.3389/fbioe.2021.649288] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine has greatly progressed, but tendon regeneration mechanisms and robust in vitro tendon differentiation protocols remain to be elucidated. Recently, tendon explant co-culture (CO) has been proposed as an in vitro model to recapitulate the microenvironment driving tendon development and regeneration. Here, we explored standardized protocols for production and storage of bioactive tendon-derived secretomes with an evaluation of their teno-inductive effects on ovine amniotic epithelial cells (AECs). Teno-inductive soluble factors were released in culture-conditioned media (CM) only in response to active communication between tendon explants and stem cells (CMCO). Unsuccessful tenogenic differentiation in AECs was noted when exposed to CM collected from tendon explants (CMFT) only, whereas CMCO upregulated SCXB, COL I and TNMD transcripts, in AECs, alongside stimulation of the development of mature 3D tendon-like structures enriched in TNMD and COL I extracellular matrix proteins. Furthermore, although the tenogenic effect on AECs was partially inhibited by freezing CMCO, this effect could be recovered by application of an in vivo-like physiological oxygen (2% O2) environment during AECs tenogenesis. Therefore, CMCO can be considered as a waste tissue product with the potential to be used for the development of regenerative bio-inspired devices to innovate tissue engineering application to tendon differentiation and healing.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | | | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Michael Santer
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
- Research Centre for Biomaterials BIONAM, University of Salerno, Fisciano, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
He X, Li Y, Guo J, Xu J, Zu H, Huang L, Tim-Yun Ong M, Shu-Hang Yung P, Qin L. Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: Efficacy, surgical protocols, and assessments using preclinical animal models. Biomaterials 2020; 269:120625. [PMID: 33395579 DOI: 10.1016/j.biomaterials.2020.120625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Anterior cruciate ligament (ACL) reconstruction is the recommended treatment for ACL tear in the American Academy of Orthopaedic Surgeons (AAOS) guideline. However, not a small number of cases failed because of the tunnel bone resorption, unsatisfactory bone-tendon integration, and graft degeneration. The biomaterials developed and designed for improving ACL reconstruction have been investigated for decades. According to the Food and Drug Administration (FDA) and the International Organization for Standardization (ISO) regulations, animal studies should be performed to prove the safety and bioeffect of materials before clinical trials. In this review, we first evaluated available biomaterials that can enhance the healing outcome after ACL reconstruction in animals and then discussed the animal models and assessments for testing applied materials. Furthermore, we identified the relevance and knowledge gaps between animal experimental studies and clinical expectations. Critical analyses and suggestions for future research were also provided to design the animal study connecting basic research and requirements for future clinical translation.
Collapse
Affiliation(s)
- Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael Tim-Yun Ong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
21
|
Barajaa MA, Nair LS, Laurencin CT. Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:451-483. [PMID: 33344758 PMCID: PMC7747886 DOI: 10.1007/s40883-019-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
The musculoskeletal system works at a very advanced level of synchrony, where all the physiological movements of the body are systematically performed through well-organized actions of bone in conjunction with all the other musculoskeletal soft tissues, such as ligaments, tendons, muscles, and cartilage through tissue-tissue interfaces. Interfaces are structurally and compositionally complex, consisting of gradients of extracellular matrix components, cell phenotypes as well as biochemical compositions and are important in mediating load transfer between the distinct orthopedic tissues during body movement. When an injury occurs at interface, it must be re-established to restore its function and stability. Due to the structural and compositional complexity found in interfaces, it is anticipated that they presuppose a concomitant increase in the complexity of the associated regenerative engineering approaches and scaffold designs to achieve successful interface regeneration and seamless integration of the engineered orthopedic tissues. Herein, we discuss the various bioinspired scaffold designs utilized to regenerate orthopedic tissue interfaces. First, we start with discussing the structure-function relationship at the interface. We then discuss the current understanding of the mechanism underlying interface regeneration, followed by discussing the current treatment available in the clinic to treat interface injuries. Lastly, we comprehensively discuss the state-of-the-art scaffold designs utilized to regenerate orthopedic tissue interfaces.
Collapse
Affiliation(s)
- Mohammed A Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
22
|
Potyondy T, Uquillas JA, Tebon PJ, Byambaa B, Hasan A, Tavafoghi M, Mary H, Aninwene Ii G, Pountos I, Khademhosseini A, Ashammakhi N. Recent advances in 3D bioprinting of musculoskeletal tissues. Biofabrication 2020; 13. [PMID: 33166949 DOI: 10.1088/1758-5090/abc8de] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
The musculoskeletal system is essential for maintaining posture, protecting organs, facilitating locomotion, and regulating various cellular and metabolic functions. Injury to this system due to trauma or wear is common, and severe damage may require surgery to restore function and prevent further harm. Autografts are the current gold standard for the replacement of lost or damaged tissues. However, these grafts are constrained by limited supply and donor site morbidity. Allografts, xenografts, and alloplastic materials represent viable alternatives, but each of these methods also has its own problems and limitations. Technological advances in three-dimensional (3D) printing and its biomedical adaptation, 3D bioprinting, have the potential to provide viable, autologous tissue-like constructs that can be used to repair musculoskeletal defects. Though bioprinting is currently unable to develop mature, implantable tissues, it can pattern cells in 3D constructs with features facilitating maturation and vascularization. Further advances in the field may enable the manufacture of constructs that can mimic native tissues in complexity, spatial heterogeneity, and ultimately, clinical utility. This review studies the use of 3D bioprinting for engineering bone, cartilage, muscle, tendon, ligament, and their interface tissues. Additionally, the current limitations and challenges in the field are discussed and the prospects for future progress are highlighted.
Collapse
Affiliation(s)
- Tyler Potyondy
- Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California, 90095, UNITED STATES
| | - Jorge Alfredo Uquillas
- Eindhoven University of Technology Faculty of Biomedical Engineering, Eindhoven, 5600 MB, NETHERLANDS
| | - Peyton John Tebon
- Bioengineering, University of California Los Angeles, Los Angeles, California, UNITED STATES
| | - Batzaya Byambaa
- Brigham and Women's Hospital, Boston, Massachusetts, UNITED STATES
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Ad Dawhah, QATAR
| | - Maryam Tavafoghi
- University of California Los Angeles, Los Angeles, California, UNITED STATES
| | - Héloïse Mary
- University of California Los Angeles, Los Angeles, California, UNITED STATES
| | - George Aninwene Ii
- University of California Los Angeles, Los Angeles, California, UNITED STATES
| | - Ippokratis Pountos
- University of Leeds, Leeds, West Yorkshire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, UCLA, Los Angeles, California, UNITED STATES
| | - Nureddin Ashammakhi
- University of California Los Angeles, Los Angeles, California, UNITED STATES
| |
Collapse
|
23
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
24
|
Isolated Meniscus Tears in Adolescent Patients Treated with Platelet-Rich Plasma Intra-articular Injections: 3-Month Clinical Outcome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8282460. [PMID: 32596381 PMCID: PMC7273443 DOI: 10.1155/2020/8282460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/19/2023]
Abstract
Objectives Meniscus repair is a challenge for a practitioner, as an injured meniscus can lead to osteoarthritic joint changes with a greatly disabling outcome. Platelet-rich plasma has been regarded as a promising therapy to help induce healing. The purpose of the study is to clinically assess the effectiveness of PRP treatment in adolescents with meniscal lesions. Methods This retrospective study analyzed 30 patients with meniscal tears, aged 12 to 17 years, who had documented MRI meniscal lesion and persistent knee pain. In order to evaluate the outcome, the Lysholm knee scoring scale and numerical rating scale were used before injection and 3 months after treatment. Results Patients had a mean age of 13.93 years, 70% girls and 30% boys. The most affected was the medial meniscus. The mean value before injection on the numerical rating scale (NRS) of pain was 7.73, after the treatment being of 2.0. After treatment, 76.7% of the patients had “excellent” and “good” outcomes, while before injection, just 3% of the patients had a “good” score. Conclusions Platelet-rich plasma treatment can be effective in improving the clinical outcomes of adolescent patients with meniscus tears, for whom conservative management and physical therapy have failed to achieve pain relief.
Collapse
|
25
|
Saito Y, Chikenji TS, Takata Y, Kamiya T, Uchiyama E. Can an insole for obese individuals maintain the arch of the foot against repeated hyper loading? BMC Musculoskelet Disord 2019; 20:442. [PMID: 31604431 PMCID: PMC6790017 DOI: 10.1186/s12891-019-2819-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Insoles are often applied as preventive therapy of flatfoot deformity, but the therapeutic effects on obese individuals are still controversial. We aimed to investigate the effect of insole use on time-dependent changes in the foot arch during a repeated-loading simulation designed to represent 20,000 contiguous steps in individuals with a BMI value in the range of 30-40 kg/m2. METHODS Eighteen cadaveric feet were randomly divided into the following three groups: normal, obese, and insole. Ten thousand cyclic loadings of 500 N (normal group) or 1000 N (obese and insole groups) were applied to the feet. We measured time-dependent change in arch height and calculated the bony arch index (BAI), arch flexibility, and energy absorption. RESULTS The normal group maintained more than 0.21 BAI, which is the diagnostic criterion for a normal arch, throughout the 10,000 cycles; however, BAI was less than 0.21 at 1000 cycles in the obese group (mean, 0.203; 95% confidence interval [CI] 0.196-0.209) and at 6000 cycles in the insole group (mean, 0.200; 95% CI, 0.191-0.209). Although there was a significant time-dependent decrease in flexibility and energy absorption in both the obese and insole groups (P < 0.001), the difference between 1 and 10,000 cycles were significantly smaller in the insole group than in the obese group (P = 0.024). CONCLUSIONS Use of insoles for obese individuals may help to slow time-dependent foot structural changes. However, the effect was not enough to maintain the foot structure against repeated hyper loadings.
Collapse
Affiliation(s)
- Yuki Saito
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, 0608556 Japan
| | - Takako S. Chikenji
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, 0608556 Japan
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Takata
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, 0608556 Japan
| | - Tomoaki Kamiya
- Department of Orthopaedic Surgery, Sapporo Medical University, Sapporo, Japan
| | - Eiichi Uchiyama
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, 0608556 Japan
| |
Collapse
|
26
|
Legg KA, Colborne GR, Gee EK, Rogers CW. Elastic properties of collateral and sesamoid ligaments in the forelimbs of equine cadavers. Am J Vet Res 2019; 80:923-930. [DOI: 10.2460/ajvr.80.10.923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Milano G, Sánchez M, Jo CH, Saccomanno MF, Thampatty BP, Wang JHC. Platelet-rich plasma in orthopaedic sports medicine: state of the art. J ISAKOS 2019. [DOI: 10.1136/jisakos-2019-000274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Tendon and Ligament Injuries in Elite Rugby: The Potential Genetic Influence. Sports (Basel) 2019; 7:sports7060138. [PMID: 31167482 PMCID: PMC6628064 DOI: 10.3390/sports7060138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023] Open
Abstract
This article reviews tendon and ligament injury incidence and severity within elite rugby union and rugby league. Furthermore, it discusses the biological makeup of tendons and ligaments and how genetic variation may influence this and predisposition to injury. Elite rugby has one of the highest reported injury incidences of any professional sport. This is likely due to a combination of well-established injury surveillance systems and the characteristics of the game, whereby high-impact body contact frequently occurs, in addition to the high intensity, multispeed and multidirectional nature of play. Some of the most severe of all these injuries are tendon and ligament/joint (non-bone), and therefore, potentially the most debilitating to a player and playing squad across a season or World Cup competition. The aetiology of these injuries is highly multi-factorial, with a growing body of evidence suggesting that some of the inter-individual variability in injury susceptibility may be due to genetic variation. However, little effort has been devoted to the study of genetic injury traits within rugby athletes. Due to a growing understanding of the molecular characteristics underpinning the aetiology of injury, investigating genetic variation within elite rugby is a viable and worthy proposition. Therefore, we propose several single nucleotide polymorphisms within candidate genes of interest; COL1A1, COL3A1, COL5A1, MIR608, MMP3, TIMP2, VEGFA, NID1 and COLGALT1 warrant further study within elite rugby and other invasion sports.
Collapse
|
29
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
30
|
Kadhum M, Lee MH, Czernuszka J, Lavy C. An Analysis of the Mechanical Properties of the Ponseti Method in Clubfoot Treatment. Appl Bionics Biomech 2019; 2019:4308462. [PMID: 31019550 PMCID: PMC6452541 DOI: 10.1155/2019/4308462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022] Open
Abstract
Congenital clubfoot is a complex pediatric foot deformity, occurring in approximately 1 in 1000 live births and resulting in significant disability, deformity, and pain if left untreated. The Ponseti method of manipulation is widely recognized as the gold standard treatment for congenital clubfoot; however, its mechanical aspects have not yet been fully explored. During the multiple manipulation-casting cycles, the tendons and ligaments on the medial and posterior aspect of the foot and ankle, which are identified as the rate-limiting tissues, usually undergo weekly sequential stretches, with a plaster of Paris cast applied after the stretch to maintain the length gained. This triggers extracellular matrix remodeling and tissue growth, but due to the viscoelastic properties of tendons and ligaments, the initial strain size, rate, and loading history will affect the relaxation behavior and mechanical strength of the tissue. To increase the efficiency of the Ponseti treatment, we discuss the theoretical possibilities of decreasing the size of the strain step and interval of casting and/or increasing the overall number of casts. This modification may provide more tensile stimuli, allow more time for remodeling, and preserve the mechanical integrity of the soft tissues.
Collapse
Affiliation(s)
- Murtaza Kadhum
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Oxford University, UK
| | - Mu-Huan Lee
- Department of Materials, Oxford University, UK
| | | | - Chris Lavy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Oxford University, UK
| |
Collapse
|
31
|
Lee KJ, Comerford EJ, Simpson DM, Clegg PD, Canty-Laird EG. Identification and Characterization of Canine Ligament Progenitor Cells and Their Extracellular Matrix Niche. J Proteome Res 2019; 18:1328-1339. [DOI: 10.1021/acs.jproteome.8b00933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katie J Lee
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Eithne J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
| | - Deborah M Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| |
Collapse
|
32
|
Hayes A, Easton K, Devanaboyina PT, Wu JP, Kirk TB, Lloyd D. A review of methods to measure tendon dimensions. J Orthop Surg Res 2019; 14:18. [PMID: 30636623 PMCID: PMC6330756 DOI: 10.1186/s13018-018-1056-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Tendons are soft tissues of the musculoskeletal system that are designed to facilitate joint movement. Tendons exhibit a wide range of mechanical properties matched to their functions and, as a result, have been of interest to researchers for many decades. Dimensions are an important aspect of tendon properties. Change in the dimensions of tissues is often seen as a sign of injury and degeneration, as it may suggest inflammation or general disorder of the tissue. Dimensions are also important for determining the mechanical properties and behaviours of materials, particularly the stress, strain, and elastic modulus. This makes the dimensions significant in the context of a mechanical study of degenerated tendons. Additionally, tendon dimensions are useful in planning harvesting for tendon transfer and joint reconstruction purposes. Historically, many methods have been used in an attempt to accurately measure the dimensions of soft tissue, since improper measurement can lead to large errors in the calculated properties. These methods can be categorised as destructive (by approximation), contact, and non-contact and can be considered in terms of in vivo and ex vivo.
Collapse
Affiliation(s)
- Alex Hayes
- Department of Mechanical Engineering, Curtin University of Technology, Perth, Western Australia, Australia. .,Medical Engineering and Physics, Royal Perth Hospital, Perth, Western Australia, Australia.
| | | | - Pavan Teja Devanaboyina
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Jian-Ping Wu
- Academy of Advanced Interdisciplinary Studies and the Department of Biomedical Engineering of Southern University of Science and Technology, No 1088, Xueyaun Rd, Xili, Nanshan District, Shenzhen City, 518055, Guangdong Province, China
| | - Thomas Brett Kirk
- Department of Mechanical Engineering, Curtin University of Technology, Perth, Western Australia, Australia.,Faculty of Science and Engineering, Curtin University of Technology, Perth, Western Australia, Australia
| | - David Lloyd
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
33
|
Sensini A, Cristofolini L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1963. [PMID: 30322082 PMCID: PMC6213815 DOI: 10.3390/ma11101963] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Tendon and ligament tissue regeneration and replacement are complex since scaffolds need to guarantee an adequate hierarchical structured morphology, and non-linear mechanical properties. Moreover, to guide the cells' proliferation and tissue re-growth, scaffolds must provide a fibrous texture mimicking the typical of the arrangement of the collagen in the extracellular matrix of these tissues. Among the different techniques to produce scaffolds, electrospinning is one of the most promising, thanks to its ability to produce fibers of nanometric size. This manuscript aims to provide an overview to researchers approaching the field of repair and regeneration of tendons and ligaments. To clarify the general requirements of electrospun scaffolds, the first part of this manuscript presents a general overview concerning tendons' and ligaments' structure and mechanical properties. The different types of polymers, blends and particles most frequently used for tendon and ligament tissue engineering are summarized. Furthermore, the focus of the review is on describing the different possible electrospinning setups and processes to obtain different nanofibrous structures, such as mats, bundles, yarns and more complex hierarchical assemblies. Finally, an overview concerning how these technologies are exploited to produce electrospun scaffolds for tendon and ligament tissue applications is reported together with the main findings and outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum-Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
34
|
Abstract
The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.
Collapse
Affiliation(s)
- Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
35
|
Connizzo BK, Grodzinsky AJ. Multiscale Poroviscoelastic Compressive Properties of Mouse Supraspinatus Tendons Are Altered in Young and Aged Mice. J Biomech Eng 2018; 140:2666618. [PMID: 29238818 PMCID: PMC5816244 DOI: 10.1115/1.4038745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/04/2017] [Indexed: 02/02/2023]
Abstract
Rotator cuff disorders are one of the most common causes of shoulder pain and disability in the aging population but, unfortunately, the etiology is still unknown. One factor thought to contribute to the progression of disease is the external compression of the rotator cuff tendons, which can be significantly increased by age-related changes such as muscle weakness and poor posture. The objective of this study was to investigate the baseline compressive response of tendon and determine how this response is altered during maturation and aging. We did this by characterizing the compressive mechanical, viscoelastic, and poroelastic properties of young, mature, and aged mouse supraspinatus tendons using macroscale indentation testing and nanoscale high-frequency AFM-based rheology testing. Using these multiscale techniques, we found that aged tendons were stiffer than their mature counterparts and that both young and aged tendons exhibited increased hydraulic permeability and energy dissipation. We hypothesize that regional and age-related variations in collagen morphology and organization are likely responsible for changes in the multiscale compressive response as these structural parameters may affect fluid flow. Importantly, these results suggest a role for age-related changes in the progression of tendon degeneration, and we hypothesize that decreased ability to resist compressive loading via fluid pressurization may result in damage to the extracellular matrix (ECM) and ultimately tendon degeneration. These studies provide insight into the regional multiscale compressive response of tendons and indicate that altered compressive properties in aging tendons may be a major contributor to overall tendon degeneration.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- Department of Biological Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139
| | - Alan J. Grodzinsky
- Department of Biological Engineering,Massachusetts Institute of Technology,
Cambridge, MA 02139;
Center for Biomedical Engineering,Massachusetts Institute of Technology,
Cambridge, MA 02139;
Department of Electrical Engineeringand Computer Science,
Massachusetts Institute of Technology,
Cambridge, MA 02139;
Department of Mechanical Engineering,Massachusetts Institute of Technology,
Cambridge, MA 02139
e-mail:
| |
Collapse
|
36
|
Ligament-Derived Stem Cells: Identification, Characterisation, and Therapeutic Application. Stem Cells Int 2017; 2017:1919845. [PMID: 28386284 PMCID: PMC5366203 DOI: 10.1155/2017/1919845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/19/2017] [Indexed: 01/09/2023] Open
Abstract
Ligament is prone to injury and degeneration and has poor healing potential and, with currently ineffective treatment strategies, stem cell therapies may provide an exciting new treatment option. Ligament-derived stem cell (LDSC) populations have been isolated from a number of different ligament types with the majority of studies focussing on periodontal ligament. To date, only a few studies have investigated LDSC populations in other types of ligament, for example, intra-articular ligaments; however, this now appears to be a developing field. This literature review aims to summarise the current information on nondental LDSCs including in vitro characteristics of LDSCs and their therapeutic potential. The stem cell niche has been shown to be vital for stem cell survival and function in a number of different physiological systems; therefore, the LDSC niche may have an impact on LDSC phenotype. The role of the LDSC niche on LDSC viability and function will be discussed as well as the therapeutic potential of LDSC niche modulation.
Collapse
|
37
|
Maniwa S, Tadenuma T, Sakai Y, Aoki A, Yamagami N, Yamamoto S, Uchio Y. Elbow Brace Promotes Postoperative Rehabilitation of Osteochondral Graft in Young Athletes with Osteochondritis Dissecans of the Humeral Capitellum. Prog Rehabil Med 2017; 2:20170002. [PMID: 32789209 DOI: 10.2490/prm.20170002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Objective Treatment of large advanced osteochondritis dissecans (OCD) of the elbow in young athletes is challenging. Methods We retrospectively reviewed the results in 9 baseball players (mean age, 13.7 years; range, 12-15 years) who were followed up for a mean 21.1 months (range, 12-36 months) after osteochondral autograft. In this operation, cylindrical osteochondral plugs were harvested from a lateral femoral condyle and transferred to the lesion in humeral capitellum. After immobilizing the elbow by a splint for 2 weeks, the patients were encouraged to do range of motion exercises using an elbow brace with a hinge for 2 months. The elbow brace was applied to avoid excess stress to the implants on the capitellum and to the lateral collateral ligament. Patients were clinically assessed by the Japanese Orthopaedic Association elbow score (JOA score) and morphologically by radiographs as well as by magnetic resonance imaging (MRI). Results Patients started playing catch at 3 months and returned to baseball at competitive level at around 6 months postoperatively. The average JOA score was 68.0 points before operation and improved to 98.7 points at follow-up. Bony fusion between the implants and host bone was observed radiographically at 3 months. MRI confirmed a durable load-bearing articular surface of the capitellum at 1 year. Conclusions Osteochondral autograft with postoperative rehabilitation using an elbow brace is a reasonable treatment for young athletes with an advanced lesion of OCD of the elbow who desire a relatively quick return to their pre-injury sports activity level.
Collapse
Affiliation(s)
- Sokichi Maniwa
- Department of Rehabilitation Medicine, Shimane University Hospital, Izumo, Shimane, Japan
| | - Taku Tadenuma
- Department of Rehabilitation Medicine, Shimane University Hospital, Izumo, Shimane, Japan
| | - Yasuo Sakai
- Department of Rehabilitation Medicine, Shimane University Hospital, Izumo, Shimane, Japan
| | - Akira Aoki
- Department of Orthopaedic Surgery, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Nobuo Yamagami
- Department of Orthopaedic Surgery, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Soichiro Yamamoto
- Department of Orthopaedic Surgery, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Yuji Uchio
- Department of Orthopaedic Surgery, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
38
|
Martin C, Sun W. Fatigue damage of collagenous tissues: experiment, modeling and simulation studies. J Long Term Eff Med Implants 2016; 25:55-73. [PMID: 25955007 DOI: 10.1615/jlongtermeffmedimplants.2015011749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed.
Collapse
Affiliation(s)
- Caitlin Martin
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30313
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30313
| |
Collapse
|
39
|
Graves NC, Rettedal DD, Marshall JJ, Frush K, Vardaxis V. Ultrasound assessment of dorsal lisfranc ligament strain under clinically relevant loads. J Am Podiatr Med Assoc 2016; 104:11-8. [PMID: 24504571 DOI: 10.7547/0003-0538-104.1.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pure Lisfranc ligament injuries have a varied clinical presentation, making them difficult to diagnose. This study seeks to understand in vivo strain characteristics of the dorsal Lisfranc ligament under clinically relevant stress loads and foot orientations measured by ultrasound. METHODS Randomized ultrasound imaging trials were performed on 50 asymptomatic feet of 20-to-32-year-old individuals who were free of lower-extremity abnormalities. The dorsal Lisfranc ligament was ultrasound imaged under low, medium, and high stress while at 0° and 15° abducted foot orientations. Load was applied using a seated calf-raise apparatus, and a single examiner performed all of the tests. Two-way repeated-measures analysis of variance was used to determine any significant load or position main effects or load × position interaction. RESULTS Position main effect for dorsal Lisfranc ligament length demonstrated a significant overall increase in ligament length of 0.21 mm (P < .001), which reflects a 4.03% change in ligament length between the rectus and 15° abducted orientations. Furthermore, low and medium loads demonstrated significant length increase with position effect (P = .03 and P < .001, respectively). No significant load main effect or interaction was determined. CONCLUSIONS Dorsal Lisfranc ligament length undergoes more strain in an abducted foot position at the same load compared with in a rectus foot. We advocate measuring under a medium load if possible and comparing foot positions for the maximum length changes. The participant stress loads and foot positions used are clinically feasible, which makes it possible to perform this ultrasound procedure in the clinical setting.
Collapse
Affiliation(s)
- Nathan C Graves
- College of Podiatric Medicine and Surgery, Des Moines University, Des Moines, IA. Dr. Graves is now with the Department of Orthopedic Surgery and Rehabilitation, Division of Foot and Ankle, University of Florida at Jacksonville, Jacksonville, FL
| | | | | | | | | |
Collapse
|
40
|
Fleaca R, Prejbeanu R, Feier AM, Russu O, Todor A, Predescu V, Codorean B, Bățagă T, Roman M. Single- or Double-Bundle Technique in the Anterior Cruciate Ligament Reconstruction — Current Concepts and Review of the Literature. JOURNAL OF INTERDISCIPLINARY MEDICINE 2016. [DOI: 10.1515/jim-2016-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The treatment for anterior cruciate ligament (ACL) deficient knee consists in its surgical reconstruction. There are several available and validated techniques, but there are still numerous questions to be answered concerning the best approach in terms of stability, functional outcome, and avoiding further damage in the knee. This paper sought to analyze the studies published in the literature comparing the outcomes of ACL restoration with single-bundle versus double-bundle techniques. The results demonstrate that even if biomechanical studies find an increased steadiness with double-bundle ACL reconstruction, there seems to be no clinical or functional benefit compared with single-bundle reconstruction.
Collapse
Affiliation(s)
- Radu Fleaca
- “Victor Papillan” Faculty of Medicine, “Lucian Blaga” University, Sibiu, Romania
| | - Radu Prejbeanu
- “Victor Babeș” University of Medicine and Pharmacy, Timișoara, Romania
| | - Andrei-Marian Feier
- University of Medicine and Pharmacy, Tîrgu Mureș, Str. Gheorghe Marinescu nr. 38 540139, Romania
| | - Octav Russu
- University of Medicine and Pharmacy, Tîrgu Mureș, Romania
| | - Adrian Todor
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Predescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Codorean
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Tiberiu Bățagă
- University of Medicine and Pharmacy, Tîrgu Mureș, Romania
| | - Mihai Roman
- “Victor Papillan” Faculty of Medicine, “Lucian Blaga” University, Sibiu, Romania
| |
Collapse
|
41
|
Hayes A, Easton K, Devanaboyina PT, Wu JP, Kirk TB, Lloyd D. Structured white light scanning of rabbit Achilles tendon. J Biomech 2016; 49:3753-3758. [PMID: 27773361 DOI: 10.1016/j.jbiomech.2016.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The cross-sectional area (CSA) of a material is used to calculate stress under load. The mechanical behaviour of soft tissue is of clinical interest in the management of injury; however, measuring CSA of soft tissue is challenging as samples are geometrically irregular and may deform during measurement. This study presents a simple method, using structured light scanning (SLS), to acquire a 3D model of rabbit Achilles tendon in vitro for measuring CSA of a tendon. METHOD The Artec Spider™ 3D scanner uses structured light and stereophotogrammetry technologies to acquire shape data and reconstruct a 3D model of an object. In this study, the 3D scanner was integrated with a custom mechanical rig, permitting 360-degree acquisition of the morphology of six New Zealand White rabbit Achilles tendons. The reconstructed 3D model was then used to measure CSA of the tendon. SLS, together with callipers and micro-CT, was used to measure CSA of objects with a regular or complex shape, such as a drill flute and human cervical vertebra, for validating the accuracy and repeatability of the technique. RESULTS CSA of six tendons was measured with a coefficient of variation of less than 2%. The mean CSA was 9.9±1.0mm2, comparable with those reported by other researchers. Scanning of phantoms demonstrated similar results to μCT. CONCLUSION The technique developed in this study offers a simple and accurate method for effectively measuring CSA of soft tissue such as tendons. This allows for localised calculation of stress along the length, assisting in the understanding of the function, injury mechanisms and rehabilitation of tissue.
Collapse
Affiliation(s)
- Alex Hayes
- Department of Mechanical Engineering, Curtin University of Technology, Western Australia, Australia; Medical Engineering and Physics, Royal Perth Hospital, Western Australia, Australia.
| | | | - Pavan Teja Devanaboyina
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Jian-Ping Wu
- Department of Mechanical Engineering, Curtin University of Technology, Western Australia, Australia
| | - Thomas Brett Kirk
- Department of Mechanical Engineering, Curtin University of Technology, Western Australia, Australia; Office of Research and Development, Curtin University of Technology, Western Australia, Australia
| | - David Lloyd
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
42
|
Connizzo BK, Adams SM, Adams TH, Jawad AF, Birk DE, Soslowsky LJ. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships. J Biomech 2016; 49:1649-1657. [PMID: 27067362 DOI: 10.1016/j.jbiomech.2016.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/11/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Thomas H Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Abbas F Jawad
- Division of Biostatistics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States.
| |
Collapse
|
43
|
Connizzo BK, Han L, Birk DE, Soslowsky LJ. Collagen V-heterozygous and -null supraspinatus tendons exhibit altered dynamic mechanical behaviour at multiple hierarchical scales. Interface Focus 2016; 6:20150043. [PMID: 26855746 DOI: 10.1098/rsfs.2015.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tendons function using a unique set of mechanical properties governed by the extracellular matrix and its ability to respond to varied multi-axial loads. Reduction of collagen V expression, such as in classic Ehlers-Danlos syndrome, results in altered fibril morphology and altered macroscale mechanical function in both clinical and animal studies, yet the mechanism by which changes at the fibril level lead to macroscale functional changes has not yet been investigated. This study addresses this by defining the multiscale mechanical response of wild-type, collagen V-heterozygous and -null supraspinatus tendons. Tendons were subjected to mechanical testing and analysed for macroscale properties, as well as microscale (fibre re-alignment) and nanoscale (fibril deformation and sliding) responses. In many macroscale parameters, results showed a dose-dependent response with severely decreased properties in the null group. In addition, both heterozygous and null groups responded to load faster than in wild-type tendons via earlier fibre re-alignment and fibril stretch. However, the heterozygous group exhibited increased fibril sliding, while the null group exhibited no fibril sliding. These studies demonstrate that dynamic responses play an important role in determining overall function and that collagen V is a critical regulator in the development of these relationships.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street, Philadelphia, PA 19104 , USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology , Morsani College of Medicine, University of South Florida , Tampa, FL 33612 , USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| |
Collapse
|
44
|
Abstract
Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure-function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science , Washington University in St Louis , St Louis, MO 63130 , USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
45
|
Wilson JJ, Lee KS, Chamberlain C, DeWall R, Baer GS, Greatens M, Kamps N. Intratendinous injections of platelet-rich plasma: feasibility and effect on tendon morphology and mechanics. J Exp Orthop 2015; 2:5. [PMID: 26914873 PMCID: PMC4545464 DOI: 10.1186/s40634-014-0018-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Intratendinous injections may have important effects on the properties of collagen microarchitecture, morphology, and subsequent mechanical properties of the injected tendon. The purpose of this study was to examine the effects of intratendinous PRP injections; the injectant retention within tendons, the distribution of intratendinous injectant, and whether intratendinous injection or needle fenestration alters tendon morphology or mechanics. METHODS DESIGN Controlled Laboratory Study. INTERVENTIONS In the first part of the study, 18 lamb extensor tendons were selected to receive methylene blue-containing PRP injection (PRP/MB), methylene blue only injection (MB), or needle fenestration. The volume of retained injectant was measured and injectant distribution and tendon morphology were examined microscopically. In the second portion of the study, 18 porcine flexor tendons were divided into control, needle fenestration, or saline injection groups. Young's Modulus was then determined for each tendon under 0-4% strain. MAIN OUTCOME MEASURES 1) Injectant volume retained; 2) Injectant distribution; 3) Post-injection/fenestration alterations in morphology, biomechanics. RESULTS Intratendinous injectant is retained within the tendon. The difference between PRP and PRP/MB groups was not significant (p = 0.78). Intratendinous spread of the injectant solution within the tendon occurs primarily in the proximodistal direction, with very little cross-sectional penetration. Intratendinous injections resulted in microscopic morphology disruption (e.g., separation and disorganization of both the collagen bundles and cellular distribution). There were significant differences in Young's Modulus between control (Ectrl = 2415.48) and injected tendons (Einj = 1753.45) at 4% strain (p = 0.01). There were no differences in Young's Modulus between fenestrated and control tendons. CONCLUSIONS Intratendinous PRP injections are retained within the tendon, and primarily distributes longitudinally with minimal cross-sectional spread. Intratendinous injections may alter tendon morphology and mechanics.
Collapse
Affiliation(s)
- John J Wilson
- Division of Sports Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA.
| | - Kenneth S Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.
| | - Connie Chamberlain
- Division of Sports Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA.
| | - Ryan DeWall
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.
| | - Geoffrey S Baer
- Division of Sports Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA.
| | - Marcus Greatens
- Division of Sports Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA.
| | - Nicole Kamps
- Division of Sports Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin, 53705, USA.
| |
Collapse
|
46
|
Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils. Biophys J 2015; 107:1794-1801. [PMID: 25418160 DOI: 10.1016/j.bpj.2014.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 08/01/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022] Open
Abstract
Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 10(5) nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 10(5) nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.
Collapse
|
47
|
Younesi M, Islam A, Kishore V, Panit S, Akkus O. Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen. Biofabrication 2015; 7:035001. [PMID: 26069162 PMCID: PMC4489851 DOI: 10.1088/1758-5090/7/3/035001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically-induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. The in-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200-fold and 2300-fold greater than those of the uncompacted collagen samples. Out-of-plane compression tests showed a 27-fold increase in compressive stress and a 46-fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and the cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in a 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of a collagen-hydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose, and urogenital forms.
Collapse
Affiliation(s)
- Mousa Younesi
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Anowarul Islam
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Vipuil Kishore
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
- Department of Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States
| | - Stefi Panit
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
48
|
Caliari SR, Weisgerber DW, Grier WK, Mahmassani Z, Boppart MD, Harley BAC. Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical Cues for Osteotendinous Junction Engineering. Adv Healthc Mater 2015; 4:831-7. [PMID: 25597299 DOI: 10.1002/adhm.201400809] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 01/27/2023]
Abstract
A fully 3D biomaterial containing overlapping gradations of structural, compositional, and biomolecular cues as seen in native orthopedic interfaces is described for the first time. A multi-compartment collagen scaffold is created for engineering tendon-bone junctions connected by a continuous interface that can induce spatially specific MSC differentiation down tenogenic and osteogenic lineages without the use of differentiation media.
Collapse
Affiliation(s)
- Steven R. Caliari
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Daniel W. Weisgerber
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - William K. Grier
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Ziad Mahmassani
- Department of Kinesiology and Community Health; Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Marni D. Boppart
- Department of Kinesiology and Community Health; Institute for Genomic Biology; Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular Engineering; Institute for Genomic Biology; University of Illinois at Urbana-Champaign; 110 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| |
Collapse
|
49
|
Lin CY, Kang JH, Wang CL, Shau YW. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients. J Sci Med Sport 2015; 18:128-32. [DOI: 10.1016/j.jsams.2014.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
50
|
Bíró V. [Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand]. Orv Hetil 2015; 156:216-20. [PMID: 25639635 DOI: 10.1556/oh.2015.30094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In his literary analysis, the author describes a novel method applied in the reconstruction of flexor tendon injuries of the hand. This procedure is named tissue engineering, and it is examined mainly under experimental circumstances. After definition of the method and descriptions of literary preliminaries the author discusses the healing process of the normal tendon tissue, then development of the scaffold, an important step of tissue engineering is described. After these topics the introduction of the pluripotent mesenchymal stem cells into the scaffold, and proliferation of these cells and development of the sliding systems are presented. The mechanical resisting ability of the formed tendon tissue is also discussed. Finally, the author concludes that as long as results of experimental research cannot be successfully applied into clinical practice, well-tried tendon reconstruction operations and high quality postoperative rehabilitation are needed.
Collapse
|