1
|
Tazikeh Lemeski A, Seyyedi SM, Hashemi-Tilehnoee M, Naeimi AS. Influence of triangular obstacles on droplet breakup dynamics in microfluidic systems. Sci Rep 2024; 14:13324. [PMID: 38858444 PMCID: PMC11164865 DOI: 10.1038/s41598-024-63922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Microfluidic devices with complex geometries and obstacles have attracted considerable interest in biomedical engineering and chemical analysis. Understanding droplet breakup behavior within these systems is crucial for optimizing their design and performance. This study investigates the influence of triangular obstacles on droplet breakup processes in microchannels. Two distinct types of triangular obstructions, positioned at the bifurcation (case I) and aligned with the flow (case II), are analyzed to evaluate their impact on droplet behavior. The investigation considers various parameters, including the Capillary number (Ca), non-dimensional droplet length (L*), non-dimensional height (A*), and non-dimensional base length (B*) of the triangle. Utilizing numerical simulations with COMSOL software, the study reveals that the presence of triangular obstacles significantly alters droplet breakup dynamics. Importantly, the shape and location of the obstacle emerge as key factors governing breakup characteristics. Results indicate faster breakup of the initial droplet when the obstacle is positioned in the center of the microchannel for case I. For case II, the study aims to identify conditions under which droplets either break up into unequal-sized entities or remain intact, depending on various flow conditions. The findings identify five distinct regimes: no breakup, breakup without a tunnel, breakup with a tunnel, droplet fragmentation into unequal-sized parts, and sorting. These regimes depend on the presence or absence of triangular obstacles and the specific flow conditions. This investigation enhances our understanding of droplet behavior within intricate microfluidic systems and provides valuable insights for optimizing the design and functionality of droplet manipulation and separation devices. Notably, the results emphasize the significant role played by triangular obstacles in droplet breakup dynamics, with the obstacle's shape and position being critical determinants of breakup characteristics.
Collapse
Affiliation(s)
- Azadeh Tazikeh Lemeski
- Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran
| | - Seyyed Masoud Seyyedi
- Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran.
| | - Mehdi Hashemi-Tilehnoee
- Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran
| | - Azadeh Sadat Naeimi
- Department of Physics, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran
| |
Collapse
|
2
|
Moraes da Silva Junior S, Bento Ribeiro LE, Fruett F, Stiens J, Swart JW, Moshkalev S. A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications. MICROMACHINES 2024; 15:672. [PMID: 38930642 PMCID: PMC11205656 DOI: 10.3390/mi15060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, characterization, and sensing simultaneously. The microsensor, designed with interdigitated ring-shaped electrodes (IRSE) and seamlessly integrated with microfluidic channels, offers enhanced capacitance and impedance signal amplitudes, reproducibility, and reliability in droplet analysis. We were able to make analyses of droplet length in the range of 1.0-6.0 mm, velocity of 0.66-2.51 mm/s, and volume of 1.07 nL-113.46 nL. Experimental results demonstrated that the microsensor's performance is great in terms of droplet size, velocity, and length, with a significant signal amplitude of capacitance and impedance and real-time detection capabilities, thereby highlighting its potential for facilitating microcapsule reactions and enabling on-site real-time detection for chemical and biosensor analyses on-chip. This droplet-based microfluidics platform has great potential to be directly employed to promote advances in biomedical research, pharmaceuticals, drug discovery, food engineering, flow chemistry, and cosmetics.
Collapse
Affiliation(s)
- Salomão Moraes da Silva Junior
- Electronics & Informatics, Vrije Universiteit of Brussel, 1050 Brussels, Belgium
- Center for Semiconductor Components and Nanotechnologies, State University of Campinas, Campinas 13083-852, Brazil;
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Luiz Eduardo Bento Ribeiro
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
| | - Fabiano Fruett
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
| | - Johan Stiens
- Electronics & Informatics, Vrije Universiteit of Brussel, 1050 Brussels, Belgium
| | - Jacobus Willibrordus Swart
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
| | - Stanislav Moshkalev
- Center for Semiconductor Components and Nanotechnologies, State University of Campinas, Campinas 13083-852, Brazil;
| |
Collapse
|
3
|
Stubbs J, Hornsey T, Hanrahan N, Esteban LB, Bolton R, Malý M, Basu S, Orlans J, de Sanctis D, Shim JU, Shaw Stewart PD, Orville AM, Tews I, West J. Droplet microfluidics for time-resolved serial crystallography. IUCRJ 2024; 11:237-248. [PMID: 38446456 PMCID: PMC10916287 DOI: 10.1107/s2052252524001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.
Collapse
Affiliation(s)
- Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Theo Hornsey
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Luis Blay Esteban
- Universitat Carlemany, Avenida Verge de Canolich, 47, Sant Julia de Loria, Principat d’Andorra AD600, Spain
| | - Rachel Bolton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Martin Malý
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, Cedex 9, France
| | - Julien Orlans
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Jung-uk Shim
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Rana M, Ahmad R, Taylor AF. A microfluidic double emulsion platform for spatiotemporal control of pH and particle synthesis. LAB ON A CHIP 2023; 23:4504-4513. [PMID: 37766460 DOI: 10.1039/d3lc00711a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The temporal control of pH in microreactors such as emulsion droplets plays a vital role in applications including biomineralisation and microparticle synthesis. Typically, pH changes are achieved either by passive diffusion of species into a droplet or by acid/base producing reactions. Here, we exploit an enzyme reaction combined with the properties of a water-oil-water (W/O/W) double emulsion to control the pH-time profile in the droplets. A microfluidic platform was used for production of ∼100-200 μm urease-encapsulated double emulsions with a tuneable mineral oil shell thickness of 10-40 μm. The reaction was initiated on-demand by addition of urea and a pulse in base (ammonia) up to pH 8 was observed in the droplets after a time lag of the order of minutes. The pH-time profile can be manipulated by the diffusion timescale of urea and ammonia through the oil layer, resulting in a steady state pH not observed in bulk reactive solutions. This approach may be used to regulate the formation of pH sensitive materials under mild conditions and, as a proof of concept, the reaction was coupled to calcium phosphate precipitation in the droplets. The oil shell thickness was varied to select for either brushite microplatelets or hydroxyapatite particles, compared to the mixture of different precipitates obtained in bulk.
Collapse
Affiliation(s)
- Maheen Rana
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Raheel Ahmad
- Massachusetts General Hospital Cancer Center and, Harvard Medical School, Boston, Massachusetts, 02129, USA
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
5
|
Rajoub N, Gerard CJJ, Pantuso E, Fontananova E, Caliandro R, Belviso BD, Curcio E, Nicoletta FP, Pullen J, Chen W, Heng JYY, Ruane S, Liddell J, Alvey N, Ter Horst JH, Di Profio G. A workflow for the development of template-assisted membrane crystallization downstream processing for monoclonal antibody purification. Nat Protoc 2023; 18:2998-3049. [PMID: 37697106 DOI: 10.1038/s41596-023-00869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/06/2023] [Indexed: 09/13/2023]
Abstract
Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.
Collapse
Affiliation(s)
- Nazer Rajoub
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Charline J J Gerard
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Rocco Caliandro
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Benny D Belviso
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, Rende, Italy
| | - Fiore P Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, Rende, Italy
| | - James Pullen
- FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Wenqian Chen
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sean Ruane
- Center for Process Innovation (CPI), Darlington, UK
| | - John Liddell
- Center for Process Innovation (CPI), Darlington, UK
| | | | - Joop H Ter Horst
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy.
| |
Collapse
|
6
|
Korede V, Penha FM, de Munck V, Stam L, Dubbelman T, Nagalingam N, Gutta M, Cui P, Irimia D, van der Heijden AE, Kramer HJ, Eral HB. Design and Validation of a Droplet-based Microfluidic System To Study Non-Photochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:6067-6080. [PMID: 37547880 PMCID: PMC10401630 DOI: 10.1021/acs.cgd.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.
Collapse
Affiliation(s)
- Vikram Korede
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen 42, 114-28 Stockholm, Sweden
| | - Vincent de Munck
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Lotte Stam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thomas Dubbelman
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Maheswari Gutta
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, 300072 Tianjin, People’s Republic of China
| | - Daniel Irimia
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | | | - Herman J.M. Kramer
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
7
|
Saha S, Özden C, Samkutty A, Russi S, Cohen A, Stratton MM, Perry SL. Polymer-based microfluidic device for on-chip counter-diffusive crystallization and in situ X-ray crystallography at room temperature. LAB ON A CHIP 2023; 23:2075-2090. [PMID: 36942575 PMCID: PMC10631519 DOI: 10.1039/d2lc01194h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins are long chains of amino acid residues that perform a myriad of functions in living organisms, including enzymatic reactions, signalling, and maintaining structural integrity. Protein function is determined directly by the protein structure. X-ray crystallography is the primary technique for determining the 3D structure of proteins, and facilitates understanding the effects of protein structure on function. The first step towards structure determination is crystallizing the protein of interest. We have developed a centrifugally-actuated microfluidic device that incorporates the fluid handling and metering necessary for protein crystallization. Liquid handling takes advantage of surface forces to control fluid flow and enable metering, without the need for any fluidic or pump connections. Our approach requires only the simple steps of pipetting the crystallization reagents into the device followed by either spinning or shaking to set up counter-diffusive protein crystallization trials. The use of thin, UV-curable polymers with a high level of X-ray transparency allows for in situ X-ray crystallography, eliminating the manual handling of fragile protein crystals and streamlining the process of protein structure analysis. We demonstrate the utility of our device using hen egg white lysozyme as a model system, followed by the crystallization and in situ, room temperature structural analysis of the hub domain of calcium-calmodulin dependent kinase II (CaMKIIβ).
Collapse
Affiliation(s)
- Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| | - Can Özden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Silvia Russi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina Cohen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Erkamp NA, Qi R, Welsh TJ, Knowles TPJ. Microfluidics for multiscale studies of biomolecular condensates. LAB ON A CHIP 2022; 23:9-24. [PMID: 36269080 PMCID: PMC9764808 DOI: 10.1039/d2lc00622g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Membraneless organelles formed through condensation of biomolecules in living cells have become the focus of sustained efforts to elucidate their mechanisms of formation and function. These condensates perform a range of vital functions in cells and are closely connected to key processes in functional and aberrant biology. Since these systems occupy a size scale intermediate between single proteins and conventional protein complexes on the one hand, and cellular length scales on the other hand, they have proved challenging to probe using conventional approaches from either protein science or cell biology. Additionally, condensate can form, solidify and perform functions on various time-scales. From a physical point of view, biomolecular condensates are colloidal soft matter systems, and microfluidic approaches, which originated in soft condensed matter research, have successfully been used to study biomolecular condensates. This review explores how microfluidics have aided condensate research into the thermodynamics, kinetics and other properties of condensates, by offering high-throughput and novel experimental setups.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK
| |
Collapse
|
9
|
Werner EM, Lam BX, Hui EE. Phase-Optimized Peristaltic Pumping by Integrated Microfluidic Logic. MICROMACHINES 2022; 13:mi13101784. [PMID: 36296137 PMCID: PMC9610095 DOI: 10.3390/mi13101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/08/2023]
Abstract
Microfluidic droplet generation typically entails an initial stabilization period on the order of minutes, exhibiting higher variation in droplet volume until the system reaches monodisperse production. The material lost during this period can be problematic when preparing droplets from limited samples such as patient biopsies. Active droplet generation strategies such as antiphase peristaltic pumping effectively reduce stabilization time but have required off-chip control hardware that reduces system accessibility. We present a fully integrated device that employs on-chip pneumatic logic to control phase-optimized peristaltic pumping. Droplet generation stabilizes in about a second, with only one or two non-uniform droplets produced initially.
Collapse
|
10
|
Liu X, Li X, Wu N, Luo Y, Zhang J, Yu Z, Shen F. Formation and Parallel Manipulation of Gradient Droplets on a Self-Partitioning SlipChip for Phenotypic Antimicrobial Susceptibility Testing. ACS Sens 2022; 7:1977-1984. [PMID: 35815869 DOI: 10.1021/acssensors.2c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flexible, robust, and user-friendly screening systems with a large dynamic range are highly desired in scientific research, industrial development, and clinical diagnostics. Droplet-based microfluidic systems with gradient concentrations of chemicals have been demonstrated as promising tools to provide confined microenvironments for screening tests with small reaction volumes. However, the generation and manipulation of gradient droplets, such as droplet merging, generally require sophisticated fluidic manipulation systems, potentially limiting their application in decentralized settings. We present a gradient-droplet SlipChip (gd-SlipChip) microfluidic device that enables instrument-free gradient droplet formation and parallel manipulation. The device can establish a gradient profile by free interfacial diffusion in a continuous fluidic channel. With a simple slipping step, gradient droplets can be generated by a surface tension-driven self-partitioning process. Additional reagents can be introduced in parallel to these gradient droplets with further slipping operations to initiate screening tests of the droplets over a large concentration range. To profile the concentration in the gradient droplets, we establish a numerical simulation model and verify it with hydrogen chloride (HCl) diffusion, as tested with a dual-color pH indicator (methyl orange and aniline blue). As a proof of concept, we tested this system with a gradient concentration of nitrofurantoin for the phenotypic antimicrobial susceptibility testing (AST) of Escherichia coli. The results of our gd-SlipChip-based AST on both reference and clinical strains of E. coli can be indicated by the bacterial growth profile within 3 h and are consistent with the clinical culture-based AST.
Collapse
Affiliation(s)
- Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
11
|
Xiong N, Wang A, Xie T, Hu T, Chen Q, Zhao Q, Li G. Oil-Triggered and Template-Confined Dewetting for Facile and Low-Loss Sample Digitization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20813-20822. [PMID: 35485956 DOI: 10.1021/acsami.2c04728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper proposes a simple and robust method for spontaneously digitizing aqueous samples into a high-density microwell array. The method is based on an oil-triggered template-confined dewetting phenomenon. To realize the dewetting-induced sample digitization, an aqueous sample is first infused into a networked microwell array (NMA) through a pre-degassing-based self-pumping mechanism, and an immiscible oil phase is then applied over the surface of NMA chip to induce the templated dewetting. Due to periodic interfacial tension heterogeneity, such dewetting ruptures the sample at the thinnest parts (i.e., connection channels) and spontaneously splits the sample into droplets in individual microwells. Without requiring any complex pumping or valving systems, this method can discretize a sample into tens of thousands of addressable droplets in a matter of minutes with nearly 98% usage. To demonstrate the utility and universality of this self-digitization method, we exploited it to discretize samples into 40 233 wells for a digital PCR assay, the digital quantification of bacteria, the self-assembly of spherical colloidal photonic crystals, and the spherical crystallization of drugs. We believe this facile technique will provide a substantial benefit to many compartmentalized assays or syntheses where it is necessary to partition samples into a large number of small individual volumes.
Collapse
Affiliation(s)
- Nankun Xiong
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Anyan Wang
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tengbao Xie
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Tianbao Hu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Qiang Chen
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiang Zhao
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| |
Collapse
|
12
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Li L, Ling H, Tao J, Pei C, Duan X. Microchannel-confined crystallization: shape-controlled continuous preparation of a high-quality CL-20/HMX cocrystal. CrystEngComm 2022. [DOI: 10.1039/d1ce01524a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shape-controlled continuous preparation of a high-quality CL-20/HMX cocrystal has been realized through a microchannel-confined crystallization strategy.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huijun Ling
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jun Tao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China
| | - Chonghua Pei
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xiaohui Duan
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
14
|
Shinde AB, Patil RB. Multi-objective optimization of split and recombine micromixer using grey relational analysis method. INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT 2021. [DOI: 10.1108/ijqrm-06-2021-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The effective, efficient and optimal design of micromixer is the need in the field of biochemical and biomedical diagnostic systems.
Design/methodology/approach
In this paper, multi-objective optimization of split and recombine micromixer (SRM) with different geometrical configurations is carried out. The finite element method-based three-dimensional models are prepared and analyzed using COMSOL Multiphysics 5.0 Software. Taguchi’s design of experiment (DoE), main effect plot analysis, ANOVA and grey relational analysis (GRA) method are used to find out optimum condition. The five geometrical parameters with three levels, namely, angle between inlets, pillar size, pillar shape, aspect ratio and constriction height of SRM are considered as design variables. The mixing index (MXI) and pressure drop (∆P) are considered objective functions.
Findings
The MXI is significantly influenced by pillar shape and aspect ratio, whereas the pressure drop (∆P) by constriction height. Maximum MXI (0.97) with minimum pressure drop (64,587 Pa) is the optimal conditions and obtained at 180 deg angle between inlets, 50 µm of pillar size, 1.5 of aspect ratio, 100 µm of constriction height and ellipse shape pillar cross-section, respectively.
Research limitations/implications
This optimized SRM can be combined with lab-on-a-chip for biochemical and biomedical analysis.
Originality/value
This work is useful to obtain optimal geometry of SRM for getting efficient performance of micromixer.
Collapse
|
15
|
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic Systems for Cancer Diagnosis and Applications. MICROMACHINES 2021; 12:mi12111349. [PMID: 34832761 PMCID: PMC8619454 DOI: 10.3390/mi12111349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Microfluidic devices have led to novel biological advances through the improvement of micro systems that can mimic and measure. Microsystems easily handle sub-microliter volumes, obviously with guidance presumably through laminated fluid flows. Microfluidic systems have production methods that do not need expert engineering, away from a centralized laboratory, and can implement basic and point of care analysis, and this has attracted attention to their widespread dissemination and adaptation to specific biological issues. The general use of microfluidic tools in clinical settings can be seen in pregnancy tests and diabetic control, but recently microfluidic platforms have become a key novel technology for cancer diagnostics. Cancer is a heterogeneous group of diseases that needs a multimodal paradigm to diagnose, manage, and treat. Using advanced technologies can enable this, providing better diagnosis and treatment for cancer patients. Microfluidic tools have evolved as a promising tool in the field of cancer such as detection of a single cancer cell, liquid biopsy, drug screening modeling angiogenesis, and metastasis detection. This review summarizes the need for the low-abundant blood and serum cancer diagnosis with microfluidic tools and the progress that has been followed to develop integrated microfluidic platforms for this application in the last few years.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Monireh Bakhshpour
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Ayşe Kevser Pişkin
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara 06230, Turkey;
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
- Correspondence:
| |
Collapse
|
16
|
São Pedro MN, Silva TC, Patil R, Ottens M. White paper on high-throughput process development for integrated continuous biomanufacturing. Biotechnol Bioeng 2021; 118:3275-3286. [PMID: 33749840 PMCID: PMC8451798 DOI: 10.1002/bit.27757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
Continuous manufacturing is an indicator of a maturing industry, as can be seen by the example of the petrochemical industry. Patent expiry promotes a price competition between manufacturing companies, and more efficient and cheaper processes are needed to achieve lower production costs. Over the last decade, continuous biomanufacturing has had significant breakthroughs, with regulatory agencies encouraging the industry to implement this processing mode. Process development is resource and time consuming and, although it is increasingly becoming less expensive and faster through high-throughput process development (HTPD) implementation, reliable HTPD technology for integrated and continuous biomanufacturing is still lacking and is considered to be an emerging field. Therefore, this paper aims to illustrate the major gaps in HTPD and to discuss the major needs and possible solutions to achieve an end-to-end Integrated Continuous Biomanufacturing, as discussed in the context of the 2019 Integrated Continuous Biomanufacturing conference. The current HTPD state-of-the-art for several unit operations is discussed, as well as the emerging technologies which will expedite a shift to continuous biomanufacturing.
Collapse
Affiliation(s)
| | - Tiago C. Silva
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Rohan Patil
- Global CMC DevelopmentSanofiFraminghamMassachusettsUSA
| | - Marcel Ottens
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
17
|
Catterton MA, Ball AG, Pompano RR. Rapid Fabrication by Digital Light Processing 3D Printing of a SlipChip with Movable Ports for Local Delivery to Ex Vivo Organ Cultures. MICROMACHINES 2021; 12:993. [PMID: 34442615 PMCID: PMC8399530 DOI: 10.3390/mi12080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
SlipChips are two-part microfluidic devices that can be reconfigured to change fluidic pathways for a wide range of functions, including tissue stimulation. Currently, fabrication of these devices at the prototype stage requires a skilled microfluidic technician, e.g., for wet etching or alignment steps. In most cases, SlipChip functionality requires an optically clear, smooth, and flat surface that is fluorophilic and hydrophobic. Here, we tested digital light processing (DLP) 3D printing, which is rapid, reproducible, and easily shared, as a solution for fabrication of SlipChips at the prototype stage. As a case study, we sought to fabricate a SlipChip intended for local delivery to live tissue slices through a movable microfluidic port. The device was comprised of two multi-layer components: an enclosed channel with a delivery port and a culture chamber for tissue slices with a permeable support. Once the design was optimized, we demonstrated its function by locally delivering a chemical probe to slices of hydrogel and to living tissue with up to 120 µm spatial resolution. By establishing the design principles for 3D printing of SlipChip devices, this work will enhance the ability to rapidly prototype such devices at mid-scale levels of production.
Collapse
Affiliation(s)
- Megan A Catterton
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
| | - Alexander G Ball
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904-4259, USA
| |
Collapse
|
18
|
Protein Crystallization in a Microfluidic Contactor with Nafion ®117 Membranes. MEMBRANES 2021; 11:membranes11080549. [PMID: 34436312 PMCID: PMC8398885 DOI: 10.3390/membranes11080549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.
Collapse
|
19
|
Liu X, Wang Y, Gao Y, Song Y. Gas-propelled biosensors for quantitative analysis. Analyst 2021; 146:1115-1126. [PMID: 33459312 DOI: 10.1039/d0an02154g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gas-propelled biosensors display a simple gas-based signal amplification with quantitative detection features based on the target recognition event in combination with gas propulsion. Due to the liquid-gas conversion, the gas not only pushes the ink bar forward in the microchannel, but also serves as the power to propel the micromotors in the liquid. Thus, this continuous motion leads to a shift in distances which is associated with the target amount. Therefore, gas-propelled biosensors provide a visual quantification based on distance or speed signals without the need for expensive instruments. In this review, we focus on current developments in gas-propelled biosensors for quantitative analysis. First, we list the types of gas utilized as actuators in biosensors. Second, we review the representative gas-propelled biosensors, including the propulsion mechanisms and fabrication methods. Moreover, gas-propelled quantification based on distance and speed is summarized. Finally, we cover applications and provide a future perspective of gas-propelled biosensors.
Collapse
Affiliation(s)
- Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
20
|
Maeki M, Ito S, Takeda R, Ueno G, Ishida A, Tani H, Yamamoto M, Tokeshi M. Room-temperature crystallography using a microfluidic protein crystal array device and its application to protein-ligand complex structure analysis. Chem Sci 2020; 11:9072-9087. [PMID: 34094189 PMCID: PMC8162031 DOI: 10.1039/d0sc02117b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Room-temperature (RT) protein crystallography provides significant information to elucidate protein function under physiological conditions. In particular, contrary to typical binding assays, X-ray crystal structure analysis of a protein–ligand complex can determine the three-dimensional (3D) configuration of its binding site. This allows the development of effective drugs by structure-based and fragment-based (FBDD) drug design. However, RT crystallography and RT crystallography-based protein–ligand complex analyses require the preparation and measurement of numerous crystals to avoid the X-ray radiation damage. Thus, for the application of RT crystallography to protein–ligand complex analysis, the simultaneous preparation of protein–ligand complex crystals and sequential X-ray diffraction measurement remain challenging. Here, we report an RT crystallography technique using a microfluidic protein crystal array device for protein–ligand complex structure analysis. We demonstrate the microfluidic sorting of protein crystals into microwells without any complicated procedures and apparatus, whereby the sorted protein crystals are fixed into microwells and sequentially measured to collect X-ray diffraction data. This is followed by automatic data processing to calculate the 3D protein structure. The microfluidic device allows the high-throughput preparation of the protein–ligand complex solely by the replacement of the microchannel content with the required ligand solution. We determined eight trypsin–ligand complex structures for the proof of concept experiment and found differences in the ligand coordination of the corresponding RT and conventional cryogenic structures. This methodology can be applied to easily obtain more natural structures. Moreover, drug development by FBDD could be more effective using the proposed methodology. Room temperature protein crystallography and its application to protein–ligand complex structure analysis was demonstrated using a microfluidic protein crystal array device.![]()
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan.,ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation 3-9-12 Matubara-cho Akishima Tokyo 196-8666 Japan
| | - Reo Takeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Go Ueno
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Masaki Yamamoto
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan.,Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| |
Collapse
|
21
|
Maeki M, Yamazaki S, Takeda R, Ishida A, Tani H, Tokeshi M. Real-Time Measurement of Protein Crystal Growth Rates within the Microfluidic Device to Understand the Microspace Effect. ACS OMEGA 2020; 5:17199-17206. [PMID: 32715205 PMCID: PMC7376889 DOI: 10.1021/acsomega.0c01285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Preparation of high-quality protein crystals is a major challenge in protein crystallography. Natural convection is considered to be an uncontrollable factor of the crystallization process at the ground level as it disturbs the concentration gradient around the growing crystal, resulting in lower-quality crystals. A microfluidic environment expects an imitated microgravity environment because of the small Gr number. However, the mechanism of protein crystal growth in the microfluidic device was not elucidated due to limitations in measuring the crystal growth process within the device. Here, we demonstrate the real-time measurement of protein crystal growth rates within the microfluidic devices by laser confocal microscopy with differential interference contrast microscopy (LCM-DIM) at the nanometer scale. We confirmed the normal growth rates in the 20 and 30 μm-deep microfluidic device to be 42.2 and 536 nm/min, respectively. In addition, the growth rate of crystals in the 20 μm-deep microfluidic device was almost the same as that reported in microgravity conditions. This phenomenon may enable the development of more accessible alternatives to the microgravity environment of the International Space Station.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Shohei Yamazaki
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Reo Takeda
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
22
|
García Alonso D, Yu M, Qu H, Ma L, Shen F. Advances in Microfluidics-Based Technologies for Single Cell Culture. ACTA ACUST UNITED AC 2020; 3:e1900003. [PMID: 32648694 DOI: 10.1002/adbi.201900003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/20/2019] [Indexed: 12/29/2022]
Abstract
Single cell culture has been considered one of the fundamental tools for single cell studies. Complex biological systems evolve from single cells, and the cells within biological systems are intrinsically heterogeneous. Therefore, culturing and understanding the behaviors of single cells are of great interest for both biological research and clinical studies. In recent years, advances in microfluidics-based technologies have demonstrated unprecedented capabilities for single cell studies, and they have made high-throughput single cell cultures possible. Microfluidic systems enable precise control of the microenvironment for single cell culture and monitoring of the behavior of single cells in real time. In addition, microfluidic devices can consist of upstream cell sorting and cell isolation, and they can also be seamlessly integrated with various downstream analysis methods. Therefore, microfluidic technologies can obtain data about the performance at the single-cell level, providing information that cannot be achieved by studying the ensemble behavior of cell colonies. In this review, the recent developments in droplet-based microfluidics, microwell-based microfluidics, trap-based microfluidics and SlipChip-based microfluidics for the study of single cell culture is focused on. Perspectives on future improvement regarding single cell culture and its related research opportunities are also provided.
Collapse
Affiliation(s)
- Daniel García Alonso
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Mengchao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Haijun Qu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Liang Ma
- Thermo Fisher Scientific, 5781 Van Allen way, Carlsbad, CA, 92008, USA
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
23
|
“Development and application of analytical detection techniques for droplet-based microfluidics”-A review. Anal Chim Acta 2020; 1113:66-84. [DOI: 10.1016/j.aca.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
|
24
|
Utilising NV based quantum sensing for velocimetry at the nanoscale. Sci Rep 2020; 10:5298. [PMID: 32210251 PMCID: PMC7093499 DOI: 10.1038/s41598-020-61095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Nitrogen-Vacancy (NV) centers in diamonds have been shown in recent years to be excellent magnetometers on the nanoscale. One of the recent applications of the quantum sensor is retrieving the Nuclear Magnetic Resonance (NMR) spectrum of a minute sample, whose net polarization is well below the Signal-to-Noise Ratio (SNR) of classic devices. The information in the magnetic noise of diffusing particles has also been shown in decoherence spectroscopy approaches to provide a method for measuring different physical parameters. Similar noise is induced on the NV center by a flowing liquid. However, when the noise created by diffusion effects is more dominant than the noise of the drift, it is unclear whether the velocity can be efficiently estimated. Here we propose a non-intrusive setup for measuring the drift velocity near the surface of a flow channel based on magnetic field quantum sensing using NV centers. We provide a detailed analysis of the sensitivity for different measurement protocols, and we show that our nanoscale velocimetry scheme outperforms current fluorescence based approaches even when diffusion noise is dominant. Our scheme can be applied for the investigation of microfluidic channels, where the drift velocity is usually low and the flow properties are currently unclear. A better understanding of these properties is essential for the future development of microfluidic and nanofluidic infrastructures.
Collapse
|
25
|
Dong Z, Fang Q. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Junius N, Jaho S, Sallaz-Damaz Y, Borel F, Salmon JB, Budayova-Spano M. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction. LAB ON A CHIP 2020; 20:296-310. [PMID: 31804643 DOI: 10.1039/c9lc00651f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a versatile microfluidic chip developed for on-chip crystallization of proteins through the dialysis method and in situ X-ray diffraction experiments. A microfabrication process enabling the integration of regenerated cellulose dialysis membranes between two layers of the microchip is thoroughly described. We also describe a rational approach for optimizing on-chip protein crystallization via chemical composition and temperature control, allowing the crystal size, number and quality to be tailored. Combining optically transparent microfluidics and dialysis provides both precise control over the experiment and reversible exploration of the crystallization conditions. In addition, the materials composing the microfluidic chip were tested for their transparency to X-rays in order to assess their compatibility for in situ diffraction data collection. Background scattering was evaluated using a synchrotron X-ray source and the background noise generated by our microfluidic device was compared to that produced by commercial crystallization plates used for diffraction experiments at room temperature. Once crystals of 3 model proteins (lysozyme, IspE, and insulin) were grown on-chip, the microchip was mounted onto the beamline and partial diffraction data sets were collected in situ from several isomorphous crystals and were merged to a complete data set for structure determination. We therefore propose a robust and inexpensive way to fabricate microchips that cover the whole pipeline from crystal growth to the beam and does not require any handling of the protein crystals prior to the diffraction experiment, allowing the collection of crystallographic data at room temperature for solving the three-dimensional structure of the proteins under study. The results presented here allow serial crystallography experiments on synchrotrons and X-ray lasers under dynamically controllable sample conditions to be observed using the developed microchips.
Collapse
Affiliation(s)
- Niels Junius
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sofia Jaho
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Borel
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
27
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. BIOMICROFLUIDICS 2020; 14:014112. [PMID: 32038741 PMCID: PMC7002170 DOI: 10.1063/1.5143434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 05/03/2023]
Abstract
A programmable microfluidic platform enabling on-demand sampling, compartmentalization, and manipulation of multiple aqueous volumes is presented. The system provides random-access actuation of a microtrap array supporting selective discretization of picoliter volumes from multiple sample inputs. The platform comprises two interconnected chips, with parallel T-junctions and multiplexed microvalves within one chip enabling programmable injection of aqueous sample plugs, and nanoliter volumes transferred to a second microtrap array chip in which the plugs are actively discretized into picoliter droplets within a static array of membrane displacement actuators. The system employs two different multiplexer designs that reduce the number of input signals required for both sample injection and discretization. This versatile droplet-based technology offers flexible sample workflows and functionalities for the formation and manipulation of heterogeneous picoliter droplets, with particular utility for applications in biochemical synthesis and cell-based assays requiring flexible and programmable operation of parallel and multistep droplet processes. The platform is used here for the selective encapsulation of differentially labeled cells within a discrete droplet array.
Collapse
Affiliation(s)
| | - Supriya Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Don L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
28
|
Padmanabhan S, Han JY, Nanayankkara I, Tran K, Ho P, Mesfin N, White I, DeVoe DL. Enhanced sample filling and discretization in thermoplastic 2D microwell arrays using asymmetric contact angles. BIOMICROFLUIDICS 2020; 14:014113. [PMID: 32095199 PMCID: PMC7028432 DOI: 10.1063/1.5126938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Sample filling and discretization within thermoplastic 2D microwell arrays is investigated toward the development of low cost disposable microfluidics for passive sample discretization. By using a high level of contact angle asymmetry between the filling channel and microwell surfaces, a significant increase in the range of well geometries that can be successfully filled is revealed. The performance of various array designs is characterized numerically and experimentally to assess the impact of contact angle asymmetry and device geometry on sample filling and discretization, resulting in guidelines to ensure robust microwell filling and sample isolation over a wide range of well dimensions. Using the developed design rules, reliable and bubble-free sample filling and discretization is achieved in designs with critical dimensions ranging from 20 μm to 800 μm. The resulting devices are demonstrated for discretized nucleic acid amplification by performing loop-mediated isothermal amplification for the detection of the mecA gene associated with methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- S. Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - J. Y. Han
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. Nanayankkara
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - K. Tran
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - P. Ho
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - N. Mesfin
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. White
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - D. L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
29
|
Echelmeier A, Kim D, Cruz Villarreal J, Coe J, Quintana S, Brehm G, Egatz-Gomez A, Nazari R, Sierra RG, Koglin JE, Batyuk A, Hunter MS, Boutet S, Zatsepin N, Kirian RA, Grant TD, Fromme P, Ros A. 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J Appl Crystallogr 2019; 52:997-1008. [PMID: 31636518 PMCID: PMC6782075 DOI: 10.1107/s1600576719010343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
The role of surface wetting properties and their impact on the performance of 3D printed microfluidic droplet generation devices for serial femtosecond crystallography (SFX) are reported. SFX is a novel crystallography method enabling structure determination of proteins at room temperature with atomic resolution using X-ray free-electron lasers (XFELs). In SFX, protein crystals in their mother liquor are delivered and intersected with a pulsed X-ray beam using a liquid jet injector. Owing to the pulsed nature of the X-ray beam, liquid jets tend to waste the vast majority of injected crystals, which this work aims to overcome with the delivery of aqueous protein crystal suspension droplets segmented by an oil phase. For this purpose, 3D printed droplet generators that can be easily customized for a variety of XFEL measurements have been developed. The surface properties, in particular the wetting properties of the resist materials compatible with the employed two-photon printing technology, have so far not been characterized extensively, but are crucial for stable droplet generation. This work investigates experimentally the effectiveness and the long-term stability of three different surface treatments on photoresist films and glass as models for our 3D printed droplet generator and the fused silica capillaries employed in the other fluidic components of an SFX experiment. Finally, the droplet generation performance of an assembly consisting of the 3D printed device and fused silica capillaries is examined. Stable and reproducible droplet generation was achieved with a fluorinated surface coating which also allowed for robust downstream droplet delivery. Experimental XFEL diffraction data of crystals formed from the large membrane protein complex photosystem I demonstrate the full compatibility of the new injection method with very fragile membrane protein crystals and show that successful droplet generation of crystal-laden aqueous droplets intersected by an oil phase correlates with increased crystal hit rates.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jesse Coe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sebastian Quintana
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Gerrit Brehm
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jason E. Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Richard A. Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Thomas D. Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
30
|
Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. MICROMACHINES 2019; 10:mi10060412. [PMID: 31226819 PMCID: PMC6631694 DOI: 10.3390/mi10060412] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology.
Collapse
|
31
|
Li Y, Xuan J, Hu R, Zhang P, Lou X, Yang Y. Microfluidic triple-gradient generator for efficient screening of chemical space. Talanta 2019; 204:569-575. [PMID: 31357335 DOI: 10.1016/j.talanta.2019.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Generation of a combinatorial gradient for multiple chemicals is essential for studies of biochemical stimuli, chemoattraction, protein crystallization and others. While currently available platforms require complex design/settings to obtain a double-gradient chemical matrix, we herein report for the first time a simple triple-gradient matrix (TGM) device for efficient screening of chemical space. The TGM device is composed of two glass slides and works following the concept of SlipChip. The device utilizes XYZ space to distribute three chemicals and establishes a chemical gradient matrix within 5 min. The established matrix contains 24 or 104 screening conditions depending on the device used, which covers a concentration range of [0.117-1, 0.117-1 and 0.686-1] and [0.0830-1, 0.0830-1, 0.686-1] respectively for the three chemicals. With the triple gradients built simultaneously, this TGM device provides order-of-magnitude improvement in screening efficiency over existing single- or double-gradient generators. As a proof of concept, we applied the device to screen the crystallization conditions for two model proteins of lysozyme and trypsin and confirmed the crystal structures using X-ray diffraction. Furthermore, we successfully obtained the crystallization condition of adhesin competence repressor, a protein that senses the alterations in intracellular zinc concentrations. We expect the TGM system to be widely used as an analytical platform for material synthesis and chemical screening beyond for protein crystallization.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Jie Xuan
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT 84602, USA
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pengchao Zhang
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xiaohua Lou
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
32
|
Tona RM, McDonald TAO, Akhavein N, Larkin JD, Lai D. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction. LAB ON A CHIP 2019; 19:2127-2137. [PMID: 31114833 DOI: 10.1039/c9lc00204a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel method for crystallization utilizing solvent/antisolvent extraction in microfluidic droplet liquid reactors has been developed for rapid and low-cost screening of crystal polymorphism (i.e. molecular crystallographic arrangement or internal structure) and habit (i.e. crystallographic shape or external structure). The method involves a ternary solvent system consisting of a dispersed phase of two miscible fluids, one in which the active pharmaceutical ingredient (API) is soluble (solvent) and one in which the API is insoluble (antisolvent). The solvent/antisolvent dispersed phase is immiscible with a third continuous phase. Crystallization of an API, GSK1, was controlled within droplets by altering the rate of solvent extraction from droplets into the continuous phase, thereby decreasing API solubility. Crystal size, habit, and population per droplet were directly impacted by the solvent's rate of extraction. Single crystals were grown in individual droplets by slow extraction of solvent into the surrounding continuous phase, which occurs when crystal growth gradually reduces API concentration such that it is maintained within the metastable zone throughout extraction. Rapid extraction of solvent from droplets results in API concentration significantly exceeding its metastable limit, producing a greater number of crystal nuclei compared to slow extraction conditions. When holding constant solubilized API mass per droplet, crystal sizes were larger for slow extraction rates (l = 96.3, w = 16.6 μm) compared to fast extraction rates (l = 48.8, w = 9.5 μm) as a result of crystal growth occurring on fewer crystal nuclei per droplet. Crystal habit can be controlled by adjusting the solvent extraction rate and consequently the saturation, where minimal saturation resulted in a rhombohedral habit and comparatively higher saturation resulted in an acicular habit with a higher aspect ratio. Antisolvents were tested using two hydrophobic APIs demonstrating the method's capability for rapidly identifying favorable crystal morphologies for downstream manufacturability using miniscule amounts of API.
Collapse
Affiliation(s)
- Robert M Tona
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | |
Collapse
|
33
|
Candoni N, Grossier R, Lagaize M, Veesler S. Advances in the Use of Microfluidics to Study Crystallization Fundamentals. Annu Rev Chem Biomol Eng 2019; 10:59-83. [PMID: 31018097 DOI: 10.1146/annurev-chembioeng-060718-030312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review compares droplet-based microfluidic systems used to study crystallization fundamentals in chemistry and biology. An original high-throughput droplet-based microfluidic platform is presented. It uses nanoliter droplets, generates a chemical library, and directly solubilizes powder, thus economizing both material and time. It is compatible with all solvents without the need for surfactant. Its flexibility permits phase diagram determination and crystallization studies (screening and optimizing experiments) and makes it easy to use for nonspecialists in microfluidics. Moreover, it allows concentration measurement via ultraviolet spectroscopy and solid characterization via X-ray diffraction analysis.
Collapse
Affiliation(s)
- Nadine Candoni
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Romain Grossier
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Mehdi Lagaize
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Stéphane Veesler
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| |
Collapse
|
34
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Ferreira J, Castro F, Rocha F, Kuhn S. Protein crystallization in a droplet-based microfluidic device: Hydrodynamic analysis and study of the phase behaviour. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Catterton MA, Dunn AF, Pompano RR. User-defined local stimulation of live tissue through a movable microfluidic port. LAB ON A CHIP 2018; 18:2003-2012. [PMID: 29904762 PMCID: PMC6039252 DOI: 10.1039/c8lc00204e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many in vivo tissue responses begin locally, yet most in vitro stimuli are delivered globally. Microfluidics has a unique ability to provide focal stimulation to tissue samples with precise control over fluid location, flow rate, and composition. However, previous devices utilizing fixed ports beneath the tissue required manual alignment of the tissue over the ports, increasing the risk of mechanical damage. Here we present a novel microfluidic device that allows the user to define the location of fluid delivery to a living tissue slice without manipulating the tissue itself. The device utilized a two-component SlipChip design to create a mobile port beneath the tissue slice. A culture chamber perforated by an array of ports housed a tissue slice and was separated by a layer of fluorocarbon oil from a single delivery port, fed by a microfluidic channel in the movable layer below. We derived and validated a physical model, based on interfacial tension and flow resistance, to predict the conditions under which fluid delivery occurred without leakage into the gap between layers. Aqueous solution was delivered reproducibly to samples of tissue and gel, and the width of the delivery region was controlled primarily by convection. Tissue slice viability was not affected by stimulation on the device. As a proof-of-principle, we showed that live slices of lymph node tissue could be sequentially targeted for precise stimulation. In the future this device may serve as a platform to study the effects of fluid flow in tissues and to perform local drug screening.
Collapse
Affiliation(s)
- Megan A Catterton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | | | | |
Collapse
|
38
|
Pradhan TK, Panigrahi PK. Hydrodynamics of Two Interacting Liquid Droplets of Aqueous Solution inside a Microchannel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4626-4633. [PMID: 29561624 DOI: 10.1021/acs.langmuir.8b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We experimentally investigated the effect of a neighboring liquid droplet on fluid convection inside a liquid droplet of aqueous solution present inside a microchannel using the microscale particle image velocimetry technique. There is no physical contact between the two droplets, and the solute concentrations of the two droplets are set at different values. Vapor concentration near the interface of the two droplets is different due to the difference in solute concentration. Water vapor evaporates from the low-concentration droplet having higher vapor pressure and condenses on the high-concentration droplet having lower vapor pressure. Evaporation and condensation induce Rayleigh convection inside the two droplets. Flow pattern shows circulating loops inside both liquid droplets. The circulations at the interacting adjacent interface of the two droplets are opposite to each other. The strength of flow inside the liquid droplets decreases with time due to decrease in the difference of solute concentration between the two droplets. The flow strength inside the two interacting droplets is also a function of separation distance between the droplets. The flow strength inside the droplets decreases with increase in separation distance.
Collapse
Affiliation(s)
- Tapan Kumar Pradhan
- Department of Mechanical Engineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Pradipta Kumar Panigrahi
- Department of Mechanical Engineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| |
Collapse
|
39
|
Bairy S, Gopalan LN, Setty TG, Srinivasachari S, Manjunath L, Kumar JP, Guntupalli SR, Bose S, Nayak V, Ghosh S, Sathyanarayanan N, Caing‐Carlsson R, Wahlgren WY, Friemann R, Ramaswamy S, Neerathilingam M. Automation aided optimization of cloning, expression and purification of enzymes of the bacterial sialic acid catabolic and sialylation pathways enzymes for structural studies. Microb Biotechnol 2018; 11:420-428. [PMID: 29345069 PMCID: PMC5812244 DOI: 10.1111/1751-7915.13041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023] Open
Abstract
The process of obtaining a well-expressing, soluble and correctly folded constructs can be made easier and quicker by automating the optimization of cloning, expression and purification. While there are many semiautomated pipelines available for cloning, expression and purification, there is hardly any pipeline that involves complete automation. Here, we achieve complete automation of all the steps involved in cloning and in vivo expression screening. This is demonstrated using 18 genes involved in sialic acid catabolism and the surface sialylation pathway. Our main objective was to clone these genes into a His-tagged Gateway vector, followed by their small-scale expression optimization in vivo. The constructs that showed best soluble expression were then selected for purification studies and scaled up for crystallization studies. Our technique allowed us to quickly find conditions for producing significant quantities of soluble proteins in Escherichia coli, their large-scale purification and successful crystallization of a number of these proteins. The method can be implemented in other cases where one needs to screen a large number of constructs, clones and expression vectors for successful recombinant production of functional proteins.
Collapse
Affiliation(s)
- Sneha Bairy
- Centre for Cellular and Molecular PlatformsNCBS‐TIFRGKVK CampusBellary RoadBangalore560065KarnatakaIndia
| | - Lakshmi Narayanan Gopalan
- Department of Lipid ScienceCSIR‐Central Food Technology and Research InstituteMysuru570020KarnatakaIndia
| | - Thanuja Gangi Setty
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
- The Institute of TransDisciplinary Health Sciences & Technology (TDU)BengaluruKarnatakaIndia
| | - Sathya Srinivasachari
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
| | - Lavanyaa Manjunath
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia‐576104
| | - Jay Prakash Kumar
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
- The Institute of TransDisciplinary Health Sciences & Technology (TDU)BengaluruKarnatakaIndia
| | - Sai R Guntupalli
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia‐576104
| | - Sucharita Bose
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
| | - Vinod Nayak
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
| | - Swagatha Ghosh
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
| | - Nitish Sathyanarayanan
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
- The Institute of TransDisciplinary Health Sciences & Technology (TDU)BengaluruKarnatakaIndia
| | - Rhawnie Caing‐Carlsson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462GothenburgS‐40530Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462GothenburgS‐40530Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgBox 440S‐40530GothenburgSweden
| | - Rosmarie Friemann
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462GothenburgS‐40530Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgBox 440S‐40530GothenburgSweden
| | - S. Ramaswamy
- Institute for Stem Cell Biology and Regenerative MedicineGKVK CampusBellary RoadBangalore560065KarnatakaIndia
| | - Muniasamy Neerathilingam
- Centre for Cellular and Molecular PlatformsNCBS‐TIFRGKVK CampusBellary RoadBangalore560065KarnatakaIndia
- Department of Lipid ScienceCSIR‐Central Food Technology and Research InstituteMysuru570020KarnatakaIndia
| |
Collapse
|
40
|
Jia Y, Ren Y, Hou L, Liu W, Deng X, Jiang H. Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702188. [PMID: 29044912 DOI: 10.1002/smll.201702188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Advances in microfluidic emulsification have enabled the generation of exquisite multiple-core droplets, which are promising structures to accommodate microreactions. An essential requirement for conducting reactions is the sequential coalescence of the multiple cores encapsulated within these droplets, therefore, mixing the reagents together in a controlled sequence. Here, a microfluidic approach is reported for the conduction of two-step microreactions by electrically fusing three cores inside double-emulsion droplets. Using a microcapillary glass device, monodisperse water-in-oil-in-water droplets are fabricated with three compartmented reagents encapsulated inside. An AC electric field is then applied through a polydimethylsiloxane chip to trigger the sequential mixing of the reagents, where the precise sequence is guaranteed by the discrepancy of the volume or conductivity of the inner cores. A two-step reaction in each droplet is ensured by two times of core coalescence, which totally takes 20-40 s depending on varying conditions. The optimal parameters of the AC signal for the sequential fusion of the inner droplets are identified. Moreover, the capability of this technique is demonstrated by conducting an enzyme-catalyzed reaction used for glucose detection with the double-emulsion droplets. This technique should benefit a wide range of applications that require multistep reactions in micrometer scale.
Collapse
Affiliation(s)
- Yankai Jia
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Weiyu Liu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaokang Deng
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
41
|
Li S, Zeng M, Gaule T, McPherson MJ, Meldrum FC. Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702154. [PMID: 28873281 DOI: 10.1002/smll.201702154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Segmented flow microfluidic devices offer an attractive means of studying crystallization processes. However, while they are widely employed for protein crystallization, there are few examples of their use for sparingly soluble compounds due to problems with rapid device fouling and irreproducibility over longer run-times. This article presents a microfluidic device which overcomes these issues, as this is constructed around a novel design of "picoinjector" that facilitates direct injection into flowing droplets. Exploiting a Venturi junction to reduce the pressure within the droplet, it is shown that passive injection of solution from a side-capillary can be achieved in the absence of an applied electric field. The operation of this device is demonstrated for calcium carbonate, where highly reproducible results are obtained over long run-times at high supersaturations. This compares with conventional devices that use a Y-junction to achieve solution loading, where in-channel precipitation of calcium carbonate occurs even at low supersaturations. This work not only opens the door to the use of microfluidics to study the crystallization of low solubility compounds, but the simple design of a passive picoinjector will find wide utility in areas including multistep reactions and investigation of reaction dynamics.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Muling Zeng
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thembaninkosi Gaule
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
42
|
Padmanabhan S, Misteli T, DeVoe DL. Controlled droplet discretization and manipulation using membrane displacement traps. LAB ON A CHIP 2017; 17:3717-3724. [PMID: 28990023 PMCID: PMC7900922 DOI: 10.1039/c7lc00910k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An innovative platform enabling complex discretization and manipulation of aqueous droplets is described. The system uses simple membrane displacement trap elements to perform multiple functions including droplet discretization, release, metering, capture, and merging. Multi-layer PDMS devices with membrane displacement trap arrays are used to discretize sample into nanoliter scale droplet volumes, and reliably manipulate individual droplets within the arrays. Performance is characterized for varying capillary number flows, membrane actuation pressures, trap and membrane geometries, and trapped droplet volumes, with operational domains established for each platform function. The novel approach to sample digitization and droplet manipulation is demonstrated through discretization of a dilute bacteria sample, metering of individual traps to generate droplets containing single bacteria, and merging of the resulting droplets to pair the selected bacteria within a single droplet.
Collapse
Affiliation(s)
- S Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | | | | |
Collapse
|
43
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
45
|
Liang YR, Zhu LN, Gao J, Zhao HX, Zhu Y, Ye S, Fang Q. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11837-11845. [PMID: 28306245 DOI: 10.1021/acsami.6b15933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
Collapse
Affiliation(s)
- Yi-Ran Liang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Li-Na Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Hong-Xia Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Sheng Ye
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
46
|
Nightingale AM, Evans GWH, Xu P, Kim BJ, Hassan SU, Niu X. Phased peristaltic micropumping for continuous sampling and hardcoded droplet generation. LAB ON A CHIP 2017; 17:1149-1157. [PMID: 28217768 DOI: 10.1039/c6lc01479h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Droplet microfluidics has recently emerged as a new engineering tool for biochemical analysis of small sample volumes. Droplet generation is most commonly achieved by introducing aqueous and oil phases into a T-junction or a flow focusing channel geometry. This method produces droplets that are sensitive to changes in flow conditions and fluid composition. Here, we present an alternative approach using a simple peristaltic micropump to deliver the aqueous and oil phases in antiphase pulses resulting in a robust "chopping"-like method of droplet generation. This method offers controllable droplet dynamics, with droplet volumes solely determined by the pump design, and is insensitive to liquid properties and flow rates. Importantly, sequences of droplets with controlled composition can be hardcoded into the pump, allowing chemical operations such as titrations and dilutions to be easily achieved. The push-pull pump is compact and can continuously collect samples, generating droplets close to the sampling site and with short stabilisation time. We envisage that this robust droplet generation method is highly suited for continuous in situ sampling and chemical measurement, allowing droplet microfluidics to step out of the lab and into field-deployable applications.
Collapse
Affiliation(s)
- Adrian M Nightingale
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK. and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Gareth W H Evans
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK. and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Peixiang Xu
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK.
| | - Byung Jae Kim
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK.
| | - Sammer-Ul Hassan
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK. and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Xize Niu
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK. and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
47
|
Pham N, Radajewski D, Round A, Brennich M, Pernot P, Biscans B, Bonneté F, Teychené S. Coupling High Throughput Microfluidics and Small-Angle X-ray Scattering to Study Protein Crystallization from Solution. Anal Chem 2017; 89:2282-2287. [DOI: 10.1021/acs.analchem.6b03492] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nhat Pham
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France
| | - Dimitri Radajewski
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France
| | - Adam Round
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
- Unit
for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Martha Brennich
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Petra Pernot
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Béatrice Biscans
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France
| | - Françoise Bonneté
- Institut
des Biomolécules Max-Mousseron, UMR 5247, Université d’Avignon, 301
rue Baruch de Spinoza, 84000 Avignon, France
| | - Sébastien Teychené
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
48
|
Abstract
Prompted by methodological advances in measurements with X-ray free electron lasers, it was realized in the last two years that traditional (or conventional) methods for data collection from crystals of macromolecular specimens can be complemented by synchrotron measurements on microcrystals that would individually not suffice for a complete data set. Measuring, processing, and merging many partial data sets of this kind requires new techniques which have since been implemented at several third-generation synchrotron facilities, and are described here. Among these, we particularly focus on the possibility of in situ measurements combined with in meso crystal preparations and data analysis with the XDS package and auxiliary programs.
Collapse
Affiliation(s)
- Kay Diederichs
- Department of Biology, Universität Konstanz, Box 647, D-78457, Konstanz, Germany.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| |
Collapse
|
49
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
50
|
Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat Commun 2016; 7:13068. [PMID: 27708286 PMCID: PMC5059748 DOI: 10.1038/ncomms13068] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023] Open
Abstract
The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. Isolated droplets can be used as micro-reactors, yet it is challenging to operate them functionally in solution and observe chemical exchanges between droplets. Here, Tian et al. use an acoustic trap to assemble water-based micro-droplets into periodic arrays, spontaneously separated from solution media.
Collapse
|