1
|
Senarathne DS, Shahu L, Lu HP. Probing the Epidermal Growth Factor Receptor under Piconewton Mechanical Compressive Force Manipulations. J Phys Chem B 2025. [PMID: 40423669 DOI: 10.1021/acs.jpcb.5c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Studying the relationship among protein structure, dynamics, and function under external compressive forces offers valuable insights. While extensive research has focused on manipulating protein dynamics and ligand-receptor interactions under pulling forces, the exploration of protein conformational changes under compressive forces has been limited. In this study, we investigate the response of unliganded epidermal growth factor receptor (EGFR) monomers, liganded EGF-EGFR monomers, and dimers when exposed to external compressive forces using a home-modified AFM setup with an ultrasoft AFM tip. We observed that both ligand-bound and unbound EGFR proteins can undergo spontaneous tertiary structural rupture under piconewton-level compressive forces, a previously hidden protein behavior that may play a significant role in protein cell signaling. The magnitudes of the threshold compressive forces obtained in our study lie in the range of tens and hundreds of piconewtons (pN), which is accessible within a live biological system. Moreover, we developed a kinetic model to exhibit that only a fraction of the uniaxial compressive force exerted by the AFM tip affects the internal tension that causes a pseudopulling force within the protein before it undergoes the tertiary structural rupture. This calculated fraction ranged from 0.45 to 0.65, depending on the protein type and the approach velocity of the AFM tip. Additionally, we employed molecular dynamics (MD) simulations, particularly Steered MD (SMD) simulations along with Umbrella Sampling (US), to investigate the dynamics of unliganded and liganded EGFR in the presence of external compressive forces. These MD simulation results offer valuable insights into the flexibilities and unfolding behaviors of both liganded and unliganded EGFR proteins when subjected to external compressive forces.
Collapse
Affiliation(s)
- Dedunu S Senarathne
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Lalita Shahu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
2
|
Sun A, Wu Y, Yu L. Quantitative Characterization and Influencing Factors for Electrode-Molecule-Electrode Junction Stability. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28939-28960. [PMID: 40340305 DOI: 10.1021/acsami.4c21560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Molecular electronics has made considerable progress in recent decades. The construction of a stable "electrode-molecule-electrode" junction is critical for the study of molecular electronics, as the stability can promote the exploration of the electrical properties of individual molecules and enable the prolonged observation of physical and chemical phenomena at the single-molecule scale. However, dispersed discussions and conflated concepts hinder our understanding of molecular junction stability. In this review, we systematically discuss the stability of molecular junctions from both thermodynamic and kinetic perspectives, summarize key quantitative parameters and their interrelationships, and provide an overview of the influencing factors at the molecule-electrode interface, as well as the experimental and theoretical analysis methods. We anticipate that this review will contribute to a thorough understanding of the stability of molecular junctions and offer valuable insights for the design of molecular devices based on molecular junctions.
Collapse
Affiliation(s)
- Aoxing Sun
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yiqun Wu
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Lei Yu
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Poudel B, Whiting JJ, Vanegas JM, Rempe SB. Thermal degradation energetics of fentanyl and its analogues: furanyl fentanyl and ortho-fluoro fentanyl. Phys Chem Chem Phys 2025; 27:9631-9636. [PMID: 40245086 DOI: 10.1039/d5cp00024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Fentanyl is a synthetic opioid with higher potency compared to morphine and heroin, making it an essential drug for pain management and also an abused drug. Beyond fentanyl, derivatives, such as o-fluoro fentanyl and furanyl fentanyl, also possess similar potency and present a significant risk of misuse, but without medical utility. A major challenge for law enforcement is detecting fentanyl and its analogues in their degraded forms. While the degradation fragments of fentanyl are well-known, those of its analogues are not as well studied. Here, we investigated the thermal degradation pathways of fentanyl analogues using extensive ab initio molecular dynamics simulations combined with enhanced sampling techniques, including multiple walker metadynamics and umbrella sampling. We calculated the free energy profiles for each bond previously identified as a potential degradation site to map out the thermodynamic driving forces. Additionally, we estimated the forward attempt rate of each bond degradation reaction to gain insights into the kinetics of those degradation processes. Our results show that, despite high similarity in structure, the bond breaking pathways differ for the analogues compared with fentanyl. We also observed that traditional force fields with fixed charges are insufficient for studies of fentanyl and its analogues due to polarizability of the electronic structure. Distribution Statement A. Approved for Public Release. Distribution Unlimited.
Collapse
Affiliation(s)
- Bharat Poudel
- Environmental Systems Biology, Sandia National Laboratories, Albuquerque, NM, USA
| | - Joshua J Whiting
- Biological and Chemical Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - Juan M Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Choi HK, Zhu C. Catch Bonds in Immunology. Annu Rev Immunol 2025; 43:641-666. [PMID: 40085844 DOI: 10.1146/annurev-immunol-082423-035904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Catch bonds are molecular bonds that last longer under force than slip bonds, which become shorter-lived under force. Although catch bonds were initially discovered in studies of leukocyte and bacterial adhesions two decades ago, they have since been found in many other contexts, including platelet binding to blood vessel walls during clotting, structural support within the cell and between cells, force transmission in the cell's machineries for motility and mechanotransduction, viral infection of host cells, and immunoreceptor mechanosensing. Catch bonds are strengthened by increasing force, which induces structural changes in one or both interacting molecules either locally or allosterically to enable additional contacts at their binding interface, thus lengthening bond lifetimes. They can be modeled by the kinetics of a system escaping from the energy well(s) of the bound state(s) over the energy barrier(s) to the free state by traversing along the dissociation path(s) across a hilly energy landscape modulated by force. Catch bond studies are important for understanding the mechanics of biological systems and developing treatment strategies for infectious diseases, immune disorders, cancer, and other ailments.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea;
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Mao X, Liu Y, Qiao C, Sun Y, Zhao Z, Liu J, Zhu L, Zeng H. Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications. Adv Colloid Interface Sci 2025; 338:103398. [PMID: 39823917 DOI: 10.1016/j.cis.2025.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors. The inter-/intra-molecular interactions directly affect the assembly of nano-building blocks, which determines the structure of gels, and the integrity of connected nano-building blocks, influencing the mechanical properties and the performance of gels in specific applications. This review focuses on four biopolymer nanofibers (cellulose, chitin, silk, collagen), commonly used in gel preparations, as representatives for polysaccharides and polypeptides. The covalent and non-covalent interactions between biopolymers and other materials have been categorized and discussed in relation to the resulting gel network structures and properties. Nanomechanical characterization techniques, such as surface forces apparatus (SFA) and atomic force microscopy (AFM), have been employed to precisely quantify the intermolecular interactions between biopolymers and other building blocks. The applications of these gels are classified and correlated to the functions of their building blocks. The inter-/intra-molecular interactions act as "sewing threads", connecting all nano-building blocks to establish suitable network structures and functions. This review aims to provide a comprehensive understanding of the interactions involved in gel preparation and the design principles needed to achieve targeted functional gels.
Collapse
Affiliation(s)
- Xiaohui Mao
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Yujie Liu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, PR China
| | - Liping Zhu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
Li X, Bi L, Zhang S, Xu Q, Xia W, Tao Y, Wu S, Li Y, Le W, Kang W, Li D, Sun B, Liu C. Single-Molecule Insight Into α-Synuclein Fibril Structure and Mechanics Modulated by Chemical Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416721. [PMID: 39951335 PMCID: PMC11984887 DOI: 10.1002/advs.202416721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 04/12/2025]
Abstract
α-Syn fibrils, a key pathological hallmark of Parkinson's disease, is closely associated with disease initiation and progression. Several small molecules are found to bind or dissolve α-syn fibrils, offering potential therapeutic applications. Here, an innovative optical tweezers-based, fluorescence-combined approach is developed to probe the mechanical characteristics of α-syn fibrils at the single-molecule level. When subjected to axial stretching, local deformation within α-syn fibrils appeared at forces above 50 pN. These structural alternations occurred stepwise and are irreversible, suggesting unfolding of individual α-syn molecules or subdomains. Additionally, α-syn fibrils exhibits high heterogeneity in lateral disruption, with rupture force ranging from 50 to 500 pN. The impact of different compounds on the structure and mechanical features of α-syn fibrils is further examined. Notably, epigallocatechin gallate (EGCG) generally attenuates the rupture force of fibrils by wedging into the N-terminal polar groove and induces fibril dissociation. Conversely, copper chlorophyllin A (CCA) attaches to four different sites wrapping around the fibril core, reinforcing the stability of the fibril against rupture forces. The work offers an effective method for characterizing single-fibril properties and bridges compound-induced structural alternations with mechanical response. These insights are valuable for understanding amyloid fibril mechanics and their regulation by small molecules.
Collapse
Affiliation(s)
- Xiang Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shenqing Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Youqi Tao
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Shaojuan Wu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yanan Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Weidong Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu HospitalShanghai201318China
| | - Wenyan Kang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dan Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
- Shanghai Academy of Natural Sciences (SANS)Fudan UniversityShanghai200433China
| |
Collapse
|
7
|
Fang C, Li Y, Wang S, Liang M, Yan C, Liu J, Hong W. Thermoelectric and thermal properties of molecular junctions: mechanisms, characterization methods and applications. Chem Commun (Camb) 2025; 61:4447-4464. [PMID: 40007208 DOI: 10.1039/d4cc06822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The rapid development of artificial intelligence requires tremendous energy consumption. Due to the limitations of cooling and energy recovery systems, effectively lowering power dissipation and utilizing the waste heat of electronic devices remain challenges. Molecular electronics, with its potential for low energy consumption and high-efficiency thermoelectric conversion, offers a feasible solution for future computational devices. Over the past two decades, researchers have made significant progress in the study of thermal and thermoelectric properties of molecular junctions. In this feature article, we first introduced four mechanisms of thermal and thermoelectric transport in molecular junctions guided by quantum theory. We then reviewed the evolution of characterization techniques for assessing the local temperature, thermopower, and thermal conductance of molecular junctions. Subsequently, we introduced the practical applications that have been implemented so far. This review concludes by addressing the principal challenges currently faced in the field and identifying crucial directions for future research.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Yuting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Siwen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Mingchen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Conca DV, Bano F, Graul M, von Wirén J, Scherrer L, Pace H, Sharma H, Svirelis J, Thorsteinsson K, Dahlin A, Bally M. Variant-Specific Interactions at the Plasma Membrane: Heparan Sulfate's Impact on SARS-CoV-2 Binding Kinetics. Anal Chem 2025; 97:4318-4328. [PMID: 39976108 PMCID: PMC11883730 DOI: 10.1021/acs.analchem.4c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
The spread of SARS-CoV-2 led to the emergence of several variants of concern (VOCs). The spike glycoprotein, responsible for engaging the viral receptor, exhibits the highest density of mutations, suggesting an ongoing evolution to optimize viral entry. This study characterizes the bond formed by virion mimics carrying the SARS-CoV-2 spike protein and the plasma membrane of host cells in the early stages of virus entry. Contrary to the traditional analysis of isolated ligand-receptor pairs, we utilized well-defined biomimetic models and biochemical and biophysical techniques to characterize the multivalent interaction of VOCs with the complex cell membrane. We observed an overall increase in the binding affinity for newer VOCs. By progressively reducing the system complexity, we identify heparan sulfate (HS) as a main driver of this variation, with a 10-fold increase in affinity for Omicron BA.1 over that of the original strain. These results demonstrate the essential role of coreceptors, particularly HS, in the modulation of SARS-CoV-2 infection and highlight the importance of multiscale biophysical and biochemical assays that account for membrane complexity to fully characterize and understand the role of molecular components and their synergy in viral attachment and entry.
Collapse
Affiliation(s)
- Dario Valter Conca
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Fouzia Bano
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Małgorzata Graul
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Julius von Wirén
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Lauriane Scherrer
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Hudson Pace
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Himanshu Sharma
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Justas Svirelis
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Konrad Thorsteinsson
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| | - Andreas Dahlin
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Marta Bally
- Department
of Clinical Microbiology, Umeå University, Umeå 901 87, Sweden
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, Umeå 901 87, Sweden
- Umeå
Centre for Microbial Research (UCMR), Umeå
University, Umeå 901 87, Sweden
| |
Collapse
|
9
|
Schlatterer R, Marczynski M, Hermann B, Lieleg O, Balzer BN. Unfolding of von Willebrand Factor Type D Like Domains Promotes Mucin Adhesion. NANO LETTERS 2025; 25:1765-1774. [PMID: 39841791 PMCID: PMC11803705 DOI: 10.1021/acs.nanolett.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive. We study the adhesion behavior of mucin using atomic force microscopy-based single molecule force spectroscopy with covalently attached, lab-purified salivary MUC5B and gastric MUC5AC. We can resolve the structural motifs mediating adhesion on chemically distinct substrates, such as highly oriented pyrolytic graphite and steel. We report on force-induced partial unfolding of the von Willebrand factor type D like domains and deliver their unfolding rates and free energy barriers. These domains serve to dissipate energy during the desorption process of mucins. Partial mucin unfolding might significantly contribute to the stability of a sacrificial mucin layer during shearing processes, enhancing the lubrication potential of mucin solutions.
Collapse
Affiliation(s)
- Rebecca Schlatterer
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Matthias Marczynski
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Center
for Protein Assemblies (CPA) & Munich Institute of Biomedical
Engineering (MIBE), Technical University
of Munich, Ernst-Otto-Fischer-Str.
8, 85748 Garching, Germany
| | - Bianca Hermann
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Oliver Lieleg
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Center
for Protein Assemblies (CPA) & Munich Institute of Biomedical
Engineering (MIBE), Technical University
of Munich, Ernst-Otto-Fischer-Str.
8, 85748 Garching, Germany
| | - Bizan N. Balzer
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster
of Excellence livMatS @ FIT − Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg
Materials Research Center (FMF), University
of Freiburg, Stefan-Meier-Str.
21, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Sundar Rajan V, Levin S, McCauley M, Williams M, Rouzina I, Wilhelmsson L, Westerlund F. Force-induced melting and S-DNA pathways for DNA overstretching exhibit distinct kinetics. Nucleic Acids Res 2025; 53:gkae1183. [PMID: 39657777 PMCID: PMC11724298 DOI: 10.1093/nar/gkae1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
It is widely appreciated that double stranded DNA (dsDNA) is subjected to strong and dynamic mechanical forces in cells. Under increasing tension B-DNA, the most stable double-stranded (ds) form of DNA, undergoes cooperative elongation into a mixture of S-DNA and single stranded DNA (ssDNA). Despite significant effort, the structure, energetics, kinetics and the biological role of S-DNA remains obscure. We here stretch 60 base pair (bp) dsDNA oligonucleotides with a variable number of tricyclic cytosine, tC, modifications using optical tweezers. We observe multiple fast cooperative and reversible two-state transitions between B-DNA and S-DNA. Notably, tC modifications increase the transition force, while reducing the transition extension and free energy due to progressively increasing fraying of the dsDNA ends. We quantify the average number of bps undergoing the B-to-S transition, as well as the free energies and rates. This allows us to reconstruct the B-to-S free energy profiles in absence of force. We conclude that S-DNA is an entirely force-induced state, and that the B-to-S transition is much faster than internal dsDNA melting. We hypothesize that S-DNA may have a role as a transient intermediate in, for example, molecular motor-induced local dsDNA strand separation.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sune Levin
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115,, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115,, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Abraham Punnoose J, Hayden A, Kam CS, Halvorsen K. A guide to building a low-cost centrifuge force microscope module for single-molecule force experiments. Nat Protoc 2024:10.1038/s41596-024-01102-y. [PMID: 39739107 DOI: 10.1038/s41596-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
The ability to apply controlled forces to individual molecules or molecular complexes and observe their behaviors has led to many important discoveries in biology. Instruments capable of probing single-molecule forces typically cost >US$100,000, limiting the use of these techniques. The centrifuge force microscope (CFM) is a low-cost and easy-to-use instrument that enables high-throughput single-molecule studies. By combining the imaging capabilities of a microscope with the force application of a centrifuge, the CFM enables the simultaneous probing of hundreds to thousands of single-molecule interactions using tethered particles. Here we present a comprehensive set of instructions for building a CFM module that fits within a commercial benchtop centrifuge. The CFM module uses a 3D-printed housing, relies on off-the-shelf optical and electrical components, and can be built for less than US$1,000 in about 1 day. We also provide detailed instructions for setting up and running an experiment to measure force-dependent shearing of a short DNA duplex, as well as the software for CFM control and data analysis. The protocol is suitable for users with basic experience in analytical biochemistry and biophysics. The protocol enables the use of CFM-based experiments and may facilitate access to the single-molecule research field.
Collapse
Affiliation(s)
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Chai S Kam
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
12
|
DelloStritto M, Micheletti C, Klein ML. Molecular dynamics studies of knotted polymers. J Chem Phys 2024; 161:244904. [PMID: 39714010 DOI: 10.1063/5.0237773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Molecular dynamics calculations have been used to explore the influence of knots on the strength of a polymer strand. In particular, the mechanism of breaking 31, 41, 51, and 52 prime knots has been studied using two very different models to represent the polymer: (1) the generic coarse-grained (CG) bead model of polymer physics and (2) a state-of-the-art machine learned atomistic neural network (NN) potential for polyethylene derived from electronic structure calculations. While there is a broad overall agreement between the results on the influence of the pulling rate on chain rupture based on the CG and atomistic NN models, for the simple 31 and 41 knots, significant differences are found for the more complex 51 and 52 knots. Notably, in the latter case, the NN model more frequently predicts that these knots can break not only at the crossings at the entrance/exit but also at one of the central crossing points. The relative smoothness of the CG potential energy surface also leads to stabilization of tighter knots compared to the more realistic NN model.
Collapse
Affiliation(s)
- Mark DelloStritto
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
13
|
Hertel R, Raisch M, Walter M, Reiter G, Sommer M. Mechanistically Different Mechanochromophores Enable Calibration and Validation of Molecular Forces in Glassy Polymers and Elastomeric Networks. Angew Chem Int Ed Engl 2024; 63:e202409369. [PMID: 39136230 PMCID: PMC11586691 DOI: 10.1002/anie.202409369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 10/18/2024]
Abstract
Sterically distorted donor-acceptor π-systems, termed DA springs, can be progressively planarized under mechanical load causing a bathochromic shift of the photoluminescence (PL) spectrum. By combining theory and experiment, we here use a simple linear force calibration for two different conformational mechanochromophores to determine molecular forces in polymers from the mechanochromic shift in PL wavelength during multiple uniaxial tensile tests. Two systems are used, i) a highly entangled linear glassy polyphenylene and ii) a covalent elastomeric polydimethylsiloxane network. The mean forces estimated by this method are validated using known threshold forces for the mechanochemical ring-opening reactions of two different spiropyran force probes. The agreement between both approaches underlines that these DA springs provide the unique opportunity for the online monitoring of local molecular forces present in diverse polymer matrices.
Collapse
Affiliation(s)
- Raphael Hertel
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| | - Maximilian Raisch
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| | - Michael Walter
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesAlbert-Ludwig-University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Günter Reiter
- Institute of PhysicsAlbert-Ludwig-University of FreiburgHermann-Herder-Str. 379104FreiburgGermany
| | - Michael Sommer
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| |
Collapse
|
14
|
Hou D, Mu Q, Chen W, Cao W, Zhang XF. Nano-Biomechanical Investigation of Phosphatidylserine-Mediated Ebola Viral Attachment via Human Gas6 and Axl. Viruses 2024; 16:1700. [PMID: 39599815 PMCID: PMC11599018 DOI: 10.3390/v16111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors such as Axl. In this study, we investigate the interactions among phosphatidylserine on the Ebola viral-like particle (VLP) membrane, human Gas6, and human Axl using atomic force microscope-based single molecule force spectroscopy to compare their binding strength and affinity from a biomechanical perspective. The impact of calcium ions on their interactions is also studied and quantified to provide more details on the calcium-dependent phosphatidylserine-Gas6 binding mechanism. Our results indicate that, in the presence of calcium ions, the binding strengths of VLP-Gas6 and VLP-Gas6-Axl increase but are still weaker than that of Gas6-Axl, and the binding affinity of VLP-Gas6 and VLP-Gas6-Axl is largely improved. The binding strength and affinity of Gas6-Axl basically remain the same, indicating no impact in the presence of calcium ions. Together, our study suggests that, under physiological conditions with calcium present, the Ebola virus can utilize its membrane phosphatidylserine to dock on cell surface via Gas6-Axl bound complex.
Collapse
Affiliation(s)
- Decheng Hou
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Qian Mu
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Wenpeng Cao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Xiaohui Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| |
Collapse
|
15
|
Bano F, Soria-Martinez L, van Bodegraven D, Thorsteinsson K, Brown AM, Fels I, Snyder NL, Bally M, Schelhaas M. Site-specific sulfations regulate the physicochemical properties of papillomavirus-heparan sulfate interactions for entry. SCIENCE ADVANCES 2024; 10:eado8540. [PMID: 39365863 PMCID: PMC11451526 DOI: 10.1126/sciadv.ado8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Certain human papillomaviruses (HPVs) are etiological agents for several anogenital and oropharyngeal cancers. During initial infection, HPV16, the most prevalent cancer-causing type, specifically interacts with heparan sulfates (HSs), not only enabling initial cell attachment but also triggering a crucial conformational change in viral capsids termed structural activation. It is unknown, whether these HPV16-HS interactions depend on HS sulfation patterns. Thus, we probed potential roles of HS sulfations using cell-based functional and physicochemical assays, including single-molecule force spectroscopy. Our results demonstrate that N-sulfation of HS is crucial for virus binding and structural activation by providing high-affinity sites, and that additional 6O-sulfation is required to mechanically stabilize the interaction, whereas 2O-sulfation and 3O-sulfation are mostly dispensable. Together, our findings identify the contribution of HS sulfation patterns to HPV16 binding and structural activation and reveal how distinct sulfation groups of HS synergize to facilitate HPV16 entry, which, in turn, likely influences the tropism of HPVs.
Collapse
Affiliation(s)
- Fouzia Bano
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Laura Soria-Martinez
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| | - Dominik van Bodegraven
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| | - Konrad Thorsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anna M. Brown
- Department of Chemistry, Davidson College, Davidson, NC, USA
| | - Ines Fels
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | | | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| |
Collapse
|
16
|
Carlucci LA, Johnson KC, Thomas WE. FimH-mannose noncovalent bonds survive minutes to hours under force. Biophys J 2024; 123:3038-3050. [PMID: 38961621 PMCID: PMC11427783 DOI: 10.1016/j.bpj.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
The adhesin FimH is expressed by commensal Escherichia coli and is implicated in urinary tract infections, where it mediates adhesion to mannosylated glycoproteins on urinary and intestinal epithelial cells in the presence of a high-shear fluid environment. The FimH-mannose bond exhibits catch behavior in which bond lifetime increases with force, because tensile force induces a transition in FimH from a compact native to an elongated activated conformation with a higher affinity to mannose. However, the lifetime of the activated state of FimH has not been measured under force. Here we apply multiplexed magnetic tweezers to apply a preload force to activate FimH bonds with yeast mannan, then we measure the lifetime of these activated bonds under a wide range of forces above and below the preload force. A higher fraction of FimH-mannan bonds were activated above than below a critical preload force, confirming the FimH catch bond behavior. Once activated, FimH detached from mannose with multi-state kinetics, suggesting the existence of two bound states with a 20-fold difference in dissociation rates. The average lifetime of activated FimH-mannose bonds was 1000 to 10,000 s at forces of 30-70 pN. Structural explanations of the two bound states and the high force resistance provide insights into structural mechanisms for long-lived, force-resistant biomolecular interactions.
Collapse
Affiliation(s)
- Laura A Carlucci
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Keith C Johnson
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
17
|
Xia Y, Wang G, He C, Chen H. A Strong Supramolecular Mechanophore with Controlled Mechanical Strength. Angew Chem Int Ed Engl 2024; 63:e202406738. [PMID: 38869842 DOI: 10.1002/anie.202406738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
Supramolecular mechanophores typically exhibit much lower mechanical strengths than covalent counterparts, with strengths usually around 100 pN, which is significantly lower than the nN-scale strength of covalent bonds. Inspired by the slow dissociation kinetics of the cucurbit[7]uril (CB[7])-hexanoate-isoquinoline (HIQ) complex, we discovered that charge-dipole repulsion can be utilized to create strong supramolecular mechanophores. When activated at its -COO- state, the CB[7]-HIQ complex exhibits a high mechanical strength of ~700 pN, comparable to weak covalent bonds such as Au-S bonds or thiol-maleimide adducts. The strength of the CB[7]-HIQ complex can also be tuned with pH in a gradual manner, with a minimum value of ~150 pN at its -COOH state, similar to an ordinary supramolecular conjugate. This research may pave the way for the development of supramolecular architectures that combine the advantages of covalent and supramolecular systems.
Collapse
Affiliation(s)
- Yu Xia
- School of Chemistry and Chemical Engineering, The Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Guannan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, 100029, P. R. China
| | - Hao Chen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
18
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, Johns BA, West JL, Hoffman BD. Detection of fluorescent protein mechanical switching in cellulo. CELL REPORTS METHODS 2024; 4:100815. [PMID: 38986612 PMCID: PMC11294842 DOI: 10.1016/j.crmeth.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.
Collapse
Affiliation(s)
- T Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Kasie L Collins
- Department of Chemistry, Duke University, Durham NC 27708, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Benjamin A Johns
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA.
| |
Collapse
|
19
|
Li P, Li H. A Handle-Free, All-Protein-Based Optical Tweezers Method to Probe Protein Folding-Unfolding Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13721-13727. [PMID: 38899455 DOI: 10.1021/acs.langmuir.4c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.
Collapse
Affiliation(s)
- Peiyun Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| |
Collapse
|
20
|
He K, Kou G, Cai H, Tian G, Xu Z, Yang Z. Effects of Contact Surface Shape on Dynamic Lifetime and Strength of Molecular Bond Clusters under Displacement- and Force-Controlled Loading Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10947-10956. [PMID: 38752855 DOI: 10.1021/acs.langmuir.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many experimental and theoretical studies have shown that the mechanical properties of cells and the extracellular matrix can significantly affect the lifetime and strength of the adhesion clusters of molecular bonds. However, there are few studies on how the shape of the contact surface affects the lifetime and strength of the adhesion clusters of molecular bonds, especially theoretical studies in this area. An idealized model of focal adhesion is adopted, in which two rigid media are bonded together by an array of receptor-ligand bonds modeled as Hookean springs on a complex surface topography, which is described by three parameters: the surface shape factor β, the length of a single identical surface shape L, and the amplitude of surface shapes w. In this study, systematic Monte Carlo simulations of this model are conducted to study the lifetime of the molecular bond cluster under linear incremental force loading and the strength of the molecular bond cluster under linear incremental displacement loading. We find that both small surface shape amplitudes and large surface shape factors will increase the lifetime and strength of the adhesion cluster, whereas the length of a single surface shape causes oscillations in the lifetime and strength of the cluster, and this oscillation amplitude is affected by the surface shape amplitude and the factor. At the same time, we also find that the pretension in the cluster will play a dominant role in the adhesion strength under large amplitudes and small factors of surface shapes. The physical mechanisms behind these phenomena are that the changes of the length of a single surface shape, the amplitude of surface shapes, and the surface shape factor cause the changes of stress concentration in the adhesion region, bond affinity, and the number of similar affinity bonds.
Collapse
Affiliation(s)
- Kuncheng He
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Guangjie Kou
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Hui Cai
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Gan Tian
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhigao Xu
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhengwei Yang
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| |
Collapse
|
21
|
Pokhrel P, Karna D, Jonchhe S, Mao H. Catalytic Relaxation of Kinetically Trapped Intermediates by DNA Chaperones. J Am Chem Soc 2024; 146:13046-13054. [PMID: 38710657 PMCID: PMC11135164 DOI: 10.1021/jacs.3c14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Common in biomacromolecules, kinetically trapped misfolded intermediates are often detrimental to the structures, properties, or functions of proteins or nucleic acids. Nature employs chaperone proteins but not nucleic acids to escort intermediates to correct conformations. Herein, we constructed a Jablonski-like diagram of a mechanochemical cycle in which individual DNA hairpins were mechanically unfolded to high-energy states, misfolded into kinetically trapped states, and catalytically relaxed back to ground-state hairpins by a DNA chaperone. The capacity of catalytic relaxation was demonstrated in a 1D DNA hairpin array mimicking nanoassembled materials. At ≥1 μM, the diffusive (or self-walking) DNA chaperone converted the entire array of misfolded intermediates to correct conformation in less than 15 s, which is essential to rapidly prepare homogeneous nanoassemblies. Such an efficient self-walking amplification increases the signal-to-noise ratio, facilitating catalytic relaxation to recognize a 1 fM DNA chaperone in 10 min, a detection limit comparable to the best biosensing strategies.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
- Advanced Materials and Liquid Crystals Institute, Kent State University, Kent, Ohio 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
22
|
Singh N, Ghatak A. Enhancement of the Rate of Surface Reactions by the Elastocapillary Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8771-8780. [PMID: 38621254 DOI: 10.1021/acs.langmuir.3c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We examined the effect of deformability of a solid substrate on the kinetics of a surface reaction that occurs between chemical species present in it and a liquid dispensed on it. In particular, we have dispensed aqueous solutions of gold and silver salt as sessile drops or as a liquid pool on a cross-linked film of poly(dimethylsiloxane) (PDMS). The PDMS surface contains organosilane (SiH), which reduces the salt, producing metallic nanoparticles at the solid-liquid interface. These experiments reveal that, for a sufficiently soft solid, the reaction proceeds about three times faster in the drop mode than in the pool mode. The reaction conditions in both cases remain exactly identical except that, for the drop, the vertical component of the liquid surface tension deforms the solid substrate at the three-phase contact line. We have estimated the solid-liquid and solid-air interfacial energy, which along with the surface energy of the liquid gives an estimate of excess free energy. This energy is found to be different for the drop and pool modes. By considering that this excess free energy decreases the activation energy barrier for the reaction, we have shown that the reaction rate constant in the drop mode should indeed exceed that in the pool mode by about three times.
Collapse
Affiliation(s)
- Nitish Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Animangsu Ghatak
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
23
|
Ding S, Wang W, Germann A, Wei Y, Du T, Meisner J, Zhu R, Liu Y. Bicyclo[2.2.0]hexene: A Multicyclic Mechanophore with Reactivity Diversified by External Forces. J Am Chem Soc 2024; 146:6104-6113. [PMID: 38377579 DOI: 10.1021/jacs.3c13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Polymer mechanochemistry has been established as an enabling tool in accessing chemical reactivity and reaction pathways that are distinctive from their thermal counterparts. However, eliciting diversified reaction pathways by activating different constituent chemical bonds from the same mechanophore structure remains challenging. Here, we report the design of a bicyclo[2.2.0]hexene (BCH) mechanophore to leverage its structural simplicity and relatively low molecular symmetry to demonstrate this idea of multimodal activation. Upon changing the attachment points of pendant polymer chains, three different C-C bonds in bicyclo[2.2.0]hexene are specifically activated via externally applied force by sonication. Experimental characterization confirms that in different scenarios of polymer attachment, the regioisomers of BCH undergo different activation reactions, entailing retro-[2+2] cycloreversion, 1,3-allylic migration, and retro-4π ring-opening reactions, respectively. Control experiments with small-molecule analogues reveal that the observed diversified reactivity of BCH regioisomers is possible only with mechanical force. Theoretical studies further elucidate that the differences in the positions of substitution between regioisomers have a minimal impact on the potential energy surface of the parent BCH scaffold. The mechanochemical selectivity between different C-C bonds in each constitutional isomer is a result of selective and effective coupling of force to the aligned C-C bond in each case.
Collapse
Affiliation(s)
- Shihao Ding
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Anne Germann
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Yiting Wei
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jan Meisner
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
24
|
Botti V, De Bei O, Marchetti M, Campanini B, Cannistraro S, Bettati S, Bizzarri AR. Nanoscale dynamical investigation of the hemoglobin complex with the bacterial protein IsdB: is their interaction stabilized by catch bonds? NANOSCALE 2024; 16:4308-4316. [PMID: 38353599 DOI: 10.1039/d3nr05241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Iron-regulated surface determinant B (IsdB) is a surface protein of Staphylococcus aureus that plays essential roles in host cell invasion by mediating both bacterial adhesion and hemic iron acquisition. Single-molecule experiments have recently revealed that the binding of IsdB to vitronectin and integrins is dramatically strengthened under mechanical stress conditions, promoting staphylococcal adhesion. Here we conducted atomic force spectroscopy (AFS) measurements of the interaction between IsdB and hemoglobin (Hb), in both its oxidized (metHb) and reduced forms (HbCO). While the former represents the natural substrate for IsdB, the latter is resistant to heme extraction. For the unbinding between IsdB and HbCO, we obtained a linear trend in the Bell-Evans plot, indicative of a weakening of the interaction upon mechanical stress. For the unbinding between IsdB and metHb, we found similar behavior at low loading rates. Remarkably, a non-linear trend of the complex interaction force was detected at higher force-pulling rates. Such behavior may provide some cues to the ability of IsdB to form stress-dependent bonds also with Hb, possibly enabling a more efficient heme transfer through stabilization of the transient (in vivo) IsdB-Hb complex.
Collapse
Affiliation(s)
- Valentina Botti
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
- Institute of Biophysics, National Research Council, via G. Moruzzi, 56124, Pisa, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
25
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
26
|
Göz M, Steinecker SM, Pohl GM, Walhorn V, Milting H, Anselmetti D. Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Sci Rep 2024; 14:2555. [PMID: 38297017 PMCID: PMC10830561 DOI: 10.1038/s41598-024-52725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The cardiac muscle consists of individual cardiomyocytes that are mechanically linked by desmosomes. Desmosomal adhesion is mediated by densely packed and organized cadherins which, in presence of Ca2+, stretch out their extracellular domains (EC) and dimerize with opposing binding partners by exchanging an N-terminal tryptophan. The strand-swap binding motif of cardiac cadherins like desmocollin 2 (Dsc2) (and desmoglein2 alike) is highly specific but of low affinity with average bond lifetimes in the range of approximately 0.3 s. Notably, despite this comparatively weak interaction, desmosomes mediate a stable, tensile-resistant bond. In addition, force mediated dissociation of strand-swap dimers exhibit a reduced bond lifetime as external forces increase (slip bond). Using atomic force microscopy based single molecule force spectroscopy (AFM-SMFS), we demonstrate that Dsc2 has two further binding modes that, in addition to strand-swap dimers, most likely play a significant role in the integrity of the cardiac muscle. At short interaction times, the Dsc2 monomers associate only loosely, as can be seen from short-lived force-independent bonds. These ideal bonds are a precursor state and probably stabilize the formation of the self-inhibiting strand-swap dimer. The addition of tryptophan in the measurement buffer acts as a competitive inhibitor, preventing the N-terminal strand exchange. Here, Dsc2 dimerizes as X-dimer which clearly shows a tri-phasic slip-catch-slip type of dissociation. Within the force-mediated transition (catch) regime, Dsc2 dimers switch between a rather brittle low force and a strengthened high force adhesion state. As a result, we can assume that desmosomal adhesion is mediated not only by strand-swap dimers (slip) but also by their precursor states (ideal bond) and force-activated X-dimers (catch bond).
Collapse
Affiliation(s)
- Manuel Göz
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany
| | - Sylvia M Steinecker
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany
| | - Greta M Pohl
- Erich & Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstraße 11, Bad Oeynhausen, Germany
| | - Volker Walhorn
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany.
| | - Hendrik Milting
- Erich & Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstraße 11, Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
27
|
Prüßner T, Meinderink D, Zhu S, Orive AG, Kielar C, Huck M, Steinrück HG, Keller A, Grundmeier G. Molecular Adhesion of a Pilus-Derived Peptide Involved in Pseudomonas aeruginosa Biofilm Formation on Non-Polar ZnO-Surfaces. Chemistry 2024; 30:e202302464. [PMID: 37909474 DOI: 10.1002/chem.202302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.
Collapse
Affiliation(s)
- Tim Prüßner
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Dennis Meinderink
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Alejandro G Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofisico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Charlotte Kielar
- Insitute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marten Huck
- Chemistry Department, Paderborn University, 33098, Paderborn, Germany
| | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
28
|
Kim S, Min D. Robust magnetic tweezers for membrane protein folding studies. Methods Enzymol 2024; 694:285-301. [PMID: 38492955 DOI: 10.1016/bs.mie.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Single-molecule magnetic tweezers have recently been adapted for monitoring the interactions between transmembrane helices of membrane proteins within lipid bilayers. In this chapter, we describe the procedures of conducting studies on membrane protein folding using a robust magnetic tweezer method. This tweezer method is capable of observing thousands of (un)folding transitions over extended periods of several to tens of hours. Using this approach, we can dissect the folding pathways of membrane proteins, determine their folding time scales, and map the folding energy landscapes, with a higher statistical reliability. Our robust magnetic tweezers also allow for estimating the folding speed limit of helical membrane proteins, which serves as a link between the kinetics and barrier energies.
Collapse
Affiliation(s)
- Seoyoon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
29
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, West JL, Hoffman BD. Detection of Fluorescent Protein Mechanical Switching in Cellulo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575065. [PMID: 38260589 PMCID: PMC10802509 DOI: 10.1101/2024.01.10.575065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, the mechanisms by which forces affect protein function inside cells remain unclear. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated if force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo in a synthetic actin-crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cellular force generation as well as force-sensitive bond dynamics of the biosensor. Together, this work describes a new framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells. MOTIVATION The ability of cells to sense mechanical forces is critical in developmental, physiological, and pathological processes. Cells sense mechanical cues via force-induced alterations in protein structure and function, but elucidation of the molecular mechanisms is hindered by the lack of approaches to directly probe the effect of forces on protein structure and function inside cells. Motivated by in vitro observations of reversible fluorescent protein mechanical switching, we developed an approach for detecting fluorescent protein mechanical switching in cellulo . This enables the visualization of force-sensitive protein function inside living cells.
Collapse
|
30
|
Schellnhuber K, Blass J, Hübner H, Gallei M, Bennewitz R. Single-Polymer Friction Force Microscopy of dsDNA Interacting with a Nanoporous Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:968-974. [PMID: 38117751 PMCID: PMC10786032 DOI: 10.1021/acs.langmuir.3c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.
Collapse
Affiliation(s)
- Kordula Schellnhuber
- INM—Leibniz
Institute for New Materials, 66123 Saarbrücken, Germany
- Department
of Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Johanna Blass
- INM—Leibniz
Institute for New Materials, 66123 Saarbrücken, Germany
| | - Hanna Hübner
- Polymer
Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer
Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Saarene,
Saarland Center of Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Roland Bennewitz
- INM—Leibniz
Institute for New Materials, 66123 Saarbrücken, Germany
- Department
of Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
31
|
Wong SY, Soman A, Korolev N, Surya W, Chen Q, Shum W, van Noort J, Nordenskiöld L. The shelterin component TRF2 mediates columnar stacking of human telomeric chromatin. EMBO J 2024; 43:87-111. [PMID: 38177309 PMCID: PMC10883271 DOI: 10.1038/s44318-023-00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.
Collapse
Affiliation(s)
- Sook Yi Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Emerging Infectious Diseases, Duke-NUS, Medical School, Singapore, 169857, Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- M Diagnostics PTE. LTD, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Wayne Shum
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - John van Noort
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Huygens-Kamerlingh Ones Laboratory, Leiden University, Leiden, 2333 AL, The Netherlands
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
32
|
Buche MR, Rimsza JM. Modeling single-molecule stretching experiments using statistical thermodynamics. Phys Rev E 2023; 108:064503. [PMID: 38243517 DOI: 10.1103/physreve.108.064503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations describing these experiments are valuable, and these relations can be obtained through the statistical thermodynamics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be included in the idealized model system. Though the model for the stretched molecule might be exactly solvable, including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness, the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing. Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate approximations for the full model system that includes both the molecule and the device. The asymptotic theories are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics calculations of a single polyethylene chain.
Collapse
Affiliation(s)
- Michael R Buche
- Computational Solid Mechanics and Structural Dynamics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jessica M Rimsza
- Geochemistry, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
33
|
Dyer D, Monti OLA. Bond Breaking Kinetics in Mechanically Controlled Break Junction Experiments: A Bayesian Approach. J Phys Chem Lett 2023:10935-10942. [PMID: 38035375 DOI: 10.1021/acs.jpclett.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Break junction experiments allow investigating electronic and spintronic properties at the atomic and molecular scale. These experiments generate by their very nature broad and asymmetric distributions of the observables of interest, and thus, a full statistical interpretation is warranted. We show here that understanding the complete lifetime distribution is essential for obtaining reliable estimates. We demonstrate this for Au atomic point contacts by adopting Bayesian reasoning to make maximal use of all measured data to reliably estimate the distance to the transition state, x‡, the associated free energy barrier, ΔG‡, and the curvature, v, of the free energy surface. Obtaining robust estimates requires less experimental effort than with previous methods and fewer assumptions and thus leads to a significant reassessment of the kinetic parameters in this paradigmatic atomic-scale structure. Our proposed Bayesian reasoning offers a powerful and general approach when interpreting inherently stochastic data that yield broad, asymmetric distributions for which analytical models of the distribution may be developed.
Collapse
Affiliation(s)
- Dylan Dyer
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Oliver L A Monti
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Physics, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
34
|
Yin B, Tang P, Wang L, Xie W, Chen X, Wang Y, Weng T, Tian R, Zhou S, Wang Z, Wang D. An aptamer-assisted nanopore strategy with a salt gradient for direct protein sensing. J Mater Chem B 2023; 11:11064-11072. [PMID: 37966856 DOI: 10.1039/d3tb01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Peng Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Xiaohan Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Rong Tian
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Shuo Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| |
Collapse
|
35
|
Poudel B, Monteith HL, Sammon JP, Whiting JJ, Moorman MW, Vanegas JM, Rempe SB. Energetics of high temperature degradation of fentanyl into primary and secondary products. Phys Chem Chem Phys 2023; 25:30880-30886. [PMID: 37947771 DOI: 10.1039/d3cp03068g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Fentanyl is a synthetic opioid used for managing chronic pain. Due to its higher potency (50-100×) than morphine, fentanyl is also an abused drug. A sensor that could detect illicit fentanyl by identifying its thermally degraded fragments would be helpful to law enforcement. While experimental studies have probed the thermal degradation of fentanyl, little theoretical work has been done to understand the mechanism. Here, we studied the thermal degradation pathways of fentanyl using extensive ab initio molecular dynamics simulations combined with enhanced sampling via multiple-walker metadynamics. We calculated the free energy profile for each bond suggested earlier as a potential degradation point to map the thermodynamic driving forces. We also estimated the forward attempt rate of each bond degradation reaction to gain information about degradation kinetics.
Collapse
Affiliation(s)
- Bharat Poudel
- Materials Science Graduate Program, The University of Vermont, Burlington, VT, USA
| | - Haley L Monteith
- Biological and Chemical Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jason P Sammon
- Biological and Chemical Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - Joshua J Whiting
- Biological and Chemical Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - Matthew W Moorman
- Biological and Chemical Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - Juan M Vanegas
- Department of Physics, The University of Vermont, Burlington, VT, USA.
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, USA.
| |
Collapse
|
36
|
Wang H, Miao X, Zhai C, Chen Y, Lin Z, Zhou X, Guo M, Chai Z, Wang R, Shen W, Li H, Hu C. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Marinomonas primoryensis Revealed by Single-Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16128-16137. [PMID: 37916685 DOI: 10.1021/acs.langmuir.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaopu Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Cong Zhai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yulu Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zuzeng Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaowei Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Mengdi Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhongyan Chai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ruifen Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
37
|
Peng Y, Zhao D, Li M, Wen X, Ni Y. The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure. Molecules 2023; 28:7431. [PMID: 37959850 PMCID: PMC10647354 DOI: 10.3390/molecules28217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Consumers who are environmentally and health conscious are increasingly looking for plant-based alternatives to replace animal-based products in their daily diets. Among these alternatives, there is a growing demand for meat analogues that closely resemble the taste and texture of meat. As a result, significant efforts have been dedicated to developing meat analogues with a desirable meat-like structure. Currently, soy protein and wheat gluten are the main ingredients used for producing these meat analogues due to their availability and unique functionalities. This study observed that high moisture extrusion at moisture levels of 50-80% has become a common approach for creating fibrous structures, with soy protein and wheat gluten being considered incompatible proteins. After the structuring process, they form two-phase filled gels, with wheat gluten acting as the continuous phase and soy protein serving as a filler material. Moreover, the formation of soy protein and wheat gluten networks relies on a combination of covalent and non-covalent interaction bonds, including hydrogen bonds that stabilize the protein networks, hydrophobic interactions governing protein chain associations during thermo-mechanical processes, and disulfide bonds that potentially contribute to fibrous structure formation. This review provides case studies and examples that demonstrate how specific processing conditions can improve the overall structure, aiming to serve as a valuable reference for further research and the advancement of fibrous structures.
Collapse
Affiliation(s)
- Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050000, China;
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| |
Collapse
|
38
|
Zuo J, Chen H, Li H. Two molecule force spectroscopy on ligand-receptor interactions. NANOSCALE 2023; 15:16581-16589. [PMID: 37740375 DOI: 10.1039/d3nr03428c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Many biological processes involve the rupture of multiple ligand-receptors or multivalent ligand-receptors. It is challenging to study the rupture of such parallelly arranged multiple ligand-receptors due to the difficulties in engineering such systems in a well-controlled fashion. Here we report the use of two-molecule force spectroscopy to investigate the rupture of two parallelly arranged monomeric streptavidin (mSA)-biotin complexes. By using SpyCatcher-SpyTag chemistry, we successfully engineered a molecular twin of biotin, in which two biotins are arranged in parallel. By reacting mSA with twin biotin, we constructed parallelly arranged two mSA-biotin complexes for force spectroscopy experiments. The incorporation of single molecule fingerprint domains into our mSA-biotin dimers allowed us to identify and assign the rupture events of the parallelly arranged mSA-biotin complexes without any ambiguity in the two-molecule force spectroscopy experiments. Our results revealed that the rupture force of the parallel dimer mSA-biotin is 172 pN at a pulling speed of 400 nm s-1, which is about 1.6 times of that of single mSA-biotin (105 pN). Furthermore, our findings indicate that the two mSA-biotin behave as non-interacting, independent ligand-receptors. The strategy we demonstrated here can be extended to other ligand-receptors and may open up an avenue toward rigorously testing the theoretic predictions proposed in various models regarding the rupture of multiple parallel ligand-receptors.
Collapse
Affiliation(s)
- Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Hui Chen
- Department of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
39
|
Botti V, Lavecchia di Tocco F, Cannistraro S, Bizzarri AR. Hybridization Kinetics of miR-155 on Gold Surfaces as Investigated by Surface Plasmon Resonance and Atomic Force Spectroscopy. ACS OMEGA 2023; 8:38941-38949. [PMID: 37901511 PMCID: PMC10601050 DOI: 10.1021/acsomega.3c03318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 10/31/2023]
Abstract
miRNAs are short noncoding RNA single strands, with a crucial role in several biological processes. miRNAs are dysregulated in several human diseases, and their detection is an important goal for diagnosis and screening. Innovative biosensors for miRNAs are commonly based on the hybridization process between a miRNA and its corresponding complementary strand (or suitable aptamers) immobilized onto an electrode surface forming a duplex. A detailed description of the hybridization kinetics in working conditions deserves a great deal of interest for the optimization of the biosensing process. Surface plasmon resonance (SPR) and atomic force spectroscopy (AFS) were applied to investigate the hybridization process between miR-155, a multifunctional miRNA that constitutes an important marker overexpressed in several diseases, and its complementary strand (antimiR-155), immobilized on the gold-coated surface of a commercial electrode. Under well-adjusted pH, ionic strength, surface coverage, and concentration, we found that miR-155 has a high affinity for antimiR-155 with kinetics well described by the 1:1 Langmuir model. Both techniques provided an association rate of about 104 M-1 s-1, while a dissociation rate of 10-5 and 10-4 s-1 was assessed by SPR and AFS, respectively. These results allowed us to establish optimized measurement running times for applications in biosensing. An analysis of AFS data also led us to evaluate the binding free energy for the duplex, which was found to be close to that of free molecules in solution. These results could guide in the implementation of fine-tuned working conditions of a biosensor for detecting miRNAs based on correspondent complementary strands.
Collapse
Affiliation(s)
- Valentina Botti
- Biophysics and Nanoscience Centre,
DEB, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | | | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre,
DEB, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre,
DEB, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
40
|
Hou D, Cao W, Kim S, Cui X, Ziarnik M, Im W, Zhang XF. Biophysical investigation of interactions between SARS-CoV-2 spike protein and neuropilin-1. Protein Sci 2023; 32:e4773. [PMID: 37656811 PMCID: PMC10510470 DOI: 10.1002/pro.4773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Recent studies have suggested that neuropilin-1 (NRP1) may serve as a potential receptor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the biophysical characteristics of interactions between NRP1 and SARS-CoV-2 remain unclear. In this study, we examined the interactions between NRP1 and various SARS-CoV-2 spike (S) fragments, including the receptor-binding domain (RBD) and the S protein trimer in a soluble form or expressed on pseudovirions, using atomic force microscopy and structural modeling. Our measurements shows that NRP1 interacts with the RBD and trimer at a higher binding frequency (BF) compared to ACE2. This NRP1-RBD interaction has also been predicted and simulated via AlphaFold2 and molecular dynamics simulations, and the results indicate that their binding patterns are very similar to RBD-ACE2 interactions. Additionally, under similar loading rates, the most probable unbinding forces between NRP1 and S trimer (both soluble form and on pseudovirions) are larger than the forces between NRP1 and RBD and between trimer and ACE2. Further analysis indicates that NRP1 has a stronger binding affinity to the SARS-CoV-2 S trimer with a dissociation rate of 0.87 s-1 , four times lower than the dissociation rate of 3.65 s-1 between NRP1 and RBD. Moreover, additional experiments show that RBD-neutralizing antibodies can significantly reduce the BF for both ACE2 and NRP1. Together, the study suggests that NRP1 can be an alternative receptor for SARS-CoV-2 attachment to human cells, and the neutralizing antibodies targeting SARS-CoV-2 RBD can reduce the binding between SARS-CoV-2 and NRP1.
Collapse
Affiliation(s)
- Decheng Hou
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Wenpeng Cao
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Seonghan Kim
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Xinyu Cui
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Matthew Ziarnik
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Departments of Biological Sciences, Chemistry, and Computer Science and EngineeringLehigh UniversityBethlehemUSA
| | - X. Frank Zhang
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
41
|
Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 2023; 299:105150. [PMID: 37567473 PMCID: PMC10511787 DOI: 10.1016/j.jbc.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
42
|
Micheloni M, Petrolli L, Lattanzi G, Potestio R. Kinetics of radiation-induced DNA double-strand breaks through coarse-grained simulations. Biophys J 2023; 122:3314-3322. [PMID: 37455429 PMCID: PMC10465705 DOI: 10.1016/j.bpj.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/16/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Double-strand breaks (DSBs), i.e., the covalent cut of the DNA backbone over both strands, are a detrimental outcome of cell irradiation, bearing chromosomal aberrations and leading to cell apoptosis. In the early stages of the evolution of a DSB, the disruption of the residual interactions between the DNA moieties drives the fracture of the helical layout; in spite of its biological significance, the details of this process are still largely uncertain. Here, we address the mechanical rupture of DNA by DSBs via coarse-grained molecular dynamics simulations: the setup involves a 3855-bp DNA filament and diverse DSB motifs, i.e., within a range of distances between strand breaks (or DSB distance). By employing a coarse-grained model of DNA, we access the molecular details and characteristic timescales of the rupturing process. A sequence-nonspecific, linear correlation is observed between the DSB distance and the internal energy contribution to the disruption of the residual (Watson-Crick and stacking) contacts between DNA moieties, which is seemingly driven by an abrupt, cooperative process. Moreover, we infer an exponential dependence of the characteristic rupture times on the DSB distances, which we associate to an Arrhenius-like law of thermally-activated processes. This work lays the foundations of a detailed, mechanistic assessment of DSBs in silico as a benchmark to both numerical simulations and data from single-molecule experiments.
Collapse
Affiliation(s)
- Manuel Micheloni
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Lorenzo Petrolli
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy.
| |
Collapse
|
43
|
Lamberty ZD, Tran NT, van Engers CD, Karnal P, Knorr DB, Frechette J. Cooperative Tridentate Hydrogen-Bonding Interactions Enable Strong Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450657 PMCID: PMC10375471 DOI: 10.1021/acsami.3c06545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Multidentate hydrogen-bonding interactions are a promising strategy to improve underwater adhesion. Molecular and macroscale experiments have revealed an increase in underwater adhesion by incorporating multidentate H-bonding groups, but quantitatively relating the macroscale adhesive strength to cooperative hydrogen-bonding interactions remains challenging. Here, we investigate whether tridentate alcohol moieties incorporated in a model epoxy act cooperatively to enhance adhesion. We first demonstrate that incorporation of tridentate alcohol moieties leads to comparable adhesive strength with mica and aluminum in air and in water. We then show that the presence of tridentate groups leads to energy release rates that increase with an increase in crack velocity in air and in water, while materials lacking these groups do not display rate-dependent adhesion. We model the rate-dependent adhesion to estimate the activation energy of the interfacial bonds. Based on our data, we estimate the lifetime of these bonds to be between 2 ms and 6 s, corresponding to an equilibrium activation energy between 23kBT and 31kBT. These values are consistent with tridentate hydrogen bonding, suggesting that the three alcohol groups in the Tris moiety bond cooperatively form a robust adhesive interaction underwater.
Collapse
Affiliation(s)
- Zachary D Lamberty
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| | - Ngon T Tran
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Christian D van Engers
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Preetika Karnal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Building 205, Bethlehem, Pennsylvania 18015, United States
| | - Daniel B Knorr
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| |
Collapse
|
44
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
45
|
Abstract
Many elastomeric proteins, which play important roles in a wide range of biological processes, exist as parallel/antiparallelly arranged dimers or multimers to perform their mechanobiological functions. For example, in striated muscle sarcomeres, the giant muscle protein titin exists as hexameric bundles to mediate the passive elasticity of muscles. However, it has not been possible to directly probe the mechanical properties of such parallelly arranged elastomeric proteins. And it remains unknown if the knowledge obtained from single-molecule force spectroscopy studies can be directly extrapolated to such parallelly/antiparallelly arranged systems. Here, we report the development of atomic force microscopy (AFM)-based two-molecule force spectroscopy to directly probe the mechanical properties of two elastomeric proteins that are arranged in parallel. We developed a twin-molecule approach to allow two parallelly arranged elastomeric proteins to be picked up and stretched simultaneously in an AFM experiment. Our results clearly revealed the mechanical features of such parallelly arranged elastomeric proteins during force-extension measurements and allowed for the determination of mechanical unfolding forces of proteins in such an experimental setting. Our study provides a general and robust experimental strategy to closely mimic the physiological condition of such parallel elastomeric protein multimers.
Collapse
Affiliation(s)
- Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
46
|
Kerkhoff Y, Azizi L, Mykuliak VV, Hytönen VP, Block S. Microfluidics-Based Force Spectroscopy Enables High-Throughput Force Experiments with Sub-Nanometer Resolution and Sub-Piconewton Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206713. [PMID: 36631276 DOI: 10.1002/smll.202206713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Several techniques have been established to quantify the mechanicals of single molecules. However, most of them show only limited capabilities of parallelizing the measurement by performing many individual measurements simultaneously. Herein, a microfluidics-based single-molecule force spectroscopy method, which achieves sub-nanometer spatial resolution and sub-piconewton sensitivity and is capable of simultaneously quantifying hundreds of single-molecule targets in parallel, is presented. It relies on a combination of total internal reflection microscopy and microfluidics, in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic channel by macromolecular linkers. Application of a flow generates a well-defined shear force acting on the beads, whereas the nanomechanical linker response is quantified based on the force-induced displacement of individual beads. To handle the high amount of data generated, a cluster analysis which is capable of a semi-automatic identification of measurement artifacts and molecular populations is implemented. The method is validated by probing the mechanical response polyethylene glycol linkers and binding strength of biotin-NeutrAvidin complexes. Two energy barriers (at 3 and 5.7 Å, respectively) in the biotin-NeutrAvidin interaction are resolved and the unfolding behavior of talin's rod domain R3 in the force range between 1 to ≈10 pN is probed.
Collapse
Affiliation(s)
- Yannic Kerkhoff
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, FI-33520, Finland
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, FI-33520, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, FI-33520, Finland
- Fimlab Laboratories, Biokatu 4, Tampere, FI-33520, Finland
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
47
|
Pan Y, Pohjolainen E, Schmidpeter PAM, Vaiana AC, Nimigean CM, Grubmüller H, Scheuring S. Discrimination between cyclic nucleotides in a cyclic nucleotide-gated ion channel. Nat Struct Mol Biol 2023; 30:512-520. [PMID: 36973509 DOI: 10.1038/s41594-023-00955-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Cyclic nucleotide-gated ion channels are crucial in many physiological processes such as vision and pacemaking in the heart. SthK is a prokaryotic homolog with high sequence and structure similarities to hyperpolarization-activated and cyclic nucleotide-modulated and cyclic nucleotide-gated channels, especially at the level of the cyclic nucleotide binding domains (CNBDs). Functional measurements showed that cyclic adenosine monophosphate (cAMP) is a channel activator while cyclic guanosine monophosphate (cGMP) barely leads to pore opening. Here, using atomic force microscopy single-molecule force spectroscopy and force probe molecular dynamics simulations, we unravel quantitatively and at the atomic level how CNBDs discriminate between cyclic nucleotides. We find that cAMP binds to the SthK CNBD slightly stronger than cGMP and accesses a deep-bound state that a cGMP-bound CNBD cannot reach. We propose that the deep binding of cAMP is the discriminatory state that is essential for cAMP-dependent channel activation.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Emmi Pohjolainen
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
| | | | - Andrea C Vaiana
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Helmut Grubmüller
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Collagen-like Motifs of SasG: A Novel Fold for Protein Mechanical Strength. J Mol Biol 2023; 435:167980. [PMID: 36708761 DOI: 10.1016/j.jmb.2023.167980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The Staphylococcus aureus surface protein G (SasG) is associated with host colonisation and biofilm formation. As colonisation occurs at the liquid-substrate interface bacteria are subject to a myriad of external forces and, presumably as a consequence, SasG displays extreme mechanical strength. This mechanical phenotype arises from the B-domain; a repetitive region composed of alternating E and G5 subdomains. These subdomains have an unusual structure comprising collagen-like regions capped by triple-stranded β-sheets. To identify the determinants of SasG mechanical strength, we characterised the mechanical phenotype and thermodynamic stability of 18 single substitution variants of a pseudo-wildtype protein. Visualising the mechanically-induced transition state at a residue-level by ϕ-value analysis reveals that the main force-bearing regions are the N- and C-terminal 'Mechanical Clamps' and their side-chain interactions. This is tailored by contacts at the pseudo-hydrophobic core interface. We also describe a novel mechanical motif - the collagen-like region and show that glycine to alanine substitutions, analogous to those found in Osteogenesis Imperfecta (brittle bone disease), result in a significantly reduced mechanical strength.
Collapse
|
49
|
Amiri B, Heyn JCJ, Schreiber C, Rädler JO, Falcke M. On multistability and constitutive relations of cell motion on fibronectin lanes. Biophys J 2023; 122:753-766. [PMID: 36739476 PMCID: PMC10027452 DOI: 10.1016/j.bpj.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.
Collapse
Affiliation(s)
- Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes C J Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
50
|
Suwa M, Tsukahara S, Watarai H. Applications of magnetic and electromagnetic forces in micro-analytical systems. LAB ON A CHIP 2023; 23:1097-1127. [PMID: 36636900 DOI: 10.1039/d2lc00702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel applications of magnetic fields in analytical chemistry have become a remarkable trend in the last two decades. Various magnetic forces have been employed for the migration, orientation, manipulation, and trapping of microparticles, and new analytical platforms for separating and detecting molecules have been proposed. Magnetic materials such as functional magnetic nanoparticles, magnetic nanocomposites, and specially designed magnetic solids and liquids have also been developed for analytical purposes. Numerous attractive applications of magnetic and electromagnetic forces on magnetic and non-magnetic materials have been studied, but fundamental studies to understand the working principles of magnetic forces have been challenging. These studies will form a new field of magneto-analytical science, which should be developed as an interdisciplinary field. In this review, essential pioneering works and recent attractive developments are presented.
Collapse
Affiliation(s)
- M Suwa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - S Tsukahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - H Watarai
- R3 Institute for Newly-Emerging Science Design, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|