1
|
Silva-Dias L, Epstein IR, Dolnik M. Turing patterns on rotating spiral growing domains. Phys Chem Chem Phys 2024; 26:26258-26265. [PMID: 39046428 DOI: 10.1039/d4cp01777c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We investigate the emergence of Turing patterns in a system growing as a rotating spiral in two dimensions, utilizing the photosensitivity of the chlorine dioxide-iodine-malonic acid (CDIMA) reaction to control the growth process. We observe the formation of single and multiple (double and triple) stationary spiral patterns as well as transitional patterns. From numerical simulations of the Lengyel-Epstein model with an additional term to account for the effects of illumination on the reaction, we analyze the relationship between the final morphologies and the radial and angular growth velocities, identify conditions conducive to the formation of transitional structures, examine the importance of the size of the initial nucleation site in determining the spiral's multiplicity, and evaluate the stability and robustness of these Turing patterns. Our results indicate how inclusion of rotational degrees of freedom in the growth process may lead to the formation of a diverse new class of patterns in chemical and biological systems.
Collapse
Affiliation(s)
- Leonardo Silva-Dias
- Department of Chemistry, MS 015, Brandeis University, Waltham, MA 02454, USA.
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - Irving R Epstein
- Department of Chemistry, MS 015, Brandeis University, Waltham, MA 02454, USA.
| | - Milos Dolnik
- Department of Chemistry, MS 015, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
2
|
Kadamannil NN, Jang D, Lee H, Kim JM, Jelinek R. Macrocyclic Diacetylene / Sulfonate Fluorophore Hierarchical Multifunctional Nanotoroids. SMALL METHODS 2024; 8:e2301286. [PMID: 38323693 DOI: 10.1002/smtd.202301286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Indexed: 02/08/2024]
Abstract
Functional supramolecular materials exhibit important features including structural versatility and versatile applications. Here, this study reports the construction of unique hierarchically organized nanotoroids exhibiting fluorescence, photocatalytic, and sensing properties. The nanotoroids comprise of macrocyclic diacetylenes (MCDA) and 8-anilino-1-naphthalene sulfonate (ANS), a negatively charged aromatic fluorescent dye. This study shows that the hierarchical structure of the nanotoroids consist of MCDA nanofibers formed by stacked diacetylene monomers as the basic units, which are further bent and aligned into toroidal organization by electrostatic and hydrophobic interactions with the ANS molecules. The amine moieties on the nanotoroids surface are employed for deposition of gold nanostructures - Au nanoparticles or Au nanosheets - which constitute effective platforms for photocatalysis and surface enhanced Raman scattering (SERS)-based sensing.
Collapse
Affiliation(s)
- Nila Nandha Kadamannil
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Daewoong Jang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Haksu Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
3
|
Oikeh E, Ziebarth J, Dinar MAM, Kirchhoff D, Aronova A, Dziubla TD, Wang Y, DeRouchey JE. DNA Packaging and Polycation Length Determine DNA Susceptibility to Free Radical Damage in Condensed DNA. J Phys Chem B 2024; 128:3329-3339. [PMID: 38557033 DOI: 10.1021/acs.jpcb.3c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins: histones in somatic nuclei and protamines in sperm chromatin. The extreme, nearly crystalline packaging of DNA by protamines in spermatozoa is thought to be essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species. The protective role of protamines is required in sperm, as they are sensitive to ROS damage due to the progressive loss of DNA repair mechanisms during maturation. The degree to which DNA packaging directly relates to DNA protection in the condensed state, however, is poorly understood. Here, we utilized different polycation condensing agents to achieve varying DNA packaging densities and quantify DNA damage by free radical oxidation within the condensates. Although we see that tighter DNA packaging generally leads to better protection, the length of the polycation also plays a significant role. Molecular dynamics simulations suggest that longer polyarginine chains offer increased protection by occupying more space on the DNA surface and forming more stable interactions. Taken together, our results suggest a complex interplay among polycation properties, DNA packaging density, and DNA protection against free radical damage within condensed states.
Collapse
Affiliation(s)
- Ehigbai Oikeh
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jesse Ziebarth
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Md Abu Monsur Dinar
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Daniel Kirchhoff
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Anastasiia Aronova
- Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Thomas D Dziubla
- Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
4
|
Escalona-Rodriguez FA, Cruz-Leal Y, La O-Bonet J, Pérez-Erviti JA, Valdés-Tresanco ME, Rivero-Hernández AL, Sifontes-Niebla M, Manso-Vargas A, Sánchez B, Alvarez C, Barbosa LRS, Itri R, Lanio ME. Unveiling Sticholysin II and plasmid DNA interaction: Implications for developing non-viral vectors. Toxicon 2024; 238:107571. [PMID: 38141971 DOI: 10.1016/j.toxicon.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.
Collapse
Affiliation(s)
- Felipe A Escalona-Rodriguez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Javier La O-Bonet
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Julio A Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Ada L Rivero-Hernández
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Maricary Sifontes-Niebla
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Alexis Manso-Vargas
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Belinda Sánchez
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| |
Collapse
|
5
|
McMillan RB, Bediako H, Devenica LM, Velasquez A, Hardy IP, Ma YE, Roscoe DM, Carter AR. Protamine folds DNA into flowers and loop stacks. Biophys J 2023; 122:4288-4302. [PMID: 37803830 PMCID: PMC10645571 DOI: 10.1016/j.bpj.2023.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
DNA in sperm undergoes an extreme compaction to almost crystalline packing levels. To produce this dense packing, DNA is dramatically reorganized in minutes by protamine proteins. Protamines are positively charged proteins that coat negatively charged DNA and fold it into a series of toroids. The exact mechanism for forming these ∼50-kbp toroids is unknown. Our goal is to study toroid formation by starting at the "bottom" with folding of short lengths of DNA that form loops and working "up" to more folded structures that occur on longer length scales. We previously measured folding of 200-300 bp of DNA into a loop. Here, we look at folding of intermediate DNA lengths (L = 639-3003 bp) that are 2-10 loops long. We observe two folded structures besides loops that we hypothesize are early intermediates in the toroid formation pathway. At low protamine concentrations (∼0.2 μM), we see that the DNA folds into flowers (structures with multiple loops that are positioned so they look like the petals of a flower). Folding at these concentrations condenses the DNA to 25% of its original length, takes seconds, and is made up of many small bending steps. At higher protamine concentrations (≥2 μM), we observe a second folded structure-the loop stack-where loops are stacked vertically one on top of another. These results lead us to propose a two-step process for folding at this length scale: 1) protamine binds to DNA, bending it into loops and flowers, and 2) flowers collapse into loop stacks. These results highlight how protamine uses a bind-and-bend mechanism to rapidly fold DNA, which may be why protamine can fold the entire sperm genome in minutes.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Isabel P Hardy
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Yuxing E Ma
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Donna M Roscoe
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|
6
|
Sievert MD, Bishop MF, McMullen T. Entropy of Charge Inversion in DNA including One-Loop Fluctuations. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1373. [PMID: 37895495 PMCID: PMC10606583 DOI: 10.3390/e25101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
The entropy and charge distributions have been calculated for a simple model of polyelectrolytes attached to the surface of DNA using a field-theoretic method that includes fluctuations to the lowest one-loop order beyond mean-field theory. Experiments have revealed correlation-driven behavior of DNA in charged solutions, including charge inversion and condensation. In our model, the condensed polyelectrolytes are taken to be doubly charged dimers of length comparable to the distance between sites along the phosphate chains. Within this lattice gas model, each adsorption site is assumed to have either a vacancy or a positively charged dimer attached with the dimer oriented either parallel or perpendicular to the double-helix DNA chain. We find that the inclusion of the fluctuation terms decreases the entropy by ∼50% in the weak-binding regime. There, the bound dimer concentration is low because the dimers are repelled from the DNA molecule, which competes with the chemical potential driving them from the solution to the DNA surface. Surprisingly, this decrease in entropy due to correlations is so significant that it overcompensates for the entropy increase at the mean-field level, so that the total entropy is even lower than in the absence of interactions between lattice sites. As a bonus, we present a transparent exposition of the methods used that could be useful to students and others wishing to use this formulation to extend this calculation to more realistic models.
Collapse
Affiliation(s)
- Matthew D. Sievert
- Department of Physics, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | - Marilyn F. Bishop
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000, USA;
| | - Tom McMullen
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000, USA;
| |
Collapse
|
7
|
Alexiou TS, Likos CN. Effective Interactions between Double-Stranded DNA Molecules in Aqueous Electrolyte Solutions: Effects of Molecular Architecture and Counterion Valency. J Phys Chem B 2023; 127:6969-6981. [PMID: 37493448 PMCID: PMC10424236 DOI: 10.1021/acs.jpcb.3c02216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Indexed: 07/27/2023]
Abstract
A computational investigation of the effects of molecular topology, namely, linear and circular, as well as counterion valency, on the ensuing pairwise effective interactions between DNA molecules in an unlinked state is presented. Umbrella sampling simulations have been performed through the introduction of bias potential along a reaction coordinate defined as the distance between the centers-of-mass of pairs of DNA molecules, and effective pair interaction potentials have been computed by employing the weighted histogram analysis method. An interesting comparison can be drawn between the different DNA topologies studied here, especially with regard to the contrasting effects of divalent counterions on the effective pair potentials: while DNA-DNA repulsion in short center-of-mass distances decreases significantly in the presence of divalent counterion-ions (as compared to monovalent ions) for linear DNA, the opposite effect occurs for the DNA minicircles. This can be attributed to the fact that linear DNA fragments can easily adopt relative orientations that minimize electrostatic and steric repulsions by rotating relative to one another and by exhibiting more pronounced bending due to the presence of free ends.
Collapse
Affiliation(s)
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
8
|
Chesnokov Y, Kamyshinsky R, Mozhaev A, Shtykova E, Vasiliev A, Orlov I, Dadinova L. Morphological Diversity of Dps Complex with Genomic DNA. Int J Mol Sci 2023; 24:ijms24108534. [PMID: 37239879 DOI: 10.3390/ijms24108534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
In response to adverse environmental factors, Escherichia coli cells actively produce Dps proteins which form ordered complexes (biocrystals) with bacterial DNA to protect the genome. The effect of biocrystallization has been described extensively in the scientific literature; furthermore, to date, the structure of the Dps-DNA complex has been established in detail in vitro using plasmid DNA. In the present work, for the first time, Dps complexes with E. coli genomic DNA were studied in vitro using cryo-electron tomography. We demonstrate that genomic DNA forms one-dimensional crystals or filament-like assemblies which transform into weakly ordered complexes with triclinic unit cells, similar to what is observed for plasmid DNA. Changing such environmental factors as pH and KCl and MgCl2 concentrations leads to the formation of cylindrical structures.
Collapse
Affiliation(s)
- Yuri Chesnokov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Roman Kamyshinsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Andrey Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
| | - Alexander Vasiliev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky per. 9, 141701 Dolgoprudny, Russia
| | - Ivan Orlov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
| | - Liubov Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
| |
Collapse
|
9
|
Nguyen NTT, Ngo AT, Hoang TX. Energetic preference and topological constraint effects on the formation of DNA twisted toroidal bundles. J Chem Phys 2023; 158:114904. [PMID: 36948817 DOI: 10.1063/5.0134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
DNA toroids are compact torus-shaped bundles formed by one or multiple DNA molecules being condensed from the solution due to various condensing agents. It has been shown that the DNA toroidal bundles are twisted. However, the global conformations of DNA inside these bundles are still not well understood. In this study, we investigate this issue by solving different models for the toroidal bundles and performing replica-exchange molecular dynamics (REMD) simulations for self-attractive stiff polymers of various chain lengths. We find that a moderate degree of twisting is energetically favorable for toroidal bundles, yielding optimal configurations of lower energies than for other bundles corresponding to spool-like and constant radius of curvature arrangements. The REMD simulations show that the ground states of the stiff polymers are twisted toroidal bundles with the average twist degrees close to those predicted by the theoretical model. Constant-temperature simulations show that twisted toroidal bundles can be formed through successive processes of nucleation, growth, quick tightening, and slow tightening of the toroid, with the two last processes facilitating the polymer threading through the toroid's hole. A relatively long chain of 512 beads has an increased dynamical difficulty to access the twisted bundle states due to the polymer's topological constraint. Interestingly, we also observed significantly twisted toroidal bundles with a sharp U-shaped region in the polymer conformation. It is suggested that this U-shaped region makes the formation of twisted bundles easier by effectively reducing the polymer length. This effect can be equivalent to having multiple chains in the toroid.
Collapse
Affiliation(s)
- Nhung T T Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
| | - Anh T Ngo
- Chemical Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60608, USA
| | - Trinh X Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
| |
Collapse
|
10
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
11
|
Cruz-León S, Schwierz N. RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations. J Phys Chem B 2022; 126:8646-8654. [PMID: 36260822 PMCID: PMC9639116 DOI: 10.1021/acs.jpcb.2c04488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The distribution of cations around nucleic acids is essential for a broad variety of processes ranging from DNA condensation and RNA folding to the detection of biomolecules in biosensors. Predicting the exact distribution of ions remains challenging since the distribution and, hence, a broad variety of nucleic acid properties depend on the salt concentration, the valency of the ions, and the ion type. Despite the importance, a general theory to quantify ion-specific effects for highly charged biomolecules is still lacking. Moreover, recent experiments reveal that despite their similar building blocks, DNA and RNA duplexes can react differently to the same ionic conditions. The aim of our current work is to provide a comprehensive set of molecular dynamics simulations using more than 180 μs of simulation time. For the mono- and divalent cations Li+, Na+, K+, Cs+, Ca2+, Sr2+, and Ba2+, the simulations allow us to reveal the ion-specific distributions and binding patterns for DNA and RNA duplexes. The microscopic insights from the simulations display the origin of ion-specificity and shed light on the question of why DNA and RNA show opposing behavior in the same ionic conditions. Finally, the detailed binding patterns from the simulations reveal why RNA can capture more cations than DNA.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438Frankfurt am Main, Germany
| | - Nadine Schwierz
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438Frankfurt am Main, Germany,Institute
of Physics, University of Augsburg, Universitätsstraße 1, 86159Augsburg, Germany,E-mail:
| |
Collapse
|
12
|
Koizumi R, Golovaty D, Alqarni A, Walker SW, Nastishin YA, Calderer MC, Lavrentovich OD. Toroidal nuclei of columnar lyotropic chromonic liquid crystals coexisting with an isotropic phase. SOFT MATTER 2022; 18:7258-7268. [PMID: 35975722 DOI: 10.1039/d2sm00712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nuclei of ordered materials emerging from the isotropic state usually show a shape topologically equivalent to a sphere; the well-known examples are crystals and nematic liquid crystal droplets. In this work, we explore experimentally and theoretically the toroidal in shape nuclei of columnar lyotropic chromonic liquid crystals coexisting with the isotropic phase. The geometry of these toroids depends strongly on concentrations of the disodium cromoglycate (DSCG) and the crowding agent, polyethylene glycol (PEG). High concentrations of DSCG and PEG result in thick toroids with small central holes, while low concentrations yield thin toroids with wide holes. The multitude of the observed shapes is explained by the balance of bending elasticity and anisotropic interfacial tension.
Collapse
Affiliation(s)
- Runa Koizumi
- Advanced Materials and Liquid Crystal Institute, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA.
| | - Dmitry Golovaty
- Department of Mathematics, The University of Akron, Akron, OH 44325-4002, USA.
| | - Ali Alqarni
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Kent State University, Kent, OH 44242, USA
- Department of Physics, University of Bisha, Bisha, 67714, Saudi Arabia.
| | - Shawn W Walker
- Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA.
| | - Yuriy A Nastishin
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan street, Lviv, 79012, Ukraine.
| | - M Carme Calderer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA.
| |
Collapse
|
13
|
Okada Y. Sperm chromatin structure: Insights from in vitro to in situ experiments. Curr Opin Cell Biol 2022; 75:102075. [PMID: 35344802 DOI: 10.1016/j.ceb.2022.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
The sperm genome is tightly packed into a minimal volume of sperm nuclei. Sperm chromatin is highly condensed by protamines (PRMs) after histone-protamine replacement, and the majority of the sperm genome forms a nucleo-protamine structure, namely, the PRM-DNA complex. The outline of sperm chromatin structure was proposed 30 years ago, and the details have been explored by approaches from several independent research fields including male reproduction and infertility, DNA biopolymer, and most recently, genome-wide sequence-based approaches. In this review, the history of research on sperm chromatin structure is briefly described, and the progress of recent related studies is summarized to obtain a more integrated view for the sperm chromatin, an extremely compacted "black box."
Collapse
Affiliation(s)
- Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
14
|
Khursheed S, Tabassum S, Arjmand F. Comprehensive biological {DNA/RNA binding profile, cleavage &cytotoxicity activity} of structurally well-characterized chromone-appended Cu(II)(L1-3)(phen) potential anticancer drug candidates. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Du G, Belić D, Del Giudice A, Alfredsson V, Carnerup AM, Zhu K, Nyström B, Wang Y, Galantini L, Schillén K. Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guanqun Du
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| | - Domagoj Belić
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
- Department of Physics Josip Juraj Strossmayer University of Osijek 31000 Osijek Croatia
| | - Alessandra Del Giudice
- Department of Chemistry Sapienza University of Rome P.O. Box 34-Roma 62, Piazzale A. Moro 5 00185 Roma Italy
| | - Viveka Alfredsson
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| | - Anna M. Carnerup
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| | - Kaizheng Zhu
- Department of Chemistry University of Oslo P.O. Box 1033, Blindern 0315 Oslo Norway
| | - Bo Nyström
- Department of Chemistry University of Oslo P.O. Box 1033, Blindern 0315 Oslo Norway
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Luciano Galantini
- Department of Chemistry Sapienza University of Rome P.O. Box 34-Roma 62, Piazzale A. Moro 5 00185 Roma Italy
| | - Karin Schillén
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| |
Collapse
|
16
|
Du G, Belić D, Del Giudice A, Alfredsson V, Carnerup AM, Zhu K, Nyström B, Wang Y, Galantini L, Schillén K. Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angew Chem Int Ed Engl 2022; 61:e202113279. [PMID: 34757695 PMCID: PMC9300030 DOI: 10.1002/anie.202113279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/07/2022]
Abstract
Condensation of DNA helices into hexagonally packed bundles and toroids represents an intriguing example of functional organization of biological macromolecules at the nanoscale. The condensation models are based on the unique polyelectrolyte features of DNA, however here we could reproduce a DNA-like condensation with supramolecular helices of small chiral molecules, thereby demonstrating that it is a more general phenomenon. We show that the bile salt sodium deoxycholate can form supramolecular helices upon interaction with oppositely charged polyelectrolytes of homopolymer or block copolymers. At higher order, a controlled hexagonal packing of the helices into DNA-like bundles and toroids could be accomplished. The results disclose unknown similarities between covalent and supramolecular non-covalent helical polyelectrolytes, which inspire visionary ideas of constructing supramolecular versions of biological macromolecules. As drug nanocarriers the polymer-bile salt superstructures would get advantage of a complex chirality at molecular and supramolecular levels, whose effect on the nanocarrier assisted drug efficiency is a still unexplored fascinating issue.
Collapse
Affiliation(s)
- Guanqun Du
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Domagoj Belić
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
- Department of PhysicsJosip Juraj Strossmayer University of Osijek31000OsijekCroatia
| | - Alessandra Del Giudice
- Department of ChemistrySapienza University of RomeP.O. Box 34-Roma 62, Piazzale A. Moro 500185RomaItaly
| | - Viveka Alfredsson
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Anna M. Carnerup
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Kaizheng Zhu
- Department of ChemistryUniversity of OsloP.O. Box 1033, Blindern0315OsloNorway
| | - Bo Nyström
- Department of ChemistryUniversity of OsloP.O. Box 1033, Blindern0315OsloNorway
| | - Yilin Wang
- Key Laboratory of Colloid and Interface ScienceBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Luciano Galantini
- Department of ChemistrySapienza University of RomeP.O. Box 34-Roma 62, Piazzale A. Moro 500185RomaItaly
| | - Karin Schillén
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| |
Collapse
|
17
|
He S, Cao B, Yi Y, Huang S, Chen X, Luo S, Mou X, Guo T, Wang Y, Wang Y, Yang G. DNA precipitation revisited: A quantitative analysis. NANO SELECT 2021. [DOI: 10.1002/nano.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shupeng He
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Bozhi Cao
- Wenzhou Medical University Wenzhou University Wenzhou China
| | - Yi Yi
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Shenhao Huang
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Xiao Chen
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Sheng Luo
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Xiaoyu Mou
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Tong Guo
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Yujie Wang
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Yanwei Wang
- School of Physics and Mathematics Wenzhou University Wenzhou China
| | - Guangcan Yang
- School of Physics and Mathematics Wenzhou University Wenzhou China
| |
Collapse
|
18
|
Liu P, Arsuaga J, Calderer MC, Golovaty D, Vazquez M, Walker S. Ion-dependent DNA configuration in bacteriophage capsids. Biophys J 2021; 120:3292-3302. [PMID: 34265262 DOI: 10.1016/j.bpj.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteriophages densely pack their long double-stranded DNA genome inside a protein capsid. The conformation of the viral genome inside the capsid is consistent with a hexagonal liquid crystalline structure. Experiments have confirmed that the details of the hexagonal packing depend on the electrochemistry of the capsid and its environment. In this work, we propose a biophysical model that quantifies the relationship between DNA configurations inside bacteriophage capsids and the types and concentrations of ions present in a biological system. We introduce an expression for the free energy that combines the electrostatic energy with contributions from bending of individual segments of DNA and Lennard-Jones-type interactions between these segments. The equilibrium points of this energy solve a partial differential equation that defines the distributions of DNA and the ions inside the capsid. We develop a computational approach that allows us to simulate much larger systems than what is possible using the existing molecular-level methods. In particular, we are able to estimate bending and repulsion between the DNA segments as well as the full electrochemistry of the solution, both inside and outside of the capsid. The numerical results show good agreement with existing experiments and with molecular dynamics simulations for small capsids.
Collapse
Affiliation(s)
- Pei Liu
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Javier Arsuaga
- Department of Mathematics, University of California Davis, Davis, California; Department of Molecular and Cellular Biology, University of California Davis, Davis, California.
| | - M Carme Calderer
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Dmitry Golovaty
- Department of Mathematics, The University of Akron, Akron, Ohio.
| | - Mariel Vazquez
- Department of Mathematics, University of California Davis, Davis, California; Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California
| | - Shawn Walker
- Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
19
|
Hiltner L, Carme Calderer M, Arsuaga J, Vázquez M. Chromonic liquid crystals and packing configurations of bacteriophage viruses. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200111. [PMID: 34024128 DOI: 10.1098/rsta.2020.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
We study equilibrium configurations of hexagonal columnar liquid crystals in the context of characterizing packing structures of bacteriophage viruses in a protein capsid. These are viruses that infect bacteria and are currently the focus of intense research efforts, with the goal of finding new therapies for bacteria-resistant antibiotics. The energy that we propose consists of the Oseen-Frank free energy of nematic liquid crystals that penalizes bending of the columnar directions, in addition to the cross-sectional elastic energy accounting for distortions of the transverse hexagonal structure; we also consider the isotropic contribution of the core and the energy of the unknown interface between the outer ordered region of the capsid and the inner disordered core. The problem becomes of free boundary type, with constraints. We show that the concentric, azimuthal, spool-like configuration is the absolute minimizer. Moreover, we present examples of toroidal structures formed by DNA in free solution and compare them with the analogous ones occurring in experiments with other types of lyotropic liquid crystals, such as food dyes and additives. This article is part of the theme issue 'Topics in mathematical design of complex materials'.
Collapse
Affiliation(s)
- Lindsey Hiltner
- School of Mathematics, University of Minnesota, Minneapolis, MN 55442, USA
| | - M Carme Calderer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55442, USA
| | - Javier Arsuaga
- Department of Cellular and Molecular Biology, Briggs Hall, Davis, CA 09
- Department of Mathematics, MSB, 2115, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mariel Vázquez
- Department of Mathematics, MSB, 2150, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, Briggs Hall, Davis, CA 09
| |
Collapse
|
20
|
McMillan RB, Kuntz VD, Devenica LM, Bediako H, Carter AR. DNA looping by protamine follows a nonuniform spatial distribution. Biophys J 2021; 120:2521-2531. [PMID: 34023297 PMCID: PMC8390855 DOI: 10.1016/j.bpj.2021.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
DNA looping plays an important role in cells in both regulating and protecting the genome. Often, studies of looping focus on looping by prokaryotic transcription factors like lac repressor or by structural maintenance of chromosomes proteins such as condensin. Here, however, we are interested in a different looping method whereby condensing agents (charge ≥+3) such as protamine proteins neutralize the DNA, causing it to form loops and toroids. We considered two previously proposed mechanisms for DNA looping by protamine. In the first mechanism, protamine stabilizes spontaneous DNA fluctuations, forming randomly distributed loops along the DNA. In the second mechanism, protamine binds and bends the DNA to form a loop, creating a distribution of loops that is biased by protamine binding. To differentiate between these mechanisms, we imaged both spontaneous and protamine-induced loops on short-length (≤1 μm) DNA fragments using atomic force microscopy. We then compared the spatial distribution of the loops to several model distributions. A random looping model, which describes the mechanism of spontaneous DNA folding, fit the distribution of spontaneous loops, but it did not fit the distribution of protamine-induced loops. Specifically, it failed to predict a peak in the spatial distribution of loops at an intermediate location along the DNA. An electrostatic multibinding model, which was created to mimic the bind-and-bend mechanism of protamine, was a better fit of the distribution of protamine-induced loops. In this model, multiple protamines bind to the DNA electrostatically within a particular region along the DNA to coordinate the formation of a loop. We speculate that these findings will impact our understanding of protamine’s in vivo role for looping DNA into toroids and the mechanism of DNA condensation by condensing agents more broadly.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|
21
|
Osada K. Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes. Polymers (Basel) 2020; 12:polym12071603. [PMID: 32707655 PMCID: PMC7408586 DOI: 10.3390/polym12071603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
DNA folding is a core phenomenon in genome packaging within a nucleus. Such a phenomenon is induced by polyelectrolyte complexation between anionic DNA and cationic proteins of histones. In this regard, complexes formed between DNA and cationic polyelectrolytes have been investigated as models to gain insight into genome packaging. Upon complexation, DNA undergoes folding to reduce its occupied volume, which often results in multi-complex associated aggregates. However, when cationic copolymers comprising a polycation block and a neutral hydrophilic polymer block are used instead, DNA undergoes folding as a single molecule within a spontaneously formed polyplex micelle (PM), thereby allowing the observation of the higher-order structures that DNA forms. The DNA complex forms polymorphic structures, including globular, rod-shaped, and ring-shaped (toroidal) structures. This review focuses on the polymorphism of DNA, particularly, to elucidate when, how, and why DNA organizes into these structures with cationic copolymers. The interactions between DNA and the copolymers, and the specific nature of DNA in rigidity; i.e., rigid but foldable, play significant roles in the observed polymorphism. Moreover, PMs serve as potential gene vectors for systemic application. The significance of the controlled DNA folding for such an application is addressed briefly in the last part.
Collapse
Affiliation(s)
- Kensuke Osada
- Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
22
|
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical Toroids Self‐Assembled from a Binary System of Polypeptide Homopolymer and its Block Copolymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
23
|
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical Toroids Self‐Assembled from a Binary System of Polypeptide Homopolymer and its Block Copolymer. Angew Chem Int Ed Engl 2020; 59:14281-14285. [DOI: 10.1002/anie.202004102] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
24
|
Chen X, Chen EQ, Yang S. Multivalent counterions induced attraction between DNA polyelectrolytes. RSC Adv 2020; 10:1890-1900. [PMID: 35494593 PMCID: PMC9048762 DOI: 10.1039/c9ra09694a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
In this paper we study the electrostatic attraction between two parallel rodlike DNA polyelectrolytes induced by neutralizing multivalent counterions at the zero temperature limit. The counterions crystallize on the charged surfaces of DNA so that we can handle the system by using the Wigner crystal lattice model. We derived the 3D ground state configuration of counterions with minimized energy by use of the gradient descent method, and calculated the interaction between two DNA cylinders with divalent or trivalent counterions when they approach. The results show that the complex ground state configuration of counterions plays a key role in determining the caused attraction. The counterions form three-dimensional Wigner crystals on each cylinder at large separation. When the cylinders are brought together, some counterion lines will move towards the inner region and lead to strong attraction. The calculated interaction from our model is in good agreement with the simulation result, however, the single particle approximation considerably overestimates the attraction. Counterions in the ground state partially condense in the intervening region of two approaching DNA cylinders and result in attraction.![]()
Collapse
Affiliation(s)
- Xu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
25
|
Gao L, Hu R, Xu P, Lin J, Zhang L, Wang L. Supramolecular cyclization of semiflexible cylindrical micelles assembled from rod-coil graft copolymers. NANOSCALE 2020; 12:296-305. [PMID: 31825050 DOI: 10.1039/c9nr07930k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uniform toroidal micelles can be constructed via the supramolecular cyclization of semiflexible cylindrical micelles, but revealing the conditions under which the cyclization occurs and the mechanism underlying the cyclization remains a challenge. In this study, we performed Brownian dynamics simulations of the supramolecular cyclization of semiflexible cylindrical micelles formed by rod-coil graft copolymers to obtain the cyclization conditions and understand the cyclization mechanism. It was found that the balance of the bending energy of the polymer backbones with the self-attraction energy between the pendant groups on the polymer backbones plays an important role in the cyclization process. A theoretical model based on this balance is developed to explain the cyclization mechanism, and the conditions required for realizing the supramolecular cyclization are obtained. The proposed mechanism is supported by our experimental findings regarding the supramolecular cyclization of polypeptide cylindrical micelles. The cyclization conditions and the revealed mechanism can guide further preparation of uniform toroidal micelles from semiflexible cylindrical micelles in an end-to-end closure manner.
Collapse
Affiliation(s)
- Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Rui Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
26
|
Sun T, Mirzoev A, Minhas V, Korolev N, Lyubartsev AP, Nordenskiöld L. A multiscale analysis of DNA phase separation: from atomistic to mesoscale level. Nucleic Acids Res 2019; 47:5550-5562. [PMID: 31106383 PMCID: PMC6582353 DOI: 10.1093/nar/gkz377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
DNA condensation and phase separation is of utmost importance for DNA packing in vivo with important applications in medicine, biotechnology and polymer physics. The presence of hexagonally ordered DNA is observed in virus capsids, sperm heads and in dinoflagellates. Rigorous modelling of this process in all-atom MD simulations is presently difficult to achieve due to size and time scale limitations. We used a hierarchical approach for systematic multiscale coarse-grained (CG) simulations of DNA phase separation induced by the three-valent cobalt(III)-hexammine (CoHex3+). Solvent-mediated effective potentials for a CG model of DNA were extracted from all-atom MD simulations. Simulations of several hundred 100-bp-long CG DNA oligonucleotides in the presence of explicit CoHex3+ ions demonstrated aggregation to a liquid crystalline hexagonally ordered phase. Following further coarse-graining and extraction of effective potentials, we conducted modelling at mesoscale level. In agreement with electron microscopy observations, simulations of an 10.2-kb-long DNA molecule showed phase separation to either a toroid or a fibre with distinct hexagonal DNA packing. The mechanism of toroid formation is analysed in detail. The approach used here is based only on the underlying all-atom force field and uses no adjustable parameters and may be generalised to modelling chromatin up to chromosome size.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
27
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, 10016, USA.
- Department of Chemistry, College of Staten Island, Staten Island, New York, 10314, USA.
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
28
|
Liang Q, Jiang Y, Chen JZY. Orientationally ordered states of a wormlike chain in spherical confinement. Phys Rev E 2019; 100:032502. [PMID: 31640076 DOI: 10.1103/physreve.100.032502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 06/10/2023]
Abstract
One of the basic characteristics of a linear dsDNA molecule is its persistence length, typically of order 50 nm. The DNA chain inflicts a large energy penalty if it is bent sharply at that length scale. Viruses of bacteria, known as bacteriophages, typically have a dimension of a few tens of nanometers. Yet, it is known that a bacteriophage actively packages viral DNA inside the capsid and ejects it afterwards. Here, adopting a commonly used polymer model known as the wormlike chain, we answer an idealized question: Placing a linear DNA molecule inside a spherical cavity, what ordered states can we derive from known tools in statistical physics? Solving the model in a rigorous field-theory framework, we report a universal phase diagram for four orientationally ordered and disordered states, in terms of two relevant physical parameters.
Collapse
Affiliation(s)
- Qin Liang
- Faculty of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Jiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Jeff Z Y Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
29
|
Gordievskaya YD, Kramarenko EY. Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations. SOFT MATTER 2019; 15:6073-6085. [PMID: 31310250 DOI: 10.1039/c9sm00909d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conformational behavior of an isolated semiflexible dipolar chain has been studied by molecular dynamics simulations. The dipolar chain was modeled as a backbone chain of charged beads, each containing an oppositely charged unit connected to it by a rigid spring. The main focus was on the effect of the backbone chain rigidity and the size of the charged groups on the morphology of the collapsed states of the chain formed in low-polar media where the electrostatic interactions are essential. It has been found that the stable globular conformations of the long chain of N = 256 backbone beads are a toroid and an elliptical globule. The macroscopic parameters (such as the radius of gyration and shape factors) as well as the local characteristics of these conformations (radial density distributions of ions, orientational correlations of chain segments, dipoles etc.) are studied depending on the chain stiffness. The regions of stability of a torus and an elliptical globule are found for the dipolar chains with variable dipole length and stiffness, which depend on the strength of electrostatic interactions. It has been shown that a size asymmetry of oppositely charged beads destabilizes globular states favoring elongated chain conformations. A coexistence of various metastable states was demonstrated for shorter chains of N = 128, 64, and 32.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| |
Collapse
|
30
|
Wang K, Ren XW, Wang XY, Xing SY, Zhu BL, Liu C. DNase I-Responsive Calixpyridinium-Mediated DNA Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10505-10511. [PMID: 31310550 DOI: 10.1021/acs.langmuir.9b01116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, cationic macrocyclic calixpyridinium was employed as a new strategy to condense DNA. Moreover, the degradation of DNA by DNase I could lead to the calixpyridinium-DNA supramolecular aggregates being dissipated. Therefore, the present system is potentially applicable as the targeted drug delivery model at DNase I-overexpressed sites.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Xiao-Wei Ren
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Xiao-Yan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Bo-Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Chang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| |
Collapse
|
31
|
Zinchenko A, Hiramatsu H, Yamaguchi H, Kubo K, Murata S, Kanbe T, Hazemoto N, Yoshikawa K, Akitaya T. Amino Acid Sequence of Oligopeptide Causes Marked Difference in DNA Compaction and Transcription. Biophys J 2019; 116:1836-1844. [PMID: 31076102 PMCID: PMC6531782 DOI: 10.1016/j.bpj.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 02/04/2023] Open
Abstract
Compaction of T4 phage DNA (166 kbp) by short oligopeptide octamers composed of two types of amino acids, four cationic lysine (K), and four polar nonionic serine (S) having different sequence order was studied by single-molecule fluorescent microscopy. We found that efficient DNA compaction by oligopeptide octamers depends on the geometrical match between phosphate groups of DNA and cationic amines. The amino acid sequence order in octamers dramatically affects the mechanism of DNA compaction, which changes from a discrete all-or-nothing coil-globule transition induced by a less efficient (K4S4) octamer to a continuous compaction transition induced by a (KS)4 octamer with a stronger DNA-binding character. This difference in the DNA compaction mechanism dramatically changes the packaging density, and the morphology of T4 DNA condensates: DNA is folded into ordered toroidal or rod morphologies during all-or-nothing compaction, whereas disordered DNA condensates are formed as a result of the continuous DNA compaction. Furthermore, the difference in DNA compaction mechanism has a certain effect on the inhibition scenario of the DNA transcription activity, which is gradual for the continuous DNA compaction and abrupt for the all-or-nothing DNA collapse.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan.
| | - Hiroyuki Hiramatsu
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | | | - Koji Kubo
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Shizuaki Murata
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Toshio Kanbe
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, School of Medicine, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Norio Hazemoto
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tatsuo Akitaya
- Department of Chemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
32
|
Abstract
In this review, we compare the circular dichroism (CD) spectra of liquid-crystalline dispersion (LCD) particles formed in PEG-containing aqueous-salt solutions with the purpose of determining the packing of ds DNA molecules in these particles. Depending on the osmotic pressure of the solution, the phase exclusion of ds DNA molecules at room temperature results in the formation of LCD particles with the cholesteric or the hexagonal packing of molecules. The heating of dispersion particles with the hexagonal packing of the ds DNA molecules results in a new phase transition, accompanied by an appearance of a new optically active phase of ds DNA molecules. Our results are rationalized by way of a concept of orientationally ordered “quasinematic” layers formed by ds DNA molecules, with a parallel alignment in the hexagonal structure. These layers can adopt a twisted configuration with a temperature increase; and as a result of this process, a new, helicoidal structure of dispersion particle is formed (termed as the “re-entrant” cholesteric phase). To prove the cholesteric pattern of ds DNA molecules in this phase, the “liquid-like” state of the dispersion particles was transformed into its “rigid” counterpart.
Collapse
|
33
|
Effect of Crowding Agent Polyethylene Glycol on Lyotropic Chromonic Liquid Crystal Phases of Disodium Cromoglycate. CRYSTALS 2019. [DOI: 10.3390/cryst9030160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adding crowding agents such as polyethylene glycol (PEG) to lyotropic chromonic liquid crystals (LCLCs) formed by water dispersions of materials such as disodium cromoglicate (DSCG) leads to a phase separation of the isotropic phase and the ordered phase. This behavior resembles nanoscale condensation of DNAs but occurs at the microscale. The structure of condensed chromonic regions in crowded dispersions is not yet fully understood, in particular, it is not clear whether the condensed domains are in the nematic (N) or the columnar (C) state. In this study, we report on small angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements of mixtures of aqueous solutions of DSCG with PEG and compare results to measurements of aqueous solutions of pure DSCG. X-ray measurements demonstrate that addition of PEG to DSCG in the N phase triggers appearance of the C phase that coexists with the isotropic (I) phase. Within the coexisting region, the lateral distance between the columns of the chromonic aggregates decreases as the temperature is increased.
Collapse
|
34
|
Friedrich SM, Bang R, Li A, Wang TH. Versatile Analysis of DNA-Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection. Anal Chem 2019; 91:2822-2830. [PMID: 30668901 DOI: 10.1021/acs.analchem.8b04733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA can interact with a wide array of molecules with a range of binding affinities, stoichiometry, and size-scales. We present a sensitive, quantitative, and versatile platform for sensing and evaluating these diverse DNA-biomolecule interactions and DNA conformational changes in free solution. Single molecule free solution hydrodynamic separation utilizes differences in hydrodynamic mobility to separate bound DNA-biomolecule complexes from unbound DNA and determine the associated size change that results from binding. Single molecule detection enables highly quantitative analysis of the fraction of DNA in the bound and unbound state to characterize binding behavior including affinity, stoichiometry, and cooperativity. A stacked injection scheme increases throughput to enable practical analysis of DNA-biomolecule interactions using only picoliters of sample per measurement. To demonstrate analysis of DNA-protein interactions on a local scale, we investigate binding of the E. coli single stranded binding protein to two DNA oligos both individually and in direct competition. We show that stoichiometry and cooperativity is a function of DNA length and verify these differences in binding characteristics through direct competition. To demonstrate analysis of DNA-small molecule interactions and global conformational changes, we also assess DNA condensation with the polyamine spermidine. We use hydrodynamic mobility to evaluate the size of spermidine-condensed DNA and single molecule burst analysis to evaluate DNA packing within the condensed globules relative to free-coiled DNA. This platform thus presents a versatile tool capable of quantitative and sensitive evaluation of diverse biomolecular interactions, complex properties, and binding characteristics.
Collapse
|
35
|
Zinchenko A, Inagaki E, Murata S. Encapsulation of Long Genomic DNA into a Confinement of a Polyelectrolyte Microcapsule: A Single-Molecule Insight. ACS OMEGA 2019; 4:458-464. [PMID: 31459343 PMCID: PMC6647962 DOI: 10.1021/acsomega.8b02865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/25/2018] [Indexed: 06/10/2023]
Abstract
Encapsulation of nucleic acids is an important technology in gene delivery, construction of "artificial cells", genome protection, and other fields. However, although there have been a number of protocols reported for encapsulation of short or oligomeric DNAs, encapsulation of genome-sized DNA containing hundreds of kilobase pairs is challenging because the length of such DNA is much longer compared to the size of a typical microcapsule. Here, we report a protocol for encapsulation of a ca. 60 μm contour length DNA into several micrometer-sized polyelectrolyte capsules. The encapsulation was carried out by (1) compaction of T4 DNA with multivalent cations, (2) entrapment of DNA condensates into micrometer-sized CaCO3 beads, (3) assembly of polyelectrolyte multilayers on a bead surface, and (4) dissolution of beads resulting in DNA unfolding and release. Fluorescence microscopy was used to monitor the process of long DNA encapsulation at the level of single-DNA molecules. The differences between long and short DNA encapsulation processes and morphologies of products are discussed.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental
Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Eisuke Inagaki
- Graduate School of Environmental
Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Shizuaki Murata
- Graduate School of Environmental
Studies, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
36
|
|
37
|
Liu L, Hyeon C. From octopus to dendrite—Semiflexible polyelectrolyte brush condensates in trivalent counterion solution. J Chem Phys 2018; 149:163302. [DOI: 10.1063/1.5027161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Lei Liu
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
38
|
Jiang Y, Lodge TP, Reineke TM. Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. J Am Chem Soc 2018; 140:11101-11111. [DOI: 10.1021/jacs.8b06309] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yaming Jiang
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 780] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
40
|
Zinchenko A, Berezhnoy NV, Wang S, Rosencrans WM, Korolev N, van der Maarel JR, Nordenskiöld L. Single-molecule compaction of megabase-long chromatin molecules by multivalent cations. Nucleic Acids Res 2018; 46:635-649. [PMID: 29145649 PMCID: PMC5778610 DOI: 10.1093/nar/gkx1135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 11/21/2022] Open
Abstract
To gain insight into the conformational properties and compaction of megabase-long chromatin molecules, we reconstituted chromatin from T4 phage DNA (165 kb) and recombinant human histone octamers (HO). The unimolecular compaction, induced by divalent Mg2+ or tetravalent spermine4+ cations, studied by single-molecule fluorescence microscopy (FM) and dynamic light scattering (DLS) techniques, resulted in the formation of 250-400 nm chromatin condensates. The compaction on this scale of DNA size is comparable to that of chromatin topologically associated domains (TAD) in vivo. Variation of HO loading revealed a number of unique features related to the efficiency of chromatin compaction by multivalent cations, the mechanism of compaction, and the character of partly compact chromatin structures. The observations may be relevant for how DNA accessibility in chromatin is maintained. Compaction of saturated chromatin, in turn, is accompanied by an intra-chain segregation at the level of single chromatin molecules, suggesting an intriguing scenario of selective activation/deactivation of DNA as a result of chromatin fiber heterogeneity due to the nucleosome positioning. We suggest that this chromatin, reconstituted on megabase-long DNA because of its large size, is a useful model of eukaryotic chromatin.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Nikolay V Berezhnoy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Sai Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - William M Rosencrans
- Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
41
|
Aranda-Barradas ME, Márquez M, Quintanar L, Santoyo-Salazar J, Espadas-Álvarez AJ, Martínez-Fong D, García-García E. Development of a Parenteral Formulation of NTS-Polyplex Nanoparticles for Clinical Purpose. Pharmaceutics 2018; 10:pharmaceutics10010005. [PMID: 29301386 PMCID: PMC5874818 DOI: 10.3390/pharmaceutics10010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022] Open
Abstract
Neurotensin (NTS)-polyplex is a nanoparticle system for targeted gene delivery that holds great promise for treatment of Parkinson’s disease and various types of cancer. However, the high instability in aqueous suspension of NTS-polyplex nanoparticles is a major limitation for their widespread clinical use. To overcome this obstacle, we developed a clinical formulation and a lyophilization process for NTS-polyplex nanoparticles. The reconstituted samples were compared with fresh preparations by using transmission electron microscopy, dynamic light scattering, electrophoretic mobility, circular dichroism and transfection assays in vitro and in vivo. Our formulation was able to confer lyoprotection and stability to these nanoparticles. In addition, transmission electron microscopy (TEM) and size exclusion-high performance liquid chromatography (SEC-HPLC) using a radioactive tag revealed that the interaction of reconstituted nanoparticles with fetal bovine or human serum did not alter their biophysical features. Furthermore, the formulation and the lyophilization procedure guaranteed functional NTS-polyplex nanoparticles for at least six months of storage at 25 °C and 60% relative humidity. Our results offer a pharmaceutical guide for formulation and long-term storage of NTS-polyplex nanoparticles that could be applied to other polyplexes.
Collapse
Affiliation(s)
- María E Aranda-Barradas
- Nanosciences and Nanotechnology Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Maripaz Márquez
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
- Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Liliana Quintanar
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Jaime Santoyo-Salazar
- Physics Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Armando J Espadas-Álvarez
- Physiology, Biophysics and Neurosciences Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Daniel Martínez-Fong
- Nanosciences and Nanotechnology Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
- Physiology, Biophysics and Neurosciences Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Elizabeth García-García
- Pharmaceutical Nanotechnology Department, Psicofarma, S.A. de C.V., Mexico City 14050, Mexico.
| |
Collapse
|
42
|
Dey A, Reddy G. Toroidal Condensates by Semiflexible Polymer Chains: Insights into Nucleation, Growth and Packing Defects. J Phys Chem B 2017; 121:9291-9301. [PMID: 28892379 DOI: 10.1021/acs.jpcb.7b07600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deciphering the principles of DNA condensation is important to understand problems such as genome packing and DNA compaction for delivery in gene therapy. DNA molecules condense into toroids and spindles upon the addition of multivalent ions. Nucleation of a loop in the semiflexible DNA chain is critical for both the toroid and spindle formation. To understand the structural differences in the nucleated loop, which cause bifurcation in the condensation pathways leading to toroid or spindle formation, we performed molecular dynamics simulations using a coarse-grained bead-spring polymer model. We find that the formation of a toroid or a spindle is correlated with the orientation of the chain segments close to the loop closure in the nucleated loop. Simulations show that toroids grow in size when spindles in solution interact with a pre-existing toroid and merge into it by spooling around the circumference of the toroid, forming multimolecular toroidal condensates. The merging of spindles with toroids is facile, indicating that this should be the dominant pathway through which the toroids grow in size. The Steinhardt bond order parameter analysis of the toroid cross section shows that the chains pack in a hexagonal fashion. In agreement with the experiments there are regions in the toroid with good hexagonal packing and also with considerable disorder. The disorder in packing is due to the defects, which are propagated during the growth of toroids. In addition to the well-known crossover defect, we have identified three other forms of defects, which perturb hexagonal packing. The new defects identified in the simulations are amenable to experimental verification.
Collapse
Affiliation(s)
- Atreya Dey
- Solid State and Structural Chemistry Unit, Indian Institute of Science , Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science , Bengaluru, Karnataka 560012, India
| |
Collapse
|
43
|
Sun T, Mirzoev A, Korolev N, Lyubartsev AP, Nordenskiöld L. All-Atom MD Simulation of DNA Condensation Using Ab Initio Derived Force Field Parameters of Cobalt(III)-Hexammine. J Phys Chem B 2017; 121:7761-7770. [DOI: 10.1021/acs.jpcb.7b03793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tiedong Sun
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander Mirzoev
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Nikolay Korolev
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander P. Lyubartsev
- Department
of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Nordenskiöld
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
44
|
Muramatsu A, Shimizu Y, Yoshikawa Y, Fukuda W, Umezawa N, Horai Y, Higuchi T, Fujiwara S, Imanaka T, Yoshikawa K. Naturally occurring branched-chain polyamines induce a crosslinked meshwork structure in a giant DNA. J Chem Phys 2017; 145:235103. [PMID: 28010109 DOI: 10.1063/1.4972066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We studied the effect of branched-chain polyamines on the folding transition of genome-sized DNA molecules in aqueous solution by the use of single-molecule observation with fluorescence microcopy. Detailed morphological features of polyamine/DNA complexes were characterized by atomic force microscopy (AFM). The AFM observations indicated that branched-chain polyamines tend to induce a characteristic change in the higher-order structure of DNA by forming bridges or crosslinks between the segments of a DNA molecule. In contrast, natural linear-chain polyamines cause a parallel alignment between DNA segments. Circular dichroism measurements revealed that branched-chain polyamines induce the A-form in the secondary structure of DNA, while linear-chain polyamines have only a minimum effect. This large difference in the effects of branched- and linear-chain polyamines is discussed in relation to the difference in the manner of binding of these polyamines to negatively charged double-stranded DNA.
Collapse
Affiliation(s)
- Akira Muramatsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yuta Shimizu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Wakao Fukuda
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuhei Horai
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shinsuke Fujiwara
- School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| | - Tadayuki Imanaka
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| |
Collapse
|
45
|
Nemkov NA, Stenishchev IV, Basharin AA. Nontrivial nonradiating all-dielectric anapole. Sci Rep 2017; 7:1064. [PMID: 28432331 PMCID: PMC5430923 DOI: 10.1038/s41598-017-01127-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Dynamic anapole is a promising element for future nonradiating devices, such as cloaked sources and sensors, quantum emitters, and especially the sources for observing dynamic Aharonov-Bohm effect. However, the anapole response can be damped by the Joule losses. In this paper we theoretically propose and experimentally demonstrate a novel type of active all-dielectric source, which is in some sense, realizes the elementary anapole of Afanasiev, and study its radiative/nonradiative regimes in the microwave range.
Collapse
Affiliation(s)
- Nikita A Nemkov
- National University of Science and Technology "MISiS", The Laboratory of Superconducting metamaterials, 119049, Moscow, Russia.,Moscow Institute of Physics and Technology (MIPT), 141700, Dolgoprudny, Moscow region, Russia
| | - Ivan V Stenishchev
- National University of Science and Technology "MISiS", The Laboratory of Superconducting metamaterials, 119049, Moscow, Russia.,National University of Science and Technology "MISiS", Department of Theoretical Physics and Quantum Technologies, 119049, Moscow, Russia
| | - Alexey A Basharin
- National University of Science and Technology "MISiS", The Laboratory of Superconducting metamaterials, 119049, Moscow, Russia. .,National University of Science and Technology "MISiS", Department of Theoretical Physics and Quantum Technologies, 119049, Moscow, Russia. .,Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, 1 rue Jussieu, 75005, Paris, France.
| |
Collapse
|
46
|
Xu J, Sinclair KD. One-carbon metabolism and epigenetic regulation of embryo development. Reprod Fertil Dev 2017; 27:667-76. [PMID: 25710200 DOI: 10.1071/rd14377] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
One-carbon (1C) metabolism consists of an integrated series of metabolic pathways that include the folate cycle and methionine remethylation and trans-sulfuration pathways. Most, but not all, 1C metabolic enzymes are expressed in somatic cells of the ovary, mammalian oocytes and in preimplantation embryos. The metabolic implications of this, with regard to the provision of methyl donors (e.g. betaine) and 1C cofactors (e.g. vitamin B12), together with consequences of polymorphic variances in genes encoding 1C enzymes, are not fully understood but are the subject of ongoing investigations at the authors' laboratory. However, deficiencies in 1C-related substrates and/or cofactors during the periconception period are known to lead to epigenetic alterations in DNA and histone methylation in genes that regulate key developmental processes in the embryo. Such epigenetic modifications have been demonstrated to negatively impact on the subsequent health and metabolism of offspring. For this reason, parental nutrition around the time of conception has become a focal point of investigation in many laboratories with the aim of providing improved nutritional advice to couples. These issues are considered in detail in this article, which offers a contemporary overview of the effects of 1C metabolism on epigenetic programming in mammalian gametes and the early embryo.
Collapse
Affiliation(s)
- Juan Xu
- School of Bioscience, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Kevin D Sinclair
- School of Bioscience, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
47
|
de Souza TP, Bossa GV, Stano P, Steiniger F, May S, Luisi PL, Fahr A. Vesicle aggregates as a model for primitive cellular assemblies. Phys Chem Chem Phys 2017; 19:20082-20092. [DOI: 10.1039/c7cp03751a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Primitive cell models help to understand the role that compartmentalization plays in origin of life scenarios.
Collapse
Affiliation(s)
- Tereza Pereira de Souza
- Institut für Pharmazie
- Friedrich Schiller Universität Jena
- Lessingstrasse 8
- D-07743 Jena
- Germany
| | | | - Pasquale Stano
- Science Department
- Roma Tre University
- Viale G. Marconi 446
- I-00146 Rome
- Italy
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum
- Friedrich Schiller Universität Jena
- D-07743 Jena
- Germany
| | - Sylvio May
- Department of Physics
- North Dakota State University
- Fargo North Dakota 58108-6050
- USA
| | - Pier Luigi Luisi
- Science Department
- Roma Tre University
- Viale G. Marconi 446
- I-00146 Rome
- Italy
| | - Alfred Fahr
- Institut für Pharmazie
- Friedrich Schiller Universität Jena
- Lessingstrasse 8
- D-07743 Jena
- Germany
| |
Collapse
|
48
|
Takeda KM, Osada K, Tockary TA, Dirisala A, Chen Q, Kataoka K. Poly(ethylene glycol) Crowding as Critical Factor To Determine pDNA Packaging Scheme into Polyplex Micelles for Enhanced Gene Expression. Biomacromolecules 2016; 18:36-43. [DOI: 10.1021/acs.biomac.6b01247] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Kensuke Osada
- Japan
Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Theofilus A. Tockary
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Anjaneyulu Dirisala
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | | | - Kazunori Kataoka
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| |
Collapse
|
49
|
Pardatscher G, Bracha D, Daube SS, Vonshak O, Simmel FC, Bar-Ziv RH. DNA condensation in one dimension. NATURE NANOTECHNOLOGY 2016; 11:1076-1081. [PMID: 27501315 DOI: 10.1038/nnano.2016.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
DNA can be programmed to assemble into a variety of shapes and patterns on the nanoscale and can act as a template for hybrid nanostructures such as conducting wires, protein arrays and field-effect transistors. Current DNA nanostructures are typically in the sub-micrometre range, limited by the sequence space and length of the assembled strands. Here we show that on a patterned biochip, DNA chains collapse into one-dimensional (1D) fibres that are 20 nm wide and around 70 µm long, each comprising approximately 35 co-aligned chains at its cross-section. Electron beam writing on a photocleavable monolayer was used to immobilize and pattern the DNA molecules, which condense into 1D bundles in the presence of spermidine. DNA condensation can propagate and split at junctions, cross gaps and create domain walls between counterpropagating fronts. This system is inherently adept at solving probabilistic problems and was used to find the possible paths through a maze and to evaluate stochastic switching circuits. This technique could be used to propagate biological or ionic signals in combination with sequence-specific DNA nanotechnology or for gene expression in cell-free DNA compartments.
Collapse
Affiliation(s)
- Günther Pardatscher
- Systems Biophysics and Bionanotechnology - E14, Physics-Department and ZNN, Technische Universität München, 85748 Garching, Germany
| | - Dan Bracha
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirley S Daube
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ohad Vonshak
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Friedrich C Simmel
- Systems Biophysics and Bionanotechnology - E14, Physics-Department and ZNN, Technische Universität München, 85748 Garching, Germany
- Nanosystems Initiative Munich, 80539 Munich, Germany
| | - Roy H Bar-Ziv
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
50
|
Henkin G, Berard D, Stabile F, Shayegan M, Leith JS, Leslie SR. Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces. Anal Chem 2016; 88:11100-11107. [DOI: 10.1021/acs.analchem.6b03149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gil Henkin
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Daniel Berard
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Francis Stabile
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Marjan Shayegan
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Jason S. Leith
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Sabrina R. Leslie
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| |
Collapse
|