1
|
Li J, Bauer R, Rentzeperis I, van Leeuwen C. Adaptive rewiring: a general principle for neural network development. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1410092. [PMID: 39534101 PMCID: PMC11554485 DOI: 10.3389/fnetp.2024.1410092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The nervous system, especially the human brain, is characterized by its highly complex network topology. The neurodevelopment of some of its features has been described in terms of dynamic optimization rules. We discuss the principle of adaptive rewiring, i.e., the dynamic reorganization of a network according to the intensity of internal signal communication as measured by synchronization or diffusion, and its recent generalization for applications in directed networks. These have extended the principle of adaptive rewiring from highly oversimplified networks to more neurally plausible ones. Adaptive rewiring captures all the key features of the complex brain topology: it transforms initially random or regular networks into networks with a modular small-world structure and a rich-club core. This effect is specific in the sense that it can be tailored to computational needs, robust in the sense that it does not depend on a critical regime, and flexible in the sense that parametric variation generates a range of variant network configurations. Extreme variant networks can be associated at macroscopic level with disorders such as schizophrenia, autism, and dyslexia, and suggest a relationship between dyslexia and creativity. Adaptive rewiring cooperates with network growth and interacts constructively with spatial organization principles in the formation of topographically distinct modules and structures such as ganglia and chains. At the mesoscopic level, adaptive rewiring enables the development of functional architectures, such as convergent-divergent units, and sheds light on the early development of divergence and convergence in, for example, the visual system. Finally, we discuss future prospects for the principle of adaptive rewiring.
Collapse
Affiliation(s)
- Jia Li
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Roman Bauer
- NICE Research Group, Computer Science Research Centre, University of Surrey, Guildford, United Kingdom
| | - Ilias Rentzeperis
- Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain
| | - Cees van Leeuwen
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
2
|
Baeza J, Coons BE, Lin Z, Riley J, Mendoza M, Peranteau WH, Garcia BA. In utero pulse injection of isotopic amino acids quantifies protein turnover rates during murine fetal development. CELL REPORTS METHODS 2024; 4:100713. [PMID: 38412836 PMCID: PMC10921036 DOI: 10.1016/j.crmeth.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Protein translational control is critical for ensuring that the fetus develops correctly and that necessary organs and tissues are formed and functional. We developed an in utero method to quantify tissue-specific protein dynamics by monitoring amino acid incorporation into the proteome after pulse injection. Fetuses of pregnant mice were injected with isotopically labeled lysine and arginine via the vitelline vein at various embyonic days, and organs and tissues were harvested. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates were calculated between 3.81E-5 and 0.424 h-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver vs. brain); however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates, which correlated with known physiological changes during mouse development.
Collapse
Affiliation(s)
- Josue Baeza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara E Coons
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John Riley
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariel Mendoza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Benjamin A Garcia
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Feng C, Wang J, Chu X. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes. J Mol Cell Biol 2023; 15:mjad042. [PMID: 37365687 PMCID: PMC10782906 DOI: 10.1093/jmcb/mjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
The organized three-dimensional chromosome architecture in the cell nucleus provides scaffolding for precise regulation of gene expression. When the cell changes its identity in the cell-fate decision-making process, extensive rearrangements of chromosome structures occur accompanied by large-scale adaptations of gene expression, underscoring the importance of chromosome dynamics in shaping genome function. Over the last two decades, rapid development of experimental methods has provided unprecedented data to characterize the hierarchical structures and dynamic properties of chromosomes. In parallel, these enormous data offer valuable opportunities for developing quantitative computational models. Here, we review a variety of large-scale polymer models developed to investigate the structures and dynamics of chromosomes. Different from the underlying modeling strategies, these approaches can be classified into data-driven ('top-down') and physics-based ('bottom-up') categories. We discuss their contributions to offering valuable insights into the relationships among the structures, dynamics, and functions of chromosomes and propose the perspective of developing data integration approaches from different experimental technologies and multidisciplinary theoretical/simulation methods combined with different modeling strategies.
Collapse
Affiliation(s)
- Cibo Feng
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Jin Wang
- Department of Chemistry and Physics, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
4
|
Gonçalves TM, Stewart CL, Baxley SD, Xu J, Li D, Gabel HW, Wang T, Avraham O, Zhao G. Towards a comprehensive regulatory map of Mammalian Genomes. RESEARCH SQUARE 2023:rs.3.rs-3294408. [PMID: 37841836 PMCID: PMC10571623 DOI: 10.21203/rs.3.rs-3294408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Genome mapping studies have generated a nearly complete collection of genes for the human genome, but we still lack an equivalently vetted inventory of human regulatory sequences. Cis-regulatory modules (CRMs) play important roles in controlling when, where, and how much a gene is expressed. We developed a training data-free CRM-prediction algorithm, the Mammalian Regulatory MOdule Detector (MrMOD) for accurate CRM prediction in mammalian genomes. MrMOD provides genome position-fixed CRM models similar to the fixed gene models for the mouse and human genomes using only genomic sequences as the inputs with one adjustable parameter - the significance p-value. Importantly, MrMOD predicts a comprehensive set of high-resolution CRMs in the mouse and human genomes including all types of regulatory modules not limited to any tissue, cell type, developmental stage, or condition. We computationally validated MrMOD predictions used a compendium of 21 orthogonal experimental data sets including thousands of experimentally defined CRMs and millions of putative regulatory elements derived from hundreds of different tissues, cell types, and stimulus conditions obtained from multiple databases. In ovo transgenic reporter assay demonstrates the power of our prediction in guiding experimental design. We analyzed CRMs located in the chromosome 17 using unsupervised machine learning and identified groups of CRMs with multiple lines of evidence supporting their functionality, linking CRMs with upstream binding transcription factors and downstream target genes. Our work provides a comprehensive base pair resolution annotation of the functional regulatory elements and non-functional regions in the mammalian genomes.
Collapse
Affiliation(s)
| | | | | | - Jason Xu
- Missouri University of Science & Technology
| | - Daofeng Li
- Washington University School of Medicine
| | | | - Ting Wang
- Washington University School of Medicine
| | | | | |
Collapse
|
5
|
Baier F, Gauye F, Perez-Carrasco R, Payne JL, Schaerli Y. Environment-dependent epistasis increases phenotypic diversity in gene regulatory networks. SCIENCE ADVANCES 2023; 9:eadf1773. [PMID: 37224262 DOI: 10.1126/sciadv.adf1773] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Mutations to gene regulatory networks can be maladaptive or a source of evolutionary novelty. Epistasis confounds our understanding of how mutations affect the expression patterns of gene regulatory networks, a challenge exacerbated by the dependence of epistasis on the environment. We used the toolkit of synthetic biology to systematically assay the effects of pairwise and triplet combinations of mutant genotypes on the expression pattern of a gene regulatory network expressed in Escherichia coli that interprets an inducer gradient across a spatial domain. We uncovered a preponderance of epistasis that can switch in magnitude and sign across the inducer gradient to produce a greater diversity of expression pattern phenotypes than would be possible in the absence of such environment-dependent epistasis. We discuss our findings in the context of the evolution of hybrid incompatibilities and evolutionary novelties.
Collapse
Affiliation(s)
- Florian Baier
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Florence Gauye
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | | | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Baeza J, Coons BE, Lin Z, Riley J, Mendoza M, Peranteau WH, Garcia BA. In utero pulse injection of isotopic amino acids quantifies protein turnover rates during murine fetal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541242. [PMID: 37293076 PMCID: PMC10245746 DOI: 10.1101/2023.05.18.541242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein translational control is highly regulated step in the gene expression program during mammalian development that is critical for ensuring that the fetus develops correctly and that all of the necessary organs and tissues are formed and functional. Defects in protein expression during fetal development can lead to severe developmental abnormalities or premature death. Currently, quantitative techniques to monitor protein synthesis rates in a developing fetus (in utero) are limited. Here, we developed a novel in utero stable isotope labeling approach to quantify tissue-specific protein dynamics of the nascent proteome during mouse fetal development. Fetuses of pregnant C57BL/6J mice were injected with isotopically labeled lysine (Lys8) and arginine (Arg10) via the vitelline vein at various gestational days. After treatment, fetal organs/tissues including brain, liver, lung, and heart were harvested for sample preparation and proteomic analysis. We show that the mean incorporation rate for injected amino acids into all organs was 17.50 ± 0.6%. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates (kobs) were calculated between 3.81E-5 and 0.424 hour-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver versus brain), however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates which correlated with known physiological changes during mouse development.
Collapse
Affiliation(s)
- Josue Baeza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104
- Contributed equally to this work
| | - Barbara E. Coons
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Contributed equally to this work
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - John Riley
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Mariel Mendoza
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - William H. Peranteau
- The Center for Fetal Research, Division of Pediatric General, Thoracis and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Benjamin A Garcia
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
7
|
Warren I, Moeller MM, Guiggey D, Chiang A, Maloy M, Ogoke O, Groth T, Mon T, Meamardoost S, Liu X, Thompson S, Szeglowski A, Thompson R, Chen P, Paulmurugan R, Yarmush ML, Kidambi S, Parashurama N. FOXA1/2 depletion drives global reprogramming of differentiation state and metabolism in a human liver cell line and inhibits differentiation of human stem cell-derived hepatic progenitor cells. FASEB J 2023; 37:e22652. [PMID: 36515690 DOI: 10.1096/fj.202101506rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022]
Abstract
FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.
Collapse
Affiliation(s)
- Iyan Warren
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Michael M Moeller
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Daniel Guiggey
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Alexander Chiang
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Tala Mon
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Saber Meamardoost
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Xiaojun Liu
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Sarah Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Antoni Szeglowski
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ryan Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Peter Chen
- Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, California, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, New York, USA
| |
Collapse
|
8
|
Mondal A, Mishra SK, Bhattacherjee A. Nucleosome breathing facilitates cooperative binding of pluripotency factors Sox2 and Oct4 to DNA. Biophys J 2022; 121:4526-4542. [PMID: 36321206 PMCID: PMC9748375 DOI: 10.1016/j.bpj.2022.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Critical lineage commitment events are staged by multiple transcription factors (TFs) binding to their cognate motifs, often positioned at nucleosome-enriched regions of chromatin. The underlying mechanism remains elusive due to difficulty in disentangling the heterogeneity in chromatin states. Using a novel coarse-grained model and molecular dynamics simulations, here we probe the association of Sox2 and Oct4 proteins that show clustered binding at the entry-exit region of a nucleosome. The model captures the conformational heterogeneity of nucleosome breathing dynamics that features repeated wrap-unwrap transitions of a DNA segment from one end of the nucleosome. During the dynamics, DNA forms bulges that diffuse stochastically and may regulate the target search dynamics of a protein by nonspecifically interacting with it. The overall search kinetics of the TF pair follows a "dissociation-compensated-association" mechanism, where Oct4 binding is facilitated by the association of Sox2. The cooperativity stems from a change in entropy caused by an alteration in the nucleosome dynamics upon TF binding. The binding pattern is consistent with a live-cell single-particle tracking experiment, suggesting the mechanism observed for clustered binding of a TF pair, which is a hallmark of cis-regulatory elements, has broader implications in understanding gene regulation in a complex chromatin environment.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
9
|
Di Natale MV, Carroccio SC, Dattilo S, Cocca M, Nicosia A, Torri M, Bennici CD, Musco M, Masullo T, Russo S, Mazzola A, Cuttitta A. Polymer aging affects the bioavailability of microplastics-associated contaminants in sea urchin embryos. CHEMOSPHERE 2022; 309:136720. [PMID: 36206916 DOI: 10.1016/j.chemosphere.2022.136720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) in the marine environment undergo complex weathering factors that can affect their ability to interact with different coexisting environmental contaminants (termed here co-contaminants). In this study, the influence of artificially aging using UV on the sorption of a complex mixture of co-contaminants onto MPs was investigated in order to provide meaningful hypotheses on their individual and combined toxicities on sea urchin embryos. A mixture of artificially aged MPs (PS particles and PA microfibers) combined with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or Cd or Cu, both alone and in a mix, were used to expose embryos of Paracentrotus lividus. The effects of polymer aging on co-contaminants bioavailability were assessed by measuring changes in the transcriptional profile of genes involved in oxidative-stress response and skeletogenic and endo-mesodermal specification. Changes in the sorption ability of MPs to co-contaminants in the aqueous phase highlighted that aging did not affect the sorption of BDE-47 and Cd on MPs, although a certain influence on Cu sorption was found. Despite no morphological effects in embryos at the gastrula stage after MPs/contaminants combinatorial exposure emerged, the greatest influence of the aging process was mainly found for combined exposures which included BDE-47. Finally, the exposure to multiple contaminants generated transcriptional profiles poorly related to those activated by single contaminant, at times suggesting a mixture-dependent different aging influence. These results open new scenarios on the controversial role of vector of co-contaminants for MPs, especially when complex and different types of mixtures were considered.
Collapse
Affiliation(s)
- Marilena Vita Di Natale
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | | | | | - Mariacristina Cocca
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| | - Aldo Nicosia
- National Research Council of Italy, Institute for Biomedical Research and Innovation (IRIB-CNR), Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| | - Marco Torri
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Carmelo Daniele Bennici
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Marianna Musco
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; LUMSA University - Via Filippo Parlatore n. 65, Palermo, Italy.
| | - Tiziana Masullo
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Stefania Russo
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | - Antonio Mazzola
- University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | - Angela Cuttitta
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; LUMSA University - Via Filippo Parlatore n. 65, Palermo, Italy.
| |
Collapse
|
10
|
Huang F, Abbas F, Rothenberg DO, Imran M, Fiaz S, Rehman NU, Amanullah S, Younas A, Ding Y, Cai X, Chen X, Yu L, Ye X, Jiang L, Ke Y, He Y. Molecular cloning, characterization and expression analysis of two 12-oxophytodienoate reductases (NtOPR1 and NtOPR2) from Nicotiana tabacum. Mol Biol Rep 2022; 49:5379-5387. [PMID: 35149935 DOI: 10.1007/s11033-022-07114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND 12-oxophytodienoic acid (OPDA) is a signaling molecule involved in defense and stress responses in plants. 12-oxophytodienoate reductase (OPR) is involved in the biosynthesis of jasmonic acid and trigger the conversion of OPDA into 3-oxo-2(2'[Z]-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0). METHODS AND RESULTS Sequence analysis revealed that Nicotiana tabacum 12-oxophytodienoate reductase 1 (OPR1) and OPR2 encoded polypeptides of 375 and 349 amino acids with molecular masses of 41.67 and 39.04 kilodaltons (kDa), respectively, while the deduced protein sequences of NtOPR1 and NtOPR2 showed high homology with other 12-oxophytodienoate reductases. BLAST (Basic local alignment search tool) analysis revealed that both NtOPRs belong to the family of Old Yellow Enzymes (OYE), and analysis of genomic DNA structure indicated that both genes include 5 exons and 4 introns. Phylogenetic analysis using MEGA X showed that NtOPR1 and NtOPR2 shared a close evolutionary relationship with Nicotiana attenuata 12-oxophytodienoate reductases. In silico analysis of subcellular localization indicated the probable locations of NtOPR1 and NtOPR2 to be the cytoplasm and the peroxisome, respectively. Tissue-specific expression assays via qRT-PCR revealed that NtOPR1 and NtOPR2 genes were highly expressed in Nicotiana tabacum roots, temperately expressed in leaves and flowers, while low expression was observed in stem tissue. CONCLUSIONS Presently, two 12-oxophytodienoate reductase genes (NtOPR1 and NtOPR2) were cloned and comprehensively characterized. Our findings provide comprehensive analyses that may guide future deep molecular studies of 12-oxophytodienoate reductases in Nicotiana tabacum.
Collapse
Affiliation(s)
- Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | | | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Yan Ding
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, 200082, Yunnan, China
| | - Xianjie Cai
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, 200082, Yunnan, China.
| | - Xiaolong Chen
- Tobacco Leaf Purchase Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming, 650021, China
| | - Lin Jiang
- Honghe Tobacco Corporation of Yunnan Province, Honghe, 661400, China
| | - Yanguo Ke
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China.
- College of Economics and Management, Kunming University, Kunming, China.
| | - Yuansheng He
- Lincang Company of Yunnan Tobacco Company, Lincang, 677000, China
| |
Collapse
|
11
|
Tarsis K, Gildor T, Morgulis M, Ben-Tabou de-Leon S. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo. Dev Dyn 2022; 251:1322-1339. [PMID: 35403290 PMCID: PMC9543741 DOI: 10.1002/dvdy.474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background Understanding how gene regulatory networks (GRNs) control developmental progression is a key to the mechanistic understanding of morphogenesis. The sea urchin larval skeletogenesis provides an excellent platform to tackle this question. In the early stages of sea urchin skeletogenesis, skeletogenic genes are uniformly expressed in the skeletogenic lineage. Yet, during skeletal elongation, skeletogenic genes are expressed in distinct spatial sub‐domains. The regulation of differential gene expression during late skeletogenesis is not well understood. Results Here we reveal the dynamic expression of the skeletogenic regulatory genes that define a specific regulatory state for each pair of skeletal rods, in the sea urchin Paracentrotus lividus. The vascular endothelial growth factor (VEGF) signaling, essential for skeleton formation, specifically controls the migration of cells that form the postoral and distal anterolateral skeletogenic rods. VEGF signaling also controls the expression of regulatory genes in cells at the tips of the postoral rods, including the transcription factors Pitx1 and MyoD1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes. Conclusions Our study illuminates the fine‐tuning of the regulatory system during the transition from early to late skeletogenesis that gives rise to rod‐specific regulatory states. The skeletogenic transcription factors form specific regulatory states in various skeletogenic sub‐populations. Late VEGF signaling controls the regulatory states at the tips of the post‐oral and anterolateral skeletal rods. VEGF signaling controls the expression of the transcription factors, MyoD1 and Pitx1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes.
Collapse
Affiliation(s)
- Kristina Tarsis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Miri Morgulis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
13
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
14
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
15
|
Jiang H, Gu S, Li K, Gai J. Two TGA Transcription Factor Members from Hyper-Susceptible Soybean Exhibiting Significant Basal Resistance to Soybean mosaic virus. Int J Mol Sci 2021; 22:11329. [PMID: 34768757 PMCID: PMC8583413 DOI: 10.3390/ijms222111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyu Gu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
17
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Winter MR, Morgulis M, Gildor T, Cohen AR, Ben-Tabou de-Leon S. Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization. PLoS Comput Biol 2021; 17:e1008780. [PMID: 33617532 PMCID: PMC7932551 DOI: 10.1371/journal.pcbi.1008780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/04/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn’t affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles. Biomineralization is a widespread, fundamental process by which organisms use minerals to harden their tissues. Mineral-bearing vesicles were observed in biomineralizing cells and play an essential role in biomineralization, yet little is known about their three-dimensional (3D) dynamics. Here we quantify 3D-vesicle-dynamics during calcite skeleton formation in sea urchin larvae, using lattice-light-sheet microscopy. We discover that calcium vesicles perform a diffusive motion in both calcifying and non-calcifying cells of the embryo. The diffusion coefficient and vesicle speed are higher in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. This difference is possibly due to the higher rigidity of the ectodermal cells as demonstrated by the enhanced signal of f-actin and myosinII activity in these cells compared to the skeletogenic cells. The motion of the vesicles in the skeletogenic cells, is not directed toward the biomineralization compartment but the vesicles slow down near it, possibly to deposit their content. Blocking skeletogenesis through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR), increases vesicle volume but doesn’t change the diffusion mode and the cytoskeleton markers in the cells. Our studies reveal the active diffusive motion of mineral bearing vesicles that is apparently defined by the mechanical properties of the cells.
Collapse
Affiliation(s)
- Mark R. Winter
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| | - Miri Morgulis
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Andrew R. Cohen
- Dept of Electrical Engineering, Drexel University, Pennsylvania, United States of America
| | - Smadar Ben-Tabou de-Leon
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| |
Collapse
|
19
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
20
|
Martino C, Byrne M, Roccheri MC, Chiarelli R. Interactive effects of increased temperature and gadolinium pollution in Paracentrotus lividus sea urchin embryos: a climate change perspective. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105750. [PMID: 33529976 DOI: 10.1016/j.aquatox.2021.105750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Gradual ocean warming and marine heatwaves represent major threats for marine organisms already facing other anthropogenic-derived hazards, such as chemical contamination in coastal areas. In this study, the combined effects of thermal stress and exposure to gadolinium (Gd), a metal used as a contrasting agent in medical imaging which enters the aquatic environment, were investigated in the embryos and larvae of the sea urchin Paracentrotus lividus. Embryos were exposed to six treatments of three temperatures (18 °C, 21 °C, 24 °C) and two Gd concentrations (control: 0 μM; treated: 20 μM). With respect to developmental progression, increased temperature accelerated development and achievement of the larval stage, while Gd-exposed embryos at the control temperature (18 °C) showed a general delay in development at 24 h post-fertilization (hpf), and a stunting effect and impaired skeleton growth at 48 hpf. Elevated temperatures at near-future projections (+3 °C, 21 °C) reduced the negative effects of Gd on development with a lower percentage of abnormality and improved skeleton growth. Combined extreme warming at present-day marine heatwave conditions (+6 °C, 24 °C) and Gd treatment resulted in a lower proportion of embryos reaching the advanced larval stages compared to the 21 °C + Gd. At the molecular level, western blot analysis showed that Gd was the main driver for the induction of heat shock protein (HSP60, HSP70) expression. At 48 hpf, temperature increase was the main driver for activation of additional cellular stress response strategies such as autophagy and apoptosis. Combined treatments showed the induction of HSP60 at 24 hpf and autophagic and apoptotic processes at 48 hpf. Treatments having low levels of HSPs expression showed high levels of apoptosis, and vice versa, clearly demonstrating the antagonistic effects of HSPs expression and apoptosis. Detection of fragmented DNA in apoptotic nuclei showed selective apoptosis, likely in extremely damaged cells. Our results indicate that the negative effects of Gd-exposure on P. lividus larval development and biomineralization will be mitigated by a near-future ocean warming, up to a thermotolerance threshold when negative synergistic effects were evident. Our data highlight the use of biomarkers as sensitive tools to detect environmental impacts as well as the need for a better understanding of the interactions between the multiple stressors faced by marine species in coastal environments.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, Palermo, 90128, Italy.
| | - Maria Byrne
- School of Life and Environmental Science, University of Sydney, NSW, Australia
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, Palermo, 90128, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, Palermo, 90128, Italy
| |
Collapse
|
21
|
Hatleberg WL, Hinman VF. Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change. Curr Top Dev Biol 2021; 141:39-73. [DOI: 10.1016/bs.ctdb.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Ebrahimi A, Nowzari-Dalini A, Jalili M, Masoudi-Nejad A. Appropriate time to apply control input to complex dynamical systems. Sci Rep 2020; 10:22035. [PMID: 33328499 PMCID: PMC7744535 DOI: 10.1038/s41598-020-78909-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Controlling a network structure has many potential applications many fields. In order to have an effective network control, not only finding good driver nodes is important, but also finding the optimal time to apply the external control signals to network nodes has a critical role. If applied in an appropriate time, one might be to control a network with a smaller control signals, and thus less energy. In this manuscript, we show that there is a relationship between the strength of the internal fluxes and the effectiveness of the external control signal. To be more effective, external control signals should be applied when the strength of the internal states is the smallest. We validate this claim on synthetic networks as well as a number of real networks. Our results may have important implications in systems medicine, in order to find the most appropriate time to inject drugs as a signal to control diseases.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Mahdi Jalili
- School of Engineering, RMIT University, Melbourne, Australia
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Dawson J, Lee PS, van Rienen U, Appali R. A General Theoretical Framework to Study the Influence of Electrical Fields on Mesenchymal Stem Cells. Front Bioeng Biotechnol 2020; 8:557447. [PMID: 33195123 PMCID: PMC7606877 DOI: 10.3389/fbioe.2020.557447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell dynamics involve cell proliferation and cell differentiation into cells of distinct functional type, such as osteoblasts, adipocytes, or chondrocytes. Electrically active implants influence these dynamics for the regeneration of the cells in damaged tissues. How applied electric field influences processes of individual stem cells is a problem mostly unaddressed. The mathematical approaches to study stem cell dynamics have focused on the stem cell population as a whole, without resolving individual cells and intracellular processes. In this paper, we present a theoretical framework to describe the dynamics of a population of stem cells, taking into account the processes of the individual cells. We study the influence of the applied electric field on the cellular processes. We test our mean-field theory with the experiments from the literature, involving in vitro electrical stimulation of stem cells. We show that a simple model can quantitatively describe the experimentally observed time-course behavior of the total number of cells and the total alkaline phosphate activity in a population of mesenchymal stem cells. Our results show that the stem cell differentiation rate is dependent on the applied electrical field, confirming published experimental findings. Moreover, our analysis supports the cell density-dependent proliferation rate. Since the experimental results are averaged over many cells, our theoretical framework presents a robust and sensitive method for determining the effect of applied electric fields at the scale of the individual cell. These results indicate that the electric field stimulation may be effective in promoting bone regeneration by accelerating osteogenic differentiation.
Collapse
Affiliation(s)
- Jonathan Dawson
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Poh Soo Lee
- Max Bergmann Center for Biomaterials, Institute for Materials Science, Technical University of Dresden, Dresden, Germany
| | - Ursula van Rienen
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.,Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
24
|
Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. Int J Mol Sci 2020; 21:ijms21218278. [PMID: 33167354 PMCID: PMC7663833 DOI: 10.3390/ijms21218278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.
Collapse
|
25
|
Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J 2020; 18:28. [PMID: 33132762 PMCID: PMC7592591 DOI: 10.1186/s12959-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Onset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Methods Databases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells. Results Atherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET - 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl - 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis. Conclusion The development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in 'switching' of vascular cells towards atherosclerosis.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
26
|
Chu X, Wang J. Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001572. [PMID: 33101859 PMCID: PMC7578896 DOI: 10.1002/advs.202001572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
As an essential and fundamental process of life, cell development involves large-scale reorganization of the 3D genome architecture, which forms the basis of gene regulation. Here, a landscape-switching model is developed to explore the microscopic chromosomal structural origin of embryonic stem cell (ESC) differentiation and somatic cell reprogramming. It is shown that chromosome structure exhibits significant compartment-switching in the unit of topologically associating domain. It is found that the chromosome during differentiation undergoes monotonic compaction with spatial repositioning of active and inactive chromosomal loci toward the chromosome surface and interior, respectively. In contrast, an overexpanded chromosome, which exhibits universal localization of loci at the chromosomal surface with erasing the structural characteristics formed in the somatic cells, is observed during reprogramming. An early distinct differentiation pathway from the ESC to the terminally differentiated cell, giving rise to early bifurcation on the Waddington landscape for the ESC differentiation is suggested. The theoretical model herein including the non-equilibrium effects, draws a picture of the highly irreversible cell differentiation and reprogramming processes, in line with the experiments. The predictions provide a physical understanding of cell differentiation and reprogramming from the chromosomal structural and dynamical perspective and can be tested by future experiments.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of ChemistryState University of New York at Stony BrookStony BrookNY11794USA
| | - Jin Wang
- Department of ChemistryState University of New York at Stony BrookStony BrookNY11794USA
- Department of Physics and AstronomyState University of New York at Stony BrookStony BrookNY11794USA
| |
Collapse
|
27
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
28
|
Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat Commun 2020; 11:4459. [PMID: 32900997 PMCID: PMC7479108 DOI: 10.1038/s41467-020-18090-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.
Collapse
|
29
|
Darbellay F, Necsulea A. Comparative Transcriptomics Analyses across Species, Organs, and Developmental Stages Reveal Functionally Constrained lncRNAs. Mol Biol Evol 2020; 37:240-259. [PMID: 31539080 PMCID: PMC6984365 DOI: 10.1093/molbev/msz212] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functionality of long noncoding RNAs (lncRNAs) is disputed. In general, lncRNAs are under weak selective pressures, suggesting that the majority of lncRNAs may be nonfunctional. However, although some surveys showed negligible phenotypic effects upon lncRNA perturbation, key biological roles were demonstrated for individual lncRNAs. Most lncRNAs with proven functions were implicated in gene expression regulation, in pathways related to cellular pluripotency, differentiation, and organ morphogenesis, suggesting that functional lncRNAs may be more abundant in embryonic development, rather than in adult organs. To test this hypothesis, we perform a multidimensional comparative transcriptomics analysis, across five developmental time points (two embryonic stages, newborn, adult, and aged individuals), four organs (brain, kidney, liver, and testes), and three species (mouse, rat, and chicken). We find that, overwhelmingly, lncRNAs are preferentially expressed in adult and aged testes, consistent with the presence of permissive transcription during spermatogenesis. LncRNAs are often differentially expressed among developmental stages and are less abundant in embryos and newborns compared with adult individuals, in agreement with a requirement for tighter expression control and less tolerance for noisy transcription early in development. For differentially expressed lncRNAs, we find that the patterns of expression variation among developmental stages are generally conserved between mouse and rat. Moreover, lncRNAs expressed above noise levels in somatic organs and during development show higher evolutionary conservation, in particular, at their promoter regions. Thus, we show that functionally constrained lncRNA loci are enriched in developing organs, and we suggest that many of these loci may function in an RNA-independent manner.
Collapse
Affiliation(s)
- Fabrice Darbellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anamaria Necsulea
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
30
|
Steffen MA, Rehan SM. Genetic signatures of dominance hierarchies reveal conserved cis-regulatory and brain gene expression underlying aggression in a facultatively social bee. GENES BRAIN AND BEHAVIOR 2019; 19:e12597. [PMID: 31264771 DOI: 10.1111/gbb.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
Agonistic interactions among individuals can result in the formation of dominance hierarches that can reinforce individual behavior and social status. Such dominance hierarches precede the establishment of reproductive dominance, division of labor and caste formation in highly social insect taxa. As such, deciphering the molecular basis of aggression is fundamental in understanding the mechanisms of social evolution. Assessing the proximate mechanisms of aggression in incipiently social bees can provide insights into the foundations of genomic mechanisms of social behavior. Here, we measured the effects of aggression on brain gene expression in the incipiently social bee, Ceratina australensis. We examine the brain transcriptomic differences between individuals who have experienced recurrent winning, losing, or a change in rank during repeated encounters. Using comparative analyses across taxa, we identify deeply conserved candidate genes, pathways, and regulatory networks for the formation of social hierarchies.
Collapse
Affiliation(s)
- Michael A Steffen
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
31
|
Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Proc Natl Acad Sci U S A 2019; 116:12353-12362. [PMID: 31152134 DOI: 10.1073/pnas.1902126116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. Sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells controlled by vascular endothelial growth factor (VEGF) signaling. The VEGF pathway is essential for biomineralization in echinoderms, while in many other phyla, across metazoans, it controls tubulogenesis and vascularization. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of vertebrate vascularization. Human VEGF rescues sea urchin VEGF knockdown, vesicle deposition into an internal cavity plays a significant role in both systems, and sea urchin VEGF signaling activates hundreds of genes, including biomineralization and interestingly, vascularization genes. Moreover, five upstream transcription factors and three signaling genes that drive spiculogenesis are homologous to vertebrate factors that control vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically coopted for biomineralization in the echinoderm phylum.
Collapse
|
32
|
De Anda V, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, Gámez-Tamariz N, Hernández-Rosales M, Eguiarte LE, Souza V. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach. Front Microbiol 2018; 9:2606. [PMID: 30555424 PMCID: PMC6280815 DOI: 10.3389/fmicb.2018.02606] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
To date, it remains unclear how anthropogenic perturbations influence the dynamics of microbial communities, what general patterns arise in response to disturbance, and whether it is possible to predict them. Here, we suggest the use of microbial mats as a model of study to reveal patterns that can illuminate the ecological processes underlying microbial dynamics in response to stress. We traced the responses to anthropogenic perturbation caused by water depletion in microbial mats from Cuatro Cienegas Basin (CCB), Mexico, by using a time-series spatially resolved analysis in a novel combination of three computational approaches. First, we implemented MEBS (Multi-genomic Entropy-Based Score) to evaluate the dynamics of major biogeochemical cycles across spatio-temporal scales with a single informative value. Second, we used robust Time Series-Ecological Networks (TS-ENs) to evaluate the total percentage of interactions at different taxonomic levels. Lastly, we utilized network motifs to characterize specific interaction patterns. Our results indicate that microbial mats from CCB contain an enormous taxonomic diversity with at least 100 phyla, mainly represented by members of the rare biosphere (RB). Statistical ecological analyses point out a clear involvement of anaerobic guilds related to sulfur and methane cycles during wet versus dry conditions, where we find an increase in fungi, photosynthetic, and halotolerant taxa. TS-ENs indicate that in wet conditions, there was an equilibrium between cooperation and competition (positive and negative relationships, respectively), while under dry conditions there is an over-representation of negative relationships. Furthermore, most of the keystone taxa of the TS-ENs at family level are members of the RB and the microbial mat core highlighting their crucial role within the community. Our results indicate that microbial mats are more robust to perturbation due to redundant functions that are likely shared among community members in the highly connected TS-ENs with density values close to one (≈0.9). Finally, we provide evidence that suggests that a large taxonomic diversity where all community members interact with each other (low modularity), the presence of permanent of low-abundant taxa, and an increase in competition can be potential buffers against environmental disturbance in microbial mats.
Collapse
Affiliation(s)
- Valerie De Anda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Ciudad de México, Mexico
| | - Jazmín Blaz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Augusto Cesar Poot-Hernández
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | | | - Niza Gámez-Tamariz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
33
|
Liver-enriched Genes are Associated with the Prognosis of Patients with Hepatocellular Carcinoma. Sci Rep 2018; 8:11197. [PMID: 30046116 PMCID: PMC6060164 DOI: 10.1038/s41598-018-29237-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Tissue-enriched genes are highly expressed in one particular tissue type and represent distinct physiological processes. The dynamic profile of tissue-enriched genes during tumorigenesis and progression remains largely unstudied. Here, we identified tissue-enriched genes from 12 tissue types based on RNA sequencing data from the Cancer Genome Atlas (TCGA), and found that the liver had the largest number of such genes among the 12 tissue types. The characteristics of liver-enriched genes were further investigated. Most liver-enriched genes were downregulated and metabolism-related genes, which were associated with pathological stage and dedifferentiation in patients with hepatocellular carcinoma (HCC). Hypermethylation might be a mechanism underlying the downregulation of liver-enriched genes. We constructed a liver-enriched gene set and demonstrated that it is associated with the prognosis of the patients with HCC both in the TCGA cohort and the Gene Expression Omnibus (GEO) datasets. Moreover, we discovered that the degree of the dissimilarity between tumors and normal tissues was correlated with the prognosis of patients with HCC and the biological behaviours of the tumors. These results will help identify prognostic biomarkers of patients with HCC, and enhance our understanding of the molecular mechanisms of hepatocarcinogenesis and progression.
Collapse
|
34
|
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol 2017; 6:rsob.160062. [PMID: 27307516 PMCID: PMC4929940 DOI: 10.1098/rsob.160062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion.
Collapse
Affiliation(s)
- Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Tharcisse Ukizintambara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rushan M Sabirov
- Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
35
|
Dong P, Liu Z. Shaping development by stochasticity and dynamics in gene regulation. Open Biol 2017; 7:170030. [PMID: 28469006 PMCID: PMC5451542 DOI: 10.1098/rsob.170030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Animal development is orchestrated by spatio-temporal gene expression programmes that drive precise lineage commitment, proliferation and migration events at the single-cell level, collectively leading to large-scale morphological change and functional specification in the whole organism. Efforts over decades have uncovered two 'seemingly contradictory' mechanisms in gene regulation governing these intricate processes: (i) stochasticity at individual gene regulatory steps in single cells and (ii) highly coordinated gene expression dynamics in the embryo. Here we discuss how these two layers of regulation arise from the molecular and the systems level, and how they might interplay to determine cell fate and to control the complex body plan. We also review recent technological advancements that enable quantitative analysis of gene regulation dynamics at single-cell, single-molecule resolution. These approaches outline next-generation experiments to decipher general principles bridging gaps between molecular dynamics in single cells and robust gene regulations in the embryo.
Collapse
Affiliation(s)
- Peng Dong
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Zhe Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| |
Collapse
|
36
|
Ahn J, Park YJ, Chen P, Lee TJ, Jeon YJ, Croce CM, Suh Y, Hwang S, Kwon WS, Pang MG, Kim CH, Lee SS, Lee K. Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells. PLoS One 2017; 12:e0175787. [PMID: 28414809 PMCID: PMC5393594 DOI: 10.1371/journal.pone.0175787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The testis has been identified as the organ in which a large number of tissue-enriched genes are present. However, a large portion of transcripts related to each stage or cell type in the testis still remains unknown. In this study, databases combined with confirmatory measurements were used to investigate testis-enriched genes, localization in the testis, developmental regulation, gene expression profiles of testicular disease, and signaling pathways. Our comparative analysis of GEO DataSets showed that 24 genes are predominantly expressed in testis. Cellular locations of 15 testis-enriched proteins in human testis have been identified and most of them were located in spermatocytes and round spermatids. Real-time PCR revealed that expressions of these 15 genes are significantly increased during testis development. Also, an analysis of GEO DataSets indicated that expressions of these 15 genes were significantly decreased in teratozoospermic patients and polyubiquitin knockout mice, suggesting their involvement in normal testis development. Pathway analysis revealed that most of those 15 genes are implicated in various sperm-related cell processes and disease conditions. This approach provides effective strategies for discovering novel testis-enriched genes and their expression patterns, paving the way for future characterization of their functions regarding infertility and providing new biomarkers for specific stages of spematogenesis.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Yoo-Jin Park
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Chen
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Tae Jin Lee
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Young-Jun Jeon
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeonbuk, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Republic of Korea
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, Republic of Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Mitash N, Tiwari S, Agnihotri S, Mandhani A. Bladder cancer: Micro RNAs as biomolecules for prognostication and surveillance. Indian J Urol 2017; 33:127-133. [PMID: 28469300 PMCID: PMC5396400 DOI: 10.4103/0970-1591.203412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Bladder cancer (BC) has varied clinical behavior in terms of recurrence and progression. Current pathological characteristics are insufficient to prognosticate the outcome of a given treatment. Cellular metabolic regulatory molecules, such as micro RNA (miRNA), could be a potential biomarker to prognosticate the treatment outcomes. Materials and Methods: PubMed and Google Scholar databases were searched for publications from 1990 to 2016, related to miRNA biogenesis, its function, and role in the pathogenesis of bladder as well as other cancers. Articles were searched using MeSH terms micrornas, micrornas AND neoplasm, and micrornas AND urinary bladder neoplasm. Out of the 108 publications reviewed 75 references were selected based on the clinical relevance. Articles were reviewed to assess the role of miRNA in various cancers and those in BC as a diagnostic or therapeutic tool. Results: More than 35 miRNAs were found to be associated with different pathways of cellular dedifferentiation, proliferation, and progression of BC as well as other cancers. A normal looking mucosa may show molecular changes preceding phenotypic changes in the form of varied expression of miR-129, miR-200a, and miR-205. miR-214, miR-99a, and miR-125b have been shown to be potential urinary biomarkers of BC. miRNAs could act as a repressor for protein molecule functioning or activator of different pathways to be used as a therapeutic target too. Conclusions: Despite certain limitations, such as instability, rapid plasma clearance, and targeting antagonist proteins of cellular metabolic pathways, miRNAs have potential to be studied as a biomarker or a therapeutic target for BC.
Collapse
Affiliation(s)
- Nilay Mitash
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shalini Agnihotri
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anil Mandhani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
38
|
Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaître JM, Boureux A, De Vos J. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 2016; 23:19-40. [PMID: 27655590 DOI: 10.1093/humupd/dmw035] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human long non-coding RNAs (lncRNAs) are an emerging category of transcripts with increasingly documented functional roles during development. LncRNAs and roles during human early embryo development have recently begun to be unravelled. OBJECTIVE AND RATIONALE This review summarizes the most recent knowledge on lncRNAs and focuses on their expression patterns and role during early human embryo development and in pluripotent stem cells (PSCs). Public mRNA sequencing (mRNA-seq) data were used to illustrate these expression signatures. SEARCH METHODS The PubMed and EMBASE databases were first interrogated using specific terms, such as 'lncRNAs', to get an extensive overview on lncRNAs up to February 2016, and then using 'human lncRNAs' and 'embryo', 'development', or 'PSCs' to focus on lncRNAs involved in human embryo development or in PSC.Recently published RNA-seq data from human oocytes and pre-implantation embryos (including single-cell data), PSC and a panel of normal and malignant adult tissues were used to describe the specific expression patterns of some lncRNAs in early human embryos. OUTCOMES The existence and the crucial role of lncRNAs in many important biological phenomena in each branch of the life tree are now well documented. The number of identified lncRNAs is rapidly increasing and has already outnumbered that of protein-coding genes. Unlike small non-coding RNAs, a variety of mechanisms of action have been proposed for lncRNAs. The functional role of lncRNAs has been demonstrated in many biological and developmental processes, including cell pluripotency induction, X-inactivation or gene imprinting. Analysis of RNA-seq data highlights that lncRNA abundance changes significantly during human early embryonic development. This suggests that lncRNAs could represent candidate biomarkers for developing non-invasive tests for oocyte or embryo quality. Finally, some of these lncRNAs are also expressed in human cancer tissues, suggesting that reactivation of an embryonic lncRNA program may contribute to human malignancies. WIDER IMPLICATIONS LncRNAs are emerging potential key players in gene expression regulation. Analysis of RNA-seq data from human pre-implantation embryos identified lncRNA signatures that are specific to this critical step. We anticipate that further studies will show that these new transcripts are major regulators of embryo development. These findings might also be used to develop new tests/treatments for improving the pregnancy success rate in IVF procedures or for regenerative medicine applications involving PSC.
Collapse
Affiliation(s)
- Julien Bouckenheimer
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Sébastien Riquier
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Cyrielle Hou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Nicolas Philippe
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Coretec, Montpellier, France
| | - Caroline Sansac
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | | | - Thérèse Commes
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France
| | - Jean-Marc Lemaître
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France
| | - Anthony Boureux
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France.,Department of Cell and Tissue Engineering, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France
| |
Collapse
|
39
|
White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW, Mocskos E, Bruno L, Bissiere S, Levi V, Plachta N. Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo. Cell 2016; 165:75-87. [PMID: 27015308 DOI: 10.1016/j.cell.2016.02.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Transcription factor (TF) binding to DNA is fundamental for gene regulation. However, it remains unknown how the dynamics of TF-DNA interactions change during cell-fate determination in vivo. Here, we use photo-activatable FCS to quantify TF-DNA binding in single cells of developing mouse embryos. In blastocysts, the TFs Oct4 and Sox2, which control pluripotency, bind DNA more stably in pluripotent than in extraembryonic cells. By contrast, in the four-cell embryo, Sox2 engages in more long-lived interactions than does Oct4. Sox2 long-lived binding varies between blastomeres and is regulated by H3R26 methylation. Live-cell tracking demonstrates that those blastomeres with more long-lived binding contribute more pluripotent progeny, and reducing H3R26 methylation decreases long-lived binding, Sox2 target expression, and pluripotent cell numbers. Therefore, Sox2-DNA binding predicts mammalian cell fate as early as the four-cell stage. More generally, we reveal the dynamic repartitioning of TFs between DNA sites driven by physiological epigenetic changes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Juan F Angiolini
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Yanina D Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Gurpreet Kaur
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Esteban Mocskos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Luciana Bruno
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina.
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
40
|
Wan Y, Tang K, Zhang D, Xie S, Zhu X, Wang Z, Lang Z. Transcriptome-wide high-throughput deep m(6)A-seq reveals unique differential m(6)A methylation patterns between three organs in Arabidopsis thaliana. Genome Biol 2015; 16:272. [PMID: 26667818 PMCID: PMC4714525 DOI: 10.1186/s13059-015-0839-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background m6A is a ubiquitous RNA modification in eukaryotes. Transcriptome-wide m6A patterns in Arabidopsis have been assayed recently. However, differential m6A patterns between organs have not been well characterized. Results Over two-third of the transcripts in Arabidopsis are modified by m6A. In contrast to a recent observation of m6A enrichment in 5′ mRNA, we find that m6A is distributed predominantly near stop codons. Interestingly, 85 % of the modified transcripts show high m6A methylation extent compared to their transcript level. The 290 highly methylated transcripts are mainly associated with transporters, stress responses, redox, regulation factors, and some non-coding RNAs. On average, the proportion of transcripts showing differential methylation between two plant organs is higher than that showing differential transcript levels. The transcripts with extensively higher m6A methylation in an organ are associated with the unique biological processes of this organ, suggesting that m6A may be another important contributor to organ differentiation in Arabidopsis. Highly expressed genes are relatively less methylated and vice versa, and different RNAs have distinct m6A patterns, which hint at mRNA fate. Intriguingly, most of the transposable element transcripts maintained a fragmented form with a relatively low transcript level and high m6A methylation in the cells. Conclusions This is the first study to comprehensively analyze m6A patterns in a variety of RNAs, the relationship between transcript level and m6A methylation extent, and differential m6A patterns across organs in Arabidopsis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0839-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yizhen Wan
- State Key Lab Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Dayong Zhang
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shaojun Xie
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zegang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA. .,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
41
|
Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus. Mar Genomics 2015; 25:89-94. [PMID: 26671332 DOI: 10.1016/j.margen.2015.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023]
Abstract
Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes.
Collapse
|
42
|
Leoncini M, Montangero M, Pellegrini M, Tillan KP. CMStalker: A Combinatorial Tool for Composite Motif Discovery. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1123-1136. [PMID: 26451824 DOI: 10.1109/tcbb.2014.2359444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlling the differential expression of many thousands different genes at any given time is a fundamental task of metazoan organisms and this complex orchestration is controlled by the so-called regulatory genome encoding complex regulatory networks: several Transcription Factors bind to precise DNA regions, so to perform in a cooperative manner a specific regulation task for nearby genes. The in silico prediction of these binding sites is still an open problem, notwithstanding continuous progress and activity in the last two decades. In this paper, we describe a new efficient combinatorial approach to the problem of detecting sets of cooperating binding sites in promoter sequences, given in input a database of Transcription Factor Binding Sites encoded as Position Weight Matrices. We present CMStalker, a software tool for composite motif discovery which embodies a new approach that combines a constraint satisfaction formulation with a parameter relaxation technique to explore efficiently the space of possible solutions. Extensive experiments with 12 data sets and 11 state-of-the-art tools are reported, showing an average value of the correlation coefficient of 0.54 (against a value 0.41 of the closest competitor). This improvements in output quality due to CMStalker is statistically significant.
Collapse
|
43
|
Rybakova KN, Bruggeman FJ, Tomaszewska A, Moné MJ, Carlberg C, Westerhoff HV. Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism. PLoS Comput Biol 2015; 11:e1004236. [PMID: 25909187 PMCID: PMC4409292 DOI: 10.1371/journal.pcbi.1004236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/11/2015] [Indexed: 12/12/2022] Open
Abstract
Activation of eukaryotic transcription is an intricate process that relies on a multitude of regulatory proteins forming complexes on chromatin. Chromatin modifications appear to play a guiding role in protein-complex assembly on chromatin. Together, these processes give rise to stochastic, often bursting, transcriptional activity. Here we present a model of eukaryotic transcription that aims to integrate those mechanisms. We use stochastic and ordinary-differential-equation modeling frameworks to examine various possible mechanisms of gene regulation by multiple transcription factors. We find that the assembly of large transcription factor complexes on chromatin via equilibrium-binding mechanisms is highly inefficient and insensitive to concentration changes of single regulatory proteins. An alternative model that lacks these limitations is a cyclic ratchet mechanism. In this mechanism, small protein complexes assemble sequentially on the promoter. Chromatin modifications mark the completion of a protein complex assembly, and sensitize the local chromatin for the assembly of the next protein complex. In this manner, a strict order of protein complex assemblies is attained. Even though the individual assembly steps are highly stochastic in duration, a sequence of them gives rise to a remarkable precision of the transcription cycle duration. This mechanism explains how transcription activation cycles, lasting for tens of minutes, derive from regulatory proteins residing on chromatin for only tens of seconds. Transcriptional bursts are an inherent feature of such transcription activation cycles. Bursting transcription can cause individual cells to remain in synchrony transiently, offering an explanation of transcriptional cycling as observed in cell populations, both on promoter chromatin status and mRNA levels.
Collapse
Affiliation(s)
- Katja N. Rybakova
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Aleksandra Tomaszewska
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Martijn J. Moné
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hans V. Westerhoff
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
- Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, United Kingdom
- Synthetic Systems Biology, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Ibrahim-Alobaide MA, Abdelsalam AG, Alobydi H, Rasul KI, Zhang R, Srivenugopal KS. Characterization of regulatory sequences in alternative promoters of hypermethylated genes associated with tumor resistance to cisplatin. Mol Clin Oncol 2015; 3:408-414. [PMID: 25798277 DOI: 10.3892/mco.2014.468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/23/2014] [Indexed: 01/03/2023] Open
Abstract
The development of cisplatin resistance in human cancers is controlled by multiple genes and leads to therapeutic failure. Hypermethylation of specific gene promoters is a key event in clinical resistance to cisplatin. Although the usage of multiple promoters is frequent in the transcription of human genes, the role of alternative promoters and their regulatory sequences have not yet been investigated in cisplatin resistance genes. In a new approach, we hypothesized that human cancers exploit the specific transcription factor-binding sites (TFBS) and CpG islands (CGIs) located in the alternative promoters of certain genes to acquire platinum drug resistance. To provide a useful resource of regulatory elements associated with cisplatin resistance, we investigated the TFBS and CGIs in 48 alternative promoters of 14 hypermethylated cisplatin resistance genes previously reported. CGIs prone to methylation were identified in 28 alternative promoters of 11 hypermethylated genes. The majority of alternative promoters harboring CGIs (93%) were clustered in one phylogenetic subclass, whereas the ones lacking CGIs were distributed in two unrelated subclasses. Regulatory sequences, initiator and TATA-532 prevailed over TATA-8 and were found in all the promoters. B recognition element (BRE) sequences were present only in alternative promoters harboring CGIs, but CCAAT and TAACC were found in both types of alternative promoters, whereas downstream promoter element sequences were significantly less frequent. Therefore, it was hypothesized that BRE and CGI sequences co-localized in alternative promoters of cisplatin resistance genes may be used to design molecular markers for drug resistance. A more extensive knowledge of alternative promoters and their regulatory elements in clinical resistance to cisplatin is likely to usher novel avenues for sensitizing human cancers to treatment.
Collapse
Affiliation(s)
- Mohammed A Ibrahim-Alobaide
- Department of Biomedical Sciences and Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Abdelsalam G Abdelsalam
- Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar ; Department of Statistics, Faculty of Economics and Political Sciences, Cairo University, Giza 12613, Egypt
| | | | | | - Ruiwen Zhang
- Department of Pharmaceutical Sciences and Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences and Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
45
|
Ryan AF, Ikeda R, Masuda M. The regulation of gene expression in hair cells. Hear Res 2015; 329:33-40. [PMID: 25616095 DOI: 10.1016/j.heares.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 01/21/2023]
Abstract
No genes have been discovered for which expression is limited only to inner ear hair cells. This is hardly surprising, since the number of mammalian genes is estimated to be 20-25,000, and each gene typically performs many tasks in various locations. Many genes are expressed in inner ear sensory cells and not in other cells of the labyrinth. However, these genes are also expressed in other locations, often in other sensory or neuronal cell types. How gene transcription is directed specifically to hair cells is unclear. Key transcription factors that act during development can specify cell phenotypes, and the hair cell is no exception. The transcription factor ATOH1 is well known for its ability to transform nonsensory cells of the developing inner ear into hair cells. And yet, ATOH1 also specifies different sensory cells at other locations, neuronal phenotypes in the brain, and epithelial cells in the gut. How it specifies hair cells in the inner ear, but alternate cell types in other locations, is not known. Studies of regulatory DNA and transcription factors are revealing mechanisms that direct gene expression to hair cells, and that determine the hair cell identity. The purpose of this review is to summarize what is known about such gene regulation in this key auditory and vestibular cell type.
Collapse
Affiliation(s)
- Allen F Ryan
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Departments of Neurosciences, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ryoukichi Ikeda
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Masatsugu Masuda
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Zeng F, Ju RJ, Li XT, Lu WL. Advances in investigations on the mechanism of cancer multidrug resistance and the liposomes-based treatment strategy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0154-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Large differences in global transcriptional regulatory programs of normal and tumor colon cells. BMC Cancer 2014; 14:708. [PMID: 25253512 PMCID: PMC4182786 DOI: 10.1186/1471-2407-14-708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/17/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dysregulation of transcriptional programs leads to cell malfunctioning and can have an impact in cancer development. Our study aims to characterize global differences between transcriptional regulatory programs of normal and tumor cells of the colon. METHODS Affymetrix Human Genome U219 expression arrays were used to assess gene expression in 100 samples of colon tumor and their paired adjacent normal mucosa. Transcriptional networks were reconstructed using ARACNe algorithm using 1,000 bootstrap replicates consolidated into a consensus network. Networks were compared regarding topology parameters and identified well-connected clusters. Functional enrichment was performed with SIGORA method. ENCODE ChIP-Seq data curated in the hmChIP database was used for in silico validation of the most prominent transcription factors. RESULTS The normal network contained 1,177 transcription factors, 5,466 target genes and 61,226 transcriptional interactions. A large loss of transcriptional interactions in the tumor network was observed (11,585; 81% reduction), which also contained fewer transcription factors (621; 47% reduction) and target genes (2,190; 60% reduction) than the normal network. Gene silencing was not a main determinant of this loss of regulatory activity, since the average gene expression was essentially conserved. Also, 91 transcription factors increased their connectivity in the tumor network. These genes revealed a tumor-specific emergent transcriptional regulatory program with significant functional enrichment related to colorectal cancer pathway. In addition, the analysis of clusters again identified subnetworks in the tumors enriched for cancer related pathways (immune response, Wnt signaling, DNA replication, cell adherence, apoptosis, DNA repair, among others). Also multiple metabolism pathways show differential clustering between the tumor and normal network. CONCLUSIONS These findings will allow a better understanding of the transcriptional regulatory programs altered in colon cancer and could be an invaluable methodology to identify potential hubs with a relevant role in the field of cancer diagnosis, prognosis and therapy.
Collapse
|
48
|
Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 2014; 156:1274-1285. [PMID: 24630727 PMCID: PMC4040518 DOI: 10.1016/j.cell.2014.01.062] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 11/21/2022]
Abstract
Enhancer-binding pluripotency regulators (Sox2 and Oct4) play a seminal role in embryonic stem (ES) cell-specific gene regulation. Here, we combine in vivo and in vitro single-molecule imaging, transcription factor (TF) mutagenesis, and ChIP-exo mapping to determine how TFs dynamically search for and assemble on their cognate DNA target sites. We find that enhanceosome assembly is hierarchically ordered with kinetically favored Sox2 engaging the target DNA first, followed by assisted binding of Oct4. Sox2/Oct4 follow a trial-and-error sampling mechanism involving 84-97 events of 3D diffusion (3.3-3.7 s) interspersed with brief nonspecific collisions (0.75-0.9 s) before acquiring and dwelling at specific target DNA (12.0-14.6 s). Sox2 employs a 3D diffusion-dominated search mode facilitated by 1D sliding along open DNA to efficiently locate targets. Our findings also reveal fundamental aspects of gene and developmental regulation by fine-tuning TF dynamics and influence of the epigenome on target search parameters.
Collapse
|
49
|
Hajjari M, Khoshnevisan A, Lemos B. Characterizing the Retinoblastoma 1 locus: putative elements for Rb1 regulation by in silico analysis. Front Genet 2014; 5:2. [PMID: 24478791 PMCID: PMC3904107 DOI: 10.3389/fgene.2014.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/03/2014] [Indexed: 11/13/2022] Open
Abstract
Limited understanding of the Rb1 locus hinders genetic and epigenetic analyses of Retinoblastoma, a childhood cancer of the nervous systems. In this study, we used in silico tools to investigate and review putative genetic and epigenetic elements of the Rb1 gene. We report transcription start sites, CpG islands, and regulatory moieties that are likely to influence transcriptional states of this gene. These might contribute genetic and epigenetic information modulating tissue-specific transcripts and expression levels of Rb1. The elements we identified include tandem repeats that reside within or next to CpG islands near Rb1's transcriptional start site, and that are likely to be polymorphic among individuals. Our analyses highlight the complexity of this gene and suggest opportunities and limitations for future studies of retinoblastoma, genetic counseling, and the accurate identification of patients at greater risk of developing the malignancy.
Collapse
Affiliation(s)
- Mohammadreza Hajjari
- Department of Genetics, Shahid Chamran University of Ahvaz Ahvaz, Iran ; Department of Genetics, School of Biological Sciences, Tarbiat Modares University Tehran, Iran
| | | | - Bernardo Lemos
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health Boston, MA, USA
| |
Collapse
|
50
|
Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120439. [PMID: 23980242 DOI: 10.1098/rstb.2012.0439] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10-20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.
Collapse
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | |
Collapse
|