1
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
2
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
4
|
Huang X, Li Z, Hu J, Yang Z, Liu Z, Zhang T, Zhang C, Yuan B. Knockout of Wdr1 results in cardiac hypertrophy and impaired cardiac function in adult mouse heart. Gene 2019; 697:40-47. [PMID: 30794912 DOI: 10.1016/j.gene.2019.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
WDR1 is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, accelerating ADF/cofilin-mediated actin disassembly. We had previously showed that WDR1-mediated actin dynamics is required for postnatal myocardial growth and adult myocardial maintenance in mice, in which the detailed phenotypes of adult cardiomyocyte-specific Wdr1 deletion mice had not been analyzed. In this study, we systematically analyzed the role of Wdr1 in adult mouse heart. Adult cardiomyocyte-specific Wdr1 deletion mice (cKO) exhibited cardiac hypertrophy and myocardial fibrosis. Echocardiographic study and electrocardiography revealed impaired contractile function, prolonged QT interval and Tpeak-Tend interval, and abnormal T-wave amplitude in cKO mice. Increased levels of sarcomeric proteins, adherens junction proteins and cofilin, and severe actin filament (F-actin) accumulations were observed in cKO mice heart. Taken together, this finding demonstrates that WDR1 is a critical factor for normal structure and function of adult mouse heart.
Collapse
Affiliation(s)
- Xia Huang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Ziyi Li
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Zihao Yang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China.
| | - Chenxi Zhang
- Central Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, PR China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China.
| |
Collapse
|
5
|
Chatzifrangkeskou M, Yadin D, Marais T, Chardonnet S, Cohen-Tannoudji M, Mougenot N, Schmitt A, Crasto S, Di Pasquale E, Macquart C, Tanguy Y, Jebeniani I, Pucéat M, Morales Rodriguez B, Goldmann WH, Dal Ferro M, Biferi MG, Knaus P, Bonne G, Worman HJ, Muchir A. Cofilin-1 phosphorylation catalyzed by ERK1/2 alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2018; 27:3060-3078. [PMID: 29878125 PMCID: PMC6097156 DOI: 10.1093/hmg/ddy215] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - David Yadin
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thibaut Marais
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, UPMC Paris 06, INSERM, UMS29 Omique, F-75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM, UMS28 Phénotypage du Petit Animal, Paris F-75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Silvia Crasto
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Elisa Di Pasquale
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Coline Macquart
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Yannick Tanguy
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Imen Jebeniani
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Michel Pucéat
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matteo Dal Ferro
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Maria-Grazia Biferi
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Howard J Worman
- Department of Medicine
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
6
|
Hu Z, Taylor DW, Edwards RJ, Taylor KA. Coupling between myosin head conformation and the thick filament backbone structure. J Struct Biol 2017; 200:334-342. [PMID: 28964844 DOI: 10.1016/j.jsb.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022]
Abstract
The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs.
Collapse
Affiliation(s)
- Zhongjun Hu
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA
| | - Dianne W Taylor
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA
| | - Robert J Edwards
- Duke University Medical Center, Department of Cell Biology, Durham, NC 27607, UK
| | - Kenneth A Taylor
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This article discusses recent advances and unsolved questions in our understanding of actin filament organization and dynamics in the red blood cell (RBC) membrane skeleton, a two-dimensional quasi-hexagonal network consisting of (α1β1)2-spectrin tetramers interconnecting short actin filament-based junctional complexes. RECENT FINDINGS In contrast to the long-held view that RBC actin filaments are static structures that do not exchange subunits with the cytosol, RBC actin filaments are dynamic structures that undergo subunit exchange and turnover, as evidenced by monomer incorporation experiments with rhodamine-actin and filament disruption experiments with actin-targeting drugs. The malaria-causing parasite, Plasmodium falciparum, co-opts RBC actin dynamics to construct aberrantly branched actin filament networks. Even though RBC actin filaments are dynamic, RBC actin filament lengths are highly uniform (∼37 nm). RBC actin filament lengths are thought to be stabilized by the capping proteins, tropomodulin-1 and αβ-adducin, as well as the side-binding protein tropomyosin, present in an equimolar combination of two isoforms, TM5b (Tpm1.9) and TM5NM1 (Tpm3.1). SUMMARY New evidence indicates that RBC actin filaments are not simply passive cytolinkers, but rather dynamic structures whose assembly and disassembly play important roles in RBC membrane function.
Collapse
|
8
|
Kooij V, Viswanathan MC, Lee DI, Rainer PP, Schmidt W, Kronert WA, Harding SE, Kass DA, Bernstein SI, Van Eyk JE, Cammarato A. Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy. Cardiovasc Res 2016; 110:238-48. [PMID: 26956799 PMCID: PMC4836629 DOI: 10.1093/cvr/cvw050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/28/2016] [Indexed: 11/17/2022] Open
Abstract
Aims Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling. Methods and results Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signalling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodelling, and silencing of profilin attenuates the hypertrophic response.
Collapse
Affiliation(s)
- Viola Kooij
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA National Heart and Lung Institute, Imperial College London, 4th floor, ICTEM, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Dong I Lee
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter P Rainer
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA Division of Cardiology, Medical University of Graz, Graz, Austria
| | - William Schmidt
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - William A Kronert
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, 4th floor, ICTEM, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Jennifer E Van Eyk
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Gokhin DS, Ochala J, Domenighetti AA, Fowler VM. Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development 2015; 142:4351-62. [PMID: 26586224 DOI: 10.1242/dev.129171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Abstract
The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4(-/-) mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4(-/-) muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Andrea A Domenighetti
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Ahram DF, Grozdanic SD, Kecova H, Henkes A, Collin RWJ, Kuehn MH. Variants in Nebulin (NEB) Are Linked to the Development of Familial Primary Angle Closure Glaucoma in Basset Hounds. PLoS One 2015; 10:e0126660. [PMID: 25938837 PMCID: PMC4418656 DOI: 10.1371/journal.pone.0126660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/06/2015] [Indexed: 12/12/2022] Open
Abstract
Several dog breeds are susceptible to developing primary angle closure glaucoma (PACG), which suggests a genetic basis for the disease. We have identified a four-generation Basset Hound pedigree with characteristic autosomal recessive PACG that closely recapitulates PACG in humans. Our aim is to utilize gene mapping and whole exome sequencing approaches to identify PACG-causing sequence variants in the Basset. Extensive clinical phenotyping of all pedigree members was conducted. SNP-chip genotyping was carried out in 9 affected and 15 unaffected pedigree members. Two-point and multipoint linkage analyses of genome-wide SNP data were performed using Superlink-Online SNP-1.1 and a locus was mapped to chromosome 19q with a maximum LOD score of 3.24. The locus contains 12 Ensemble predicted canine genes and is syntenic to a region on chromosome 2 in the human genome. Using exome-sequencing analysis, a possibly damaging, non-synonymous variant in the gene Nebulin (NEB) was found to segregate with PACG which alters a phylogenetically conserved Lysine residue. The association of this variants with PACG was confirmed in a secondary cohort of unrelated Basset Hounds (p = 3.4 × 10-4, OR = 15.3 for homozygosity). Nebulin, a protein that promotes the contractile function of sarcomeres, was found to be prominently expressed in the ciliary muscles of the anterior segment. Our findings may provide insight into the molecular mechanisms that underlie PACG. The phenotypic similarities of disease presentation in dogs and humans may enable the translation of findings made in this study to patients with PACG.
Collapse
Affiliation(s)
- Dina F. Ahram
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, United States of America
| | | | - Helga Kecova
- Animal Eye Consultants of Iowa, North Liberty, IA, United States of America
| | - Arjen Henkes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Perkins AD, Tanentzapf G. An ongoing role for structural sarcomeric components in maintaining Drosophila melanogaster muscle function and structure. PLoS One 2014; 9:e99362. [PMID: 24915196 PMCID: PMC4051695 DOI: 10.1371/journal.pone.0099362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022] Open
Abstract
Animal muscles must maintain their function while bearing substantial mechanical loads. How muscles withstand persistent mechanical strain is presently not well understood. The basic unit of muscle is the sarcomere, which is primarily composed of cytoskeletal proteins. We hypothesized that cytoskeletal protein turnover is required to maintain muscle function. Using the flight muscles of Drosophila melanogaster, we confirmed that the sarcomeric cytoskeleton undergoes turnover throughout adult life. To uncover which cytoskeletal components are required to maintain adult muscle function, we performed an RNAi-mediated knockdown screen targeting the entire fly cytoskeleton and associated proteins. Gene knockdown was restricted to adult flies and muscle function was analyzed with behavioural assays. Here we analyze the results of that screen and characterize the specific muscle maintenance role for several hits. The screen identified 46 genes required for muscle maintenance: 40 of which had no previously known role in this process. Bioinformatic analysis highlighted the structural sarcomeric proteins as a candidate group for further analysis. Detailed confocal and electron microscopic analysis showed that while muscle architecture was maintained after candidate gene knockdown, sarcomere length was disrupted. Specifically, we found that ongoing synthesis and turnover of the key sarcomere structural components Projectin, Myosin and Actin are required to maintain correct sarcomere length and thin filament length. Our results provide in vivo evidence of adult muscle protein turnover and uncover specific functional defects associated with reduced expression of a subset of cytoskeletal proteins in the adult animal.
Collapse
Affiliation(s)
- Alexander D. Perkins
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Li YH, Xue TY, He YZ, Du JW. Novel oncoprotein EPS8: a new target for anticancer therapy. Future Oncol 2014; 9:1587-94. [PMID: 24106906 DOI: 10.2217/fon.13.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
EPS8 was first identified as a tyrosine kinase substrate, that plays a role in EGFR-mediated mitogenic signaling. Recent research has shown that EPS8 is overexpressed in most types of cancer, for example breast cancer, colon cancer, cervical cancer and even hematologic malignancies. EPS8 is involved in many signaling pathways related to tumorigenesis, proliferation, migration and metastasis, and is a biomarker for poor prognosis of cancer patients. This review aims to provide a comprehensive picture of the role of EPS8 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on the potential role of EPS8 as a therapeutic cancer target.
Collapse
Affiliation(s)
- Yu-Hua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | | | | | | |
Collapse
|
13
|
Gokhin DS, Fowler VM. A two-segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol 2013; 14:113-9. [PMID: 23299957 DOI: 10.1038/nrm3510] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Correct specification of myofilament length is essential for efficient skeletal muscle contraction. The length of thin actin filaments can be explained by a novel 'two-segment' model, wherein the thin filaments consist of two concatenated segments, which are of either constant or variable length. This is in contrast to the classic 'nebulin ruler' model, which postulates that thin filaments are uniform structures, the lengths of which are dictated by nebulin. The two-segment model implicates position-specific microregulation of actin dynamics as a general principle underlying actin filament length and stability.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Fowler VM. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure. CURRENT TOPICS IN MEMBRANES 2013; 72:39-88. [PMID: 24210427 DOI: 10.1016/b978-0-12-417027-8.00002-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian erythrocyte, or red blood cell (RBC), is a unique experiment of nature: a cell with no intracellular organelles, nucleus or transcellular cytoskeleton, and a plasma membrane with uniform structure across its entire surface. By virtue of these specialized properties, the RBC membrane has provided a template for discovery of the fundamental actin filament network machine of the membrane skeleton, now known to confer mechanical resilience, anchor membrane proteins, and organize membrane domains in all cells. This chapter provides a historical perspective and critical analysis of the biochemistry, structure, and physiological functions of this actin filament network in RBCs. The core units of this network are nodes of ~35-37 nm-long actin filaments, interconnected by long strands of (α1β1)₂-spectrin tetramers, forming a 2D isotropic lattice with quasi-hexagonal symmetry. Actin filament length and stability is critical for network formation, relying upon filament capping at both ends: tropomodulin-1 at pointed ends and αβ-adducin at barbed ends. Tropomodulin-1 capping is essential for precise filament lengths, and is enhanced by tropomyosin, which binds along the short actin filaments. αβ-adducin capping recruits spectrins to sites near barbed ends, promoting network formation. Accessory proteins, 4.1R and dematin, also promote spectrin binding to actin and, with αβ-adducin, link to membrane proteins, targeting actin nodes to the membrane. Dissection of the molecular organization within the RBC membrane skeleton is one of the paramount achievements of cell biological research in the past century. Future studies will reveal the structure and dynamics of actin filament capping, mechanisms of precise length regulation, and spectrin-actin lattice symmetry.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
15
|
Marshall WF. Organelle size control systems: from cell geometry to organelle-directed medicine. Bioessays 2012; 34:721-4. [PMID: 22760545 DOI: 10.1002/bies.201200043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Johann D, Erlenkämper C, Kruse K. Length regulation of active biopolymers by molecular motors. PHYSICAL REVIEW LETTERS 2012; 108:258103. [PMID: 23004664 DOI: 10.1103/physrevlett.108.258103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 06/01/2023]
Abstract
For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.
Collapse
Affiliation(s)
- Denis Johann
- Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany
| | | | | |
Collapse
|
17
|
Dwyer J, Iskratsch T, Ehler E. Actin in striated muscle: recent insights into assembly and maintenance. Biophys Rev 2011; 4:17-25. [PMID: 28510000 DOI: 10.1007/s12551-011-0062-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/17/2011] [Indexed: 01/28/2023] Open
Abstract
Striated muscle cells are characterised by a para-crystalline arrangement of their contractile proteins actin and myosin in sarcomeres, the basic unit of the myofibrils. A multitude of proteins is required to build and maintain the structure of this regular arrangement as well as to ensure regulation of contraction and to respond to alterations in demand. This review focuses on the actin filaments (also called thin filaments) of the sarcomere and will discuss how they are assembled during myofibrillogenesis and in hypertrophy and how their integrity is maintained in the working myocardium.
Collapse
Affiliation(s)
- Joseph Dwyer
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Thomas Iskratsch
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.,Biological Sciences, Columbia University, 713 Fairchild Center, New York, NY, 10027, USA
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
18
|
Gokhin DS, Kim NE, Lewis SA, Hoenecke HR, D'Lima DD, Fowler VM. Thin-filament length correlates with fiber type in human skeletal muscle. Am J Physiol Cell Physiol 2011; 302:C555-65. [PMID: 22075691 DOI: 10.1152/ajpcell.00299.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Force production in skeletal muscle is proportional to the amount of overlap between the thin and thick filaments, which, in turn, depends on their lengths. Both thin- and thick-filament lengths are precisely regulated and uniform within a myofibril. While thick-filament lengths are essentially constant across muscles and species (∼1.65 μm), thin-filament lengths are highly variable both across species and across muscles of a single species. Here, we used a high-resolution immunofluorescence and image analysis technique (distributed deconvolution) to directly test the hypothesis that thin-filament lengths vary across human muscles. Using deltoid and pectoralis major muscle biopsies, we identified thin-filament lengths that ranged from 1.19 ± 0.08 to 1.37 ± 0.04 μm, based on tropomodulin localization with respect to the Z-line. Tropomodulin localized from 0.28 to 0.47 μm further from the Z-line than the NH(2)-terminus of nebulin in the various biopsies, indicating that human thin filaments have nebulin-free, pointed-end extensions that comprise up to 34% of total thin-filament length. Furthermore, thin-filament length was negatively correlated with the percentage of type 2X myosin heavy chain within the biopsy and shorter in type 2X myosin heavy chain-positive fibers, establishing the existence of a relationship between thin-filament lengths and fiber types in human muscle. Together, these data challenge the widely held assumption that human thin-filament lengths are constant. Our results also have broad relevance to musculoskeletal modeling, surgical reattachment of muscles, and orthopedic rehabilitation.
Collapse
Affiliation(s)
- David S Gokhin
- Dept. of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
20
|
Reconstitution of contractile actomyosin bundles. Biophys J 2011; 100:2698-705. [PMID: 21641315 DOI: 10.1016/j.bpj.2011.04.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/25/2023] Open
Abstract
Contractile actomyosin bundles are critical for numerous aspects of muscle and nonmuscle cell physiology. Due to the varying composition and structure of actomyosin bundles in vivo, the minimal requirements for their contraction remain unclear. Here, we demonstrate that actin filaments and filaments of smooth muscle myosin motors can self-assemble into bundles with contractile elements that efficiently transmit actomyosin forces to cellular length scales. The contractile and force-generating potential of these minimal actomyosin bundles is sharply sensitive to the myosin density. Above a critical myosin density, these bundles are contractile and generate large tensile forces. Below this threshold, insufficient cross-linking of F-actin by myosin thick filaments prevents efficient force transmission and can result in rapid bundle disintegration. For contractile bundles, the rate of contraction decreases as forces build and stalls under loads of ∼0.5 nN. The dependence of contraction speed and stall force on bundle length is consistent with bundle contraction occurring by several contractile elements connected in series. Thus, contraction in reconstituted actomyosin bundles captures essential biophysical characteristics of myofibrils while lacking numerous molecular constituents and structural signatures of sarcomeres. These results provide insight into nonsarcomeric mechanisms of actomyosin contraction found in smooth muscle and nonmuscle cells.
Collapse
|
21
|
Biochemical and cell biological analysis of actin in the nematode Caenorhabditis elegans. Methods 2011; 56:11-7. [PMID: 21945576 DOI: 10.1016/j.ymeth.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 11/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has long been a useful model organism for muscle research. Its body wall muscle is obliquely striated muscle and exhibits structural similarities with vertebrate striated muscle. Actin is the core component of the muscle thin filaments, which are highly ordered in sarcomeric structures in striated muscle. Genetic studies have identified genes that regulate proper organization and function of actin filaments in C. elegans muscle, and sequence of the worm genome has revealed a number of conserved candidate genes that may regulate actin. To precisely understand the functions of actin-binding proteins, such genetic and genomic studies need to be complemented by biochemical characterization of these actin-binding proteins in vitro. This article describes methods for purification and biochemical characterization of actin from C. elegans. Although rabbit muscle actin is commonly used to characterize actin-binding proteins from many eukaryotic organisms, we detect several quantitative differences between C. elegans actin and rabbit muscle actin, highlighting that use of actin from an appropriate source is important in some cases. Additionally, we describe probes for cell biological analysis of actin in C. elegans.
Collapse
|
22
|
Affiliation(s)
- Mathias Gautel
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| | | |
Collapse
|
23
|
Rui Y, Bai J, Perrimon N. Sarcomere formation occurs by the assembly of multiple latent protein complexes. PLoS Genet 2010; 6:e1001208. [PMID: 21124995 PMCID: PMC2987826 DOI: 10.1371/journal.pgen.1001208] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 10/15/2010] [Indexed: 12/04/2022] Open
Abstract
The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly. Muscle functionality relies on the correct assembly of myofibrils, which are composed of tandem arrays of basic functional contractile units called the sarcomeres. Many mutations in genes encoding sarcomeric proteins cause muscle diseases such as congenital myopathy and dilated cardiac hypertrophy. Understanding the process of sarcomere assembly is not only relevant to the understanding of how protein complexes interact to form complex supra-molecular structures, but also of great significance to medicine for muscle diseases. Here, by taking advantage of our newly developed primary muscle cell culture method, we reevaluate sarcomere assembly by systematically analyzing the functional relationship of sarcomeric proteins using RNA interference or genetic ablation techniques. Our analysis leads us to propose a “two-state” model whereby sarcomeric proteins exist either in the “chaotic” state with independently assembled differential functional complexes or the “highly ordered suprastructure” state made from these complexes. Because we fail to detect any previously hypothesized sarcomere assembly intermediates in our system, our data support the model that sarcomere assembly is a highly coordinated process mediated by multiple latent protein complexes and does not occur in a step-wise fashion.
Collapse
Affiliation(s)
- Yanning Rui
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (YR); (NP)
| | - Jianwu Bai
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (YR); (NP)
| |
Collapse
|
24
|
Sanger JM, Wang J, Gleason LM, Chowrashi P, Dube DK, Mittal B, Zhukareva V, Sanger JW. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken) 2010; 67:808-23. [PMID: 20886612 DOI: 10.1002/cm.20490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022]
Abstract
ArgBP2 (Arg/Abl-Binding Protein) is expressed at high levels in the heart and is localized in the Z-bands of mature myofibrils. ArgBP2 is a member of a small family of proteins that also includes vinexin and CAP (c-Cbl-associated protein), all characterized by having one sorbin homology (SOHO) domain and three C-terminal SH3 domains. Antibodies directed against ArgBP2 also react with the Z-bodies of myofibril precursors: premyofibrils and nascent myofibrils. Expression in cardiomyocytes of plasmids encoding Yellow Fluorescent Protein (YFP) fused to either full length ArgBP2, the SOHO, mid-ArgBP or the SH3 domains of ArgBP2 led to Z-band targeting of the fusion proteins, whereas an N-terminal fragment lacking these domains did not target to Z-bands. Although ArgBP2 is not found in skeletal muscle cells, YFP-ArgBP2 did target to Z-bodies and Z-bands in cultured myotubes. GST-ArgBP2-SH3 bound actin, α-actinin and vinculin proteins in blot overlays, cosedimentation assays, and EM negative staining techniques. Over-expression of ArgBP2 and ArgBP2-SH3 domains, but not YFP alone, led to loss of myofibrils in cardiomyocytes. Fluorescence recovery after photobleaching was used to measure the rapid dynamics of both the full length and some truncated versions of ArgBP2. Our results indicate that ArgBP2 may play an important role in the assembly and maintenance of myofibrils in cardiomyocytes.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
26
|
Ottenheijm CAC, Granzier H. Lifting the Nebula: Novel Insights into Skeletal Muscle Contractility. Physiology (Bethesda) 2010; 25:304-10. [DOI: 10.1152/physiol.00016.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nebulin is a giant protein and a constituent of the skeletal muscle sarcomere. The name of this protein refers to its unknown (i.e., nebulous) function. However, recent rapid advances reveal that nebulin plays important roles in the regulation of muscle contraction. When these functions of nebulin are compromised, muscle weakness ensues, as is the case in patients with nemaline myoptahy.
Collapse
Affiliation(s)
- Coen A. C. Ottenheijm
- Department of Physiology, University of Arizona, Tucson, Arizona; and
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
27
|
Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. ACTA ACUST UNITED AC 2010; 189:859-70. [PMID: 20498015 PMCID: PMC2878950 DOI: 10.1083/jcb.201001043] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nebulin molecular ruler hypothesis is challenged as a truncated form of nebulin can stabilize actin filaments that are longer than the mini-nebulin itself. Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology and Anatomy and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
28
|
Fukuda N, Terui T, Ishiwata S, Kurihara S. Titin-based regulations of diastolic and systolic functions of mammalian cardiac muscle. J Mol Cell Cardiol 2010; 48:876-81. [DOI: 10.1016/j.yjmcc.2009.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
29
|
Determination of the mobility of novel and established Caenorhabditis elegans sarcomeric proteins in vivo. Eur J Cell Biol 2010; 89:437-48. [PMID: 20226563 DOI: 10.1016/j.ejcb.2009.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/02/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022] Open
Abstract
A screen was instigated to identify novel protein components of the Caenorhabditis elegans sarcomere. The subcellular localisation of full-length GFP fusion proteins was examined, in transgenic animals, for 62 essentially uncharacterized genes thought to be expressed within bodywall muscle cells. Three genes, T03G6.3, C46G7.2 and K04A8.6, were identified for further study. K04A8.6::GFP only displayed a regular sarcomeric distribution sporadically. However, C46G7.2::GFP localised to the centre of A-bands and dense bodies and T03G6.3::GFP localised in the I-band, of the bodywall muscle sarcomeres, consistently. This success with such a small screen suggests that there are further minor components of the C. elegans sarcomere yet to be discovered. Fluorescence Recovery After Photobleaching (FRAP) was applied to live transgenic individuals to assess the mobility of T03G6.3 and C46G7.2 and other well-known constituents of the sarcomere in vivo. Proteins associated with the thin filaments showed dynamic exchange whilst those associated with thick filaments appeared more static. This is the first demonstration that there are sarcomeric proteins in C. elegans muscle cells in dynamic exchange and that the rates of exchange in vivo correspond in general terms with observations in other experimental systems.
Collapse
|
30
|
Amino M, Yoshioka K, Fujibayashi D, Hashida T, Furusawa Y, Zareba W, Ikari Y, Tanaka E, Mori H, Inokuchi S, Kodama I, Tanabe T. Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation. Am J Physiol Heart Circ Physiol 2010; 298:H1014-21. [DOI: 10.1152/ajpheart.00160.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A previous study from our laboratory has shown that a single targeted heavy ion irradiation (THIR; 15 Gy) to rabbit hearts increases connexin43 (Cx43) expression for 2 wk in association with an improvement of conduction, a decrease of the spatial inhomogeneity of repolarization, and a reduction of vulnerability to ventricular arrhythmias after myocardial infarction. This study investigated the time- and dose-dependent effects of THIR (5–15 Gy) on Cx43 expression in normal rabbit hearts ( n = 45). Five rabbits without THIR were used as controls. A significant upregulation of Cx43 protein and mRNA in the ventricular myocardium was recognized by immunohistochemistry, Western blotting, and real-time PCR from 2 wk up to 1 yr after a single THIR at 15 Gy. THIR ≥10 Gy caused a significant dose-dependent increase of Cx43 protein and mRNA 2 wk after THIR. Anterior, lateral, and posterior free wall of the left ventricle, interventricular septum, and right ventricular free wall were affected similarly by THIR in terms of Cx43 upregulation. The radiation-induced increase of immunolabeled Cx43 was observed not only at the intercalated disk region but also at the lateral surface of ventricular myocytes. The increase of immunoreactive Cx43 protein was predominant in the membrane fraction insoluble in Triton X-100, that is the Cx43 in the sarcolemma. In vivo examinations of the rabbits 1 yr after THIR (15 Gy) revealed no significant changes in ECGs and echocardiograms (left ventricular dimensions, contractility, and diastolic function), indicating no apparent late radiation injury. A single application of THIR causes upregulation and altered cellular distribution of Cx43 in the ventricles lasting for at least 1 yr. This long-lasting remodeling effect on gap junctions may open the pathway to novel therapy against life threatening ventricular arrhythmias in structural heart disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Wojciech Zareba
- Cardiology Division, University of Rochester Medical Center, Rochester, New York
| | | | - Etsuro Tanaka
- Department of Nutritional Sciences, Tokyo University of Agriculture, Tokyo; and
| | | | - Sadaki Inokuchi
- Critical Care and Emergency Medicine, Tokai University School of Medicine, Isehara
| | - Itsuo Kodama
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | | |
Collapse
|
31
|
The regulatory action of alpha-actinin on actin filaments is enhanced by cofilin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1143-53. [PMID: 19997845 DOI: 10.1007/s00249-009-0566-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
We have used fluorescence recovery after photobleaching to study the effect of muscle alpha-actinin on the structure of actin filaments in dilute solutions. Unexpectedly we found that alpha-actinin partitioned filaments into two types: those with a high mobility and those with low mobility. We have determined that the high mobility (smaller sized) population is too large to be simple monomeric actin:alpha-actinin complexes. Although it is known that cofilin encourages the transformation of alpha-actinin:actin gels into large meshworks of inter-digitating actin filament bundles (Maciver et al. 1991), we have found that the presence of cofilin also increases the cross-linking of actin filaments by alpha-actinin and hypothesize that this is due to cofilin's ability to alter the filament twist. This effectively makes more potential alpha-actinin binding sites per unit of actin filament. As expected from previous work, this effect was more marked at pH 6.5 than at pH 8.0. Both effects are likely to operate in cells to deny other actin-binding proteins access to binding these particular filaments and may explain how very different actin cytoskeletal structures may co-exist in the same cell at the same time.
Collapse
|
32
|
Erlenkämper C, Kruse K. Uncorrelated changes of subunit stability can generate length-dependent disassembly of treadmilling filaments. Phys Biol 2009; 6:046016. [DOI: 10.1088/1478-3975/6/4/046016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Yadavalli VK, Forbes JG, Wang K. Nanomechanics of full-length nebulin: an elastic strain gauge in the skeletal muscle sarcomere. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7496-505. [PMID: 19463013 PMCID: PMC2998391 DOI: 10.1021/la9009898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nebulin, a family of giant modular proteins (MW 700-800 kDa), acts as a F-actin thin filament ruler and calcium-linked regulator of actomyosin interaction. The nanomechanics of full length, native rabbit nebulin was investigated with an atomic force microscope by tethering, bracketing, and stretching full-length molecules via pairs of site-specific antibodies that were attached covalently, one to a protein resistant self-assembled monolayer of oligoethylene glycol and the other to the cantilever. Using this new nanomechanics platform that enables the identification of single molecule events via an unbiased analysis of detachment force and distance of all force curves, we showed that nebulin is elastic and extends to approximately 1 microm by external force up to an antibody detachment force of approximately 300-400 pN. Upon stretching, nebulin unravels and yields force spectra with craggy mountain range profiles with variable numbers and heights of force peaks. The peak spacings, analyzed by the model-independent, empirical Hilbert-Huang transform method, displayed underlying periodicities at approximately 15 and approximately 22 nm that may result from the unfolding of one or more nebulin modules between force peaks. Nebulin may act as an elastic strain gauge that interacts optimally with actin only under appropriate strain and stress. This stretch to match protein ruler may also exert a compressive force that stabilizes thin filaments against stress during contraction. We propose that the elasticity of nebulin is integral and essential in the muscle sarcomere.
Collapse
Affiliation(s)
- Vamsi K Yadavalli
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
34
|
A nebulin ruler does not dictate thin filament lengths. Biophys J 2009; 96:1856-65. [PMID: 19254544 DOI: 10.1016/j.bpj.2008.10.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 10/28/2008] [Indexed: 11/21/2022] Open
Abstract
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 mum from the Z-line, but Tmod localized 1.13-1.31 mum from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.
Collapse
|
35
|
Gokhin DS, Bang ML, Zhang J, Chen J, Lieber RL. Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties. Am J Physiol Cell Physiol 2009; 296:C1123-32. [PMID: 19295172 DOI: 10.1152/ajpcell.00503.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nebulin (NEB) is a large, rod-like protein believed to dictate actin thin filament length in skeletal muscle. NEB gene defects are associated with congenital nemaline myopathy. The functional role of NEB was investigated in gastrocnemius muscles from neonatal wild-type (WT) and NEB knockout (NEB-KO) mice, whose thin filaments have uniformly shorter lengths compared with WT mice. Isometric stress production in NEB-KO skeletal muscle was reduced by 27% compared with WT skeletal muscle on postnatal day 1 and by 92% on postnatal day 7, consistent with functionally severe myopathy. NEB-KO muscle was also more susceptible to a decline in stress production during a bout of 10 cyclic isometric tetani. Length-tension properties in NEB-KO muscle were altered in a manner consistent with reduced thin filament length, with length-tension curves from NEB-KO muscle demonstrating a 7.4% narrower functional range and an optimal length reduced by 0.13 muscle lengths. Expression patterns of myosin heavy chain isoforms and total myosin content did not account for the functional differences between WT and NEB-KO muscle. These data indicate that NEB is essential for active stress production, maintenance of functional integrity during cyclic activation, and length-tension properties consistent with a role in specifying normal thin filament length. Continued analysis of NEB's functional properties will strengthen the understanding of force transmission and thin filament length regulation in skeletal muscle and may provide insights into the molecular processes that give rise to nemaline myopathy.
Collapse
Affiliation(s)
- David S Gokhin
- Dept. of Orthopaedic Surgery, University of California-San Diego and Veterans Affairs Medical Center, San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
36
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamashiro S, Cox EA, Baillie DL, Hardin JD, Ono S. Sarcomeric actin organization is synergistically promoted by tropomodulin, ADF/cofilin, AIP1 and profilin in C. elegans. J Cell Sci 2008; 121:3867-77. [PMID: 18984629 DOI: 10.1242/jcs.040477] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sarcomeric organization of thin and thick filaments in striated muscle is important for the efficient generation of contractile forces. Sarcomeric actin filaments are uniform in their lengths and regularly arranged in a striated pattern. Tropomodulin caps the pointed end of actin filaments and is a crucial regulator of sarcomere assembly. Here, we report unexpected synergistic functions of tropomodulin with enhancers of actin filament dynamics in Caenorhabditis elegans striated muscle. Pointed-end capping by tropomodulin inhibited actin filament depolymerization by ADF/cofilin in vitro. However, in vivo, the depletion of tropomodulin strongly enhanced the disorganization of sarcomeric actin filaments in ADF/cofilin mutants, rather than antagonistically suppressing the phenotype. Similar phenotypic enhancements by tropomodulin depletion were also observed in mutant backgrounds for AIP1 and profilin. These in vivo effects cannot be simply explained by antagonistic effects of tropomodulin and ADF/cofilin in vitro. Thus, we propose a model in which tropomodulin and enhancers of actin dynamics synergistically regulate elongation and shortening of actin filaments at the pointed end.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
38
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
39
|
Littlefield RS, Fowler VM. Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 2008; 19:511-9. [PMID: 18793739 DOI: 10.1016/j.semcdb.2008.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 08/19/2008] [Indexed: 01/18/2023]
Abstract
The actin (thin) filaments in striated muscle are highly regulated and precisely specified in length to optimally overlap with the myosin (thick) filaments for efficient myofibril contraction. Here, we review and critically discuss recent evidence for how thin filament lengths are controlled in vertebrate skeletal, vertebrate cardiac, and invertebrate (arthropod) sarcomeres. Regulation of actin polymerization dynamics at the slow-growing (pointed) ends by the capping protein tropomodulin provides a unified explanation for how thin filament lengths are physiologically optimized in all three muscle types. Nebulin, a large protein thought to specify thin filament lengths in vertebrate skeletal muscle through a ruler mechanism, may not control pointed-end actin dynamics directly, but instead may stabilize a large core region of the thin filament. We suggest that this stabilizing function for nebulin modifies the lengths primarily specified by pointed-end actin dynamics to generate uniform filament lengths in vertebrate skeletal muscle. We suggest that nebulette, a small homolog of nebulin, may stabilize a correspondingly shorter core region and allow individual thin filament lengths to vary according to working sarcomere lengths in vertebrate cardiac muscle. We present a unified model for thin filament length regulation where these two mechanisms cooperate to tailor thin filament lengths for specific contractile environments in diverse muscles.
Collapse
Affiliation(s)
- Ryan S Littlefield
- Center for Cell Dynamics, University of Washington, Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
| | | |
Collapse
|
40
|
Fukuda N, Granzier HL, Ishiwata S, Kurihara S. Physiological functions of the giant elastic protein titin in mammalian striated muscle. J Physiol Sci 2008; 58:151-9. [PMID: 18477421 DOI: 10.2170/physiolsci.rv005408] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 05/11/2008] [Indexed: 11/05/2022]
Abstract
The striated muscle sarcomere contains the third filament comprising the giant elastic protein titin, in addition to thick and thin filaments. Titin is the primary source of nonactomyosin-based passive force in both skeletal and cardiac muscles, within the physiological sarcomere length range. Titin's force repositions the thick filaments in the center of the sarcomere after contraction or stretch and thus maintains sarcomere length and structural integrity. In the heart, titin determines myocardial wall stiffness, thereby regulating ventricular filling. Recent studies have revealed the mechanisms involved in the fine tuning of titin-based passive force via alternative splicing or posttranslational modification. It has also been discovered that titin performs roles that go beyond passive force generation, such as a regulation of the Frank-Starling mechanism of the heart. In this review, we discuss how titin regulates passive and active properties of striated muscle during normal muscle function and during disease.
Collapse
Affiliation(s)
- Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, 105-8461 Japan.
| | | | | | | |
Collapse
|
41
|
Udaka J, Ohmori S, Terui T, Ohtsuki I, Ishiwata S, Kurihara S, Fukuda N. Disuse-induced preferential loss of the giant protein titin depresses muscle performance via abnormal sarcomeric organization. ACTA ACUST UNITED AC 2008; 131:33-41. [PMID: 18166625 PMCID: PMC2174161 DOI: 10.1085/jgp.200709888] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Persistent muscle weakness due to disuse-associated skeletal muscle atrophy limits the quality of life for patients with various diseases and individuals who are confined to bed. Fibers from disused muscle exhibit a marked reduction in active force production, which can exacerbate motor function, coupled with the well-known loss of muscle quantity. Despite recent understanding of the signaling pathways leading to the quantity loss, the molecular mechanisms of the depressed qualitative performance still remain elusive. Here we show that long-term disuse causes preferential loss of the giant sarcomere protein titin, associated with changes in physiologic muscle function. Ca2+ sensitivity of active force decreased following 6 wk of hindlimb immobilization in the soleus muscle of the rat, accompanied by a shift in the length-active force relationship to the shorter length side. Our analyses revealed marked changes in the disused sarcomere, with shortening of thick and thin filaments responsible for altered length dependence and expansion of interfilament lattice spacing leading to a reduction in Ca2+ sensitivity. These results provide a novel view that disuse-induced preferential titin loss results in altered muscle function via abnormal sarcomeric organization.
Collapse
Affiliation(s)
- Jun Udaka
- Department of Cell Physiology, The Jikei University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pappas CT, Bhattacharya N, Cooper JA, Gregorio CC. Nebulin interacts with CapZ and regulates thin filament architecture within the Z-disc. Mol Biol Cell 2008; 19:1837-47. [PMID: 18272787 DOI: 10.1091/mbc.e07-07-0690] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of nebulin (modules 160-164) in blot overlay, solid-phase binding, tryptophan fluorescence, and SPOTs membrane assays. Binding of nebulin modules 160-164 to CapZ does not affect the ability of CapZ to cap actin filaments in vitro, consistent with our observation that neither of the two C-terminal actin binding regions of CapZ is necessary for its interaction with nebulin. Knockdown of nebulin in chick skeletal myotubes using small interfering RNA results in a reduction of assembled CapZ, and, strikingly, a loss of the uniform alignment of the barbed ends of the actin filaments. These data suggest that nebulin restricts the position of thin filament barbed ends to the Z-disc via a direct interaction with CapZ. We propose a novel molecular model of Z-disc architecture in which nebulin interacts with CapZ from a thin filament of an adjacent sarcomere, thus providing a structural link between sarcomeres.
Collapse
Affiliation(s)
- Christopher T Pappas
- Departments of Cell Biology and Anatomy and *Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721-0106, USA
| | | | | | | |
Collapse
|
43
|
Expanded CTG repeats within the DMPK 3' UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc Natl Acad Sci U S A 2008; 105:2646-51. [PMID: 18272483 DOI: 10.1073/pnas.0708519105] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe skeletal muscle wasting is the most debilitating symptom experienced by individuals with myotonic dystrophy type 1 (DM1). We present a DM1 mouse model with inducible and skeletal muscle-specific expression of large tracts of CTG repeats in the context of DMPK exon 15. These mice recapitulate many findings associated with DM1 skeletal muscle, such as CUG RNA foci with Muscleblind-like 1 (MBNL1) protein colocalization, misregulation of developmentally regulated alternative splicing events, myotonia, characteristic histological abnormalities, and increased CUGBP1 protein levels. Importantly, this DM1 mouse model recapitulates severe muscle wasting, which has not been reported in models in which depletion of MBNL1 is the main feature. Using these mice, we discovered previously undescribed alternative splicing events that are responsive to CUGBP1 and not MBNL, and these events were found to be misregulated in individuals with DM1. Our results indicate that increased CUGBP1 protein levels are associated with DMPK-CUG RNA expression, suggesting a role for CUGBP1-specific splicing or cytoplasmic functions in muscle wasting.
Collapse
|
44
|
SALS, a WH2-Domain-Containing Protein, Promotes Sarcomeric Actin Filament Elongation from Pointed Ends during Drosophila Muscle Growth. Dev Cell 2007; 13:828-42. [DOI: 10.1016/j.devcel.2007.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 07/20/2007] [Accepted: 10/04/2007] [Indexed: 11/21/2022]
|
45
|
Ono S, Mohri K, Ono K. Molecular and biochemical characterization of kettin in Caenorhabditis elegans. J Muscle Res Cell Motil 2007; 26:449-54. [PMID: 16453162 DOI: 10.1007/s10974-005-9028-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Kettin is a unique member of the connectin/titin family of muscle elastic proteins, which has repetitive immunoglobulin-like domains that are separated by weakly conserved linker sequences. In striated muscles of insects and crayfish, kettin binds to actin filaments and localizes to the Z-disc and its adjacent region in the I-band. Recent sequence analysis of invertebrate connectin/titin (also known as SLS proteins) has revealed that kettin is a splice variant of connectin/titin. In contrast, in the nematode Caenorhabditis elegans, the kettin gene is independent of the genes for other connectin/titin-related proteins. Immunofluorescent localization of kettin shows that it localizes to the I-bands in the obliquely striated body wall muscle. Therefore, C. elegans is an attractive model system to study specific functions of kettin in muscle cells.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Whitehead Research Building, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
46
|
Gokulrangan G, Zaidi A, Michaelis ML, Schöneich C. Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. J Neurochem 2007; 100:1494-504. [PMID: 17254026 DOI: 10.1111/j.1471-4159.2006.04334.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Nitrotyrosine (3-NT) is a useful biomarker of increasing oxidative stress and protein nitration during biological aging. The proteomic analysis of cerebellar homogenate from Fisher 344/Brown Norway (BN/F1) rats shows an age-dependent increase in protein nitration, monitored by western-blot analysis after two-dimensional gel electrophoresis (2DE), mainly in the acidic region. Analysis of in-gel digests by nanoelectrospray (NSI)-MS/MS resulted in the identification of 16 putatively nitrated proteins. The selective isolation of nitrated proteins using immunoprecipitation, followed by SDS-PAGE and in-gel digest/NSI-MS/MS analysis led to the identification of 22 putatively nitrated proteins, of which 7 were identical to those detected after 2DE. When proteins were separated by solution isoelectrofocusing and analyzed by NSI MS/MS, we obtained MS/MS spectra of 3-NT containing peptides of four proteins - similar to ryanodine receptor 3, low density lipoprotein related receptor 2, similar to nebulin-related anchoring protein isoform C and 2,3 cyclic nucleotide 3-phosphodiesterase. Although the functional consequences of protein nitration for these targets are not yet known, our proteomic experiments serve as a first screen for the more targeted analysis of nitrated proteins from aging cerebellum for functional characterization.
Collapse
|
47
|
Kawai M, Ishiwata S. Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 2006; 27:455-68. [PMID: 16909198 PMCID: PMC2896216 DOI: 10.1007/s10974-006-9075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
The technique of selective removal of the thin filament by gelsolin in bovine cardiac muscle fibres, and reconstitution of the thin filament from isolated proteins is reviewed, and papers that used reconstituted preparations are discussed. By comparing the results obtained in the absence/presence of regulatory proteins tropomyosin (Tm) and troponin (Tn), it is concluded that the role of Tm and Tn in force generation is not only to expose the binding site of actin to myosin, but also to modify actin for better stereospecific and hydrophobic interaction with myosin. This conclusion is further supported by experiments that used a truncated Tm mutant and the temperature study of reconstituted fibres. The conclusion is consistent with the hypothesis that there are three states in the thin filament: blocked state, closed state, and open state. Tm is the major player to produce these effects, with Tn playing the role of Ca2+ sensing and signal transmission mechanism. Experiments that changed the number of negative charges at the N-terminal finger of actin demonstrates that this part of actin is essential to promote the strong interaction between actin and myosin molecules, in addition to the well-known weak interaction that positions the myosin head at the active site of actin prior to force generation.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
48
|
Bang ML, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. ACTA ACUST UNITED AC 2006; 173:905-16. [PMID: 16769824 PMCID: PMC2063916 DOI: 10.1083/jcb.200603119] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nebulin is a giant modular sarcomeric protein that has been proposed to play critical roles in myofibrillogenesis, thin filament length regulation, and muscle contraction. To investigate the functional role of nebulin in vivo, we generated nebulin-deficient mice by using a Cre knock-in strategy. Lineage studies utilizing this mouse model demonstrated that nebulin is expressed uniformly in all skeletal muscles. Nebulin-deficient mice die within 8-11 d after birth, with symptoms including decreased milk intake and muscle weakness. Although myofibrillogenesis had occurred, skeletal muscle thin filament lengths were up to 25% shorter compared with wild type, and thin filaments were uniform in length both within and between muscle types. Ultrastructural studies also demonstrated a critical role for nebulin in the maintenance of sarcomeric structure in skeletal muscle. The functional importance of nebulin in skeletal muscle function was revealed by isometric contractility assays, which demonstrated a dramatic reduction in force production in nebulin-deficient skeletal muscle.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ono K, Yu R, Mohri K, Ono S. Caenorhabditis elegans kettin, a large immunoglobulin-like repeat protein, binds to filamentous actin and provides mechanical stability to the contractile apparatuses in body wall muscle. Mol Biol Cell 2006; 17:2722-34. [PMID: 16597697 PMCID: PMC1474806 DOI: 10.1091/mbc.e06-02-0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kettin is a large actin-binding protein with immunoglobulin-like (Ig) repeats, which is associated with the thin filaments in arthropod muscles. Here, we report identification and functional characterization of kettin in the nematode Caenorhabditis elegans. We found that one of the monoclonal antibodies that were raised against C. elegans muscle proteins specifically reacts with kettin (Ce-kettin). We determined the entire cDNA sequence of Ce-kettin that encodes a protein of 472 kDa with 31 Ig repeats. Arthropod kettins are splice variants of much larger connectin/titin-related proteins. However, the gene for Ce-kettin is independent of other connectin/titin-related genes. Ce-kettin localizes to the thin filaments near the dense bodies in both striated and nonstriated muscles. The C-terminal four Ig repeats and the adjacent non-Ig region synergistically bind to actin filaments in vitro. RNA interference of Ce-kettin caused weak disorganization of the actin filaments in body wall muscle. This phenotype was suppressed by inhibiting muscle contraction by a myosin mutation, but it was enhanced by tetramisole-induced hypercontraction. Furthermore, Ce-kettin was involved in organizing the cytoplasmic portion of the dense bodies in cooperation with alpha-actinin. These results suggest that kettin is an important regulator of myofibrillar organization and provides mechanical stability to the myofibrils during contraction.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Robinson Yu
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kurato Mohri
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
50
|
Abstract
A recent study has shown that the giant protein nebulin maintains the lengths of actin filaments in striated muscle cells. Although on the surface, nebulin looks like a molecular ruler, it may be playing a more complex role in regulating dynamics at the pointed end of actin filaments in striated muscle.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Cell Biology- CB163, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|