1
|
Herold I, Zolti A, Garduño-Rosales M, Wang Z, López-Giráldez F, Mouriño-Pérez RR, Townsend JP, Ulitsky I, Yarden O. The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:672696. [PMID: 37744127 PMCID: PMC10512220 DOI: 10.3389/ffunb.2021.672696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 09/26/2023]
Abstract
The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avihai Zolti
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis, Department of Genetics, Yale University, New Haven, CT, United States
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Geva P, Komoshvili K, Liberman-Aronov S. Two- and Three-Dimensional Tracking of MFA2 mRNA Molecules in Mating Yeast. Cells 2020; 9:E2151. [PMID: 32977598 PMCID: PMC7650813 DOI: 10.3390/cells9102151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Intracellular mRNA transport contributes to the spatio-temporal regulation of mRNA function and localized translation. In the budding yeast, Saccharomyces cerevisiae, asymmetric mRNA transport localizes ~30 specific mRNAs including those encoding polarity and secretion factors, to the bud tip. The underlying process involves RNA-binding proteins (RBPs), molecular motors, processing bodies (PBs), and the actin cytoskeleton. Recently, pheromone a-factor expression in mating yeast was discovered to depend on proper localization of its mRNA, MFA2 mRNAs in conjunction with PBs cluster at the shmoo tip to form "mating bodies", from which a-factor is locally expressed. The mechanism ensuring the correct targeting of mRNA to the shmoo tip is poorly understood. Here we analyzed the kinetics and trajectories of MFA2 mRNA transport in living, alpha-factor treated yeast. Two- (2D) and three-dimensional (3D) analyses allowed us to reconstruct the granule tracks and estimate granule velocities. Tracking analysis of single MFA2 mRNA granules, labeled using a fluorescent aptamer system, demonstrated three types movement: vibrational, oscillatory and translocational. The mRNA granule transport was complex; a granule could change its movement behavior and composition during its journey to the shmoo. Processing body assembly and the actin-based motor, Myo4p, were involved in movement of MFA2 mRNA to the shmoo, but neither was required, indicating that multiple mechanisms for translocation were at play. Our visualization studies present a dynamic view of the localization mechanism in shmoo-bearing cells.
Collapse
Affiliation(s)
- Polina Geva
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel;
| | | | | |
Collapse
|
3
|
Zhang Q, Meng X, Li D, Chen S, Luo J, Zhu L, Singer RH, Gu W. Binding of DEAD-box helicase Dhh1 to the 5'-untranslated region of ASH1 mRNA represses localized translation of ASH1 in yeast cells. J Biol Chem 2017; 292:9787-9800. [PMID: 28450395 PMCID: PMC5465500 DOI: 10.1074/jbc.m117.776492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Local translation of specific mRNAs is regulated by dynamic changes in their subcellular localization, and these changes are due to complex mechanisms controlling cytoplasmic mRNA transport. The budding yeast Saccharomyces cerevisiae is well suited to studying these mechanisms because many of its transcripts are transported from the mother cell to the budding daughter cell. Here, we investigated the translational control of ASH1 mRNA after transport and localization. We show that although ASH1 transcripts were translated after they reached the bud tip, some mRNAs were bound by the RNA-binding protein Puf6 and were non-polysomal. We also found that the DEAD-box helicase Dhh1 complexed with the untranslated ASH1 mRNA and Puf6. Loss of Dhh1 affected local translation of ASH1 mRNA and resulted in delocalization of ASH1 transcript in the bud. Forcibly shifting the non-polysomal ASH1 mRNA into polysomes was associated with Dhh1 dissociation. We further demonstrated that Dhh1 is not recruited to ASH1 mRNA co-transcriptionally, suggesting that it could bind to ASH1 mRNA within the cytoplasm. Of note, Dhh1 bound to the 5'-UTR of ASH1 mRNA and inhibited its translation in vitro These results suggest that after localization to the bud tip, a portion of the localized ASH1 mRNA becomes translationally inactive because of binding of Dhh1 and Puf6 to the 5'- and 3'-UTRs of ASH1 mRNA.
Collapse
Affiliation(s)
- Qianjun Zhang
- From the Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515031, China and
| | - Xiuhua Meng
- the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Delin Li
- From the Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515031, China and
| | - Shaoyin Chen
- From the Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515031, China and
| | - Jianmin Luo
- From the Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515031, China and
| | - Linjie Zhu
- From the Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515031, China and
| | - Robert H Singer
- the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Wei Gu
- From the Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515031, China and
| |
Collapse
|
4
|
Percipalle P. New insights into co-transcriptional sorting of mRNA for cytoplasmic transport during development. Semin Cell Dev Biol 2014; 32:55-62. [DOI: 10.1016/j.semcdb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/11/2014] [Indexed: 12/01/2022]
|
5
|
Carrascoso I, Sánchez-Jiménez C, Izquierdo JM. Long-term reduction of T-cell intracellular antigens leads to increased beta-actin expression. Mol Cancer 2014; 13:90. [PMID: 24766723 PMCID: PMC4113145 DOI: 10.1186/1476-4598-13-90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The permanent down-regulated expression of T-cell intracellular antigen (TIA) proteins in HeLa cells improves cytoskeleton-mediated functions such as cell proliferation and tumor growth. METHODS Making use of human and mouse cells with knocked down/out expression of T-cell intracellular antigen 1 (TIA1) and/or TIA1 related/like (TIAR/TIAL1) proteins and classical RNA (e.g. reverse transcription-quantitative polymerase chain reaction, polysomal profiling analysis using sucrose gradients, immunoblotting, immunoprecipitation, electrophoretic mobility shift assays, ultraviolet light crosslinking and poly (A+) test analysis) and cellular (e.g. immunofluorescence microscopy and quimeric mRNA transfections) biology methods, we have analyzed the regulatory role of TIA proteins in the post-transcriptional modulation of beta-actin (ACTB) mRNA. RESULTS Our observations show that the acquisition of above cellular capacities is concomitant with increased expression levels of the actin beta subunit (ACTB) protein. Regulating TIA abundance does not modify ACTB mRNA levels, however, an increase of ACTB mRNA translation is observed. This regulatory capacity of TIA proteins is linked to the ACTB mRNA 3'-untranslated region (3'-UTR), where these proteins could function as RNA binding proteins. The expression of GFP from a chimeric reporter containing human ΑCΤΒ 3'-UTR recapitulates the translational control found by the endogenous ACTB mRNA in the absence of TIA proteins. Additionally, murine embryonic fibroblasts (MEF) knocked out for TIA1 rise mouse ACTB protein expression compared to the controls. Once again steady-state levels of mouse ACTB mRNA remained unchanged. CONCLUSIONS Collectively, these results suggest that TIA proteins can function as long-term regulators of the ACTB mRNA metabolism in mouse and human cells.
Collapse
Affiliation(s)
| | | | - José M Izquierdo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, DP 28049 Madrid, Spain.
| |
Collapse
|
6
|
Keder A, Carmena A. Cytoplasmic protein motility and polarized sorting during asymmetric cell division. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:797-808. [DOI: 10.1002/wdev.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Hermesh O, Jansen RP. Take the (RN)A-train: localization of mRNA to the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2519-25. [PMID: 23353632 DOI: 10.1016/j.bbamcr.2013.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/25/2022]
Abstract
Protein translocation into the endoplasmic reticulum (ER) generally requires targeting of mRNAs encoding secreted or membrane proteins to the ER membrane. The prevalent view is that these mRNAs are delivered co-translationally, using the signal recognition particle (SRP) pathway. Here, SRP delivers signal sequence-containing proteins together with associated ribosomes and mRNA to the SRP receptor present on the ER surface. Recent studies demonstrate the presence of alternative pathways to recruit mRNAs to ER or to specific subdomains of the ER independent of SRP or translation. Such targeting of specific mRNAs to the ER subdomains allows the cell to sort proteins before translocation or to ensure co-localization of ER and mRNAs at specific locations. Translation-independent association of mRNAs involves ER-linked RNA-binding proteins and represents an alternative pathway of mRNA delivery to the ER. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Orit Hermesh
- Interfaculty Institute for Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | | |
Collapse
|
8
|
Fundakowski J, Hermesh O, Jansen RP. Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic 2012; 13:1642-52. [PMID: 22994588 DOI: 10.1111/tra.12011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 12/23/2022]
Abstract
Localization of messenger RNA (mRNAs) contributes to generation and maintenance of cellular asymmetry, embryonic development and neuronal function. The She1-3 protein machinery in Saccharomyces cerevisiae localizes >30 mRNAs to the bud tip, including 13 mRNAs encoding membrane or secreted proteins. Ribonucleoprotein (RNP) particles can co-localize with tubular endoplasmic reticulum (ER) structures that form the initial elements for segregation of cortical ER (cER), suggesting a coordination of mRNA localization and cER distribution. By investigating localization of MS2-tagged mRNAs in yeast defective at various stages of cER segregation, we demonstrate that proper cER segregation is required for localization of only a subset of mRNAs. These mRNAs include WSC2, IST2, EAR1 and SRL1 that encode membrane or ER associated proteins and are expressed during S and G2 phases of the cell cycle when tubular ER movement into the bud occurs. Translation of WSC2 is not required for localization, ruling out co-translational targeting of this mRNA. Localization of ASH1 mRNA is independent of cER segregation, which is consistent with the expression pattern of ASH1 at late mitosis. Our findings indicate the presence of two different pathways to localize mRNAs to the yeast bud.
Collapse
Affiliation(s)
- Julia Fundakowski
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, 72076, Germany
| | | | | |
Collapse
|
9
|
Jansen RP, Niessing D. Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes--an overview. Curr Protein Pept Sci 2012; 13:284-93. [PMID: 22708485 PMCID: PMC3474952 DOI: 10.2174/138920312801619493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 12/11/2022]
Abstract
At all steps from transcription to translation, RNA-binding proteins play important roles in determining mRNA function. Initially it was believed that for the vast majority of transcripts the role of RNA-binding proteins is limited to general functions such as splicing and translation. However, work from recent years showed that members of this class of proteins also recognize several mRNAs via cis-acting elements for their incorporation into large motor-containing particles. These particles are transported to distant subcellular sites, where they become subsequently translated. This process, called mRNA localization, occurs along microtubules or actin filaments, and involves kinesins, dyneins, as well as myosins. Although mRNA localization has been detected in a large number of organisms from fungi to humans, the underlying molecular machineries are not well understood. In this review we will outline general principles of mRNA localization and highlight three examples, for which a comparably large body of information is available. The first example is She2p/She3p-dependent localization of ASH1 mRNA in budding yeast. It is particularly well suited to highlight the interdependence between different steps of mRNA localization. The second example is Staufen-dependent localization of oskar mRNA in the Drosophila embryo, for which the importance of nuclear events for cytoplasmic localization and translational control has been clearly demonstrated. The third example summarizes Egalitarian/Bicaudal D-dependent mRNA transport events in the oocyte and embryo of Drosophila. We will highlight general themes and differences, point to similarities in other model systems, and raise open questions that might be answered in the coming years.
Collapse
Affiliation(s)
- Ralf-Peter Jansen
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| |
Collapse
|
10
|
Seemann SE, Sunkin SM, Hawrylycz MJ, Ruzzo WL, Gorodkin J. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain. BMC Genomics 2012; 13:214. [PMID: 22651826 PMCID: PMC3464589 DOI: 10.1186/1471-2164-13-214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/31/2012] [Indexed: 01/24/2023] Open
Abstract
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.
Collapse
Affiliation(s)
- Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
11
|
Heym RG, Niessing D. Principles of mRNA transport in yeast. Cell Mol Life Sci 2011; 69:1843-53. [PMID: 22159587 PMCID: PMC3350770 DOI: 10.1007/s00018-011-0902-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/20/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022]
Abstract
mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.
Collapse
Affiliation(s)
- Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 81377 Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 81377 Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
12
|
Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 2011; 30:3540-52. [PMID: 21878995 DOI: 10.1038/emboj.2011.278] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022] Open
Abstract
The localization of RNAs critically contributes to many important cellular processes in an organism, such as the establishment of polarity, asymmetric division and migration during development. Moreover, in the central nervous system, the local translation of mRNAs is thought to induce plastic changes that occur at synapses triggered by learning and memory. Here, we will critically review the physiological functions of well-established dendritically localized mRNAs and their associated factors, which together form ribonucleoprotein particles (RNPs). Second, we will discuss the life of a localized transcript from transcription in the nucleus to translation at the synapse and introduce the concept of the 'RNA signature' that is characteristic for each transcript. Finally, we present the 'sushi belt model' of how localized RNAs within neuronal RNPs may dynamically patrol multiple synapses rather than being anchored at a single synapse. This new model integrates our current understanding of synaptic function ranging from synaptic tagging and capture to functional and structural reorganization of the synapse upon learning and memory.
Collapse
|
13
|
Kurischko C, Kuravi VK, Herbert CJ, Luca FC. Nucleocytoplasmic shuttling of Ssd1 defines the destiny of its bound mRNAs. Mol Microbiol 2011; 81:831-49. [PMID: 21762218 DOI: 10.1111/j.1365-2958.2011.07731.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanisms that control mRNA metabolism are critical for cell function, development and stress response. The Saccharomyces cerevisiae mRNA-binding protein Ssd1 has been implicated in mRNA processing, ageing, stress response and maintenance of cell integrity. Ssd1 is a substrate of the LATS/NDR tumour suppressor orthologue Cbk1 kinase. Previous data indicate that Ssd1 localizes to the cytoplasm; however, biochemical interactions suggest that Ssd1 at least transiently localizes to the nucleus. We therefore explored whether nuclear localization is important for Ssd1 cytoplasmic functions. We identified a functional NLS in the N-terminal domain of Ssd1. An Ssd1-derived NLS-GFP fusion protein and several C-terminally truncated Ssd1 proteins, which presumably lack nuclear export sequences, accumulate in the nucleus. Alanine substitution of the Ssd1 NLS prevents Ssd1 nuclear entry, mRNA binding and disrupts Srl1 mRNA localization. Moreover, Ssd1-NLS mutations abolish Ssd1 toxicity in the absence of Cbk1 phosphorylation and cause Ssd1 to localize prominently to cytoplasmic puncta. These data indicate that nuclear shuttling is critical for Ssd1 mRNA binding and Ssd1-mRNA localization in the cytoplasm. Collectively these data support the model that Ssd1 functions analogously to hnRNPs, which bind mRNA co-transcriptionally, are exported to the cytoplasm and target mRNAs to sites of localized translation and P-bodies.
Collapse
Affiliation(s)
- Cornelia Kurischko
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
14
|
Müller M, Heym RG, Mayer A, Kramer K, Schmid M, Cramer P, Urlaub H, Jansen RP, Niessing D. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 2011; 9:e1000611. [PMID: 21526221 PMCID: PMC3079584 DOI: 10.1371/journal.pbio.1000611] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 03/10/2011] [Indexed: 11/18/2022] Open
Abstract
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes. In eukaryotes, hundreds of mRNAs are localized by specialized transport complexes. For localization, transcripts are recognized by RNA-binding proteins and incorporated into motor-containing messenger ribonucleoprotein particles (mRNPs). To date, the molecular assembly of such mRNPs is not well understood and most details on cargo specificity remain unresolved. We used ASH1-mRNA transport in yeast to provide a first assessment of where and how localizing mRNAs are specifically recognized and incorporated into mRNPs. By using in vitro–interaction and reconstitution assays, we found that none of the implicated mRNA-binding proteins showed highly specific cargo binding. Instead, we identified the cytoplasmic myosin adapter She3p as additional RNA-binding protein. We further found that only the complex of the RNA-binding proteins She2p and She3p achieves synergistic cargo binding, with an at least 60-fold higher affinity for localizing mRNAs when compared to control RNA. Mutational studies identified a C-terminal RNA-binding fragment of She3p to be important for synergistic RNA binding with She2p. The observed cargo specificity of the ternary complex is considerably higher than previously reported for localizing mRNAs. It suggests that RNA binding for mRNP localization generally exhibits higher selectivity than inferred from previous in vitro data. This conclusion is fully consistent with a large body of in vivo evidence from different organisms. Since the ternary yeast complex only assembles in the cytoplasm, specific mRNA recognition might be limited to the very last steps of mRNP assembly. Remarkably, the mRNA itself triggers the assembly of mature, motor-containing complexes. Our reconstitution of a major portion of the mRNA-transport complex offers new and unexpected insights into the molecular assembly of specific, localization-competent mRNPs and provides an important step forward in our mechanistic understanding of mRNA localization in general. In eukaryotes, the majority of cells are asymmetric and a way to establish such polarity is directional transport of macromolecules along cytoskeletal filaments. Among the cargoes transported, mRNAs play an essential role, as their localized translation contributes significantly to the generation of asymmetry. To date, hundreds of asymmetrically localized mRNAs in various organisms have been identified. These mRNAs are recognized by RNA-binding proteins and incorporated into large motor-containing messenger ribonucleoprotein particles (mRNPs) whose molecular assembly is poorly understood. In this study, we used the well-characterized process of ASH1-mRNA transport in Saccharomyces cerevisiae to address the question of how localizing mRNAs are recognized and specifically incorporated into mRNPs. Surprisingly, we found that the previously implicated mRNA-binding proteins She2p and Puf6p do not bind to cargo mRNAs with high specificity. Instead, the cytoplasmic motor-adapter protein She3p is responsible for synergistic cargo binding with She2p and for the stable incorporation of specific localizing mRNA into the transport complex. We propose that the specific recognition of localizing mRNAs happens at the very last step of cytoplasmic mRNP maturation. Other organisms might employ similar mechanisms to establish cellular polarity.
Collapse
Affiliation(s)
- Marisa Müller
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Andreas Mayer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria Schmid
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Patrick Cramer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- Center for Integrated Protein Science CIPSM, München, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf-Peter Jansen
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- * E-mail:
| |
Collapse
|
15
|
Slobodin B, Gerst JE. A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA (NEW YORK, N.Y.) 2010; 16:2277-90. [PMID: 20876833 PMCID: PMC2957065 DOI: 10.1261/rna.2091710] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intracellular mRNA targeting and localized translation are potential determinants for protein localization. To facilitate targeting, mRNAs possess specific cis-acting sequence motifs that are recognized by trans-acting RNA-binding proteins (RBPs). While many mRNAs are trafficked, our knowledge of the RBPs involved and presence of additional transcripts within these ribonucleoprotein (RNP) complexes is limited. To facilitate the identification of RBPs and transcripts that bind to specific mRNAs, we developed RNA-binding protein purification and identification (RaPID), a novel technique that allows for the affinity purification of MS2 aptamer-tagged mRNAs and subsequent detection of bound RBPs and transcripts using mass-spectometry and RT-PCR, respectively. RaPID effectively isolated specific mRNAs from both yeast and mammalian cells, and identified known mRNA-RBP interactions (e.g., ASH1-She2; β-Actin-IMP1). By isolating tagged OXA1 mRNA using RaPID, we could identify a yeast COPI subunit (i.e., Sec27) as a candidate interacting protein. This finding was strengthened by the observation that a portion of OXA1 mRNA was delocalized in a sec27-1 temperature-sensitive mutant at restrictive temperatures. Finally, RaPID could also be used to show biochemically the coexistence of different RNA species within the same RNP complex (e.g., coprecipitation of the yeast SRO7, WSC2, SEC3, and IST2 mRNAs with ASH1 mRNA) for the first time.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
16
|
Shen Z, St-Denis A, Chartrand P. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev 2010; 24:1914-26. [PMID: 20713510 DOI: 10.1101/gad.1937510] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pre-mRNA processing is coupled with transcription. It is still unclear if the transcription machinery can also directly affect the cytoplasmic fate of a transcript, such as its intracellular localization. In yeast, the RNA-binding protein She2p binds several mRNAs and targets them for localization at the bud. Here we report that She2p is recruited cotranscriptionally to the nascent bud-localized ASH1, IST2, and EAR1 mRNA. She2p interacts in vivo with the elongating forms of RNA polymerase II (pol II) via the transcription elongation factor Spt4-Spt5. Mutations in either SPT4 or SPT5 reduce the cotranscriptional recruitment of She2p on the ASH1 gene, disrupt the proper localization of ASH1 mRNA at the bud tip, and affect Ash1p sorting to the daughter cell nucleus. We propose that She2p is recruited by the RNA pol II machinery prior to its transfer to nascent bud-localized mRNAs. Indeed, She2p is present with RNA pol II on genes coding for localized or nonlocalized transcripts, but is associated with nascent mRNA only on genes coding for bud-localized transcripts. Moreover, a She2p mutant defective in RNA binding still associates with RNA pol II transcribed genes. This study uncovers a novel mechanism for the cotranscriptional assembly of mRNP complexes primed for localization in the cytoplasm.
Collapse
Affiliation(s)
- Zhifa Shen
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| | | | | |
Collapse
|
17
|
Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol Cell Neurosci 2010; 43:422-30. [PMID: 20144716 DOI: 10.1016/j.mcn.2010.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 01/10/2023] Open
Abstract
Trafficking and local translation of axonal mRNAs play a critical role in the development and function of this neuronal subcellular structural domain. In this report, we studied cytochrome c oxidase subunit IV (COXIV) mRNA trafficking into distal axons of primary superior cervical ganglia (SCG) neurons, and provided evidence that axonal trafficking and mitochondrial association of the mRNA are mediated by an element located in a 38bp-long, hairpin-loop forming region within the 3'UTR of the transcript. Our results also suggest that suppression of local translation of COXIV mRNA results in significant attenuation of axonal elongation. Taken together, the results provide the first evidence for the existence of a cis-acting axonal transport element within a nuclear-encoding mitochondrial gene, and demonstrate the importance of the axonal trafficking and local translation of nuclear-encoded mitochondrial mRNAs in axonal growth.
Collapse
|
18
|
Huang NC, Yu TS. The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:921-9. [PMID: 19453448 DOI: 10.1111/j.1365-313x.2009.03918.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants a number of physiological processes are regulated by systemic RNA signaling molecules. This phloem-mediated remote-control system provides specific and efficient regulation to fine-tune many plant developmental programs. However, the molecular mechanism underlying long-distance movement of RNA remains to be elucidated. To this end, we examined the long-distance movement of GA-insensitive (GAI) RNA by Arabidopsis inflorescence grafting and RT-PCR analysis. Our results demonstrated that long-distance movement of RNA only occurred in specific transcripts. In addition, the sequences of GAI RNA are necessary and sufficient to target GREEN FLUORESCENT PROTEIN (GFP) RNA for long-distance movement, which indicates that the trafficking of GAI RNA is mediated by specific RNA motifs. Further analyses revealed that the motifs at coding sequences and 3' untranslated regions of GAI RNA play important roles during RNA movement. In addition, the structure of the RNA rather than its specific sequence may also be important in GAI RNA trafficking. However, the secondary structure of GAI RNA is not the only factor to target RNA for long-distance movement, because recovery of the secondary structure of movement-defective GAI RNA only partially rescued RNA movement. Taken together, our results show that long-distance movement of non-cell autonomous RNA operates by specific RNA mobile elements.
Collapse
Affiliation(s)
- Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | |
Collapse
|
19
|
Shen Z, Paquin N, Forget A, Chartrand P. Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 2009; 20:2265-75. [PMID: 19244342 DOI: 10.1091/mbc.e08-11-1151] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transport and localization of mRNAs results in the asymmetric synthesis of specific proteins. In yeast, the nucleocytoplasmic shuttling protein She2 binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p-Myo4p complex. Although the cytoplasmic role of She2p in mRNA localization is well characterized, its nuclear function is still unclear. Here, we show that She2p contains a nonclassical nuclear localization signal (NLS) that is essential for its nuclear import via the importin alpha Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS leads to defective ASH1 mRNA localization and Ash1p sorting. Interestingly, these phenotypes mimic knockouts of LOC1 and PUF6, which encode for nuclear RNA-binding proteins that bind the ASH1 mRNA and control its translation. We find that She2p interacts with both Loc1p and Puf6p and that excluding She2p from the nucleus decreases this interaction. Absence of nuclear She2p disrupts the binding of Loc1p and Puf6p to the ASH1 mRNA, suggesting that nuclear import of She2p is necessary to recruit both factors to the ASH1 transcript. This study reveals that a direct coupling between localization and translation regulation factors in the nucleus is required for proper cytoplasmic localization of mRNAs.
Collapse
Affiliation(s)
- Zhifa Shen
- Département de Biochimie, Université de Montréal, Canada
| | | | | | | |
Collapse
|
20
|
Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 2008; 22:1037-50. [PMID: 18413716 DOI: 10.1101/gad.1611308] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Translational repression during mRNA transport is essential for spatial restriction of protein production. In the yeast Saccharomyces cerevisae, silencing of ASH1 mRNA before it is localized to the bud cortex in late anaphase is critical for asymmetric segregation of Ash1p to the daughter cell nucleus. Puf6p, an ASH1 mRNA-binding protein, has been implicated in this process as a translational repressor, but the underlying mechanism is unknown. Here, we used yeast extract-based in vitro translation assays, which recapitulate translation and phosphorylation, to characterize the mechanism of Puf6p-mediated translational regulation. We report that Puf6p interferes with the conversion of the 48S complex to the 80S complex during initiation, and this repression by Puf6p is mediated through the general translation factor eIF5B (Fun12p in S. cerevisiae). Puf6p interacts with Fun12p via the PUF domain, and this interaction is RNA-dependent and essential for translational repression by Puf6p. This repression is relieved by phosphorylation of the N-terminal region of Puf6p mediated by protein kinase CK2 (casein kinase II). Inhibition of phosphorylation at Ser31, Ser34, and Ser35 of Puf6p increases its translational repression and results in ASH1 mRNA delocalization. Our results indicate that Puf6p suppresses the translation initiation of ASH1 mRNA via interaction with Fun12p during its transport, and this repression can be released by CK2 phosphorylation in the N-terminal region of Puf6p when the mRNA reaches the bud tip.
Collapse
|
21
|
Paquin N, Chartrand P. Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol 2008; 18:105-11. [DOI: 10.1016/j.tcb.2007.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
|
22
|
Beach DL, Keene JD. Ribotrap : targeted purification of RNA-specific RNPs from cell lysates through immunoaffinity precipitation to identify regulatory proteins and RNAs. Methods Mol Biol 2008; 419:69-91. [PMID: 18369976 DOI: 10.1007/978-1-59745-033-1_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many elegant methodologies have been devised to explore RNA-protein as well as RNA-RNA interactions. Although the characterization of messages targeted by a specific RNA-binding protein (RBP) has been accelerated by the application of microarray technologies, reliable methods to describe the endogenous assembly of ribonucleoproteins (RNPs) are needed. However, this approach requires the targeted purification of a select mRNA under conditions favorable for the copurification of associated factors including RNA and protein components of the RNP. This chapter describes previous methods used to characterize RNPs in the context of in vitro approaches and presents the Ribotrap methodology, an in vivo protocol for message-specific purification of a target RNP. The method was developed in a yeast model system, yet is amenable to other in vivo cell systems including mammalian cell culture.
Collapse
|
23
|
Zarnack K, Feldbrügge M. mRNA trafficking in fungi. Mol Genet Genomics 2007; 278:347-59. [PMID: 17768642 DOI: 10.1007/s00438-007-0271-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 12/19/2022]
Abstract
Fungal growth depends on active transport of macromolecules along the actin and/or microtubule cytoskeleton. Thereby, molecular cargo such as proteins, lipids, and mRNAs is targeted to defined subcellular regions. Active transport and localisation of mRNAs mediate localised translation so that protein synthesis occurs where protein function is required. In Saccharomyces cerevisiae, actomyosin-dependent mRNA trafficking participates in polar growth, asymmetric cell division, targeting of membrane proteins and import of mitochondrial proteins. The best-understood example is transport of ASH1 mRNA to the distal pole of the incipient daughter cell. cis-acting RNA sequences are recognised by the RNA-binding protein She2p that is connected via the adaptor She3p to the molecular motor Myo4p. Local translation at the poles of daughter cells causes Ash1p to accumulate predominantly in nuclei of daughter cells, where this transcription factor inhibits mating-type switching. Recently, it was also shown that actomyosin-dependent ASH1 mRNA transport directs tip cell-specific gene expression in filaments of the human pathogen Candida albicans. Furthermore, in the plant pathogen Ustilago maydis microtubule-dependent shuttling of the RNA-binding protein Rrm4 is essential to determine the axis of polarity in infectious filaments. Thus, mRNA trafficking appears to be universally required for polar growth of fungi.
Collapse
Affiliation(s)
- Kathi Zarnack
- Department for Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043, Marburg, Germany
| | | |
Collapse
|
24
|
Paquin N, Ménade M, Poirier G, Donato D, Drouet E, Chartrand P. Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol Cell 2007; 26:795-809. [PMID: 17588515 DOI: 10.1016/j.molcel.2007.05.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/05/2007] [Accepted: 05/14/2007] [Indexed: 02/02/2023]
Abstract
In S. cerevisiae, the ASH1 mRNA is localized at the bud tip of late-anaphase cells, resulting in the exclusive sorting of Ash1p to the daughter cell nucleus. While the mechanism behind the localization of this transcript has been well studied, the regulation of its translation is still poorly understood. We now report that the RNA binding protein Khd1 interacts with the ASH1 mRNA localization element E1 and with the C-terminal domain of eIF4G1 to regulate the translation of this transcript. Khd1p reduces translation initiation on the ASH1 mRNA and diminishes Ash1p leakage into the mother cell nucleus. Furthermore, we show that the casein kinase Yck1p phosphorylates Khd1p at the plasma membrane, disrupting the Khd1p-RNA complex and releasing its translational repression on the ASH1 mRNA. This study reveals how, by linking mRNA sorting and translational activation, Khd1p and Yck1p regulate the spatiotemporal expression of a cell fate determinant.
Collapse
Affiliation(s)
- Nicolas Paquin
- Département de Biochimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Dormoy-Raclet V, Ménard I, Clair E, Kurban G, Mazroui R, Di Marco S, von Roretz C, Pause A, Gallouzi IE. The RNA-binding protein HuR promotes cell migration and cell invasion by stabilizing the beta-actin mRNA in a U-rich-element-dependent manner. Mol Cell Biol 2007; 27:5365-80. [PMID: 17548472 PMCID: PMC1952093 DOI: 10.1128/mcb.00113-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/27/2007] [Accepted: 05/21/2007] [Indexed: 12/14/2022] Open
Abstract
A high expression level of the beta-actin protein is required for important biological mechanisms, such as maintaining cell shape, growth, and motility. Although the elevated cellular level of the beta-actin protein is directly linked to the long half-life of its mRNA, the molecular mechanisms responsible for this effect are unknown. Here we show that the RNA-binding protein HuR stabilizes the beta-actin mRNA by associating with a uridine-rich element within its 3' untranslated region. Using RNA interference to knock down the expression of HuR in HeLa cells, we demonstrate that HuR plays an important role in the stabilization but not in the nuclear/cytoplasmic distribution of the beta-actin mRNA. HuR depletion in HeLa cells alters key beta-actin-based cytoskeleton functions, such as cell adhesion, migration, and invasion, and these defects correlate with a loss of the actin stress fiber network. Together our data establish that the posttranscriptional event involving HuR-mediated beta-actin mRNA stabilization could be a part of the regulatory mechanisms responsible for maintaining cell integrity, which is a prerequisite for avoiding transformation and tumor formation.
Collapse
Affiliation(s)
- Virginie Dormoy-Raclet
- Department of Biochemistry, and McGill Cancer Center, McGill University, McIntyre Building, Room 904, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aronov S, Gelin-Licht R, Zipor G, Haim L, Safran E, Gerst JE. mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3441-55. [PMID: 17339339 PMCID: PMC1899969 DOI: 10.1128/mcb.01643-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 11/13/2006] [Accepted: 02/09/2007] [Indexed: 11/20/2022] Open
Abstract
Polarized growth in the budding yeast Saccharomyces cerevisiae depends upon the asymmetric localization and enrichment of polarity and secretion factors at the membrane prior to budding. We examined how these factors (i.e., Cdc42, Sec4, and Sro7) reach the bud site and found that their respective mRNAs localize to the tip of the incipient bud prior to nuclear division. Asymmetric mRNA localization depends upon factors that facilitate ASH1 mRNA localization (e.g., the 3' untranslated region, She proteins 1 to 5, Puf6, actin cytoskeleton, and a physical association with She2). mRNA placement precedes protein enrichment and subsequent bud emergence, implying that mRNA localization contributes to polarization. Correspondingly, mRNAs encoding proteins which are not asymmetrically distributed (i.e., Snc1, Mso1, Tub1, Pex3, and Oxa1) are not polarized. Finally, mutations which affect cortical endoplasmic reticulum (ER) entry and anchoring in the bud (myo4Delta, sec3Delta, and srp101) also affect asymmetric mRNA localization. Bud-localized mRNAs, including ASH1, were found to cofractionate with ER microsomes in a She2- and Sec3-dependent manner; thus, asymmetric mRNA transport and cortical ER inheritance are connected processes in yeast.
Collapse
Affiliation(s)
- Stella Aronov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Russo A, Russo G, Cuccurese M, Garbi C, Pietropaolo C. The 3'-untranslated region directs ribosomal protein-encoding mRNAs to specific cytoplasmic regions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:833-43. [PMID: 16839621 DOI: 10.1016/j.bbamcr.2006.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/21/2006] [Accepted: 05/10/2006] [Indexed: 11/30/2022]
Abstract
mRNA localization is a conserved post-transcriptional process crucial for a variety of systems. We have analyzed the subcellular distribution of mRNAs encoding human cytosolic and mitochondrial ribosomal proteins. Biochemical fractionation experiments showed that the transcripts for cytosolic ribosomal proteins associate preferentially with the cytoskeleton via actin microfilaments. Transfection in HeLa cells of a GFP reporter construct containing the cytosolic ribosomal protein L4 3'-UTR showed that the 3'-UTR is necessary for the association of the transcript to the cytoskeleton. Using confocal analysis we demonstrate that the chimeric transcript is specifically associated with the perinuclear cytoskeleton. We also show that mRNA for mitochondrial ribosomal protein S12 is asymmetrically distributed in the cytoplasm. In fact, this transcript was localized mainly in the proximity of mitochondria, and the localization was 3'-UTR-dependent. In summary, ribosomal protein mRNAs constitute a new class of localized transcripts that share a common localization mechanism.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Napoli 80131, Italy
| | | | | | | | | |
Collapse
|
28
|
Padmanabhan K, Richter JD. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev 2006; 20:199-209. [PMID: 16418484 PMCID: PMC1356111 DOI: 10.1101/gad.1383106] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CPEB is a sequence-specific RNA-binding protein that controls the polyadenylation-induced translation of mos and cyclin B1 mRNAs in maturing Xenopus oocytes. CPEB activity requires not only the phosphorylation of S174, but also the synthesis of a heretofore-unknown upstream effector molecule. We show that the synthesis of RINGO/Spy, an atypical activator of cyclin-dependent kinases (cdks), is necessary for CPEB-directed polyadenylation. Deletion analysis and mRNA reporter assays show that a cis element in the RINGO/Spy 3'UTR is necessary for translational repression in immature (G2-arrested) oocytes. The repression is mediated by 3'UTR Pumilio-Binding Elements (PBEs), and by its binding protein Pumilio 2 (Pum2). Pum2 also interacts with the Xenopus homolog of human Deleted for Azoospermia-like (DAZL) and the embryonic poly(A)-binding protein (ePAB). Following the induction of maturation, Pum2 dissociates not only from RINGO/Spy mRNA, but from XDAZL and ePAB as well; as a consequence, RINGO/Spy mRNA is translated. These results demonstrate that a reversible Pum2 interaction controls RINGO/Spy mRNA translation and, as a result, CPEB-mediated cytoplasmic polyadenylation.
Collapse
Affiliation(s)
- Kiran Padmanabhan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
29
|
Abstract
In eukaryotes, the entwined pathways of RNA transport and local translational regulation are key determinants in the spatio-temporal articulation of gene expression. One of the main advantages of this mechanism over transcriptional control in the nucleus lies in the fact that it endows local sites with independent decision-making authority, a consideration that is of particular relevance in cells with complex cellular architecture such as neurons. Localized RNAs typically contain codes, expressed within cis-acting elements, that specify subcellular targeting. Such codes are recognized by trans-acting factors, adaptors that mediate translocation along cytoskeletal elements by molecular motors. Most transported mRNAs are assumed translationally dormant while en route. In some cell types, especially in neurons, it is considered crucial that translation remains repressed after arrival at the destination site (e.g., a postsynaptic microdomain) until an appropriate activation signal is received. Several candidate mechanisms have been suggested to participate in the local implementation of translational repression and activation, and such mechanisms may target translation at the level of initiation and/or elongation. Recent data indicate that untranslated RNAs may play important roles in the local control of translation.
Collapse
Affiliation(s)
- Stefan Kindler
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, University of Hamburg, D-20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
30
|
Washida H, Crofts AJ, Hamada S, Okita TW. Targeting of RNAs to ER Subdomains and its Relationship to Protein Localization. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Dugré-Brisson S, Elvira G, Boulay K, Chatel-Chaix L, Mouland AJ, DesGroseillers L. Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs. Nucleic Acids Res 2005; 33:4797-812. [PMID: 16126845 PMCID: PMC1193567 DOI: 10.1093/nar/gki794] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Staufen1 is a component of transported ribonucleoprotein complexes. Genetic work in Drosophila has suggested that Staufen plays a role in the de-repression of translation of oskar mRNA following localization. To determine whether Staufen1 can play a similar role in mammals, we studied translation of transcripts in the presence or in the absence of Staufen1. Translationally repressed mRNAs were generated by fusing the structured human immunodeficiency virus type 1 trans-activating response (TAR) element to the 5′ end of a reporter transcript. In rabbit reticulocyte lysates and in mammalian cultured cells, the addition of Staufen1 resulted in the up-regulation of reporter activity when translation was driven by the TAR-bearing RNA. In contrast, Staufen1 had no effect on translation of efficiently translated mRNAs lacking an apparent structured 5′ end, suggesting that Staufen1-binding to the 5′ end is required for enhanced translation. Consistently, Staufen1 RNA-binding activity is necessary for this translational effect. In addition, similar up-regulation of translation was observed when Staufen1 was tethered to the 5′ end of mRNAs via other structured RNAs, the highest level of translational increase being obtained with the bona fide Staufen1-binding site of the Arf1 transcript. The expression of Staufen1 promoted polysomal loading of TAR-luciferase transcripts resulting in enhanced translation. Our results support a model in which the expression of Staufen1 and its interaction with the 5′ end of RNA and ribosomes facilitate translation initiation.
Collapse
Affiliation(s)
| | - George Elvira
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
| | - Karine Boulay
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
| | - Laurent Chatel-Chaix
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
- Lady Davis Institute for Medical Research, McGill UniversityMontréal, Canada H3C 3J7
| | - Andrew J. Mouland
- Lady Davis Institute for Medical Research, McGill UniversityMontréal, Canada H3C 3J7
| | - Luc DesGroseillers
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
- Centre de Recherche en Sciences Neurologiques, Université de MontréalMontréal, QC, Canada
- To whom correspondence should be addressed at Department of Biochemistry, University of Montreal, PO Box 6128, Station Centre Ville, Montreal, QC, Canada H3C 3J7. Tel: +1 514 343 5802; Fax: +1 514 343 2210;
| |
Collapse
|
32
|
Olivier C, Poirier G, Gendron P, Boisgontier A, Major F, Chartrand P. Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol Cell Biol 2005; 25:4752-66. [PMID: 15899876 PMCID: PMC1140632 DOI: 10.1128/mcb.25.11.4752-4766.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, over twenty mRNAs localize to the bud tip of daughter cells, playing roles in processes as different as mating type switching and plasma membrane targeting. The localization of these transcripts depends on interactions between a cis-acting localization element(s) or zipcodes and the RNA-binding protein She2p. While previous studies identified four different localization elements in the bud-localized ASH1 mRNA, the main determinants for She2p recognition are still unknown. To investigate the RNA-binding specificity of She2p, we isolated She2p-binding RNAs by in vivo selection from libraries of partially randomized ASH1 localization elements. The RNAs isolated contained a similar loop-stem-loop structure with a highly conserved CGA triplet in one loop and a single conserved cytosine in the other loop. Mutating these conserved nucleotides or the stem separating them resulted in the loss of She2p binding and in the delocalization of a reporter mRNA. Using this information, we identified the same RNA motif in two other known bud-localized transcripts, suggesting that this motif is conserved among bud-localized mRNAs. These results show that mRNAs with zipcodes lacking primary sequence similarity can rely on a few conserved nucleotides properly oriented in their three-dimensional structure in order to be recognized by the same localization machinery.
Collapse
Affiliation(s)
- Catherine Olivier
- Département de Biochimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Washida H, Sugino A, Messing J, Esen A, Okita TW. Asymmetric localization of seed storage protein RNAs to distinct subdomains of the endoplasmic reticulum in developing maize endosperm cells. PLANT & CELL PHYSIOLOGY 2004; 45:1830-7. [PMID: 15653801 DOI: 10.1093/pcp/pch210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant storage proteins are synthesized and stored in different compartments of the plant endomembrane system. Developing maize seeds synthesize and accumulate prolamin (zein) and 11S globulin (legumin-1) type proteins, which are sequestered in the endoplasmic reticulum (ER) lumen and storage vacuoles, respectively. Immunofluorescence studies showed that the lumenal chaperone BiP was not randomly distributed within the ER in developing maize endosperm but concentrated within the zein-containing protein bodies. Analysis of the spatial distribution of RNAs in maize endosperm sections by in situ RT-PCR showed that, contrary to the conclusions made in an earlier study [Kim et al. (2002) Plant Cell 14: 655-672], the zein and legumin-1 RNAs are not symmetrically distributed on the ER but, instead, targeted to specific ER subdomains. RNAs coding for 22 kDa alpha-zein, 15 kDa beta-zein, 27 kDa gamma-zein and 10 kDa delta-zein were localized to ER-bounded zein protein bodies, whereas 51 kDa legumin-1 RNAs were distributed on adjacent cisternal ER proximal to the zein protein bodies. These results indicate that the maize storage protein RNAs are targeted to specific ER subdomains in developing maize endosperm and that RNA localization may be a prevalent mechanism to sort proteins within plant cells.
Collapse
Affiliation(s)
- Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | |
Collapse
|
34
|
Crofts AJ, Washida H, Okita TW, Ogawa M, Kumamaru T, Satoh H. Targeting of proteins to endoplasmic reticulum-derived compartments in plants. The importance of RNA localization. PLANT PHYSIOLOGY 2004; 136:3414-9. [PMID: 15542494 PMCID: PMC527139 DOI: 10.1104/pp.104.048934] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Andrew J Crofts
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | | | |
Collapse
|
35
|
Niessing D, Hüttelmaier S, Zenklusen D, Singer RH, Burley SK. She2p Is a Novel RNA Binding Protein with a Basic Helical Hairpin Motif. Cell 2004; 119:491-502. [PMID: 15537539 DOI: 10.1016/j.cell.2004.10.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/20/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Selective transport of mRNAs in ribonucleoprotein particles (mRNP) ensures asymmetric distribution of information within and among eukaryotic cells. Actin-dependent transport of ASH1 mRNA in yeast represents one of the best-characterized examples of mRNP translocation. Formation of the ASH1 mRNP requires recognition of zip code elements by the RNA binding protein She2p. We determined the X-ray structure of She2p at 1.95 A resolution. She2p is a member of a previously unknown class of nucleic acid binding proteins, composed of a single globular domain with a five alpha helix bundle that forms a symmetric homodimer. After demonstrating potent, dimer-dependent RNA binding in vitro, we mapped the RNA binding surface of She2p to a basic helical hairpin in vitro and in vivo and present a mechanism for mRNA-dependent initiation of ASH1 mRNP complex assembly.
Collapse
Affiliation(s)
- Dierk Niessing
- Laboratories of Molecular Biophysics and The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
mRNA localization is a widespread post-transcriptional mechanism for targeting protein synthesis to specific cellular sites. It is involved in the generation of cell polarity, asymmetric segregation of cell fate determinants and germ cell specification. Actin and microtubule filaments have key functions during RNA localization, especially during transport of mRNAs and anchoring at target sites. Recent advances in understanding the role of motors and filament systems have mainly resulted from the contribution of live imaging of mRNA movement and from the purification of putative localization ribonucleoproteins. There have also been new findings on the role of centrosomes in RNA localization.
Collapse
Affiliation(s)
- Miguel López de Heredia
- Gene Center and Institute for Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.
| | | |
Collapse
|
37
|
Nielsen J, Kristensen MA, Willemoës M, Nielsen FC, Christiansen J. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability. Nucleic Acids Res 2004; 32:4368-76. [PMID: 15314207 PMCID: PMC514376 DOI: 10.1093/nar/gkh754] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Active cytoplasmic RNA localization depends on the attachment of RNA-binding proteins that dictate the destination of the RNA molecule. In this study, we used an electrophoretic mobility-shift assay in combination with equilibrium and kinetic analyses to characterize the assembly of the human zipcode-binding protein IMP1 on targets in the 3'-UTR from Igf-II mRNA and in H19 RNA. In both cases, two molecules of IMP1 bound to RNA by a sequential, cooperative mechanism, characterized by an initial fast step, followed by a slow second step. The first step created an obligatory assembly intermediate of low stability, whereas the second step was the discriminatory event that converted a putative RNA target into a 'locked' stable RNP. The ability to dimerize was also observed between members of the IMP family of zipcode-binding proteins, providing a multitude of further interaction possibilities within RNP granules and with the localization apparatus.
Collapse
Affiliation(s)
- Jacob Nielsen
- Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
Gu W, Deng Y, Zenklusen D, Singer RH. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 2004; 18:1452-65. [PMID: 15198983 PMCID: PMC423195 DOI: 10.1101/gad.1189004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In yeast Saccharomyces cerevisiae, Ash1p, a protein determinant for mating-type switching, is segregated within the daughter cell nucleus to establish asymmetry of HO expression. The accumulation of Ash1p results from ASH1 mRNA that is sorted as a ribonucleoprotein particle (mRNP or locasome) to the distal tip of the bud where translation occurs. To study the mechanism regulating ASH1 mRNA translation, we isolated the ASH1 locasome and characterized the associated proteins by MALDI-TOF. One of these proteins was Puf6p, a new member of the PUF family of highly conserved RNA-binding proteins such as Pumilio in Drosophila, responsible for translational repression, usually to effect asymmetric expression. Puf6p-bound PUF consensus sequences in the 3'UTR of ASH1 mRNA and repressed the translation of ASH1 mRNA both in vivo and in vitro. In the puf6 Delta strain, asymmetric localization of both Ash1p and ASH1 mRNA were significantly reduced. We propose that Puf6p is a protein that functions in the translational control of ASH1 mRNA, and this translational inhibition is necessary before localization can proceed.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
39
|
Aronov S, Gerst JE. Involvement of the late secretory pathway in actin regulation and mRNA transport in yeast. J Biol Chem 2004; 279:36962-71. [PMID: 15192110 DOI: 10.1074/jbc.m402068200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both the delivery of secretory vesicles and asymmetric distribution of mRNA to the bud are dependent upon the actin cytoskeleton in yeast. Here we examined whether components of the exocytic apparatus play a role in mRNA transport. By screening secretion mutants in situ and in vivo, we found that all had an altered pattern of ASH1 mRNA localization. These included alleles of CDC42 and RHO3 (cdc42-6 and rho3-V51) thought to regulate specifically the fusion of secretory vesicles but were found to affect strongly the cytoskeleton as well. Most interestingly, mutations in late secretion-related genes not directly involved in actin regulation also showed substantial alterations in ASH1 mRNA distribution. These included mutations in genes encoding components of the exocyst (SEC10 and SEC15), SNARE regulatory proteins (SEC1, SEC4, and SRO7), SNAREs (SEC9 and SSO1/2), and proteins involved in Golgi export (PIK1 and YPT31/32). Importantly, prominent defects in the actin cytoskeleton were observed in all of these strains, thus implicating a known causal relationship between the deregulation of actin and the inhibition of mRNA transport. Our novel observations suggest that vesicular transport regulates the actin cytoskeleton in yeast (and not just vice versa) leading to subsequent defects in mRNA transport and localization.
Collapse
Affiliation(s)
- Stella Aronov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
40
|
Abstract
Recent advances in techniques for visualising mRNA movement in living cells have led to rapid progress in understanding the mechanism of mRNA localisation in the cytoplasm. There is an emerging consensus that in many cases the mRNA signals that determine intracellular destination are more complex and difficult to define than was first anticipated. Furthermore, the transacting factors that interpret the mRNA signals are numerous and their combinations change during the life of an mRNA, perhaps allowing the selection of many sub-destinations in the cell. Lastly, an emerging theme over the past few years is that many proteins that determine the destinations of mRNAs are recruited on nascent transcripts in the nucleus. They often function in many different processes in the biogenesis of mRNA and probably act in concert to provide specificity.
Collapse
Affiliation(s)
- Veronique Van de Bor
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
41
|
Di Carlo M, Montana G, Romancino DP. Paracentrotus lividus eggs contain different RNAs at the animal and vegetal poles. Biochem Biophys Res Commun 2004; 315:1110-9. [PMID: 14985128 DOI: 10.1016/j.bbrc.2004.01.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Indexed: 10/26/2022]
Abstract
Paracentrotus lividus eggs were divided by centrifugation into nucleated and anucleated halves. Fertilization and development of the two halves permitted us to establish that nucleated and anucleated fragments correspond, respectively, to the animal and vegetal parts. RNA was extracted from both egg halves and submitted to differential display. Northern blot analysis confirmed their maternal origin and showed that each transcript has a different expression pattern during development. By Northern blot and in situ hybridization experiments we ascertained that Bep2 and PlAn1 are localized in the animal part, whereas 16S rRNA, Plveg1, and L27 in the vegetal part, and that Plun1 is uniformly distributed. Moreover, by treating P. lividus eggs with detergent, in presence or not of drugs such as colchicine and cytochalasin B, we demonstrated the involvement of the cytoskeleton only in localization of Bep2, PlAn1, and Plun1, suggesting that different mechanisms are utilized for animal and vegetal distribution.
Collapse
Affiliation(s)
- Marta Di Carlo
- Istituto di Biologia ed Immunologia Molecolare Alberto Monroy CNR, via Ugo La Malfa 153, 90146 Palermo, Italy.
| | | | | |
Collapse
|
42
|
Politz JCR, Tuft RA, Pederson T. Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 2003; 14:4805-12. [PMID: 12960421 PMCID: PMC284785 DOI: 10.1091/mbc.e03-06-0395] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/18/2003] [Accepted: 08/08/2003] [Indexed: 11/11/2022] Open
Abstract
Although the complex process of ribosome assembly in the nucleolus is beginning to be understood, little is known about how the ribosomal subunits move from the nucleolus to the nuclear membrane for transport to the cytoplasm. We show here that large ribosomal subunits move out from the nucleolus and into the nucleoplasm in all directions, with no evidence of concentrated movement along directed paths. Mobility was slowed compared with that expected in aqueous solution in a manner consistent with anomalous diffusion. Once nucleoplasmic, the subunits moved in the same random manner and also sometimes visited another nucleolus before leaving the nucleus.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
43
|
Darzacq X, Powrie E, Gu W, Singer RH, Zenklusen D. RNA asymmetric distribution and daughter/mother differentiation in yeast. Curr Opin Microbiol 2003; 6:614-20. [PMID: 14662358 PMCID: PMC4956921 DOI: 10.1016/j.mib.2003.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Active transport and localized translation of the ASH1 mRNA at the bud tip of the budding yeast Saccharomyces cerevisiae is an essential process that is required for the regulation of the mating type switching. ASH1 mRNA localization has been extensively studied over the past few years and the core components of the translocation machinery have been identified. It is composed of four localization elements (zipcodes), within the ASH1 mRNA, and at least three proteins, She1p/Myo4p, She2p and She3p. Whereas the movement of the RNA can be attributed to direct interaction with myosin, the regulation of the RNA expression is less well understood. Recent insights have revealed a role for translation that might have a key function in the regulation of Ash1 protein sorting.
Collapse
|
44
|
Goetze B, Grunewald B, Kiebler MA, Macchi P. Coupling the iron-responsive element to GFP--an inducible system to study translation in a single living cell. Sci Signal 2003; 2003:PL12. [PMID: 14560047 DOI: 10.1126/stke.2003.204.pl12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Local protein synthesis in a cell represents an elegant mechanism to achieve important biological phenomena such as cell migration, body axis formation during embryonic development and establishment of cell polarity. A prerequisite to studying translation in a restricted cellular compartment is the ability to unambiguously discriminate between proteins that arise through local protein synthesis and those that reach the site of interest by diffusion or transport. To tackle this problem, we set up a green fluorescent protein (GFP)-based reporter system that allows one to uncouple the translation of reporter gene mRNA from its subcellular localization. The system is based on the iron-responsive element, which regulates the translation of both endogenous ferritin and transferrin transcripts in response to changes in iron concentration. Translation of the reporter messenger RNA (mRNA) is thus dependent on iron in the medium; both its transcription and localization, however, are unaffected. Known targeting sequences can be used to direct the mRNA transcript to a subcellular compartment of interest. For instance, the full-length 3'-untranslated region of calcium/calmodulin-dependent protein kinase IIalpha mRNA can be added to the construct, after the stop codon of the GFP sequence, to selectively target the transcript into the dendrites of transiently transfected hippocampal neurons. This novel fluorescent assay will allow us to address a number of important biological questions in living mammalian cells.
Collapse
Affiliation(s)
- Bernhard Goetze
- Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
45
|
Hamada S, Ishiyama K, Choi SB, Wang C, Singh S, Kawai N, Franceschi VR, Okita TW. The transport of prolamine RNAs to prolamine protein bodies in living rice endosperm cells. THE PLANT CELL 2003; 15:2253-64. [PMID: 14508010 PMCID: PMC197292 DOI: 10.1105/tpc.013466] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 07/11/2003] [Indexed: 05/18/2023]
Abstract
RNAs that code for the major rice storage proteins are localized to specific subdomains of the cortical endoplasmic reticulum (ER) in developing endosperm. Prolamine RNAs are localized to the ER and delimit the prolamine intracisternal inclusion granules (PB-ER), whereas glutelin RNAs are targeted to the cisternal ER. To study the transport of prolamine RNAs to the surface of the prolamine protein bodies in living endosperm cells, we adapted a two-gene system consisting of green fluorescent protein (GFP) fused to the viral RNA binding protein MS2 and a hybrid prolamine RNA containing tandem MS2 RNA binding sites. Using laser scanning confocal microscopy, we show that the GFP-labeled prolamine RNAs are transported as particles that move at an average speed of 0.3 to 0.4 microm/s. These prolamine RNA transport particles generally move unidirectionally in a stop-and-go manner, although nonlinear bidirectional, restricted, and nearly random movement patterns also were observed. Transport is dependent on intact microfilaments, because particle movement is inhibited rapidly by the actin filament-disrupting drugs cytochalasin D and latrunculin B. Direct evidence was obtained that these prolamine RNA-containing particles are transported to the prolamine protein bodies. The significance of these results with regard to protein synthesis in plants is discussed.
Collapse
Affiliation(s)
- Shigeki Hamada
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sylvestre J, Vialette S, Corral Debrinski M, Jacq C. Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 2003; 4:R44. [PMID: 12844360 PMCID: PMC193631 DOI: 10.1186/gb-2003-4-7-r44] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 02/27/2003] [Accepted: 05/07/2003] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Subcellular messenger RNA localization is important in most eukaryotic cells, even in unicellular organisms like yeast for which this process has been underestimated. Microarrays are rarely used to study subcellular mRNA localization at whole-genome level, but can be adapted to that purpose. This work focuses on studying the repartition of yeast nuclear transcripts encoding mitochondrial proteins between free cytosolic polysomes and polysomes bound to the mitochondrial outer membrane. RESULTS Combining biochemical fractionations with oligonucleotide array analyses permits clustering of genes on the basis of the subcellular sites of their mRNA translation. A large fraction of yeast nuclear transcripts known to encode mitochondrial proteins is found in mitochondrial outer-membrane-bound fractions. These results confirm and extend a previous analysis conducted with partial genomic microarrays. Interesting statistical relations among mRNA localization, gene origin and mRNA lengths were found: longer and older mRNAs are more prone to be localized to the vicinity of mitochondria. These observations are included in a refined model of mitochondrial protein import. CONCLUSIONS Mitochondrial biogenesis requires concerted expression of the many genes whose products make up the organelle. In the absence of any clear transcriptional program, coordinated mRNA localization could be an important element of the time-course of organelle construction. We have built a 'MitoChip' localization database from our results which allows us to identify interesting genes whose mRNA localization might be essential for mitochondrial biogenesis in most eukaryotic cells. Moreover, many components of the experimental and data-analysis strategy implemented here are of general relevance in global transcription studies.
Collapse
Affiliation(s)
- Julien Sylvestre
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris cedex O5, France.
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
48
|
Mohr E, Richter D. Molecular determinants and physiological relevance of extrasomatic RNA localization in neurons. Front Neuroendocrinol 2003; 24:128-39. [PMID: 12763001 DOI: 10.1016/s0091-3022(03)00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Specific sorting of mRNA molecules to subcellular microdomains is an evolutionarily conserved mechanism by which the polarized nature of eukayotic cells may be established and maintained. The molecular composition of the RNA localization machinery is complex. Sequence motifs within RNA molecules to be transported, called cis-acting elements, and proteins, referred to as trans-acting factors, are essential components. Transport of the resulting ribonucleoprotein complexes to distinct cytoplasmic regions occurs along the cytoskeletal network. The pathway is observed in organisms as diverse as yeast and human and it plays a critical role in development and cell differentiation. Moreover, RNA localization takes place in differentiated cell types including neurons. There is ample evidence to suggest that sorting of defined mRNA species to the neurites of nerve cells and on-site translation has an impact on various aspects of nerve cell biology.
Collapse
Affiliation(s)
- Evita Mohr
- Institute for Cell Biochemistry and Clinical Neurobiology, University Clinic Hamburg-Eppendorf, Martinistr 52, D-20246, Hamburg, Germany.
| | | |
Collapse
|
49
|
Affiliation(s)
- Fabrice Roegiers
- Department of Physiology, Howard Hughes Medical Institute, University of California, 533 Parnassus Avenue, San Francisco, CA 94122, USA.
| |
Collapse
|
50
|
Arn EA, Cha BJ, Theurkauf WE, Macdonald PM. Recognition of a bicoid mRNA localization signal by a protein complex containing Swallow, Nod, and RNA binding proteins. Dev Cell 2003; 4:41-51. [PMID: 12530962 DOI: 10.1016/s1534-5807(02)00397-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Localization of mRNAs, a process essential for embryonic body patterning in Drosophila, requires recognition of cis-acting signals by cellular components responsible for movement and anchoring. We have purified a large multiprotein complex that binds a minimal form of the bicoid mRNA localization signal in a manner both specific and sensitive to inactivating mutations. Identified complex components include the RNA binding proteins Modulo, PABP, and Smooth, the known localization factor Swallow, and the kinesin family member Nod. We demonstrate that localization of bcd mRNA is defective in modulo mutants. The presence of three required localization components (Swallow, Modulo, and specific RNA binding activity) within the recognition complex strongly implicates it in mRNA localization.
Collapse
Affiliation(s)
- Eric A Arn
- Institute for Cellular and Molecular Biology, Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|