1
|
Navarro AM, Alonso M, Martínez-Pérez E, Lazar T, Gibson TJ, Iserte JA, Tompa P, Marino-Buslje C. Unveiling the Complexity of cis-Regulation Mechanisms in Kinases: A Comprehensive Analysis. Proteins 2024. [PMID: 39366918 DOI: 10.1002/prot.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Protein cis-regulatory elements (CREs) are regions that modulate the activity of a protein through intramolecular interactions. Kinases, pivotal enzymes in numerous biological processes, often undergo regulatory control via inhibitory interactions in cis. This study delves into the mechanisms of cis regulation in kinases mediated by CREs, employing a combined structural and sequence analysis. To accomplish this, we curated an extensive dataset of kinases featuring annotated CREs, organized into homolog families through multiple sequence alignments. Key molecular attributes, including disorder and secondary structure content, active and ATP-binding sites, post-translational modifications, and disease-associated mutations, were systematically mapped onto all sequences. Additionally, we explored the potential for conformational changes between active and inactive states. Finally, we explored the presence of these kinases within membraneless organelles and elucidated their functional roles therein. CREs display a continuum of structures, ranging from short disordered stretches to fully folded domains. The adaptability demonstrated by CREs in achieving the common goal of kinase inhibition spans from direct autoinhibitory interaction with the active site within the kinase domain, to CREs binding to an alternative site, inducing allosteric regulation revealing distinct types of inhibitory mechanisms, which we exemplify by archetypical representative systems. While this study provides a systematic approach to comprehend kinase CREs, further experimental investigations are imperative to unravel the complexity within distinct kinase families. The insights gleaned from this research lay the foundation for future studies aiming to decipher the molecular basis of kinase dysregulation, and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro M Navarro
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Macarena Alonso
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier A Iserte
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
- Research Centre for Natural Sciences, Hungarian Research Network, Institute of Enzymology, Budapest, Hungary
| | | |
Collapse
|
2
|
Hovorková M, Kaščáková B, Petrásková L, Havlíčková P, Nováček J, Pinkas D, Gardian Z, Křen V, Bojarová P, Smatanová IK. The variable structural flexibility of the Bacillus circulans β-galactosidase isoforms determines their unique functionalities. Structure 2024:S0969-2126(24)00374-5. [PMID: 39353423 DOI: 10.1016/j.str.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
Collapse
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, CZ-12843 Praha2, Czech Republic
| | - Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Nováček
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Daniel Pinkas
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Zdenko Gardian
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic; Laboratory of Electron Microscopy, Biology Centre of the Czech Academy of Sciences, CZ-37005 České Budějovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic.
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Cho D, Lee HM, Kim JA, Song JG, Hwang SH, Lee B, Park J, Tran KM, Kim J, Vo PNL, Bae J, Pimt T, Lee K, Gsponer J, Kim HW, Na D. Autoinhibited Protein Database: a curated database of autoinhibitory domains and their autoinhibition mechanisms. Database (Oxford) 2024; 2024:baae085. [PMID: 39192607 DOI: 10.1093/database/baae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Autoinhibition, a crucial allosteric self-regulation mechanism in cell signaling, ensures signal propagation exclusively in the presence of specific molecular inputs. The heightened focus on autoinhibited proteins stems from their implication in human diseases, positioning them as potential causal factors or therapeutic targets. However, the absence of a comprehensive knowledgebase impedes a thorough understanding of their roles and applications in drug discovery. Addressing this gap, we introduce Autoinhibited Protein Database (AiPD), a curated database standardizing information on autoinhibited proteins. AiPD encompasses details on autoinhibitory domains (AIDs), their targets, regulatory mechanisms, experimental validation methods, and implications in diseases, including associated mutations and post-translational modifications. AiPD comprises 698 AIDs from 532 experimentally characterized autoinhibited proteins and 2695 AIDs from their 2096 homologs, which were retrieved from 864 published articles. AiPD also includes 42 520 AIDs of computationally predicted autoinhibited proteins. In addition, AiPD facilitates users in investigating potential AIDs within a query sequence through comparisons with documented autoinhibited proteins. As the inaugural autoinhibited protein repository, AiPD significantly aids researchers studying autoinhibition mechanisms and their alterations in human diseases. It is equally valuable for developing computational models, analyzing allosteric protein regulation, predicting new drug targets, and understanding intervention mechanisms AiPD serves as a valuable resource for diverse researchers, contributing to the understanding and manipulation of autoinhibition in cellular processes. Database URL: http://ssbio.cau.ac.kr/databases/AiPD.
Collapse
Affiliation(s)
- Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Ah Kim
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Su-Hee Hwang
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jinsil Park
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Kha Mong Tran
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jiwon Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Phuong Ngoc Lam Vo
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jooeun Bae
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Teerapat Pimt
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jörg Gsponer
- Center for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
4
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
5
|
Huang SH, Abrametz K, McGrath SL, Kobryn K. Design and characterization of hyperactive mutants of the Agrobacterium tumefaciens telomere resolvase, TelA. PLoS One 2024; 19:e0307590. [PMID: 39052566 PMCID: PMC11271964 DOI: 10.1371/journal.pone.0307590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Telomere resolvases are a family of DNA cleavage and rejoining enzymes that produce linear DNAs terminated by hairpin telomeres from replicated intermediates in bacteria that possess linear replicons. The telomere resolvase of Agrobacterium tumefaciens, TelA, has been examined at the structural and biochemical level. The N-terminal domain of TelA, while not required for telomere resolution, has been demonstrated to play an autoinhibitory role in telomere resolution, conferring divalent metal responsiveness on the reaction. The N-terminal domain also inhibits the competing reactions of hp telomere fusion and recombination between replicated telomere junctions. Due to the absence of the N-terminal domain from TelA/DNA co-crystal structures we produced an AlphaFold model of a TelA monomer. The AlphaFold model suggested the presence of two inhibitory interfaces; one between the N-terminal domain and the catalytic domain and a second interface between the C-terminal helix and the N-core domain of the protein. We produced mutant TelA's designed to weaken these putative interfaces to test the validity of the modeled interfaces. While our analysis did not bear out the details of the predicted interfaces the model was, nonetheless, extremely useful in guiding design of mutations that, when combined, demonstrated an additive activation of TelA exceeding 250-fold. For some of these hyperactive mutants stimulation of telomere resolution has also been accompanied by activation of competing reactions. However, we have also characterized hyperactive TelA mutants that retain enough autoinhibition to suppress the competing reactions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kayla Abrametz
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siobhan L. McGrath
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Saibo NV, Maiti S, Boral S, Banerjee P, Kushwaha T, Inampudi KK, Goswami R, De S. The intrinsically disordered transactivation region of HOXA9 regulates its function by auto-inhibition of its DNA-binding activity. Int J Biol Macromol 2024; 273:132704. [PMID: 38825283 DOI: 10.1016/j.ijbiomac.2024.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
HOXA9 transcription factor is expressed in hematopoietic stem cells and is involved in the regulation of their differentiation and maturation to various blood cells. HOXA9 is linked to various leukemia and is a marker for poor prognosis of acute myeloid leukemia (AML). This protein has a conserved DNA-binding homeodomain and a transactivation domain. We show that this N-terminal transactivation domain is intrinsically disordered and inhibits DNA-binding by the homeodomain. Using NMR spectroscopy and molecular dynamics simulation, we show that the hexapeptide 197AANWLH202 in the disordered region transiently occludes the DNA-binding interface. The hexapeptide also forms a rigid segment, as determined by NMR dynamics, in an otherwise flexible disordered region. Interestingly, this hexapeptide is known to mediate the interaction of HOXA9 and its TALE partner proteins, such as PBX1, and help in cooperative DNA binding. Mutation of tryptophan to alanine in the hexapeptide abrogates the DNA-binding auto-inhibition. We propose that the disordered transactivation region plays a dual role in the regulation of HOXA9 function. In the absence of TALE partners, it inhibits DNA binding, and in the presence of TALE partners it interacts with the TALE protein and facilitates the cooperative DNA binding by the HOX-TALE complex.
Collapse
Affiliation(s)
- Nikita V Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Soumendu Boral
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Puja Banerjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ritobrata Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India.
| |
Collapse
|
7
|
Tang T, Sun J, Li C. The role of Phafin proteins in cell signaling pathways and diseases. Open Life Sci 2024; 19:20220896. [PMID: 38947768 PMCID: PMC11211877 DOI: 10.1515/biol-2022-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Membrane-associated proteins are important membrane readers that mediate and facilitate the signaling and trafficking pathways in eukaryotic membrane-bound compartments. The protein members in the Phafin family are membrane readers containing two phosphoinositide recognition domains: the Pleckstrin Homology domain and the FYVE (Fab1, YOTB, Vac1, and early endosome antigen 1) domain. Phafin proteins, categorized into two subfamilies, Phafin1 and Phafin2, associate with cellular membranes through interactions involving membrane-embedded phosphoinositides and phosphoinositide-binding domains. These membrane-associated Phafin proteins play pivotal roles by recruiting binding partners and forming complexes, which contribute significantly to apoptotic, autophagic, and macropinocytotic pathways. Elevated expression levels of Phafin1 and Phafin2 are observed in various cancers. A recent study highlights a significant increase in Phafin1 protein levels in the lungs of idiopathic pulmonary fibrosis patients compared to normal subjects, suggesting a crucial role for Phafin1 in the pathogenesis of pulmonary fibrosis. Additionally, phosphatidylinositol-3-phosphate-binding 2 (Pib2), a close relative of the Phafin1 protein, functions as an amino acid sensor activating the TOCR1 pathway in yeasts. This review focuses on delineating the involvement of Phafin proteins in cellular signaling and their implications in diseases and briefly discusses the latest research findings concerning Pib2.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jing Sun
- Department of Biostatistics and Epidemiology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
8
|
Holguin-Cruz JA, Bui JM, Jha A, Na D, Gsponer J. Widespread alteration of protein autoinhibition in human cancers. Cell Syst 2024; 15:246-263.e7. [PMID: 38366601 DOI: 10.1016/j.cels.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/20/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Autoinhibition is a prevalent allosteric regulatory mechanism in signaling proteins. Reduced autoinhibition underlies the tumorigenic effect of some known cancer drivers, but whether autoinhibition is altered generally in cancer remains elusive. Here, we demonstrate that cancer-associated missense mutations, in-frame insertions/deletions, and fusion breakpoints are enriched within inhibitory allosteric switches (IASs) across all cancer types. Selection for IASs that are recurrently mutated in cancers identifies established and unknown cancer drivers. Recurrent missense mutations in IASs of these drivers are associated with distinct, cancer-specific changes in molecular signaling. For the specific case of PPP3CA, the catalytic subunit of calcineurin, we provide insights into the molecular mechanisms of altered autoinhibition by cancer mutations using biomolecular simulations, and demonstrate that such mutations are associated with transcriptome changes consistent with increased calcineurin signaling. Our integrative study shows that autoinhibition-modulating genetic alterations are positively selected for by cancer cells.
Collapse
Affiliation(s)
- Jorge A Holguin-Cruz
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer M Bui
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashwani Jha
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
9
|
Fenton M, Gregory E, Daughdrill G. Protein disorder and autoinhibition: The role of multivalency and effective concentration. Curr Opin Struct Biol 2023; 83:102705. [PMID: 37778184 PMCID: PMC10841074 DOI: 10.1016/j.sbi.2023.102705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Regulation of protein binding through autoinhibition commonly occurs via interactions involving intrinsically disordered regions (IDRs). These intramolecular interactions can directly or allosterically inhibit intermolecular protein or DNA binding, regulate enzymatic activity, and control the assembly of large macromolecular complexes. Autoinhibitory interactions mediated by protein disorder are inherently transient, making their identification and characterization challenging. In this review, we explore the structural and functional diversity of disorder-mediated autoinhibition for a variety of biological mechanisms, with a focus on the role of multivalency and effective concentration. We also discuss the evolution of disordered motifs that participate in autoinhibition using examples where sequence conservation varies from high to low. In some cases, identifiable motifs that are essential for autoinhibition remain intact within a rapidly evolving sequence, over long evolutionary distances. Finally, we examine the potential of AlphaFold2 to predict autoinhibitory intramolecular interactions involving IDRs.
Collapse
Affiliation(s)
- Malissa Fenton
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Emily Gregory
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Gary Daughdrill
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
10
|
Yang S, Au FK, Li G, Lin J, Li XD, Qi RZ. Autoinhibitory mechanism controls binding of centrosomin motif 1 to γ-tubulin ring complex. J Cell Biol 2023; 222:e202007101. [PMID: 37213089 PMCID: PMC10202828 DOI: 10.1083/jcb.202007101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/03/2023] [Accepted: 03/24/2023] [Indexed: 05/23/2023] Open
Abstract
The γ-tubulin ring complex (γTuRC) is the principal nucleator of cellular microtubules, and the microtubule-nucleating activity of the complex is stimulated by binding to the γTuRC-mediated nucleation activator (γTuNA) motif. The γTuNA is part of the centrosomin motif 1 (CM1), which is widely found in γTuRC stimulators, including CDK5RAP2. Here, we show that a conserved segment within CM1 binds to the γTuNA and blocks its association with γTuRCs; therefore, we refer to this segment as the γTuNA inhibitor (γTuNA-In). Mutational disruption of the interaction between the γTuNA and the γTuNA-In results in a loss of autoinhibition, which consequently augments microtubule nucleation on centrosomes and the Golgi complex, the two major microtubule-organizing centers. This also causes centrosome repositioning, leads to defects in Golgi assembly and organization, and affects cell polarization. Remarkably, phosphorylation of the γTuNA-In, probably by Nek2, counteracts the autoinhibition by disrupting the γTuNA‒γTuNA-In interaction. Together, our data reveal an on-site mechanism for controlling γTuNA function.
Collapse
Affiliation(s)
- Shaozhong Yang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gefei Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| |
Collapse
|
11
|
Murthy AC, Aleksanyan N, Morton GM, Toyoda HC, Kalashyan M, Chen S, Ragucci AE, Broulidakis MP, Swerdlow KJ, Bui MNN, Muccioli M, Berkmen MB. Characterization of ConE, the VirB4 Homolog of the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2023; 205:e0003323. [PMID: 37219457 PMCID: PMC10294652 DOI: 10.1128/jb.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Collapse
Affiliation(s)
- Anastasia C. Murthy
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Georgeanna M. Morton
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Hunter C. Toyoda
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Meri Kalashyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Sirui Chen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Adelyn E. Ragucci
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
- Cancer Immunology and Virology Department, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew P. Broulidakis
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Kyle J. Swerdlow
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Minh N. N. Bui
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Maria Muccioli
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res 2023; 51:4701-4712. [PMID: 36774964 PMCID: PMC10250230 DOI: 10.1093/nar/gkad045] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
13
|
Tang T, Hasan M, Capelluto DGS. Phafins Are More Than Phosphoinositide-Binding Proteins. Int J Mol Sci 2023; 24:ijms24098096. [PMID: 37175801 PMCID: PMC10178739 DOI: 10.3390/ijms24098096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Phafins are PH (Pleckstrin Homology) and FYVE (Fab1, YOTB, Vac1, and EEA1) domain-containing proteins. The Phafin protein family is classified into two groups based on their sequence homology and functional similarity: Phafin1 and Phafin2. This protein family is unique because both the PH and FYVE domains bind to phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide primarily found in endosomal and lysosomal membranes. Phafin proteins act as PtdIns(3)P effectors in apoptosis, endocytic cargo trafficking, and autophagy. Additionally, Phafin2 is recruited to macropinocytic compartments through coincidence detection of PtdIns(3)P and PtdIns(4)P. Membrane-associated Phafins serve as adaptor proteins that recruit other binding partners. In addition to the phosphoinositide-binding domains, Phafin proteins present a poly aspartic acid motif that regulates membrane binding specificity. In this review, we summarize the involvement of Phafins in several cellular pathways and their potential physiological functions while highlighting the similarities and differences between Phafin1 and Phafin2. Besides, we discuss research perspectives for Phafins.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahmudul Hasan
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Luo Y, Pratihar S, Horste EH, Mitschka S, Mey ASJS, Al-Hashimi HM, Mayr C. mRNA interactions with disordered regions control protein activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529068. [PMID: 36824771 PMCID: PMC9949118 DOI: 10.1101/2023.02.18.529068] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The cytoplasm is compartmentalized into different translation environments. mRNAs use their 3'UTRs to localize to distinct cytoplasmic compartments, including TIS granules (TGs). Many transcription factors, including MYC, are translated in TGs. It was shown that translation of proteins in TGs enables the formation of protein complexes that cannot be established when these proteins are translated in the cytosol, but the mechanism is poorly understood. Here we show that MYC protein complexes that involve binding to the intrinsically disordered region (IDR) of MYC are only formed when MYC is translated in TGs. TG-dependent protein complexes require TG-enriched mRNAs for assembly. These mRNAs bind to a new and widespread RNA-binding domain in neutral or negatively charged IDRs in several transcription factors, including MYC. RNA-IDR interaction changes the conformational ensemble of the IDR, enabling the formation of MYC protein complexes that act in the nucleus and control functions that cannot be accomplished by cytosolically-translated MYC. We propose that certain mRNAs have IDR chaperone activity as they control IDR conformations. In addition to post-translational modifications, we found a novel mode of protein activity regulation. Since RNA-IDR interactions are prevalent, we suggest that mRNA-dependent control of protein functional states is widespread.
Collapse
Affiliation(s)
- Yang Luo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Supriya Pratihar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ellen H. Horste
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| |
Collapse
|
15
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
16
|
Bollhagen A, Bechtel W. Discovering autoinhibition as a design principle for the control of biological mechanisms. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 95:145-157. [PMID: 36029564 DOI: 10.1016/j.shpsa.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Autoinhibition is a design principle realized in many molecular mechanisms in biology. After explicating the notion of a design principle and showing that autoinhibition is such a principle, we focus on how researchers discovered instances of autoinhibition, using research establishing the autoinhibition of the molecular motors kinesin and dynein as our case study. Research on kinesin and dynein began in the fashion described in accounts of mechanistic explanation but, once the mechanisms had been discovered, researchers discovered that they exhibited a second phenomenon, autoinhibition. The discovery of autoinhibition not only reverses the pattern in terms of which philosophers have understood mechanism discovery but runs counter to the one phenomenon-one mechanism principle assumed to relate mechanisms and the phenomena they explain. The ubiquity of autoinhibition as a design principle, therefore, necessitates a philosophical understanding of mechanisms that recognizes how they can participate in more than one phenomenon. Since mechanisms with this design are released from autoinhibition only when they are acted on by control mechanisms, we advance a revised account of mechanisms that accommodates attribution of multiple phenomena to the same mechanism and distinguishes them from other processes that control them.
Collapse
Affiliation(s)
- Andrew Bollhagen
- UC San Diego Philosophy Department, Ridge Walk Academic Complex - Arts & Humanities Bldg. Room 0435, La Jolla, CA 92093-0119, USA.
| | - William Bechtel
- UC San Diego Philosophy Department, Ridge Walk Academic Complex - Arts & Humanities Bldg. Room 0455, La Jolla, CA 92093-0119, USA.
| |
Collapse
|
17
|
Liu P, Chen C, Ger L, Tsai W, Tseng H, Lee C, Yang W, Shu C. MAP3K11 facilitates autophagy activity and is correlated with malignancy of oral squamous cell carcinoma. J Cell Physiol 2022; 237:4275-4291. [DOI: 10.1002/jcp.30881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Pei‐Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science Kaohsiung Medical University Kaohsiung Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
- Center for Cancer Research Kaohsiung Medical University Kaohsiung Taiwan
| | - Chun‐Feng Chen
- Department of Oral and Maxillofacial Surgery Kaohsiung Veterans General Hospital Kaohsiung Taiwan
- School of Dentistry, College of Dental Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Luo‐Ping Ger
- Department of Medical Education and Research Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - Wei‐Lun Tsai
- Department of Internal Medicine Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - Ho‐Hsing Tseng
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
| | - Cheng‐Hsin Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science Kaohsiung Medical University Kaohsiung Taiwan
| | - Wen‐Hsin Yang
- Institute of BioPharmaceutical Sciences National Sun Yat‐sen University Kaohsiung Taiwan
| | - Chih‐Wen Shu
- Institute of BioPharmaceutical Sciences National Sun Yat‐sen University Kaohsiung Taiwan
- Department of Post‐Baccalaureate Medicine National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
18
|
Tsuji A, Yamashita H, Hisatomi O, Abe M. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy. Sci Rep 2022; 12:12903. [PMID: 35941201 PMCID: PMC9359980 DOI: 10.1038/s41598-022-17228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Dimerization is critical for transcription factors (TFs) to bind DNA and regulate a wide variety of cellular functions; however, the molecular mechanisms remain to be completely elucidated. Here, we used high-speed atomic force microscopy (HS-AFM) to observe the dimerization process for a photoresponsive TF Photozipper (PZ), which consists of light–oxygen–voltage-sensing (LOV) and basic-region-leucine-zipper (bZIP) domains. HS-AFM visualized not only the oligomeric states of PZ molecules forming monomers and dimers under controlled dark–light conditions but also the domain structures within each molecule. Successive AFM movies captured the dimerization process for an individual PZ molecule and the monomer–dimer reversible transition during dark–light cycling. Detailed AFM images of domain structures in PZ molecules demonstrated that the bZIP domain entangled under dark conditions was loosened owing to light illumination and fluctuated around the LOV domain. These observations revealed the role of the bZIP domain in the dimerization processes of a TF.
Collapse
Affiliation(s)
- Akihiro Tsuji
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Osamu Hisatomi
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Transient exposure of a buried phosphorylation site in an autoinhibited protein. Biophys J 2022; 121:91-101. [PMID: 34864046 PMCID: PMC8758417 DOI: 10.1016/j.bpj.2021.11.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. These conformational dynamics make it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely tuned equilibrium between an inhibited and a kinase-accessible state.
Collapse
|
20
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
21
|
Rao XS, Cong XX, Gao XK, Shi YP, Shi LJ, Wang JF, Ni CY, He MJ, Xu Y, Yi C, Meng ZX, Liu J, Lin P, Zheng LL, Zhou YT. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ 2021; 28:3214-3234. [PMID: 34045668 PMCID: PMC8630067 DOI: 10.1038/s41418-021-00809-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of glucose homeostasis contributes to insulin resistance and type 2 diabetes. Whilst exercise stimulated activation of AMP-activated protein kinase (AMPK), an important energy sensor, has been highlighted for its potential to promote insulin-stimulated glucose uptake, the underlying mechanisms for this remain largely unknown. Here we found that AMPK positively regulates the activation of Rab5, a small GTPase which is involved in regulating Glut4 translocation, in both myoblasts and skeletal muscles. We further verified that TBC1D17, identified as a potential interacting partner of Rab5 in our recent study, is a novel GTPase activating protein (GAP) of Rab5. TBC1D17-Rab5 axis regulates transport of Glut1, Glut4, and transferrin receptor. TBC1D17 interacts with Rab5 or AMPK via its TBC domain or N-terminal 1-306 region (N-Ter), respectively. Moreover, AMPK phosphorylates the Ser 168 residue of TBC1D17 which matches the predicted AMPK consensus motif. N-Ter of TBC1D17 acts as an inhibitory region by directly interacting with the TBC domain. Ser168 phosphorylation promotes intra-molecular interaction and therefore enhances the auto-inhibition of TBC1D17. Our findings reveal that TBC1D17 acts as a molecular bridge that links AMPK and Rab5 and delineate a previously unappreciated mechanism by which the activation of TBC/RabGAP is regulated.
Collapse
Affiliation(s)
- Xi Sheng Rao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu Kui Gao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Pu Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Jing Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Feng Wang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Yao Ni
- grid.35403.310000 0004 1936 9991The School of Molecular and Cellular Biology, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Ming Jie He
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- grid.13402.340000 0004 1759 700XDepartment of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo-Xian Meng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinling Liu
- grid.13402.340000 0004 1759 700XDepartment of Pulmonology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Peng Lin
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Morgan JL, Yeager A, Estelle AB, Gsponer J, Barbar E. Transient Tertiary Structures of Disordered Dynein Intermediate Chain Regulate its Interactions with Multiple Partners. J Mol Biol 2021; 433:167152. [PMID: 34273400 DOI: 10.1016/j.jmb.2021.167152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
Abstract
The N-terminal domain of dynein intermediate chain (N-IC) is central to the cytoplasmic dynein 'cargo attachment subcomplex' and regulation of motor activity. It is a prototypical intrinsically disordered protein (IDP), serving as a primarily disordered polybivalent molecular scaffold for numerous binding partners, including three dimeric dynein light chains and coiled coil domains of dynein partners dynactin p150Glued and NudE. At the very N-terminus, a 40 amino acid single alpha helix (SAH) forms the major binding site for both p150Glued and NudE, while a shorter nascent helix (H2) separated from SAH by a disordered linker, is necessary for tight binding to dynactin p150Glued but not to NudE. Here we demonstrate that transient tertiary interactions in this highly dynamic protein underlie the differences in its interactions with p150Glued and NudE. NMR paramagnetic relaxation enhancement experiments and restrained molecular dynamics simulations identify interactions between the two non-contiguous SAH and H2 helical regions, the extent of which correlates with the length and stability of H2, showing clearly that tertiary and secondary structure formation are coupled in IDPs. These interactions are significantly attenuated when N-IC is bound to NudE, suggesting that NudE binding shifts the conformational ensemble to one that is more extended and with less structure in H2. While the intrinsic disorder and flexibility in N-IC modulate its ability to serve as a binding platform for numerous partners, deviations of this protein from random-coil behavior provide a process for regulating these binding interactions and potentially the dynein motor.
Collapse
Affiliation(s)
- Jessica L Morgan
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Andrew Yeager
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
23
|
Wang X, Greenblatt HM, Bigman LS, Yu B, Pletka CC, Levy Y, Iwahara J. Dynamic Autoinhibition of the HMGB1 Protein via Electrostatic Fuzzy Interactions of Intrinsically Disordered Regions. J Mol Biol 2021; 433:167122. [PMID: 34181980 DOI: 10.1016/j.jmb.2021.167122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Highly negatively charged segments containing only aspartate or glutamate residues ("D/E repeats") are found in many eukaryotic proteins. For example, the C-terminal 30 residues of the HMGB1 protein are entirely D/E repeats. Using nuclear magnetic resonance (NMR), fluorescence, and computational approaches, we investigated how the D/E repeats causes the autoinhibition of HMGB1 against its specific binding to cisplatin-modified DNA. By varying ionic strength in a wide range (40-900 mM), we were able to shift the conformational equilibrium between the autoinhibited and uninhibited states toward either of them to the full extent. This allowed us to determine the macroscopic and microscopic equilibrium constants for the HMGB1 autoinhibition at various ionic strengths. At a macroscopic level, a model involving the autoinhibited and uninhibited states can explain the salt concentration-dependent binding affinity data. Our data at a microscopic level show that the D/E repeats and other parts of HMGB1 undergo electrostatic fuzzy interactions, each of which is weaker than expected from the macroscopic autoinhibitory effect. This discrepancy suggests that the multivalent nature of the fuzzy interactions enables strong autoinhibition at a macroscopic level despite the relatively weak intramolecular interaction at each site. Both experimental and computational data suggest that the D/E repeats interact preferentially with other intrinsically disordered regions (IDRs) of HMGB1. We also found that mutations mimicking post-translational modifications relevant to nuclear export of HMGB1 can moderately modulate DNA-binding affinity, possibly by impacting the autoinhibition. This study illuminates a functional role of the fuzzy interactions of D/E repeats.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Channing C Pletka
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA.
| |
Collapse
|
24
|
Forlani G, Di Ventura B. A light way for nuclear cell biologists. J Biochem 2021; 169:273-286. [PMID: 33245128 PMCID: PMC8053400 DOI: 10.1093/jb/mvaa139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleus is a very complex organelle present in eukaryotic cells. Having the crucial task to safeguard, organize and manage the genetic information, it must tightly control its molecular constituents, its shape and its internal architecture at any given time. Despite our vast knowledge of nuclear cell biology, much is yet to be unravelled. For instance, only recently we came to appreciate the existence of a dynamic nuclear cytoskeleton made of actin filaments that regulates processes such as gene expression, DNA repair and nuclear expansion. This suggests further exciting discoveries ahead of us. Modern cell biologists embrace a new methodology relying on precise perturbations of cellular processes that require a reversible, highly spatially confinable, rapid, inexpensive and tunEable external stimulus: light. In this review, we discuss how optogenetics, the state-of-the-art technology that uses genetically encoded light-sensitive proteins to steer biological processes, can be adopted to specifically investigate nuclear cell biology.
Collapse
Affiliation(s)
- Giada Forlani
- Spemann Graduate School of Biology and Medicine (SGBM)
- Centers for Biological Signalling Studies BIOSS and CIBSS
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Barbara Di Ventura
- Centers for Biological Signalling Studies BIOSS and CIBSS
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Iljina M, Mazal H, Goloubinoff P, Riven I, Haran G. Entropic Inhibition: How the Activity of a AAA+ Machine Is Modulated by Its Substrate-Binding Domain. ACS Chem Biol 2021; 16:775-785. [PMID: 33739813 PMCID: PMC8056383 DOI: 10.1021/acschembio.1c00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ClpB is a tightly regulated AAA+ disaggregation machine. Each ClpB molecule is composed of a flexibly attached N-terminal domain (NTD), an essential middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains. The NTD is not well-characterized structurally and is commonly considered to serve as a dispensable substrate-binding domain. Here, we use single-molecule FRET spectroscopy to directly monitor the real-time dynamics of ClpB's NTD and reveal its unexpected autoinhibitory function. We find that the NTD fluctuates on the microsecond time scale, and these dynamics result in steric hindrance that limits the conformational space of the MD to restrict its tilting. This leads to significantly inhibited ATPase and disaggregation activities of ClpB, an effect that is alleviated upon binding of a substrate protein or the cochaperone DnaK. This entropic inhibition mechanism, which is mediated by ultrafast motions of the NTD and is not dependent on any strong interactions, might be common in related ATP-dependent proteases and other multidomain proteins to ensure their fast and reversible activation.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
26
|
Saneyoshi T. Reciprocal activation within a kinase effector complex: A mechanism for the persistence of molecular memory. Brain Res Bull 2021; 170:58-64. [PMID: 33556559 DOI: 10.1016/j.brainresbull.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Synaptic connections in neuronal circuits change in response to neuronal activity patterns. This can induce a persistent change in the efficacy of synaptic transmission, a phenomenon known as synaptic plasticity. One form of plasticity, long-term potentiation (LTP) has been extensively studied as the cellular basis of memory. In LTP, the potentiated synaptic transmission persists along with structural changes in the synapses. Many studies have sought to identify the "memory molecule" or the "molecular engram". Ca2+/calmodulin-dependent protein kinase II (CaMKII) is probably the most well-studied candidate for the memory molecule. However, consensus has not yet been reached on a very basic aspect: how CaMKII is regulated during LTP. Here, I propose a new model of CaMKII regulation: reciprocal activation within a kinase effector complex (RAKEC) that is made between CaMKII and its effector protein, which is mediated by a persistent interaction between CaMKII and a pseudosubstrate sequence on T-lymphoma invasion and metastasis protein 1 (Tiam1), resulting in reciprocal activation of these two molecules. Through the RAKEC mechanism, CaMKII can maintain memory as biochemical activity in a synapse-specific manner. In this review, the detailed mechanism of the RAKEC and its expansion for the maintenance of LTP is described.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Dai Y, Kyoyama H, Yang YL, Wang Y, Liu S, Wang Y, Mao JH, Xu Z, Uematsu K, Jablons DM, You L. A novel isoform of Homeodomain-interacting protein kinase-2 promotes YAP/TEAD transcriptional activity in NSCLC cells. Oncotarget 2021; 12:173-184. [PMID: 33613845 PMCID: PMC7869571 DOI: 10.18632/oncotarget.27871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Homeodomain-interacting protein kinase-2 (HIPK2) can either promote or inhibit transcription depending on cellular context. In this study, we show that a new HIPK2 isoform increases TEAD reporter activity in NSCLC cells. We detected HIPK2 copy number gain in 5/6 (83.3%) NSCLC cell lines. In NSCLC patients with high HIPK2 mRNA expression in the Human Protein Atlas, the five-year survival rate is significantly lower than in patients with low expression (38% vs 47%; p = 0.047). We also found that 70/78 (89.7%) of NSCLC tissues have moderate to strong expression of the N-terminal HIPK2 protein. We detected and cloned a novel HIPK2 isoform 3 and found that its forced overexpression promotes TEAD reporter activity in NSCLC cells. Expressing HIPK2 isoform 3_K228A kinase-dead plasmid failed to increase TEAD reporter activity in NSCLC cells. Next, we showed that two siRNAs targeting HIPK2 decreased HIPK2 isoform 3 and YAP protein levels in NSCLC cells. Degradation of the YAP protein was accelerated after HIPK2 knockdown in NSCLC cells. Inhibition of HIPK2 isoform 3 decreased the mRNA expression of YAP downstream gene CTGF. The specific HIPK2 kinase inhibitor TBID decreased TEAD reporter activity, reduced cancer side populations, and inhibited tumorsphere formation of NSCLC cells. In summary, this study indicates that HIPK2 isoform 3, the main HIPK2 isoform expressed in NSCLC, promotes YAP/TEAD transcriptional activity in NSCLC cells. Our results suggest that HIPK2 isoform 3 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China.,These authors contributed equally to this work
| | - Hiroyuki Kyoyama
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan.,These authors contributed equally to this work
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,These authors contributed equally to this work
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yinghao Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
Chen X, Shen H, Shao Y, Ma Q, Niu Y, Shang Z. A narrative review of proteolytic targeting chimeras (PROTACs): future perspective for prostate cancer therapy. Transl Androl Urol 2021; 10:954-962. [PMID: 33718095 PMCID: PMC7947434 DOI: 10.21037/tau-20-1357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolysis-TArgeting Chimeras (PROTACs) technology, as a strategy to chemically knock down transcription factors at the protein levels, can hijack the ubiquitin-proteasome degradation system to initiate the intracellular ubiquitin-proteasome hydrolysis process to degrade proteins. In the past, the development of drugs that target transcription factors has been greatly restricted, and even historically transcription factors have been regarded as “undruggable targets”. PROTAC technology breaks through this limitation with its unique targeting design. With several generations of technical innovation, PROTACs have become more mature and continue to make breakthroughs in the field of targeted therapy including prostate cancer (PCa), with a new strategy for the development of anti-tumor targeted drugs. PROTACs have all the advantages of existing small molecule inhibitors, are easy to administer orally, have good cell permeability, and have wider targeting profiles compared to conventional inhibitors. The disadvantage of PROTACs is the noncancer specificity, off-target and sustained-release control, due to its catalytic role. Some androgen receptor (AR) and CDK4/6 degraders have advanced the field of PCa treatment, which is being further modified given the effects of these degraders in preclinical and clinical studies. This review summarizes in detail the technological progress and challenges that have been faced with PROTACs, the progress of research on PCa, and the prospective future of PROTACs development.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haishan Shen
- Urology Development, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qianwang Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Mezhyrova J, Martin J, Peetz O, Dötsch V, Morgner N, Ma Y, Bernhard F. Membrane insertion mechanism and molecular assembly of the bacteriophage lysis toxin ΦX174‐E. FEBS J 2020; 288:3300-3316. [DOI: 10.1111/febs.15642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Julija Mezhyrova
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| | - Yi Ma
- School of Biology and Biological Engineering South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering South China University of Technology Guangzhou China
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Germany
| |
Collapse
|
30
|
Mutation-oriented profiling of autoinhibitory kinase conformations predicts RAF inhibitor efficacies. Proc Natl Acad Sci U S A 2020; 117:31105-31113. [PMID: 33229534 PMCID: PMC7733820 DOI: 10.1073/pnas.2012150117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kinase-targeted therapies have the potential to improve the survival of patients with cancer. However, the cancer-specific spectrum of kinase alterations exhibits distinct functional properties and requires mutation-oriented drug treatments. Besides post-translational modifications and diverse intermolecular interactions of kinases, it is the distinct disease mutation which reshapes full-length kinase conformations, affecting their activity. Oncokinase mutation profiles differ between cancer types, as it was shown for BRAF in melanoma and non-small-cell lung cancers. Here, we present the target-oriented application of a kinase conformation (KinCon) reporter platform for live-cell measurements of autoinhibitory kinase activity states. The bioluminescence-based KinCon biosensor allows the tracking of conformation dynamics of full-length kinases in intact cells and real time. We show that the most frequent BRAF cancer mutations affect kinase conformations and thus the engagement and efficacy of V600E-specific BRAF inhibitors (BRAFi). We illustrate that the patient mutation harboring KinCon reporters display differences in the effectiveness of the three clinically approved BRAFi vemurafenib, encorafenib, and dabrafenib and the preclinical paradox breaker PLX8394. We confirmed KinCon-based drug efficacy predictions for BRAF mutations other than V600E in proliferation assays using patient-derived lung cancer cell lines and by analyzing downstream kinase signaling. The systematic implementation of such conformation reporters will allow to accelerate the decision process for the mutation-oriented RAF-kinase cancer therapy. Moreover, we illustrate that the presented kinase reporter concept can be extended to other kinases which harbor patient mutations. Overall, KinCon profiling provides additional mechanistic insights into full-length kinase functions by reporting protein-protein interaction (PPI)-dependent, mutation-specific, and drug-driven changes of kinase activity conformations.
Collapse
|
31
|
A conserved mechanism of sirtuin signalling through steroid hormone receptors. Biosci Rep 2020; 39:221190. [PMID: 31746335 PMCID: PMC6904774 DOI: 10.1042/bsr20193535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
SIRT1 and orthologous sirtuins regulate a universal mechanism of ageing and thus determine lifespan across taxa; however, the precise mechanism remains vexingly polemical. They also protect against many metabolic and ageing-related diseases by dynamically integrating several processes including autophagy, proteostasis, calorie restriction, circadian rhythmicity and metabolism. These sirtuins are therefore important drug targets particularly because they also transduce allosteric signals from sirtuin-activating compounds such as resveratrol into increased healthspan in evolutionarily diverse organisms. While many of these functions are apparently regulated by deacetylation, that mechanism may not be all-encompassing. Since gonadal signals have been shown to regulate ageing/lifespan in worms and flies, the present study hypothesized that these sirtuins may act as intermediary factors for steroid hormone signal transduction. Accordingly, SIRT1 and its orthologues, Sir2 and Sir-2.1, are shown to be veritable nuclear receptor coregulators that classically coactivate the oestrogen receptor in the absence of ligand; coactivation was further increased by 17β-oestradiol. Remarkably in response to the worm steroid hormone dafachronic acid, SIRT1 reciprocally coactivates DAF-12, the steroid receptor that regulates nematode lifespan. These results suggest that steroid hormones may co-opt and modulate a phyletically conserved mechanism of sirtuin signalling through steroid receptors. Hence, it is interesting to speculate that certain sirtuin functions including prolongevity and metabolic regulation may be mechanistically linked to this endocrine signalling pathway; this may also have implications for understanding the determinative role of gonadal steroids such as oestradiol in human ageing. At its simplest, this report shows evidence for a hitherto unknown deacetylation-independent mechanism of sirtuin signalling.
Collapse
|
32
|
Raiymbek G, An S, Khurana N, Gopinath S, Larkin A, Biswas S, Trievel RC, Cho US, Ragunathan K. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 2020; 9:53155. [PMID: 32195666 PMCID: PMC7192584 DOI: 10.7554/elife.53155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
H3K9 methylation (H3K9me) specifies the establishment and maintenance of transcriptionally silent epigenetic states or heterochromatin. The enzymatic erasure of histone modifications is widely assumed to be the primary mechanism that reverses epigenetic silencing. Here, we reveal an inversion of this paradigm where a putative histone demethylase Epe1 in fission yeast, has a non-enzymatic function that opposes heterochromatin assembly. Mutations within the putative catalytic JmjC domain of Epe1 disrupt its interaction with Swi6HP1 suggesting that this domain might have other functions besides enzymatic activity. The C-terminus of Epe1 directly interacts with Swi6HP1, and H3K9 methylation stimulates this protein-protein interaction in vitro and in vivo. Expressing the Epe1 C-terminus is sufficient to disrupt heterochromatin by outcompeting the histone deacetylase, Clr3 from sites of heterochromatin formation. Our results underscore how histone modifying proteins that resemble enzymes have non-catalytic functions that regulate the assembly of epigenetic complexes in cells. A cell’s identity depends on which of its genes are active. One way for cells to control this process is to change how accessible their genes are to the molecular machinery that switches them on and off. Special proteins called histones determine how accessible genes are by altering how loosely or tightly DNA is packed together. Histones can be modified by enzymes, which are proteins that add or remove specific chemical ‘tags’. These tags regulate how accessible genes are and provide cells with a memory of gene activity. For example, a protein found in yeast called Epe1 helps reactivate large groups of genes after cell division, effectively ‘re-setting’ the yeast’s genome and eliminating past memories of the genes being inactive. For a long time, Epe1 was thought to do this by removing methyl groups, a ‘tag’ that indicates a gene is inactive, from histones – that is, by acting like an enzyme. However, no direct evidence to support this hypothesis has been found. Raiymbek et al. therefore set out to determine exactly how Epe1 worked, and whether or not it did indeed behave like an enzyme. Initial experiments testing mutant versions of Epe1 in yeast cells showed that the changes expected to stop Epe1 from removing methyl groups instead prevented the protein from ‘homing’ to the sections of DNA it normally activates. Detailed microscope imaging, using live yeast cells engineered to produce proteins with fluorescent markers, revealed that this inability to ‘home’ was due to a loss of interaction with Epe1’s main partner, a protein called Swi6. This protein recognizes and binds histones that have methyl tags. Swi6 also acts as a docking site for proteins involved in deactivating genes in close proximity to these histones. Further biochemical studies revealed how the interaction between Epe1 and Swi6 can help in gene reactivation. The methyl tag on histones in inactive regions of the genome inadvertently helps Epe1 interact more efficiently with Swi6. Then, Epe1 can simply block every other protein that binds to Swi6 from participating in gene deactivation. This observation contrasts with the prevailing view where the active removal of methyl tags by proteins such as Epe1 switches genes from an inactive to an active state. This work shows for the first time that Epe1 influences the state of the genome through a process that does not involve enzyme activity. In other words, although the protein may ‘moonlight’ as an enzyme, its main job uses a completely different mechanism. More broadly, these results increase the understanding of the many different ways that gene activity, and ultimately cell identity, can be controlled.
Collapse
Affiliation(s)
- Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Nidhi Khurana
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saarang Gopinath
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Ajay Larkin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saikat Biswas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
33
|
Dudenhoeffer BR, Schneider H, Schweimer K, Knauer SH. SuhB is an integral part of the ribosomal antitermination complex and interacts with NusA. Nucleic Acids Res 2020; 47:6504-6518. [PMID: 31127279 PMCID: PMC6614797 DOI: 10.1093/nar/gkz442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
The synthesis of ribosomal RNA (rRNA) is a tightly regulated central process in all cells. In bacteria efficient expression of all seven rRNA operons relies on the suppression of termination signals (antitermination) and the proper maturation of the synthesized rRNA. These processes depend on N-utilization substance (Nus) factors A, B, E and G, as well as ribosomal protein S4 and inositol monophosphatase SuhB, but their structural basis is only poorly understood. Combining nuclear magnetic resonance spectroscopy and biochemical approaches we show that Escherichia coli SuhB can be integrated into a Nus factor-, and optionally S4-, containing antitermination complex halted at a ribosomal antitermination signal. We further demonstrate that SuhB specifically binds to the acidic repeat 2 (AR2) domain of the multi-domain protein NusA, an interaction that may be involved in antitermination or posttranscriptional processes. Moreover, we show that SuhB interacts with RNA and weakly associates with RNA polymerase (RNAP). We finally present evidence that SuhB, the C-terminal domain of the RNAP α-subunit, and the N-terminal domain of NusG share binding sites on NusA-AR2 and that all three can release autoinhibition of NusA, indicating that NusA-AR2 serves as versatile recruitment platform for various factors in transcription regulation.
Collapse
Affiliation(s)
| | - Hans Schneider
- Biopolymers, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kristian Schweimer
- Biopolymers, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Stefan H Knauer
- Biopolymers, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
34
|
Wang JJ, Liu F, Yang F, Wang YZ, Qi X, Li Y, Hu Q, Zhu MX, Xu TL. Disruption of auto-inhibition underlies conformational signaling of ASIC1a to induce neuronal necroptosis. Nat Commun 2020; 11:475. [PMID: 31980622 PMCID: PMC6981194 DOI: 10.1038/s41467-019-13873-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
We reported previously that acid-sensing ion channel 1a (ASIC1a) mediates acidic neuronal necroptosis via recruiting receptor-interacting protein kinase 1 (RIPK1) to its C terminus (CT), independent of its ion-conducting function. Here we show that the N-terminus (NT) of ASIC1a interacts with its CT to form an auto-inhibition that prevents RIPK1 recruitment/activation under resting conditions. The interaction involves glutamate residues at distal NT and is disrupted by acidosis. Expression of mutant ASIC1a bearing truncation or glutamate-to-alanine substitutions at distal NT causes constitutive cell death. The NT-CT interaction is further disrupted by N-ethylmaleimide-sensitive fusion ATPase (NSF), which associates with ASIC1a-NT under acidosis, facilitating RIPK1 interaction with ASIC1a-CT. Importantly, a membrane-penetrating synthetic peptide representing the distal 20 ASIC1a NT residues, NT1–20, reduced neuronal damage in both in vitro model of acidotoxicity and in vivo mouse model of ischemic stroke, demonstrating the therapeutic potential of targeting the auto-inhibition of ASIC1a for neuroprotection against acidotoxicity. Acid-sensing ion channel 1a (ASIC1a) mediates acidic neuronal necroptosis via recruiting receptor-interacting protein kinase 1 (RIPK1). Here authors show that auto-inhibition of ASICa prevents RIPK1 recruitment and demonstrate that targeting the auto-inhibition has therapeutic potential to prevent acidotoxicity.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhi Wang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Qi
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Hu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Khan RB, Goult BT. Adhesions Assemble!-Autoinhibition as a Major Regulatory Mechanism of Integrin-Mediated Adhesion. Front Mol Biosci 2019; 6:144. [PMID: 31921890 PMCID: PMC6927945 DOI: 10.3389/fmolb.2019.00144] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
The advent of cell-cell and cell-extracellular adhesion enabled cells to interact in a coherent manner, forming larger structures and giving rise to the development of tissues, organs and complex multicellular life forms. The development of such organisms required tight regulation of dynamic adhesive structures by signaling pathways that coordinate cell attachment. Integrin-mediated adhesion to the extracellular matrix provides cells with support, survival signals and context-dependent cues that enable cells to run different cellular programs. One mysterious aspect of the process is how hundreds of proteins assemble seemingly spontaneously onto the activated integrin. An emerging concept is that adhesion assembly is regulated by autoinhibition of key proteins, a highly dynamic event that is modulated by a variety of signaling events. By enabling precise control of the activation state of proteins, autoinhibition enables localization of inactive proteins and the formation of pre-complexes. In response to the correct signals, these proteins become active and interact with other proteins, ultimately leading to development of cell-matrix junctions. Autoinhibition of key components of such adhesion complexes—including core components integrin, talin, vinculin, and FAK and important peripheral regulators such as RIAM, Src, and DLC1—leads to a view that the majority of proteins involved in complex assembly might be regulated by intramolecular interactions. Autoinhibition is relieved via multiple different signals including post-translation modification and proteolysis. More recently, mechanical forces have been shown to stabilize and increase the lifetimes of active conformations, identifying autoinhibition as a means of encoding mechanosensitivity. The complexity and scope for nuanced adhesion dynamics facilitated via autoinhibition provides numerous points of regulation. In this review, we discuss what is known about this mode of regulation and how it leads to rapid and tightly controlled assembly and disassembly of cell-matrix adhesion.
Collapse
Affiliation(s)
- Rejina B Khan
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
36
|
Nussinov R, Tsai C, Jang H. Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB J 2019; 34:16-29. [DOI: 10.1096/fj.201901341r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Basic Science Program Frederick National Laboratory for Cancer Research Frederick MD USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Chung‐Jung Tsai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Hyunbum Jang
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
37
|
Abstract
Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
38
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
39
|
Zhou J, Oldfield CJ, Yan W, Shen B, Dunker AK. Intrinsically disordered domains: Sequence ➔ disorder ➔ function relationships. Protein Sci 2019; 28:1652-1663. [PMID: 31299122 DOI: 10.1002/pro.3680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Disordered domains are long regions of intrinsic disorder that ideally have conserved sequences, conserved disorder, and conserved functions. These domains were first noticed in protein-protein interactions that are distinct from the interactions between two structured domains and the interactions between structured domains and linear motifs or molecular recognition features (MoRFs). So far, disordered domains have not been systematically characterized. Here, we present a bioinformatics investigation of the sequence-disorder-function relationships for a set of probable disordered domains (PDDs) identified from the Pfam database. All the Pfam seed proteins from those domains with at least one PDD sequence were collected. Most often, if a set contains one PDD sequence, then all members of the set are PDDs or nearly so. However, many seed sets have sequence collections that exhibit diverse proportions of predicted disorder and structure, thus giving the completely unexpected result that conserved sequences can vary substantially in predicted disorder and structure. In addition to the induction of structure by binding to protein partners, disordered domains are also induced to form structure by disulfide bond formation, by ion binding, and by complex formation with RNA or DNA. The two new findings, (a) that conserved sequences can vary substantially in their predicted disorder content and (b) that homologues from a single domain can evolve from structure to disorder (or vice versa), enrich our understanding of the sequence ➔ disorder ensemble ➔ function paradigm.
Collapse
Affiliation(s)
- Jianhong Zhou
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | | | - Wenying Yan
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
40
|
Saneyoshi T, Matsuno H, Suzuki A, Murakoshi H, Hedrick NG, Agnello E, O'Connell R, Stratton MM, Yasuda R, Hayashi Y. Reciprocal Activation within a Kinase-Effector Complex Underlying Persistence of Structural LTP. Neuron 2019; 102:1199-1210.e6. [PMID: 31078368 DOI: 10.1016/j.neuron.2019.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/07/2018] [Accepted: 04/03/2019] [Indexed: 10/26/2022]
Abstract
Long-term synaptic plasticity requires a mechanism that converts short Ca2+ pulses into persistent biochemical signaling to maintain changes in the synaptic structure and function. Here, we present a novel mechanism of a positive feedback loop, formed by a reciprocally activating kinase-effector complex (RAKEC) in dendritic spines, enabling the persistence and confinement of a molecular memory. We found that stimulation of a single spine causes the rapid formation of a RAKEC consisting of CaMKII and Tiam1, a Rac-GEF. This interaction is mediated by a pseudo-autoinhibitory domain on Tiam1, which is homologous to the CaMKII autoinhibitory domain itself. Therefore, Tiam1 binding results in constitutive CaMKII activation, which in turn persistently phosphorylates Tiam1. Phosphorylated Tiam1 promotes stable actin-polymerization through Rac1, thereby maintaining the structure of the spine during LTP. The RAKEC can store biochemical information in small subcellular compartments, thus potentially serving as a general mechanism for prolonged and compartmentalized signaling.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Hitomi Matsuno
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Akio Suzuki
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideji Murakoshi
- National Institute of Physiological Science, Okazaki, Aichi 444-8585, Japan; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Duke University Medical Center, Durham, NC 27703, USA
| | - Nathan G Hedrick
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Duke University Medical Center, Durham, NC 27703, USA
| | - Emily Agnello
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rory O'Connell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yasunori Hayashi
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan; School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
41
|
Huang K, Xhani S, Albrecht AV, Ha VLT, Esaki S, Poon GMK. Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1. J Biol Chem 2019; 294:9666-9678. [PMID: 31048376 DOI: 10.1074/jbc.ra119.007866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
Functional evidence increasingly implicates low-affinity DNA recognition by transcription factors as a general mechanism for the spatiotemporal control of developmental genes. Although the DNA sequence requirements for affinity are well-defined, the dynamic mechanisms that execute cognate recognition are much less resolved. To address this gap, here we examined ETS1, a paradigm developmental transcription factor, as a model for which cognate discrimination remains enigmatic. Using molecular dynamics simulations, we interrogated the DNA-binding domain of murine ETS1 alone and when bound to high-and low-affinity cognate sites or to nonspecific DNA. The results of our analyses revealed collective backbone and side-chain motions that distinguished cognate versus nonspecific as well as high- versus low-affinity cognate DNA binding. Combined with binding experiments with site-directed ETS1 mutants, the molecular dynamics data disclosed a triad of residues that respond specifically to low-affinity cognate DNA. We found that a DNA-contacting residue (Gln-336) specifically recognizes low-affinity DNA and triggers the loss of a distal salt bridge (Glu-343/Arg-378) via a large side-chain motion that compromises the hydrophobic packing of two core helices. As an intact Glu-343/Arg-378 bridge is the default state in unbound ETS1 and maintained in high-affinity and nonspecific complexes, the low-affinity complex represents a unique conformational adaptation to the suboptimization of developmental enhancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory M K Poon
- From the Department of Chemistry and .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
42
|
A M, Fung TS, Kettenbach AN, Chakrabarti R, Higgs HN. A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol 2019; 21:592-602. [PMID: 30962575 PMCID: PMC6501848 DOI: 10.1038/s41556-019-0307-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
Inverted formin 2 (INF2) is a member of the formin family of actin assembly factors. Dominant missense mutations in INF2 are linked to two diseases: focal segmental glomerulosclerosis, a kidney disease, and Charcot-Marie-Tooth disease, a neuropathy. All of the disease mutations map to the autoinhibitory diaphanous inhibitory domain. Interestingly, purified INF2 is not autoinhibited, suggesting the existence of other cellular inhibitors. Here, we purified an INF2 inhibitor from mouse brain tissue, and identified it as a complex of lysine-acetylated actin (KAc-actin) and cyclase-associated protein (CAP). Inhibition of INF2 by CAP-KAc-actin is dependent on the INF2 diaphanous inhibitory domain (DID). Treatment of CAP-KAc-actin-inhibited INF2 with histone deacetylase 6 releases INF2 inhibition, whereas inhibitors of histone deacetylase 6 block the activation of cellular INF2. Disease-associated INF2 mutants are poorly inhibited by CAP-KAc-actin, suggesting that focal segmental glomerulosclerosis and Charcot-Marie-Tooth disease result from reduced CAP-KAc-actin binding. These findings reveal a role for KAc-actin in the regulation of an actin assembly factor by a mechanism that we call facilitated autoinhibition.
Collapse
Affiliation(s)
- Mu A
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
43
|
Dagliyan O, Hahn KM. Controlling protein conformation with light. Curr Opin Struct Biol 2019; 57:17-22. [PMID: 30849716 DOI: 10.1016/j.sbi.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, United States.
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
44
|
Reversible fold-switching controls the functional cycle of the antitermination factor RfaH. Nat Commun 2019; 10:702. [PMID: 30742024 PMCID: PMC6370827 DOI: 10.1038/s41467-019-08567-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023] Open
Abstract
RfaH, member of the NusG/Spt5 family, activates virulence genes in Gram-negative pathogens. RfaH exists in two states, with its C-terminal domain (CTD) folded either as α-helical hairpin or β-barrel. In free RfaH, the α-helical CTD interacts with, and masks the RNA polymerase binding site on, the N-terminal domain, autoinhibiting RfaH and restricting its recruitment to opsDNA sequences. Upon activation, the domains separate and the CTD refolds into the β-barrel, which recruits a ribosome, activating translation. Using NMR spectroscopy, we show that only a complete ops-paused transcription elongation complex activates RfaH, probably via a transient encounter complex, allowing the refolded CTD to bind ribosomal protein S10. We also demonstrate that upon release from the elongation complex, the CTD transforms back into the autoinhibitory α-state, resetting the cycle. Transformation-coupled autoinhibition allows RfaH to achieve high specificity and potent activation of gene expression.
Collapse
|
45
|
Pálvölgyi A, Simpson J, Bodnár I, Bíró J, Palkovits M, Radovits T, Skehel P, Antoni FA. Auto-inhibition of adenylyl cyclase 9 (AC9) by an isoform-specific motif in the carboxyl-terminal region. Cell Signal 2018; 51:266-275. [PMID: 30121334 DOI: 10.1016/j.cellsig.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023]
Abstract
Trans-membrane adenylyl cyclase (tmAC) isoforms show markedly distinct regulatory properties that have not been fully explored. AC9 is highly expressed in vital organs such as the heart and the brain. Here, we report that the isoform-specific carboxyl-terminal domain (C2b) of AC9 inhibits the activation of the enzyme by Gs-coupled receptors (GsCR). In human embryonic kidney cells (HEK293) stably overexpressing AC9, cAMP production by AC9 induced upon the activation of endogenous β-adrenergic and prostanoid GsCRs was barely discernible. Cells expressing AC9 lacking the C2b domain showed a markedly enhanced cAMP response to GsCR. Subsequent studies of the response of AC9 mutants to the activation of GsCR revealed that residues 1268-1276 in the C2b domain were critical for auto-inhibition. Two main species of AC9 of 130 K and ≥ 170 K apparent molecular weight were observed on immunoblots of rodent and human myocardial membranes with NH2-terminally directed anti-AC9 antibodies. The lower molecular weight AC9 band did not react with antibodies directed against the C2b domain. It was the predominant species of AC9 in rodent heart tissue and some of the human samples. There is a single gene for AC9 in vertebrates, moreover, amino acids 957-1353 of the COOH-terminus are encoded by a single exon with no apparent signs of mRNA splicing or editing making it highly unlikely that COOH-terminally truncated AC9 could arise through the processing or editing of mRNA. Thus, deductive reasoning leads to the suggestion that proteolytic cleavage of the C2b auto-inhibitory domain may govern the activation of AC9 by GsCR.
Collapse
Affiliation(s)
- Adrienn Pálvölgyi
- Division of Preclinical Research, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - James Simpson
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ibolya Bodnár
- Division of Preclinical Research, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - Judit Bíró
- Division of Preclinical Research, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Paul Skehel
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ferenc A Antoni
- Division of Preclinical Research, Egis Pharmaceuticals PLC, Budapest, Hungary; Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
46
|
Enhanced Sampling of Interdomain Motion Using Map-Restrained Langevin Dynamics and NMR: Application to Pin1. J Mol Biol 2018; 430:2164-2180. [PMID: 29775635 DOI: 10.1016/j.jmb.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022]
Abstract
Many signaling proteins consist of globular domains connected by flexible linkers that allow for substantial domain motion. Because these domains often serve as complementary functional modules, the possibility of functionally important domain motions arises. To explore this possibility, we require knowledge of the ensemble of protein conformations sampled by interdomain motion. Measurements of NMR residual dipolar couplings (RDCs) of backbone HN bonds offer a per-residue characterization of interdomain dynamics, as the couplings are sensitive to domain orientation. A challenge in reaching this potential is the need to interpret the RDCs as averages over dynamic ensembles of domain conformations. Here, we address this challenge by introducing an efficient protocol for generating conformational ensembles appropriate for flexible, multi-domain proteins. The protocol uses map-restrained self-guided Langevin dynamics simulations to promote collective, interdomain motion while restraining the internal domain motion to near rigidity. Critically, the simulations retain an all-atom description for facile inclusion of site-specific NMR RDC restraints. The result is the rapid generation of conformational ensembles consistent with the RDC data. We illustrate this protocol on human Pin1, a two-domain peptidyl-prolyl isomerase relevant for cancer and Alzheimer's disease. The results include the ensemble of domain orientations sampled by Pin1, as well as those of a dysfunctional variant, I28A-Pin1. The differences between the ensembles corroborate our previous spin relaxation results that showed weakened interdomain contact in the I28A variant relative to wild type. Our protocol extends our abilities to explore the functional significance of protein domain motions.
Collapse
|
47
|
Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc Natl Acad Sci U S A 2018; 115:E1991-E2000. [PMID: 29444861 DOI: 10.1073/pnas.1715247115] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.
Collapse
|
48
|
Shi D, Svetlov D, Abagyan R, Artsimovitch I. Flipping states: a few key residues decide the winning conformation of the only universally conserved transcription factor. Nucleic Acids Res 2017; 45:8835-8843. [PMID: 28605514 PMCID: PMC5587751 DOI: 10.1093/nar/gkx523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/05/2017] [Indexed: 01/20/2023] Open
Abstract
Transcription factors from the NusG family bind to the elongating RNA polymerase to enable synthesis of long RNAs in all domains of life. In bacteria, NusG frequently co-exists with specialized paralogs that regulate expression of a small set of targets, many of which encode virulence factors. Escherichia coli RfaH is the exemplar of this regulatory mechanism. In contrast to NusG, which freely binds to RNA polymerase, RfaH exists in a structurally distinct autoinhibitory state in which the RNA polymerase-binding site is buried at the interface between two RfaH domains. Binding to an ops DNA sequence triggers structural transformation wherein the domains dissociate and RfaH refolds into a NusG-like structure. Formation of the autoinhibitory state, and thus sequence-specific recruitment, represents the decisive step in the evolutionary history of the RfaH subfamily. We used computational and experimental approaches to identify the residues that confer the unique regulatory properties of RfaH. Our analysis highlighted highly conserved Ile and Phe residues at the RfaH interdomain interface. Replacement of these residues with equally conserved Glu and Val counterpart residues in NusG destabilized interactions between the RfaH domains and allowed sequence-independent recruitment to RNA polymerase, suggesting a plausible pathway for diversification of NusG paralogs.
Collapse
Affiliation(s)
- Da Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, CA 92093, USA
| | - Dmitri Svetlov
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, CA 92093, USA
| | - Irina Artsimovitch
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Esaki S, Evich MG, Erlitzki N, Germann MW, Poon GMK. Multiple DNA-binding modes for the ETS family transcription factor PU.1. J Biol Chem 2017; 292:16044-16054. [PMID: 28790174 DOI: 10.1074/jbc.m117.798207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.
Collapse
Affiliation(s)
| | | | | | | | - Gregory M K Poon
- From the Departments of Chemistry and .,the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
50
|
Currie SL, Lau DKW, Doane JJ, Whitby FG, Okon M, McIntosh LP, Graves BJ. Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5. Nucleic Acids Res 2017; 45:2223-2241. [PMID: 28161714 PMCID: PMC5389675 DOI: 10.1093/nar/gkx068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA binding were identified in regions N- and C-terminal of the ETS domain. Crystal structures of these three factors revealed an α-helix in the C-terminal inhibitory domain that packs against the ETS domain and perturbs the conformation of its DNA-recognition helix. Nuclear magnetic resonance spectroscopy demonstrated that the N-terminal inhibitory domain (NID) is intrinsically disordered, yet utilizes transient intramolecular interactions with the DNA-recognition helix of the ETS domain to mediate autoinhibition. Acetylation of selected lysines within the NID activates DNA binding. This investigation revealed a distinctive mechanism for DNA-binding autoinhibition in the ETV1/4/5 subfamily involving a network of intramolecular interactions not present in other ETS factors. These distinguishing inhibitory elements provide a platform through which cellular triggers, such as protein–protein interactions or post-translational modifications, may specifically regulate the function of these oncogenic proteins.
Collapse
Affiliation(s)
- Simon L Currie
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA
| | - Desmond K W Lau
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Jedediah J Doane
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Barbara J Graves
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|