1
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Michel JC, Martin EA, Crow WE, Kissinger JS, Lukowicz-Bedford RM, Horrocks M, Branon TC, Ting AY, Miller AC. Electrical synapse molecular diversity revealed by proximity-based proteomic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624763. [PMID: 39605535 PMCID: PMC11601576 DOI: 10.1101/2024.11.22.624763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuronal circuits are composed of synapses that are either chemical, where signals are transmitted via neurotransmitter release and reception, or electrical, where signals pass directly through interneuronal gap junction channels. While the molecular complexity that controls chemical synapse structure and function is well appreciated, the proteins of electrical synapses beyond the gap-junction-forming Connexins are not well defined. Yet, electrical synapses are expected to be molecularly complex beyond the gap junctions. Connexins are integral membrane proteins requiring vesicular transport and membrane insertion/retrieval to achieve function, homeostasis, and plasticity. Additionally, electron microscopy of neuronal gap junctions reveals neighboring electron dense regions termed the electrical synapse density (ESD). To reveal the molecular complexity of the electrical synapse proteome, we used proximity-dependent biotinylation (TurboID) linked to neural Connexins in zebrafish. Proteomic analysis of developing and mature nervous systems identifies hundreds of Connexin-associated proteins, with overlapping and distinct representation during development and adulthood. The identified protein classes span cell adhesion molecules, cytoplasmic scaffolds, vesicular trafficking, and proteins usually associated with the post synaptic density (PSD) of chemical synapses. Using circuits with stereotyped electrical and chemical synapses, we define molecular sub-synaptic compartments of ESD localizing proteins, we find molecular heterogeneity amongst electrical synapse populations, and we examine the synaptic intermingling of electrical and chemical synapse proteins. Taken together, these results reveal a new complexity of electrical synapse molecular diversity and highlight a novel overlap between chemical and electrical synapse proteomes. Moreover, human homologs of the electrical synapse proteins are associated with autism, epilepsy, and other neurological disorders, providing a novel framework towards understanding neuro-atypical states.
Collapse
|
3
|
Bolz S, Haucke V. Biogenesis and reformation of synaptic vesicles. J Physiol 2024. [PMID: 39367867 DOI: 10.1113/jp286554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.
Collapse
Affiliation(s)
- Svenja Bolz
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Nadiminti SSP, Dixit SB, Ratnakaran N, Deb A, Hegde S, Boyanapalli SPP, Swords S, Grant BD, Koushika SP. LRK-1/LRRK2 and AP-3 regulate trafficking of synaptic vesicle precursors through active zone protein SYD-2/Liprin-α. PLoS Genet 2024; 20:e1011253. [PMID: 38722918 PMCID: PMC11081264 DOI: 10.1371/journal.pgen.1011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Synaptic vesicle proteins (SVps) are transported by the motor UNC-104/KIF1A. We show that SVps travel in heterogeneous carriers in C. elegans neuronal processes, with some SVp carriers co-transporting lysosomal proteins (SV-lysosomes). LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 play a critical role in the sorting of SVps and lysosomal proteins away from each other at the SV-lysosomal intermediate trafficking compartment. Both SVp carriers lacking lysosomal proteins and SV-lysosomes are dependent on the motor UNC-104/KIF1A for their transport. In lrk-1 mutants, both SVp carriers and SV-lysosomes can travel in axons in the absence of UNC-104, suggesting that LRK-1 plays an important role to enable UNC-104 dependent transport of synaptic vesicle proteins. Additionally, LRK-1 acts upstream of the AP-3 complex and regulates its membrane localization. In the absence of the AP-3 complex, the SV-lysosomes become more dependent on the UNC-104-SYD-2/Liprin-α complex for their transport. Therefore, SYD-2 acts to link upstream trafficking events with the transport of SVps likely through its interaction with the motor UNC-104. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. SYD-2 acts in concert with AP complexes to ensure polarized trafficking & transport of SVps.
Collapse
Affiliation(s)
- Sravanthi S. P. Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Shirley B. Dixit
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Anushka Deb
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Sneha Hegde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | | | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Qiu H, Wu X, Ma X, Li S, Cai Q, Ganzella M, Ge L, Zhang H, Zhang M. Short-distance vesicle transport via phase separation. Cell 2024; 187:2175-2193.e21. [PMID: 38552623 DOI: 10.1016/j.cell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/28/2024]
Abstract
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Collapse
Affiliation(s)
- Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qixu Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Rizalar FS, Lucht MT, Petzoldt A, Kong S, Sun J, Vines JH, Telugu NS, Diecke S, Kaas T, Bullmann T, Schmied C, Löwe D, King JS, Cho W, Hallermann S, Puchkov D, Sigrist SJ, Haucke V. Phosphatidylinositol 3,5-bisphosphate facilitates axonal vesicle transport and presynapse assembly. Science 2023; 382:223-230. [PMID: 37824668 PMCID: PMC10938084 DOI: 10.1126/science.adg1075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 10/14/2023]
Abstract
Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Max T. Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Astrid Petzoldt
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Shuhan Kong
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - James H. Vines
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Narasimha Swamy Telugu
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Thomas Kaas
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Torsten Bullmann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Delia Löwe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Stefan Hallermann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stephan J. Sigrist
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
9
|
Krout M, Oh KH, Xiong A, Frankel EB, Kurshan PT, Kim H, Richmond JE. C. elegans Clarinet/CLA-1 recruits RIMB-1/RIM-binding protein and UNC-13 to orchestrate presynaptic neurotransmitter release. Proc Natl Acad Sci U S A 2023; 120:e2220856120. [PMID: 37186867 PMCID: PMC10214197 DOI: 10.1073/pnas.2220856120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Synaptic transmission requires the coordinated activity of multiple synaptic proteins that are localized at the active zone (AZ). We previously identified a Caenorhabditis elegans protein named Clarinet (CLA-1) based on homology to the AZ proteins Piccolo, Rab3-interactingmolecule (RIM)/UNC-10 and Fife. At the neuromuscular junction (NMJ), cla-1 null mutants exhibit release defects that are greatly exacerbated in cla-1;unc-10 double mutants. To gain insights into the coordinated roles of CLA-1 and UNC-10, we examined the relative contributions of each to the function and organization of the AZ. Using a combination of electrophysiology, electron microscopy, and quantitative fluorescence imaging we explored the functional relationship of CLA-1 to other key AZ proteins including: RIM1, Cav2.1 channels, RIM1-binding protein, and Munc13 (C. elegans UNC-10, UNC-2, RIMB-1 and UNC-13, respectively). Our analyses show that CLA-1 acts in concert with UNC-10 to regulate UNC-2 calcium channel levels at the synapse via recruitment of RIMB-1. In addition, CLA-1 exerts a RIMB-1-independent role in the localization of the priming factor UNC-13. Thus C. elegans CLA-1/UNC-10 exhibit combinatorial effects that have overlapping design principles with other model organisms: RIM/RBP and RIM/ELKS in mouse and Fife/RIM and BRP/RBP in Drosophila. These data support a semiconserved arrangement of AZ scaffolding proteins that are necessary for the localization and activation of the fusion machinery within nanodomains for precise coupling to Ca2+ channels.
Collapse
Affiliation(s)
- Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Kelly H. Oh
- Department of Cell Biology and Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Ame Xiong
- Department of Cell Biology and Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Elisa B. Frankel
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Peri T. Kurshan
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Hongkyun Kim
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
10
|
Nadiminti SSP, Dixit SB, Ratnakaran N, Hegde S, Swords S, Grant BD, Koushika SP. Active zone protein SYD-2/Liprin- α acts downstream of LRK-1/LRRK2 to regulate polarized trafficking of synaptic vesicle precursors through clathrin adaptor protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530068. [PMID: 36865111 PMCID: PMC9980171 DOI: 10.1101/2023.02.26.530068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Synaptic vesicle proteins (SVps) are thought to travel in heterogeneous carriers dependent on the motor UNC-104/KIF1A. In C. elegans neurons, we found that some SVps are transported along with lysosomal proteins by the motor UNC-104/KIF1A. LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 are critical for the separation of lysosomal proteins from SVp transport carriers. In lrk-1 mutants, both SVp carriers and SVp carriers containing lysosomal proteins are independent of UNC-104, suggesting that LRK-1 plays a key role in ensuring UNC-104-dependent transport of SVps. Additionally, LRK-1 likely acts upstream of the AP-3 complex and regulates the membrane localization of AP-3. The action of AP-3 is necessary for the active zone protein SYD-2/Liprin-α to facilitate the transport of SVp carriers. In the absence of the AP-3 complex, SYD-2/Liprin-α acts with UNC-104 to instead facilitate the transport of SVp carriers containing lysosomal proteins. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. We propose that SYD-2 acts in concert with both the AP-1 and AP-3 complexes to ensure polarized trafficking of SVps.
Collapse
Affiliation(s)
- Sravanthi S P Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Shirley B Dixit
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Sneha Hegde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| |
Collapse
|
11
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Oh KH, Krout MD, Richmond JE, Kim H. UNC-2 CaV2 Channel Localization at Presynaptic Active Zones Depends on UNC-10/RIM and SYD-2/Liprin-α in Caenorhabditis elegans. J Neurosci 2021; 41:4782-4794. [PMID: 33975919 PMCID: PMC8260173 DOI: 10.1523/jneurosci.0076-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Presynaptic active zone proteins couple calcium influx with synaptic vesicle exocytosis. However, the control of presynaptic calcium channel localization by active zone proteins is not completely understood. In a Caenorhabditis elegans (C. elegans) forward genetic screen, we find that UNC-10/RIM (Rab3-interacting molecule) and SYD-2/Liprin-α regulate presynaptic localization of UNC-2, the CaV2 channel ortholog. We further quantitatively analyzed live animals using endogenously GFP-tagged UNC-2 and active zone components. Consistent with the interaction between RIM and CaV2 in mammals, the intensity and number of UNC-2 channel puncta at presynaptic terminals were greatly reduced in unc-10 mutant animals. To understand how SYD-2 regulates presynaptic UNC-2 channel localization, we analyzed presynaptic localization of endogenous SYD-2, UNC-10, RIMB-1/RIM-BP (RIM binding protein), and ELKS-1. Our analysis revealed that although SYD-2 is the most critical for active zone assembly, loss of SYD-2 function does not completely abolish presynaptic localization of UNC-10, RIMB-1, and ELKS-1, suggesting an existence of SYD-2-independent active zone assembly. UNC-2 localization analysis in double and triple mutants of active zone components show that SYD-2 promotes UNC-2 localization by partially controlling UNC-10 localization, and ELKS-1 and RIMB-1 also contribute to UNC-2 channel localization. In addition, we find that core active zone proteins are unequal in their abundance. Although the abundance of UNC-10 at the active zone is comparable to UNC-2, SYD-2 and ELKS-1 are twice more and RIMB-1 four times more abundant than UNC-2. Together our data show that UNC-10, SYD-2, RIMB-1, and ELKS-1 control presynaptic UNC-2 channel localization in redundant yet distinct manners.SIGNIFICANCE STATEMENT Precise control of neurotransmission is dependent on the tight coupling of the calcium influx through voltage-gated calcium channels (VGCCs) to the exocytosis machinery at the presynaptic active zones. However, how these VGCCs are tethered to the active zone is incompletely understood. To understand the mechanism of presynaptic VGCC localization, we performed a C. elegans forward genetic screen and quantitatively analyzed endogenous active zones and presynaptic VGCCs. In addition to RIM, our study finds that SYD-2/Liprin-α is critical for presynaptic localization of VGCCs. Yet, the loss of SYD-2, a core active zone scaffolding protein, does not completely abolish the presynaptic localization of the VGCC, showing that the active zone is a resilient structure assembled by redundant mechanisms.
Collapse
Affiliation(s)
- Kelly H Oh
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mia D Krout
- Department of Biological Science, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Hongkyun Kim
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
13
|
Xiong GJ, Cheng XT, Sun T, Xie Y, Huang N, Li S, Lin MY, Sheng ZH. Defects in syntabulin-mediated synaptic cargo transport associate with autism-like synaptic dysfunction and social behavioral traits. Mol Psychiatry 2021; 26:1472-1490. [PMID: 32332993 PMCID: PMC7584772 DOI: 10.1038/s41380-020-0713-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
The formation and maintenance of synapses require long-distance delivery of newly synthesized synaptic proteins from the soma to distal synapses, raising the fundamental question of whether impaired transport is associated with neurodevelopmental disorders such as autism. We previously revealed that syntabulin acts as a motor adapter linking kinesin-1 motor and presynaptic cargos. Here, we report that defects in syntabulin-mediated transport and thus reduced formation and maturation of synapses are one of core synaptic mechanisms underlying autism-like synaptic dysfunction and social behavioral abnormalities. Syntabulin expression in the mouse brain peaks during the first 2 weeks of postnatal development and progressively declines during brain maturation. Neurons from conditional syntabulin-/- mice (stb cKO) display impaired transport of presynaptic cargos, reduced synapse density and active zones, and altered synaptic transmission and long-term plasticity. Intriguingly, stb cKO mice exhibit core autism-like traits, including defective social recognition and communication, increased stereotypic behavior, and impaired spatial learning and memory. These phenotypes establish a new mechanistic link between reduced transport of synaptic cargos and impaired maintenance of synaptic transmission and plasticity, contributing to autism-associated behavioral abnormalities. This notion is further confirmed by the human missense variant STB-R178Q, which is found in an autism patient and loses its adapter capacity for binding kinesin-1 motors. Expressing STB-R178Q fails to rescue reduced synapse formation and impaired synaptic transmission and plasticity in stb cKO neurons. Altogether, our study suggests that defects in syntabulin-mediated transport mechanisms underlie the synaptic dysfunction and behavioral abnormalities that bear similarities to autism.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Tao Sun
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Mei-Yao Lin
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA.
| |
Collapse
|
14
|
Götz TWB, Puchkov D, Lysiuk V, Lützkendorf J, Nikonenko AG, Quentin C, Lehmann M, Sigrist SJ, Petzoldt AG. Rab2 regulates presynaptic precursor vesicle biogenesis at the trans-Golgi. J Cell Biol 2021; 220:211946. [PMID: 33822845 PMCID: PMC8025234 DOI: 10.1083/jcb.202006040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.
Collapse
Affiliation(s)
- Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Veronika Lysiuk
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Christine Quentin
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| | - Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| |
Collapse
|
15
|
Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron 2020; 109:27-41. [PMID: 33098763 DOI: 10.1016/j.neuron.2020.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Neurons are highly polarized cells with a single axon and multiple dendrites derived from the cell body to form tightly associated pre- and postsynaptic compartments. As the biosynthetic machinery is largely restricted to the somatodendritic domain, the vast majority of presynaptic components are synthesized in the neuronal soma, packaged into synaptic precursor vesicles, and actively transported along the axon to sites of presynaptic biogenesis. In contrast with the significant progress that has been made in understanding synaptic transmission and processing of information at the post-synapse, comparably little is known about the formation and dynamic remodeling of the presynaptic compartment. We review here our current understanding of the mechanisms that govern the biogenesis, transport, and assembly of the key components for presynaptic neurotransmission, discuss how alterations in presynaptic assembly may impact nervous system function or lead to disease, and outline key open questions for future research.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dorien A Roosen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
16
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Lipton DM, Maeder CI, Shen K. Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport. Cell Rep 2019; 24:2709-2722. [PMID: 30184504 PMCID: PMC6179448 DOI: 10.1016/j.celrep.2018.07.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 06/21/2018] [Accepted: 07/27/2018] [Indexed: 11/15/2022] Open
Abstract
The proper assembly of neural circuits depends on the process of synaptogenesis, or the formation of synapses between partner neurons. Using the dopaminergic PDE neurons in C. elegans, we developed an in vivo system to study the earliest steps of the formation of en passant presynaptic specializations behind an extending growth cone. We find that presynaptic materials coalesce into puncta in as little as a few minutes and that both synaptic vesicle (SV) and active zone (AZ) proteins arrive nearly simultaneously at the nascent sites of synapse formation. We show that precise regulation of UNC-104/Kinesin-3 determines the distribution of SV proteins along the axon. The localization of AZ proteins to en passant puncta, however, is largely independent of the major axonal kinesins: UNC-104/Kinesin-3 and UNC-116/ Kinesin-1. Moreover, AZ proteins play a crucial role in recruiting and tethering SV precursors (SVPs). Lipton et al. explore the initial steps of synapse formation in vivo. They find that clustering of major presynaptic material occurs extremely rapidly (<5 min). Both synaptic vesicle precursors and active zone proteins accumulate simultaneously at developing puncta. Precise regulation of the Kinesin-3 activation state strongly influences the positioning of vesicles along the axon during development.
Collapse
Affiliation(s)
- David M Lipton
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA; Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Celine I Maeder
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Assawachananont J, Kim SY, Kaya KD, Fariss R, Roger JE, Swaroop A. Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina. Hum Mol Genet 2019; 27:3555-3567. [PMID: 30084954 DOI: 10.1093/hmg/ddy272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors. A comprehensive immunohistochemical evaluation of Crx-/- (null), CrxRip/+ and CrxRip/Rip (models of dominant congenital blindness) mouse retinas revealed abnormal photoreceptor synapses, with atypical ribbon shape, number and length. Integrated analysis of retinal transcriptomes of Crx-mutants with CRX- and NRL-ChIP-Seq data identified a subset of differentially expressed CRX target genes that encode presynaptic proteins associated with the cytomatrix active zone (CAZ) and synaptic vesicles. Immunohistochemistry of Crx-mutant retina validated aberrant expression of REEP6, PSD95, MPP4, UNC119, UNC13, RGS7 and RGS11, with some reduction in Ribeye and no significant change in immunostaining of RIMS1, RIMS2, Bassoon and Pikachurin. Our studies demonstrate that CRX controls the establishment of CAZ and anchoring of ribbons, but not the formation of ribbon itself, in photoreceptor presynaptic terminals.
Collapse
Affiliation(s)
- Juthaporn Assawachananont
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soo-Young Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Koray D Kaya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jerome E Roger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Centre d'Etude et de Recherches Thérapeutiques en Ophthalmologie, Retina France, Orsay, France.,Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Borgen MA, Giles AC, Wang D, Grill B. Synapse maintenance is impacted by ATAT-2 tubulin acetyltransferase activity and the RPM-1 signaling hub. eLife 2019; 8:44040. [PMID: 30652969 PMCID: PMC6355192 DOI: 10.7554/elife.44040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
20
|
Mei-Ling Liu J, Fair SR, Kaya B, Zuniga JN, Mostafa HR, Alves MJ, Stephens JA, Jones M, Aslan MT, Czeisler C, Otero JJ. Development of a Novel FIJI-Based Method to Investigate Neuronal Circuitry in Neonatal Mice. Dev Neurobiol 2018; 78:1146-1167. [PMID: 30136762 DOI: 10.1002/dneu.22636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
The emergence of systems neuroscience tools requires parallel generation of objective analytical workflows for experimental neuropathology. We developed an objective analytical workflow that we used to determine how specific autonomic neural lineages change during postnatal development. While a wealth of knowledge exists regarding postnatal alterations in respiratory neural function, how these neural circuits change and develop in the weeks following birth remains less clear. In this study, we developed our workflow by combining genetic mouse modeling and quantitative immunofluorescent confocal microscopy and used this to examine the postnatal development of neural circuits derived from the transcription factors NKX2.2 and OLIG3 into three medullary respiratory nuclei. Our automated FIJI-based image analysis workflow rapidly and objectively quantified synaptic puncta in user-defined anatomic regions. Using our objective workflow, we found that the density and estimated total number of Nkx2.2-derived afferents into the pre-Bötzinger Complex significantly decreased with postnatal age during the first three weeks of postnatal life. These data indicate that Nkx2.2-derived structures differentially influence pre-Bötzinger Complex respiratory oscillations at different stages of postnatal development.
Collapse
Affiliation(s)
- Jillian Mei-Ling Liu
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Summer Rose Fair
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jessica Nabile Zuniga
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Hasnaa Rashad Mostafa
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Michele Joana Alves
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mikayla Jones
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - M Tahir Aslan
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine Czeisler
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
21
|
Presynaptic Biogenesis Requires Axonal Transport of Lysosome-Related Vesicles. Neuron 2018; 99:1216-1232.e7. [DOI: 10.1016/j.neuron.2018.08.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
|
22
|
Batista AFR, Martínez JC, Hengst U. Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals. Cell Rep 2018; 20:3085-3098. [PMID: 28954226 DOI: 10.1016/j.celrep.2017.08.097] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 01/13/2023] Open
Abstract
Localized protein synthesis is a mechanism for developing axons to react acutely and in a spatially restricted manner to extracellular signals. As such, it is important for many aspects of axonal development, but its role in the formation of presynapses remains poorly understood. We found that the induced assembly of presynaptic terminals required local protein synthesis. Newly synthesized proteins were detectable at nascent presynapses within 15 min of inducing synapse formation in isolated axons. The transcript for the t-SNARE protein SNAP25, which is required for the fusion of synaptic vesicles with the plasma membrane, was recruited to presynaptic sites and locally translated. Inhibition of intra-axonal SNAP25 synthesis affected the clustering of SNAP25 and other presynaptic proteins and interfered with the release of synaptic vesicles from presynaptic sites. This study reveals a critical role for the axonal synthesis of SNAP25 in the assembly of presynaptic terminals.
Collapse
Affiliation(s)
- Andreia F R Batista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Associate Laboratory, Braga/Guimarães, Portugal; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - José C Martínez
- Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
23
|
PTPσ Drives Excitatory Presynaptic Assembly via Various Extracellular and Intracellular Mechanisms. J Neurosci 2018; 38:6700-6721. [PMID: 29934346 DOI: 10.1523/jneurosci.0672-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
Leukocyte common antigen-receptor protein tyrosine phosphatases (LAR-RPTPs) are hub proteins that organize excitatory and inhibitory synapse development through binding to various extracellular ligands. Here, we report that knockdown (KD) of the LAR-RPTP family member PTPσ reduced excitatory synapse number and transmission in cultured rat hippocampal neurons, whereas KD of PTPδ produced comparable decreases at inhibitory synapses, in both cases without altering expression levels of interacting proteins. An extensive series of rescue experiments revealed that extracellular interactions of PTPσ with Slitrks are important for excitatory synapse development. These experiments further showed that the intracellular D2 domain of PTPσ is required for induction of heterologous synapse formation by Slitrk1 or TrkC, suggesting that interaction of LAR-RPTPs with distinct intracellular presynaptic proteins, drives presynaptic machinery assembly. Consistent with this, double-KD of liprin-α2 and -α3 or KD of PTPσ substrates (N-cadherin and p250RhoGAP) in neurons inhibited Slitrk6-induced, PTPσ-mediated heterologous synapse formation activity. We propose a synaptogenesis model in presynaptic neurons involving LAR-RPTP-organized retrograde signaling cascades, in which both extracellular and intracellular mechanisms are critical in orchestrating distinct synapse types.SIGNIFICANCE STATEMENT In this study, we sought to test the unproven hypothesis that PTPσ and PTPδ are required for excitatory and inhibitory synapse formation/transmission, respectively, in cultured hippocampal neurons, using knockdown-based loss-of-function analyses. We further performed extensive structure-function analyses, focusing on PTPσ-mediated actions, to address the mechanisms of presynaptic assembly at excitatory synaptic sites. Using interdisciplinary approaches, we systematically applied a varied set of PTPσ deletion variants, point mutants, and splice variants to demonstrate that both extracellular and intracellular mechanisms are involved in organizing presynaptic assembly. Strikingly, extracellular interactions of PTPσ with heparan sulfates and Slitrks, intracellular interactions of PTPσ with liprin-α and its associated proteins through the D2 domain, as well as distinct substrates are all critical.
Collapse
|
24
|
Mao YT, Zhu JX, Hanamura K, Iurilli G, Datta SR, Dalva MB. Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase. Neuron 2018; 98:767-782.e8. [PMID: 29731254 DOI: 10.1016/j.neuron.2018.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2017] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle.
Collapse
Affiliation(s)
- Yu-Ting Mao
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Julia X Zhu
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Kenji Hanamura
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA; Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi City, Gunma 371-8511, Japan
| | - Giuliano Iurilli
- Department of Neurobiology, Harvard Medical School, Room 336 Warren Alpert Building, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Room 336 Warren Alpert Building, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
25
|
Krzisch M, Fülling C, Jabinet L, Armida J, Gebara E, Cassé F, Habbas S, Volterra A, Hornung JP, Toni N. Synaptic Adhesion Molecules Regulate the Integration of New Granule Neurons in the Postnatal Mouse Hippocampus and their Impact on Spatial Memory. Cereb Cortex 2018; 27:4048-4059. [PMID: 27473321 DOI: 10.1093/cercor/bhw217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/21/2016] [Indexed: 11/14/2022] Open
Abstract
Postnatal hippocampal neurogenesis induces network remodeling and may participate to mechanisms of learning. In turn, the maturation and survival of newborn neurons is regulated by their activity. Here, we tested the effect of a cell-autonomous overexpression of synaptic adhesion molecules on the maturation and survival of neurons born postnatally and on hippocampal-dependent memory performances. Families of adhesion molecules are known to induce pre- and post-synaptic assembly. Using viral targeting, we overexpressed three different synaptic adhesion molecules, SynCAM1, Neuroligin-1B and Neuroligin-2A in newborn neurons in the dentate gyrus of 7- to 9-week-old mice. We found that SynCAM1 increased the morphological maturation of dendritic spines and mossy fiber terminals while Neuroligin-1B increased spine density. In contrast, Neuroligin-2A increased both spine density and size as well as GABAergic innervation and resulted in a drastic increase of neuronal survival. Surprisingly, despite increased neurogenesis, mice overexpressing Neuroligin-2A in new neurons showed decreased memory performances in a Morris water maze task. These results indicate that the cell-autonomous overexpression of synaptic adhesion molecules can enhance different aspects of synapse formation on new neurons and increase their survival. Furthermore, they suggest that the mechanisms by which new neurons integrate in the postnatal hippocampus conditions their functional implication in learning and memory.
Collapse
Affiliation(s)
- Marine Krzisch
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Christine Fülling
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Laura Jabinet
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Jan Armida
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Elias Gebara
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Frédéric Cassé
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Samia Habbas
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Nicolas Toni
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| |
Collapse
|
26
|
Crawley O, Giles AC, Desbois M, Kashyap S, Birnbaum R, Grill B. A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genet 2017; 13:e1007095. [PMID: 29228003 PMCID: PMC5754208 DOI: 10.1371/journal.pgen.1007095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/04/2018] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
Collapse
Affiliation(s)
- Oliver Crawley
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew C. Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Muriel Desbois
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sudhanva Kashyap
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Rayna Birnbaum
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
27
|
Kim B, Suo B, Emmons SW. Gene Function Prediction Based on Developmental Transcriptomes of the Two Sexes in C. elegans. Cell Rep 2017; 17:917-928. [PMID: 27732864 PMCID: PMC5656000 DOI: 10.1016/j.celrep.2016.09.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 11/29/2022] Open
Abstract
We compare whole-animal RNA-seq transcriptomes for C. elegans males and hermaphrodites from the late L3 larval stage to young adulthood. During this interval, male sexual structures develop, including extensive neurogenesis and synaptogenesis that nearly doubles the size of the nervous system. Previous genome-wide expression studies in C. elegans have usually focused on only one sex—the hermaphrodite—and there are a relatively large number of genes that remain without meaningful annotation. In the present study, differential expression analysis of the RNA-seq data revealed 1,751 genes expressed at a higher level in the male. By differential expression and co-expression analyses, we identified transcription factors required for differentiation of male genital structures, semen proteins, and candidates for components of synapse function. Comparison with other prediction tools suggests that our dataset can expand gene predictions. The results validate the dataset as a rich resource for future gene discovery in C. elegans.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bangxia Suo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Scott W Emmons
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
28
|
Marsh AJ, Michel JC, Adke AP, Heckman EL, Miller AC. Asymmetry of an Intracellular Scaffold at Vertebrate Electrical Synapses. Curr Biol 2017; 27:3561-3567.e4. [PMID: 29103941 PMCID: PMC5698123 DOI: 10.1016/j.cub.2017.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
Abstract
Neuronal synaptic connections are either chemical or electrical, and these two types of synapses work together to dynamically define neural circuit function [1]. Although we know a great deal about the molecules that support chemical synapse formation and function, we know little about the macromolecular complexes that regulate electrical synapses. Electrical synapses are created by gap junction (GJ) channels that provide direct ionic communication between neurons [2]. Although they are often molecularly and functionally symmetric, recent work has found that pre- and postsynaptic neurons can contribute different GJ-forming proteins, creating molecularly asymmetric channels that are correlated with functional asymmetry at the synapse [3, 4]. Associated with the GJs are structures observed by electron microscopy termed the electrical synapse density (ESD) [5]. The ESD has been suggested to be critical for the formation and function of the electrical synapse, yet the biochemical makeup of these structures is poorly understood. Here we find that electrical synapse formation in vivo requires an intracellular scaffold called Tight Junction Protein 1b (Tjp1b). Tjp1b is localized to the electrical synapse, where it is required for the stabilization of the GJs and for electrical synapse function. Strikingly, we find that Tjp1b protein localizes and functions asymmetrically, exclusively on the postsynaptic side of the synapse. Our findings support a novel model of electrical synapse molecular asymmetry at the level of an intracellular scaffold that is required for building the electrical synapse. We propose that such ESD asymmetries could be used by all nervous systems to support molecular and functional asymmetries at electrical synapses.
Collapse
Affiliation(s)
- Audrey J Marsh
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jennifer Carlisle Michel
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Anisha P Adke
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
29
|
Valnegri P, Huang J, Yamada T, Yang Y, Mejia LA, Cho HY, Oldenborg A, Bonni A. RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain. Nat Commun 2017; 8:1271. [PMID: 29097665 PMCID: PMC5668370 DOI: 10.1038/s41467-017-01333-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
Although ubiquitin ligases have been implicated in autism, their roles and mechanisms in brain development remain incompletely understood. Here, we report that in vivo knockdown or conditional knockout of the autism-linked ubiquitin ligase RNF8 or associated ubiquitin-conjugating enzyme UBC13 in rodent cerebellar granule neurons robustly increases the number of parallel fiber presynaptic boutons and functional parallel fiber/Purkinje cell synapses. In contrast to the role of nuclear RNF8 in proliferating cells, RNF8 operates in the cytoplasm in neurons to suppress synapse differentiation in vivo. Proteomics analyses reveal that neuronal RNF8 interacts with the HECT domain protein HERC2 and scaffold protein NEURL4, and knockdown of HERC2 or NEURL4 phenocopies the inhibition of RNF8/UBC13 signaling on synapse differentiation. In behavior analyses, granule neuron-specific knockout of RNF8 or UBC13 impairs cerebellar-dependent learning. Our study defines RNF8 and UBC13 as components of a novel cytoplasmic ubiquitin-signaling network that suppresses synapse formation in the brain.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis A Mejia
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ha Y Cho
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans. PLoS Genet 2017. [PMID: 28636662 PMCID: PMC5500376 DOI: 10.1371/journal.pgen.1006844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement. In this study, we identify pathways that regulate the formation and maintenance of synapses, the functional connections between neurons, in the nervous system of the nematode C. elegans. Our work characterizes the interaction between molecular motors kinesin and dynein, which carry cargo and move towards opposite ends of microtubules during synapse formation. We also address the role of a protein kinase gene TTBK-3 in maintaining synapse structure once synaptic components have reached the sites of new synapses. Our findings shed mechanistic insight into the coordination of molecular motors and the cytoskeleton in neural circuit function.
Collapse
|
31
|
Zhang W, Wu Q, Lu YL, Gong QH, Zhang F, Shi JS. Protective effects of Dendrobium nobile Lindl. alkaloids on amyloid beta (25-35)-induced neuronal injury. Neural Regen Res 2017; 12:1131-1136. [PMID: 28852396 PMCID: PMC5558493 DOI: 10.4103/1673-5374.211193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA), the active ingredients of a traditional Chinese medicine Dendrobium, have been shown to have anti-oxidative effects, anti-inflammatory action, and protective effect on neurons against oxygen-glucose deprivation. However, it is not clear whether DNLA reduces amyloid-beta (Aβ)-induced neuronal injury. In this study, cortical neurons were treated with DNLA at different concentrations (0.025, 0.25, and 2.5 mg/L) for 24 hours, followed by administration of Aβ25-35 (10 μM). Aβ25-35 treatments increased cell injury as determined by the leakage of lactate dehydrogenase, which was accompanied by chromatin condensation and mitochondrial tumefaction. The damage caused by Aβ25-35 on these cellular properties was markedly attenuated when cells were pretreated with DNLA. Treatment with Aβ25-35 down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95, all changes were significantly reduced by pretreatment of cells with DNLA. These findings suggest that DNLA reduces the cytotoxicity induced by Aβ25-35 in rat primary cultured neurons. The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated, at least in part, through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
32
|
Biochemical Purification of Binding Partners of Synaptic Scaffold Proteins. Methods Mol Biol 2016. [PMID: 27943184 DOI: 10.1007/978-1-4939-6688-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The chemical synapse displays specialized intercellular adhesion between pre- and potsynaptic plasma membranes mediated by synaptic cell adhesion proteins. In this asymmetric cell adhesion, pre- and postsynapses have their own unique functions; the presynaptic terminal releases neurotransmitter, which diffuses through the synaptic cleft and is received by receptors accumulated at the postsynapse. Such distinct modes of actions of pre- and postsynapses in synaptic neurotransmission are the rate-limiting factors in signal processing in the brain, and thus protein-protein interactions within the pre- and postsynaptic scaffold are of particular importance for brain function by regulating the pre- and postsynaptic function. In the present paper, we outline a method to screen for binding partners of synaptic scaffold proteins biochemically.
Collapse
|
33
|
Pinto MJ, Alves PL, Martins L, Pedro JR, Ryu HR, Jeon NL, Taylor AM, Almeida RD. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. J Cell Biol 2016; 212:789-801. [PMID: 27022091 PMCID: PMC4810304 DOI: 10.1083/jcb.201509039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022] Open
Abstract
The intra-axonal events governing formation of presynaptic terminals are still poorly understood. Pinto et al. reveal a mechanism by which a localized decrease in proteasome degradation and resultant accumulation of polyubiquitinated proteins at nascent sites signal assembly of presynaptic terminals. Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses.
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro L Alves
- Instituto de Educação e Cidadania, 3770-033 Mamarrosa, Portugal
| | - Luís Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana R Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Hyun R Ryu
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-744, Korea
| | - Noo Li Jeon
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-744, Korea Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
| | - Anne M Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal Institute for Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal School of Allied Health Technologies, Polytechnic Institute of Porto, 4400-330 Vila Nova de Gaia, Portugal
| |
Collapse
|
34
|
Pinto MJ, Pedro JR, Costa RO, Almeida RD. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC). Front Mol Neurosci 2016; 9:43. [PMID: 27375430 PMCID: PMC4901079 DOI: 10.3389/fnmol.2016.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic terminals is an important axon-intrinsic event for presynaptic differentiation.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Joana R Pedro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Rui O Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; School of Allied Health Technologies, Polytechnic Institute of Porto (ESTSP-IPP)Vila Nova de Gaia, Portugal; Institute for Interdisciplinary Research, University of CoimbraCoimbra, Portugal
| |
Collapse
|
35
|
Laßek M, Weingarten J, Wegner M, Mueller BF, Rohmer M, Baeumlisberger D, Arrey TN, Hick M, Ackermann J, Acker-Palmer A, Koch I, Müller U, Karas M, Volknandt W. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone. PLoS Comput Biol 2016; 12:e1004832. [PMID: 27092780 PMCID: PMC4836664 DOI: 10.1371/journal.pcbi.1004832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Martin Wegner
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Benjamin F. Mueller
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marion Rohmer
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | - Meike Hick
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg Germany
| | - Jörg Ackermann
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ina Koch
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ulrike Müller
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
36
|
Abstract
UNLABELLED During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling. IMPORTANCE Infections of the central nervous system can cause seizures. While inflammation in the brain has been proposed to initiate the onset of the seizures, relatively little is known about how inflammation impacts the structure and function of the neurons. Here we used a parasite called Toxoplasma gondii that infects the brain and showed that seizures arise due to a defect in signaling of GABA, which is the neurotransmitter primarily responsible for preventing the onset of seizures.
Collapse
|
37
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
38
|
Kurup N, Yan D, Goncharov A, Jin Y. Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling. Curr Biol 2015; 25:1594-605. [PMID: 26051896 DOI: 10.1016/j.cub.2015.04.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
A striking neuronal connectivity change in C. elegans involves the coordinated elimination of existing synapses and formation of synapses at new locations, without altering neuronal morphology. Here, we investigate the tripartite interaction between dynamic microtubules (MTs), kinesin-1, and vesicular cargo during this synapse remodeling. We find that a reduction in the dynamic MT population in motor neuron axons, resulting from genetic interaction between loss of function in the conserved MAPKKK dlk-1 and an α-tubulin mutation, specifically blocks synapse remodeling. Using live imaging and pharmacological modulation of the MT cytoskeleton, we show that dynamic MTs are increased at the onset of remodeling and are critical for new synapse formation. DLK-1 acts during synapse remodeling, and its function involves MT catastrophe factors including kinesin-13/KLP-7 and spastin/SPAS-1. Through a forward genetic screen, we identify gain-of-function mutations in kinesin-1 that can compensate for reduced dynamic MTs to promote synaptic vesicle transport during remodeling. Our data provide in vivo evidence supporting the requirement of dynamic MTs for kinesin-1-dependent axonal transport and shed light on the role of the MT cytoskeleton in facilitating neural circuit plasticity.
Collapse
Affiliation(s)
- Naina Kurup
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Yan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexandr Goncharov
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Bruckner JJ, Zhan H, O'Connor-Giles KM. Advances in imaging ultrastructure yield new insights into presynaptic biology. Front Cell Neurosci 2015; 9:196. [PMID: 26052269 PMCID: PMC4440913 DOI: 10.3389/fncel.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Genetics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
40
|
Dabrowski A, Terauchi A, Strong C, Umemori H. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 2015; 142:1818-30. [PMID: 25926357 PMCID: PMC4440923 DOI: 10.1242/dev.115568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Neurogenesis/physiology
- Neurons/cytology
- Neurons/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cameron Strong
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
41
|
The nanoscale organization of signaling domains at the plasma membrane. CURRENT TOPICS IN MEMBRANES 2015; 75:125-65. [PMID: 26015282 DOI: 10.1016/bs.ctm.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter, we present an overview of the role of the nanoscale organization of signaling domains in regulating key cellular processes. In particular, we illustrate the importance of protein and lipid nanodomains as triggers and mediators of cell signaling. As particular examples, we summarize the state of the art of understanding the role of nanodomains in the mounting of an immune response, cellular adhesion, intercellular communication, and cell proliferation. Thus, this chapter underlines the essential role the nanoscale organization of key signaling proteins and lipid domains. We will also see how nanodomains play an important role in the lifecycle of many pathogens relevant to human disease and therefore illustrate how these structures may become future therapeutic targets.
Collapse
|
42
|
Cherra SJ, Jin Y. Advances in synapse formation: forging connections in the worm. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:85-97. [PMID: 25472860 PMCID: PMC4339659 DOI: 10.1002/wdev.165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/09/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Synapse formation is the quintessential process by which neurons form specific connections with their targets to enable the development of functional circuits. Over the past few decades, intense research efforts have identified thousands of proteins that localize to the pre- and postsynaptic compartments. Genetic dissection has provided important insights into the nexus of the molecular and cellular network, and has greatly advanced our knowledge about how synapses form and function physiologically. Moreover, recent studies have highlighted the complex regulation of synapse formation with the identification of novel mechanisms involving cell interactions from non-neuronal sources. In this review, we cover the conserved pathways required for synaptogenesis and place specific focus on new themes of synapse modulation arising from studies in Caenorhabditis elegans. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego
- Howard Hughes Medical Institute
| |
Collapse
|
43
|
Urwyler O, Izadifar A, Dascenco D, Petrovic M, He H, Ayaz D, Kremer A, Lippens S, Baatsen P, Guérin CJ, Schmucker D. Investigating CNS synaptogenesis at single-synapse resolution by combining reverse genetics with correlative light and electron microscopy. Development 2014; 142:394-405. [PMID: 25503410 DOI: 10.1242/dev.115071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers.
Collapse
Affiliation(s)
- Olivier Urwyler
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Azadeh Izadifar
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Dan Dascenco
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Milan Petrovic
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Haihuai He
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Derya Ayaz
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Anna Kremer
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Saskia Lippens
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Pieter Baatsen
- VIB, Center for the Biology of Disease, Herestraat 49 box 602, Leuven 3000, Belgium
| | - Christopher J Guérin
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium VIB, Inflammation Research Center Microscopy and Cytometry Core, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| |
Collapse
|
44
|
Systematic analyses of rpm-1 suppressors reveal roles for ESS-2 in mRNA splicing in Caenorhabditis elegans. Genetics 2014; 198:1101-15. [PMID: 25194163 DOI: 10.1534/genetics.114.167841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The PHR (Pam/Highwire/RPM-1) family of ubiquitin E3 ligases plays conserved roles in axon patterning and synaptic development. Genetic modifier analysis has greatly aided the discovery of the signal transduction cascades regulated by these proteins. In Caenorhabditis elegans, loss of function in rpm-1 causes axon overgrowth and aberrant presynaptic morphology, yet the mutant animals exhibit little behavioral deficits. Strikingly, rpm-1 mutations strongly synergize with loss of function in the presynaptic active zone assembly factors, syd-1 and syd-2, resulting in severe locomotor deficits. Here, we provide ultrastructural evidence that double mutants, between rpm-1 and syd-1 or syd-2, dramatically impair synapse formation. Taking advantage of the synthetic locomotor defects to select for genetic suppressors, previous studies have identified the DLK-1 MAP kinase cascade negatively regulated by RPM-1. We now report a comprehensive analysis of a large number of suppressor mutations of this screen. Our results highlight the functional specificity of the DLK-1 cascade in synaptogenesis. We also identified two previously uncharacterized genes. One encodes a novel protein, SUPR-1, that acts cell autonomously to antagonize RPM-1. The other affects a conserved protein ESS-2, the homolog of human ES2 or DGCR14. Loss of function in ess-2 suppresses rpm-1 only in the presence of a dlk-1 splice acceptor mutation. We show that ESS-2 acts to promote accurate mRNA splicing when the splice site is compromised. The human DGCR14/ES2 resides in a deleted chromosomal region implicated in DiGeorge syndrome, and its mutation has shown high probability as a risk factor for schizophrenia. Our findings provide the first functional evidence that this family of proteins regulate mRNA splicing in a context-specific manner.
Collapse
|
45
|
Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons. J Neurosci 2014; 34:8474-87. [PMID: 24948803 DOI: 10.1523/jneurosci.0409-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot).
Collapse
|
46
|
Opperman KJ, Grill B. RPM-1 is localized to distinct subcellular compartments and regulates axon length in GABAergic motor neurons. Neural Dev 2014; 9:10. [PMID: 24885325 PMCID: PMC4077836 DOI: 10.1186/1749-8104-9-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/24/2014] [Indexed: 01/24/2023] Open
Abstract
Background The PAM/Highwire/RPM-1 (PHR) proteins are conserved signaling proteins that regulate axon length and synapse formation during development. Loss of function in Caenorhabditis elegans rpm-1 results in axon termination and synapse formation defects in the mechanosensory neurons. An explanation for why these two phenotypes are observed in a single neuronal cell has remained absent. Further, it is uncertain whether the axon termination phenotypes observed in the mechanosensory neurons of rpm-1 mutants are unique to this specific type of neuron, or more widespread defects that occur with loss of function in rpm-1. Results Here, we show that RPM-1 is localized to both the mature axon tip and the presynaptic terminals of individual motor neurons and individual mechanosensory neurons. Genetic analysis indicated that GABAergic motor neurons, like the mechanosensory neurons, have both synapse formation and axon termination defects in rpm-1 mutants. RPM-1 functions in parallel with the active zone component SYD-2 (Liprin) to regulate not only synapse formation, but also axon termination in motor neurons. Our analysis of rpm-1−/−; syd-2−/− double mutants also revealed a role for RPM-1 in axon extension. The MAP3K DLK-1 partly mediated RPM-1 function in both axon termination and axon extension, and the relative role of DLK-1 was dictated by the anatomical location of the neuron in question. Conclusions Our findings show that axon termination defects are a core phenotype caused by loss of function in rpm-1, and not unique to the mechanosensory neurons. We show in motor neurons and in mechanosensory neurons that RPM-1 is localized to multiple, distinct subcellular compartments in a single cell. Thus, RPM-1 might be differentially regulated or RPM-1 might differentially control signals in distinct subcellular compartments to regulate multiple developmental outcomes in a single neuron. Our findings provide further support for the previously proposed model that PHR proteins function to coordinate axon outgrowth and termination with synapse formation.
Collapse
Affiliation(s)
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute - Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
47
|
RPM-1 uses both ubiquitin ligase and phosphatase-based mechanisms to regulate DLK-1 during neuronal development. PLoS Genet 2014; 10:e1004297. [PMID: 24810406 PMCID: PMC4014440 DOI: 10.1371/journal.pgen.1004297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/21/2014] [Indexed: 01/06/2023] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development. The molecular mechanisms that govern formation of functional synaptic connections are central to brain development and function. We have used the nematode C. elegans to explore the mechanism of how the intracellular signaling protein RPM-1 regulates neuronal development. Using a combination of proteomic, genetic, transgenic, and biochemical approaches we have shown that RPM-1 functions through a PP2C phosphatase, PPM-2, to regulate the activity of a MAP3 kinase, DLK-1. Our results indicate that a combination of PPM-2 phosphatase activity and RPM-1 ubiquitin ligase activity inhibit DLK-1.
Collapse
|
48
|
Campbell DS, Okamoto H. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. ACTA ACUST UNITED AC 2014; 203:657-72. [PMID: 24385488 PMCID: PMC3840933 DOI: 10.1083/jcb.201303072] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to being critical for apoptosis, components of the apoptotic pathway, such as caspases, are involved in other physiological processes in many types of cells, including neurons. However, very little is known about their role in dynamic, nonphysically destructive processes, such as axonal arborization and synaptogenesis. We show that caspases were locally active in vivo at the branch points of young, dynamic retinal ganglion cell axonal arbors but not in the cell body or in stable mature arbors. Caspase activation, dependent on Caspase-3, Caspase-9, and p38 mitogen-activated protein kinase (MAPK), rapidly increased at branch points corresponding with branch tip addition. Time-lapse imaging revealed that knockdown of Caspase-3 and Caspase-9 led to more stable arbors and presynaptic sites. Genetic analysis showed that Caspase-3, Caspase-9, and p38 MAPK interacted with Slit1a-Robo2 signaling, suggesting that localized activation of caspases lie downstream of a ligand receptor system, acting as key promoters of axonal branch tip and synaptic dynamics to restrict arbor growth in vivo in the central nervous system.
Collapse
Affiliation(s)
- Douglas S Campbell
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
49
|
SAD kinases control the maturation of nerve terminals in the mammalian peripheral and central nervous systems. Proc Natl Acad Sci U S A 2014; 111:1138-43. [PMID: 24395778 DOI: 10.1073/pnas.1321990111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axons develop in a series of steps, beginning with specification, outgrowth, and arborization, and terminating with formation and maturation of presynaptic specializations. We found previously that the SAD-A and SAD-B kinases are required for axon specification and arborization in subsets of mouse neurons. Here, we show that following these steps, SAD kinases become localized to synaptic sites and are required within presynaptic cells for structural and functional maturation of synapses in both peripheral and central nervous systems. Deleting SADs from sensory neurons can perturb either axonal arborization or nerve terminal maturation, depending on the stage of deletion. Thus, a single pair of kinases plays multiple, sequential roles in axonal differentiation.
Collapse
|
50
|
Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. ACTA ACUST UNITED AC 2013; 203:11-22. [PMID: 24127213 PMCID: PMC3798257 DOI: 10.1083/jcb.201307020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.
Collapse
Affiliation(s)
- Poh Hui Chia
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | | |
Collapse
|