1
|
Gallot-Lavallée L, Jerlström-Hultqvist J, Zegarra-Vidarte P, Salas-Leiva DE, Stairs CW, Čepička I, Roger AJ, Archibald JM. Massive intein content in Anaeramoeba reveals aspects of intein mobility in eukaryotes. Proc Natl Acad Sci U S A 2023; 120:e2306381120. [PMID: 38019867 PMCID: PMC10710043 DOI: 10.1073/pnas.2306381120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.
Collapse
Affiliation(s)
- Lucie Gallot-Lavallée
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Jon Jerlström-Hultqvist
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Paula Zegarra-Vidarte
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Dayana E. Salas-Leiva
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Courtney W. Stairs
- Microbiology Group, Department of Biology, Lund University, Lund223 62, Sweden
| | - Ivan Čepička
- Department of Zoology, Charles University, Prague128 00, Czech Republic
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| |
Collapse
|
2
|
Turgeman-Grott I, Arsenault D, Yahav D, Feng Y, Miezner G, Naki D, Peri O, Papke RT, Gogarten JP, Gophna U. Neighboring inteins interfere with one another's homing capacity. PNAS NEXUS 2023; 2:pgad354. [PMID: 38024399 PMCID: PMC10643990 DOI: 10.1093/pnasnexus/pgad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.
Collapse
Affiliation(s)
- Israela Turgeman-Grott
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Danielle Arsenault
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Dekel Yahav
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Guy Miezner
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Doron Naki
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Omri Peri
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06268-3003, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| |
Collapse
|
3
|
The Evolutionary History of a DNA Methylase Reveals Frequent Horizontal Transfer and Within-Gene Recombination. Genes (Basel) 2023; 14:genes14020288. [PMID: 36833214 PMCID: PMC9957025 DOI: 10.3390/genes14020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Inteins, often referred to as protein introns, are highly mobile genetic elements that invade conserved genes throughout the tree of life. Inteins have been found to invade a wide variety of key genes within actinophages. While in the process of conducting a survey of these inteins in actinophages, we discovered that one protein family of methylases contained a putative intein, and two other unique insertion elements. These methylases are known to occur commonly in phages as orphan methylases (possibly as a form of resistance to restriction-modification systems). We found that the methylase family is not conserved within phage clusters and has a disparate distribution across divergent phage groups. We determined that two of the three insertion elements have a patchy distribution within the methylase protein family. Additionally, we found that the third insertion element is likely a second homing endonuclease, and that all three elements (the intein, the homing endonuclease, and what we refer to as the ShiLan domain) have different insertion sites that are conserved in the methylase gene family. Furthermore, we find strong evidence that both the intein and ShiLan domain are partaking in long-distance horizontal gene transfer events between divergent methylases in disparate phage hosts within the already dispersed methylase distribution. The reticulate evolutionary history of methylases and their insertion elements reveals high rates of gene transfer and within-gene recombination in actinophages.
Collapse
|
4
|
Fernandes JAL, Zatti MDS, Arantes TD, de Souza MFB, Santoni MM, Rossi D, Zanelli CF, Liu XQ, Bagagli E, Theodoro RC. Cryptococcus neoformans Prp8 Intein: An In Vivo Target-Based Drug Screening System in Saccharomyces cerevisiae to Identify Protein Splicing Inhibitors and Explore Its Dynamics. J Fungi (Basel) 2022; 8:jof8080846. [PMID: 36012834 PMCID: PMC9410109 DOI: 10.3390/jof8080846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Inteins are genetic mobile elements that are inserted within protein-coding genes, which are usually housekeeping genes. They are transcribed and translated along with the host gene, then catalyze their own splicing out of the host protein, which assumes its functional conformation thereafter. As Prp8 inteins are found in several important fungal pathogens and are absent in mammals, they are considered potential therapeutic targets since inhibiting their splicing would selectively block the maturation of fungal proteins. We developed a target-based drug screening system to evaluate the splicing of Prp8 intein from the yeast pathogen Cryptococcus neoformans (CnePrp8i) using Saccharomyces cerevisiae Ura3 as a non-native host protein. In our heterologous system, intein splicing preserved the full functionality of Ura3. To validate the system for drug screening, we examined cisplatin, which has been described as an intein splicing inhibitor. By using our system, new potential protein splicing inhibitors may be identified and used, in the future, as a new class of drugs for mycosis treatment. Our system also greatly facilitates the visualization of CnePrp8i splicing dynamics in vivo.
Collapse
Affiliation(s)
- José Alex Lourenço Fernandes
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
- Ottawa Hospital Research Institute (OHRI), The University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.A.L.F.); (R.C.T.)
| | - Matheus da Silva Zatti
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
| | - Thales Domingos Arantes
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Maria Fernanda Bezerra de Souza
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Rio Grande do Norte, Brazil
| | - Mariana Marchi Santoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Danuza Rossi
- Pensabio, São Paulo 05005-010, São Paulo, Brazil
| | - Cleslei Fernando Zanelli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Eduardo Bagagli
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Raquel Cordeiro Theodoro
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59077-080, Rio Grande do Norte, Brazil
- Correspondence: (J.A.L.F.); (R.C.T.)
| |
Collapse
|
5
|
Xia HF, Luo JP, Yu SR, Zhou TJ. Modification of C-Segment of Cfa DnaE Split Intein for Improving Clean-in-Place in Chromatography Process. Biotechnol Prog 2022; 38:e3266. [PMID: 35488391 DOI: 10.1002/btpr.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
This research focuses on the construction of an affinity purification system based on Cfa DnaE split intein. Cfa DnaE intein is an artificially constructed intein with the advantages of a fast cleavage reaction and good stability. In a previous study, a purification system that uses Cfa intein as a tag was constructed, the separation of the target protein and the tag during the purification process was completed, and the purity of the purified target protein reached 98.21%. Guided by molecular docking results, we identified flexible regions in the split intein and inserted several glycines into the protein to decrease the stability of the Cfa IC , thereby improving the regenerability of the IN media. Inserting 6 glycines between amino acids 14 and 15 of IC improved the regeneration rate of IC -GFP on the column to approximately 96%.
Collapse
Affiliation(s)
- Hai-Feng Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jiu-Pei Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shi-Rui Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ting-Jun Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Beyer HM, Iwaï H. Structural Basis for the Propagation of Homing Endonuclease-Associated Inteins. Front Mol Biosci 2022; 9:855511. [PMID: 35372505 PMCID: PMC8966425 DOI: 10.3389/fmolb.2022.855511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Inteins catalyze their removal from a host protein through protein splicing. Inteins that contain an additional site-specific endonuclease domain display genetic mobility via a process termed “homing” and thereby act as selfish DNA elements. We elucidated the crystal structures of two archaeal inteins associated with an active or inactive homing endonuclease domain. This analysis illustrated structural diversity in the accessory domains (ACDs) associated with the homing endonuclease domain. To augment homing endonucleases with highly specific DNA cleaving activity using the intein scaffold, we engineered the ACDs and characterized their homing site recognition. Protein engineering of the ACDs in the inteins illuminated a possible strategy for how inteins could avoid their extinction but spread via the acquisition of a diverse accessory domain.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- *Correspondence: Hideo Iwaï, or,
| |
Collapse
|
7
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
8
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
Green CM, Li Z, Smith AD, Novikova O, Bacot-Davis VR, Gao F, Hu S, Banavali NK, Thiele DJ, Li H, Belfort M. Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biol 2019; 17:e3000104. [PMID: 31600193 PMCID: PMC6805012 DOI: 10.1371/journal.pbio.3000104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/22/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNAs. At its functional core lies the essential pre-mRNA processing factor 8 (Prp8) protein. Across diverse eukaryotes, this protein cofactor of RNA catalysis harbors a self-splicing element called an intein. Inteins in Prp8 are extremely pervasive and are found at 7 different sites in various species. Here, we focus on the Prp8 intein from Cryptococcus neoformans (Cne), a human fungal pathogen. We solved the crystal structure of this intein, revealing structural homology among protein splicing sequences in eukaryotes, including the Hedgehog C terminus. Working with the Cne Prp8 intein in a reporter assay, we find that the biologically relevant divalent metals copper and zinc inhibit intein splicing, albeit by 2 different mechanisms. Copper likely stimulates reversible modifications on a catalytically important cysteine, whereas zinc binds at the terminal asparagine and the same critical cysteine. Importantly, we also show that copper treatment inhibits Prp8 protein splicing in Cne. Lastly, an intein-containing Prp8 precursor model is presented, suggesting that metal-induced protein splicing inhibition would disturb function of both Prp8 and the spliceosome. These results indicate that Prp8 protein splicing can be modulated, with potential functional implications for the spliceosome.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Valjean R. Bacot-Davis
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Fengshan Gao
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Saiyang Hu
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nilesh K. Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| |
Collapse
|
11
|
Garcia Garces H, Cordeiro RT, Bagagli E. PRP8 intein in dermatophytes: Evolution and species identification. Med Mycol 2018; 56:746-758. [PMID: 29228309 DOI: 10.1093/mmy/myx102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/27/2017] [Indexed: 11/14/2022] Open
Abstract
Dermatophytes are keratinophilic fungi belonging to the family Arthrodermataceae. Despite having a monophyletic origin, its systematics has always been complex and controversial. Sequencing of nuclear ribosomal ITS and D1/D2 rDNA has been proposed as an efficient tool for identifying species in this group of fungi, while multilocus analyses have been used for phylogenetic species recognition. However, the search for new markers, with sequence and size variation, which enable species identification in only one polymerase chain reaction (PCR) step, is very attractive. Inteins seems to fulfill these characteristics. They are self-splicing genetic elements present within housekeeping coding genes, such as PRP8, that codify the most important protein of the spliceosome. The PRP8 intein has been described for Microsporum canis in databases but has not been studied in dermatophytes in any other published work. Thus, our aim was to determine the potential of this intervening element for establishing phylogenetic relationships among dermatophytes and for identifying species. It was found that all studied species have a full-length PRP8 intein with a Homing Endonuclease belonging to the family LAGLIDADG. Phylogenetic analyses were consistent with other previous phylogenies, confirming Epidermophyton floccosum in the same clade of the Arthroderma gypseum complex, Microsporum audouinii close to M. canis, differentiating A. gypseum from Arthroderma incurvatum, and in addition, better defining the Trichophyton interdigitale and Trichophyton rubrum species grouping. Length polymorphism in the HE region enables identification of the most relevant Microsporum species by a simple PCR-electrophoresis assay. Intein PRP8 within dermatophytes is a powerful additional tool for identifying and systematizing dermatophytes.
Collapse
Affiliation(s)
- Hans Garcia Garces
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual de São Paulo. São Paulo. Brasil
| | - Raquel Theodoro Cordeiro
- Instituto de Medicina Tropical do RN, Universidade Federal de Rio Grande do Norte. Rio Grande do Norte. Brasil
| | - E Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual de São Paulo. São Paulo. Brasil
| |
Collapse
|
12
|
Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA 2018; 9:4. [PMID: 29416568 PMCID: PMC5784728 DOI: 10.1186/s13100-018-0111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. RESULTS This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses. There is a preponderance of inteins in several fungal pathogens of humans and plants. Inteins are pervasive in certain proteins, including the nuclear RNA splicing factor, Prp8, and the chloroplast DNA helicase, DnaB. We find that eukaryotic inteins frequently localize to unstructured loops of the host protein, often at highly conserved sites. More broadly, a sequence similarity network analysis of all eukaryotic inteins uncovered several routes of intein mobility. Some eukaryotic inteins appear to have been acquired through horizontal transfer with dsDNA viruses, yet other inteins are spread through intragenomic transfer. Remarkably, endosymbiosis can explain patterns of DnaB intein inheritance across several algal phyla, a novel mechanism for intein acquisition and distribution. CONCLUSIONS Overall, an intriguing picture emerges for how the eukaryotic intein landscape arose, with many evolutionary forces having contributed to its current state. Our collective results provide a framework for exploring inteins as novel regulatory elements and innovative drug targets.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|
13
|
Hawken NM, Zaika EI, Nakagawa T. Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin. J Physiol 2017; 595:6517-6539. [PMID: 28815591 DOI: 10.1113/jp274897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/04/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex. ABSTRACT During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits.
Collapse
Affiliation(s)
- Natalie M Hawken
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| | - Elena I Zaika
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
14
|
Teixeira M, Moreno L, Stielow B, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patané J, Priest M, Souza R, Young S, Ferreira K, Zeng Q, da Cunha M, Gladki A, Barker B, Vicente V, de Souza E, Almeida S, Henrissat B, Vasconcelos A, Deng S, Voglmayr H, Moussa T, Gorbushina A, Felipe M, Cuomo C, de Hoog GS. Exploring the genomic diversity of black yeasts and relatives ( Chaetothyriales, Ascomycota). Stud Mycol 2017; 86:1-28. [PMID: 28348446 PMCID: PMC5358931 DOI: 10.1016/j.simyco.2017.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
Collapse
Affiliation(s)
- M.M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - L.F. Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - B.J. Stielow
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A. Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M. Hainaut
- Université Aix-Marseille (CNRS), Marseille, France
| | - L. Gonzaga
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | | | - J.S.L. Patané
- Department of Biochemistry, University of São Paulo, Brazil
| | - M. Priest
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - R. Souza
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Young
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - K.S. Ferreira
- Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Q. Zeng
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - M.M.L. da Cunha
- Núcleo Multidisciplinar de Pesquisa em Biologia UFRJ-Xerém-NUMPEX-BIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Gladki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - B. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - V.A. Vicente
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
| | - E.M. de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - S. Almeida
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, SP, Brazil
| | - B. Henrissat
- Université Aix-Marseille (CNRS), Marseille, France
| | - A.T.R. Vasconcelos
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Deng
- Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H. Voglmayr
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - T.A.A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - A. Gorbushina
- Federal Institute for Material Research and Testing (BAM), Berlin, Germany
| | - M.S.S. Felipe
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - C.A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Shi C, Han TC, Wood DW. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System. Methods Mol Biol 2017; 1495:13-25. [PMID: 27714607 DOI: 10.1007/978-1-4939-6451-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.
Collapse
Affiliation(s)
- Changhua Shi
- Biodesign Institute at Arizona State University, Tempe, AZ, USA
| | - Tzu-Chiang Han
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Fernandes JAL, Prandini THR, Castro MDCA, Arantes TD, Giacobino J, Bagagli E, Theodoro RC. Evolution and Application of Inteins in Candida species: A Review. Front Microbiol 2016; 7:1585. [PMID: 27777569 PMCID: PMC5056185 DOI: 10.3389/fmicb.2016.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species-specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic among the different species. Although absent in Candida albicans, these elements are present in different sizes, in some environmental Candida spp. and also in most of the non-albicans Candida spp. considered emergent opportunistic pathogens. Besides, the possible role of these inteins in yeast physiology was also discussed in the light of the recent findings on the importance of these elements as post-translational modulators of gene expression, reinforcing their relevance as alternative therapeutic targets for the treatment of non-albicans Candida infections, because, once the splicing of an intein is inhibited, its host protein, which is usually a housekeeping protein, becomes non-functional.
Collapse
Affiliation(s)
- José A L Fernandes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Tâmara H R Prandini
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Maria da Conceiçao A Castro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Thales D Arantes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do NorteNatal, Brazil; Post-graduation Program in Biochemistry, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - Juliana Giacobino
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Raquel C Theodoro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| |
Collapse
|
17
|
Novikova O, Jayachandran P, Kelley DS, Morton Z, Merwin S, Topilina NI, Belfort M. Intein Clustering Suggests Functional Importance in Different Domains of Life. Mol Biol Evol 2015; 33:783-99. [PMID: 26609079 PMCID: PMC4760082 DOI: 10.1093/molbev/msv271] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | | | - Danielle S Kelley
- Department of Biomedical Sciences, School of Public Health, University at Albany
| | - Zachary Morton
- Department of Biological Sciences and RNA Institute, University at Albany
| | | | - Natalya I Topilina
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany Department of Biomedical Sciences, School of Public Health, University at Albany
| |
Collapse
|
18
|
Segmental expression and C-terminal labeling of protein ERp44 through protein trans-splicing. Protein Expr Purif 2015; 112:29-36. [DOI: 10.1016/j.pep.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022]
|
19
|
Topilina NI, Novikova O, Stanger M, Banavali NK, Belfort M. Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Res 2015; 43:6631-48. [PMID: 26101259 PMCID: PMC4513877 DOI: 10.1093/nar/gkv612] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 11/14/2022] Open
Abstract
Post-translational control based on an environmentally sensitive intervening intein sequence is described. Inteins are invasive genetic elements that self-splice at the protein level from the flanking host protein, the exteins. Here we show in Escherichia coli and in vitro that splicing of the RadA intein located in the ATPase domain of the hyperthermophilic archaeon Pyrococcus horikoshii is strongly regulated by the native exteins, which lock the intein in an inactive state. High temperature or solution conditions can unlock the intein for full activity, as can remote extein point mutations. Notably, this splicing trap occurs through interactions between distant residues in the native exteins and the intein, in three-dimensional space. The exteins might thereby serve as an environmental sensor, releasing the intein for full activity only at optimal growth conditions for the native organism, while sparing ATP consumption under conditions of cold-shock. This partnership between the intein and its exteins, which implies coevolution of the parasitic intein and its host protein may provide a novel means of post-translational control.
Collapse
Affiliation(s)
- Natalya I Topilina
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Matthew Stanger
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, NYS Department of Health and Department of Biomedical Sciences, University at Albany, CMS 2008, Biggs Lab, Empire State Plaza, PO Box 509, Albany, NY 12201-2002, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
20
|
Ortmann C, Pickhinke U, Exner S, Ohlig S, Lawrence R, Jboor H, Dreier R, Grobe K. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 2015; 128:2374-85. [PMID: 25967551 DOI: 10.1242/jcs.170670] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.
Collapse
Affiliation(s)
- Corinna Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ute Pickhinke
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Sebastian Exner
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hamodah Jboor
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rita Dreier
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
21
|
Abstract
Protein splicing in trans by split inteins has increasingly become a powerful protein-engineering tool for protein ligation, both in vivo and in vitro. Over 100 naturally occurring and artificially engineered split inteins have been reported for protein ligation using protein trans-splicing. Here, we review the current status of the reported split inteins in order to delineate an empirical or rational strategy for constructing new split inteins suitable for various applications in biotechnology and chemical biology.
Collapse
Affiliation(s)
- A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute-Frederick, MD 21702, USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| |
Collapse
|
22
|
Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1027032. [PMID: 28232888 DOI: 10.1080/21690707.2015.1027032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
Proteins are natural polypeptides consisting of 20 major amino acid residues, content and order of which in a given amino acid sequence defines the ability of a related protein to fold into unique functional state or to stay intrinsically disordered. Amino acid sequences code for both foldable (ordered) proteins/domains and for intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), but these sequence codes are dramatically different. This difference starts with a very general property of the corresponding amino acid sequences, namely, their compositions. IDPs/IDPRs are enriched in specific disorder-promoting residues, whereas amino acid sequences of ordered proteins/domains typically contain more order-promoting residues. Therefore, the relative abundances of various amino acids in ordered and disordered proteins can be used to scale amino acids according to their disorder promoting potentials. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and represents serine, which is the third most disorder-promoting residue. Similar to previous publications, this review represents some physico-chemical properties of serine and the roles of this residue in structures and functions of ordered proteins, describes major posttranslational modifications tailored to serine, and finally gives an overview of roles of serine in structure and functions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science, King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences; Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology, Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
23
|
Cronin M, Coolbaugh MJ, Nellis D, Zhu J, Wood DW, Nussinov R, Ma B. Dynamics differentiate between active and inactive inteins. Eur J Med Chem 2015; 91:51-62. [PMID: 25087201 PMCID: PMC4308580 DOI: 10.1016/j.ejmech.2014.07.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
The balance between stability and dynamics for active enzymes can be somewhat quantified by studies of intein splicing and cleaving reactions. Inteins catalyze the ligation of flanking host exteins while excising themselves. The potential for applications led to engineering of a mini-intein splicing domain, where the homing endonuclease domain of the Mycobacterium tuberculosis RecA (Mtu recA) intein was removed. The remaining domains were linked by several short peptides, but splicing activity in all was substantially lower than the full-length intein. Native splicing activity was restored in some cases by a V67L mutation. Using computations and experiments, we examine the impact of this mutation on the stability and conformational dynamics of the mini-intein splicing domain. Molecular dynamics simulations were used to delineate the factors that determine the active state, including the V67L mini-intein mutant, and peptide linker. We found that (1) the V67L mutation lowers the global fluctuations in all modeled mini-inteins, stabilizing the mini-intein constructs; (2) the connecting linker length affects intein dynamics; and (3) the flexibilities of the linker and intein core are higher in the active structure. We have observed that the interaction of the linker region and a turn region around residues 35-41 provides the pathway for the allostery interaction. Our experiments reveal that intein catalysis is characterized by non-linear Arrhenius plot, confirming the significant contribution of protein conformational dynamics to intein function. We conclude that while the V67L mutation stabilizes the global structure, cooperative dynamics of all intein regions appear more important for intein function than high stability. Our studies suggest that effectively quenching the conformational dynamics of an intein through engineered allosteric interactions could deactivate intein splicing or cleaving.
Collapse
Affiliation(s)
- Melissa Cronin
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael J Coolbaugh
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA
| | - David Nellis
- Biopharmaceutical Development Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jianwei Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 200240, China
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
24
|
Miraula M, Enculescu C, Schenk G, Mitić N. Inteins—A Focus on the Biotechnological Applications of Splicing-Promoting Proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.52005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Groitl B, Jakob U. Thiol-based redox switches. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1335-43. [PMID: 24657586 PMCID: PMC4059413 DOI: 10.1016/j.bbapap.2014.03.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Novikova O, Topilina N, Belfort M. Enigmatic distribution, evolution, and function of inteins. J Biol Chem 2014; 289:14490-7. [PMID: 24695741 DOI: 10.1074/jbc.r114.548255] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inteins are mobile genetic elements capable of self-splicing post-translationally. They exist in all three domains of life including in viruses and bacteriophage, where they have a sporadic distribution even among very closely related species. In this review, we address this anomalous distribution from the point of view of the evolution of the host species as well as the intrinsic features of the inteins that contribute to their genetic mobility. We also discuss the incidence of inteins in functionally important sites of their host proteins. Finally, we describe instances of conditional protein splicing. These latter observations lead us to the hypothesis that some inteins have adapted to become sensors that play regulatory roles within their host protein, to the advantage of the organism in which they reside.
Collapse
Affiliation(s)
- Olga Novikova
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| | - Natalya Topilina
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| | - Marlene Belfort
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| |
Collapse
|
27
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
28
|
Jakobs P, Exner S, Schürmann S, Pickhinke U, Bandari S, Ortmann C, Kupich S, Schulz P, Hansen U, Seidler DG, Grobe K. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J Cell Sci 2014; 127:1726-37. [PMID: 24522195 DOI: 10.1242/jcs.137695] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All morphogens of the Hedgehog (Hh) family are synthesized as dual-lipidated proteins, which results in their firm attachment to the surface of the cell in which they were produced. Thus, Hh release into the extracellular space requires accessory protein activities. We suggested previously that the proteolytic removal of N- and C-terminal lipidated peptides (shedding) could be one such activity. More recently, the secreted glycoprotein Scube2 (signal peptide, cubulin domain, epidermal-growth-factor-like protein 2) was also implicated in the release of Shh from the cell membrane. This activity strictly depended on the CUB domains of Scube2, which derive their name from the complement serine proteases and from bone morphogenetic protein-1/tolloid metalloproteinases (C1r/C1s, Uegf and Bmp1). CUB domains function as regulators of proteolytic activity in these proteins. This suggested that sheddases and Scube2 might cooperate in Shh release. Here, we confirm that sheddases and Scube2 act cooperatively to increase the pool of soluble bioactive Shh, and that Scube2-dependent morphogen release is unequivocally linked to the proteolytic processing of lipidated Shh termini, resulting in truncated soluble Shh. Thus, Scube2 proteins act as protease enhancers in this setting, revealing newly identified Scube2 functions in Hh signaling regulation.
Collapse
Affiliation(s)
- Petra Jakobs
- The Institute for Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms Universität Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Swithers KS, Soucy SM, Lasek-Nesselquist E, Lapierre P, Gogarten JP. Distribution and Evolution of the Mobile vma-1b Intein. Mol Biol Evol 2013; 30:2676-87. [DOI: 10.1093/molbev/mst164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Deussing JM. Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res 2013; 354:9-25. [PMID: 24078022 DOI: 10.1007/s00441-013-1708-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
In the 1980s, the basic principles of gene targeting were discovered and forged into sharp tools for efficient and precise engineering of the mouse genome. Since then, genetic mouse models have substantially contributed to our understanding of major neurobiological concepts and are of utmost importance for our comprehension of neuropsychiatric disorders. The "domestication" of site-specific recombinases and the continuous creative technological developments involving the implementation of previously identified biological principles such as transcriptional and posttranslational control now enable conditional mutagenesis with high spatial and temporal resolution. The initiation and successful accomplishment of large-scale efforts to annotate functionally the entire mouse genome and to build strategic resources for the research community have significantly accelerated the rapid proliferation and broad propagation of mouse genetic tools. Addressing neurobiological processes with the assistance of genetic mouse models is a routine procedure in psychiatric research and will be further extended in order to improve our understanding of disease mechanisms. In light of the highly complex nature of psychiatric disorders and the current lack of strong causal genetic variants, a major future challenge is to model of psychiatric disorders more appropriately. Humanized mice, and the recently developed toolbox of site-specific nucleases for more efficient and simplified tailoring of the genome, offer the perspective of significantly improved models. Ultimately, these tools will push the limits of gene targeting beyond the mouse to allow genome engineering in any model organism of interest.
Collapse
Affiliation(s)
- Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Kraepelinstrasse 2-10, 80804, Munich, Germany,
| |
Collapse
|
31
|
Analysis of inteins in the Candida parapsilosis complex for simple and accurate species identification. J Clin Microbiol 2013; 51:2830-6. [PMID: 23784117 DOI: 10.1128/jcm.00981-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inteins are coding sequences that are transcribed and translated with flanking sequences and then are excised by an autocatalytic process. There are two types of inteins in fungi, mini-inteins and full-length inteins, both of which present a splicing domain containing well-conserved amino acid sequences. Full-length inteins also present a homing endonuclease domain that makes the intein a mobile genetic element. These parasitic genetic elements are located in highly conserved genes and may allow for the differentiation of closely related species of the Candida parapsilosis (psilosis) complex. The correct identification of the three psilosis complex species C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis is very important in the clinical setting for improving antifungal therapy and patient care. In this work, we analyzed inteins that are present in the vacuolar ATPase gene VMA and in the threonyl-tRNA synthetase gene ThrRS in 85 strains of the Candida psilosis complex (46 C. parapsilosis, 17 C. metapsilosis, and 22 C. orthopsilosis). Here, we describe an accessible and accurate technique based on a single PCR that is able to differentiate the psilosis complex based on the VMA intein. Although the ThrRS intein does not distinguish the three species of the psilosis complex by PCR product size, it can differentiate them by sequencing and phylogenetic analysis. Furthermore, this intein is unusually present as both mini- and full-length forms in C. orthopsilosis. Additional population studies should be performed to address whether this represents a common intraspecific variability or the presence of subspecies within C. orthopsilosis.
Collapse
|
32
|
PRP8 intein in cryptic species of Histoplasma capsulatum: evolution and phylogeny. INFECTION GENETICS AND EVOLUTION 2013; 18:174-82. [PMID: 23665464 DOI: 10.1016/j.meegid.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 05/01/2013] [Indexed: 02/03/2023]
Abstract
The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides.
Collapse
|
33
|
Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS One 2013; 8:e59516. [PMID: 23593141 PMCID: PMC3620165 DOI: 10.1371/journal.pone.0059516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022] Open
Abstract
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Mengmeng Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Huiling Song
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lingling Xu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- * E-mail: (QM); (XQL)
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (QM); (XQL)
| |
Collapse
|
34
|
Volkmann G, Mootz HD. Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 2013; 70:1185-206. [PMID: 22926412 PMCID: PMC11113529 DOI: 10.1007/s00018-012-1120-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/23/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.
Collapse
Affiliation(s)
- Gerrit Volkmann
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| |
Collapse
|
35
|
Ohlig S, Pickhinke U, Sirko S, Bandari S, Hoffmann D, Dreier R, Farshi P, Götz M, Grobe K. An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions. J Biol Chem 2012; 287:43708-19. [PMID: 23118222 DOI: 10.1074/jbc.m112.356667] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang P, Chen T, Sakurai K, Han BX, He Z, Feng G, Wang F. Intersectional Cre driver lines generated using split-intein mediated split-Cre reconstitution. Sci Rep 2012; 2:497. [PMID: 22773946 PMCID: PMC3390602 DOI: 10.1038/srep00497] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/15/2012] [Indexed: 11/09/2022] Open
Abstract
Tissue and cell type highly specific Cre drivers are very rare due to the fact that most genes or promoters used to direct Cre expressions are generally expressed in more than one tissues and/or in multiple cell types. We developed a split-intein based split-Cre system for highly efficient Cre-reconstitution through protein splicing. This split-intein-split-Cre system can be used to intersect the expression patterns of two genes or promoters to restrict full-length Cre reconstitution in their overlapping domains. To test this system in vivo, we selected several conserved human enhancers to drive the expression of either Cre-N-intein-N, or intein-C-Cre-C transgene in different brain regions. In all paired CreN/CreC transgenic mice, Cre-dependent reporter was efficiently induced specifically in the intersectional expression domains of two enhancers. This split-intein based method is simpler to implement compared with other strategies for generating highly-restricted intersectional Cre drivers to study complex tissues such as the nervous system.
Collapse
Affiliation(s)
- Ping Wang
- Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Tori K, Cheriyan M, Pedamallu CS, Contreras MA, Perler FB. The Thermococcus kodakaraensis Tko CDC21-1 intein activates its N-terminal splice junction in the absence of a conserved histidine by a compensatory mechanism. Biochemistry 2012; 51:2496-505. [PMID: 22380677 DOI: 10.1021/bi201840k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inteins and other self-catalytic enzymes, such as glycosylasparaginases and hedgehog precursors, initiate autocleavage by converting a peptide bond to a (thio)ester bond when Ser, Thr, or Cys undergoes an N-[S/O] acyl migration assisted by residues within the precursor. Previous studies have shown that a His at position 10 in intein Block B is essential for this initial acyl migration and N-terminal splice junction cleavage. This His is present in all inteins identified to date except the Thermococcus kodakaraensis Tko CDC21-1 intein orthologs and the inactive Arthrobacter species FB24 Arth_1007 intein. This study demonstrates that the Tko CDC21-1 intein is fully active and has replaced the lost catalytic function normally provided by the Block B His using a compensatory mechanism involving a conserved ortholog-specific basic residue (Lys(58)) present outside the standard intein conserved motifs. We propose that Lys(58) catalyzes the initial N-S acyl migration by stabilizing the thiazolidine-tetrahedral intermediate, allowing it to be resolved by water-mediated hydrolysis rather than by protonating the leaving group as His is theorized to do in many other inteins. Autoprocessing enzymes may have more flexibility in evolving catalytic variations because high reaction rates are not required when performing single-turnover reactions on "substrates" that are covalently attached to the enzyme. Consequently, inteins have more flexibility to sample catalytic mechanisms, providing insight into various strategies that enzymes use to accomplish catalysis.
Collapse
Affiliation(s)
- Kazuo Tori
- New England BioLabs, Ipswich, Massachusetts 01938, United States
| | | | | | | | | |
Collapse
|
38
|
Bokor AA, Kohn LM, Poulter RT, van Kan JA. PRP8 inteins in species of the genus Botrytis and other ascomycetes. Fungal Genet Biol 2012; 49:250-61. [DOI: 10.1016/j.fgb.2012.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/16/2011] [Accepted: 01/11/2012] [Indexed: 12/29/2022]
|
39
|
Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA. Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. J Mol Biol 2012; 421:204-36. [PMID: 22342932 DOI: 10.1016/j.jmb.2012.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/12/2022]
Abstract
It has been more than a century since the first evidence linking the process of amyloid formation to the pathogenesis of Alzheimer's disease. During the last three decades in particular, increasing evidence from various sources (pathology, genetics, cell culture studies, biochemistry, and biophysics) continues to point to a central role for the pathogenesis of several incurable neurodegenerative and systemic diseases. This is in part driven by our improved understanding of the molecular mechanisms of protein misfolding and aggregation and the structural properties of the different aggregates in the amyloid pathway and the emergence of new tools and experimental approaches that permit better characterization of amyloid formation in vivo. Despite these advances, detailed mechanistic understanding of protein aggregation and amyloid formation in vitro and in vivo presents several challenges that remain to be addressed and several fundamental questions about the molecular and structural determinants of amyloid formation and toxicity and the mechanisms of amyloid-induced toxicity remain unanswered. To address this knowledge gap and technical challenges, there is a critical need for developing novel tools and experimental approaches that will not only permit the detection and monitoring of molecular events that underlie this process but also allow for the manipulation of these events in a spatial and temporal fashion both in and out of the cell. This review is primarily dedicated in highlighting recent results that illustrate how advances in chemistry and chemical biology have been and can be used to address some of the questions and technical challenges mentioned above. We believe that combining recent advances in the development of new fluorescent probes, imaging tools that enabled the visualization and tracking of molecular events with advances in organic synthesis, and novel approaches for protein synthesis and engineering provide unique opportunities to gain a molecular-level understanding of the process of amyloid formation. We hope that this review will stimulate further research in this area and catalyze increased collaboration at the interface of chemistry and biology to decipher the mechanisms and roles of protein folding, misfolding, and aggregation in health and disease.
Collapse
Affiliation(s)
- Sara Butterfield
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Tian L, Sun SSM. A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform. PLoS One 2011; 6:e24183. [PMID: 21918684 PMCID: PMC3168869 DOI: 10.1371/journal.pone.0024183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/02/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor. METHODOLOGY/PRINCIPAL FINDINGS To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP) fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV). The in vivo uncleaved EiP protein was accumulated up to 2-4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein. CONCLUSION/SIGNIFICANCE This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry.
Collapse
Affiliation(s)
- Li Tian
- School of Life Sciences, Tsinghua University, Beijing, China
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Samuel S. M. Sun
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- * E-mail:
| |
Collapse
|
42
|
Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ. Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 2011; 286:34440-7. [PMID: 21832069 DOI: 10.1074/jbc.m111.277350] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inteins are internal protein sequences that post-translationally self-excise and splice together the flanking sequences, the so-called exteins. Natural and engineered inteins have been used in many practical applications. However, inteins are often inefficient or inactive when placed in a non-native host protein and may require the presence of several amino acid residues of the native exteins, which will then remain as a potential scar in the spliced protein. Thus, more general inteins that overcome these limitations are highly desirable. Here we report sequential directed evolution as a new approach to produce inteins with such properties. Random mutants of the Ssp (Synechocystis sp. PCC 6803) DnaB mini-intein were inserted into the protein conferring kanamycin resistance at a site where the parent intein was inactive for splicing. The mutants selected for splicing activity were further improved by iterating the procedure for two more cycles at different positions in the same protein. The resulting improved inteins showed high activity in the positions of the first rounds of selection, in multiple new insertion sites, and in different proteins. One of these inteins, the M86 mutant, which accumulated 8 amino acid substitutions, was also biochemically characterized in an artificially split form with a chemically synthesized N-terminal intein fragment consisting of 11 amino acids. When compared with the unevolved split intein, it exhibited an ∼60-fold increased rate in the protein trans-splicing reaction and a K(d) value for the interaction of the split intein fragments improved by an order of magnitude. Implications on the intein structure-function, practical application, and evolution are discussed.
Collapse
Affiliation(s)
- Julia H Appleby-Tagoe
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Aranko AS, Volkmann G. Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomol Concepts 2011; 2:183-98. [DOI: 10.1515/bmc.2011.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/10/2011] [Indexed: 01/21/2023] Open
Abstract
AbstractProtein trans-splicing (PTS) exerted by split inteins is a protein ligation reaction which enables overcoming the barriers of conventional heterologous protein production. We provide an overview of the current state-of-the-art in split intein engineering, as well as the achievements of PTS technology in the realm of protein structure-function analyses, including incorporation of natural and artificial protein modifications, controllable protein reconstitution, segmental isotope labeling and protein cyclization. We further discuss factors crucial for the successful implementation of PTS in these protein engineering approaches, and speculate on necessary future endeavours to make PTS a universally applicable protein ligation tool.
Collapse
Affiliation(s)
- A. Sesilja Aranko
- 1Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
44
|
Husaini AM, Rashid Z, Mir RUR, Aquil B. Approaches for gene targeting and targeted gene expression in plants. ACTA ACUST UNITED AC 2011; 2:150-62. [PMID: 22179193 DOI: 10.4161/gmcr.2.3.18605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic science and technology are fundamental to state-of-the-art plant molecular genetics and crop improvement. The new generation of technology endeavors to introduce genes 'stably' into 'site-specific' locations and in 'single copy' without the integration of extraneous vector 'backbone' sequences or selectable markers and with a 'predictable and consistent' expression. Several similar strategies and technologies, which can push the development of 'smart' genetically modified plants with desirable attributes, as well as enhance their consumer acceptability, are discussed in this review.
Collapse
Affiliation(s)
- Amjad Masood Husaini
- Division of Plant Breeding and Genetics; Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir; Shalimar, India.
| | | | | | | |
Collapse
|
45
|
Functional characterization of a naturally occurring trans-splicing intein from Synechococcus elongatus in a mammalian cell system. Anal Biochem 2010; 407:180-7. [DOI: 10.1016/j.ab.2010.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/19/2022]
|
46
|
Allen MJ, Lanzén A, Bratbak G. Characterisation of the coccolithovirus intein. Mar Genomics 2010; 4:1-7. [PMID: 21429459 DOI: 10.1016/j.margen.2010.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
The identification of inteins in viral genomes is becoming increasingly common. Inteins are selfish DNA elements found within coding regions of host proteins. Following translation, they catalyse their own excision and the formation of a peptide bond between the flanking protein regions. Many inteins also display homing endonuclease function. Here, the newly identified coccolithovirus intein is described and is predicted to have both self-splicing and homing endonuclease activity. The biochemical mechanism of its protein splicing activity is hypothesised, and the prevalence of the intein among natural coccolithovirus isolates is tested.
Collapse
Affiliation(s)
- Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.
| | | | | |
Collapse
|
47
|
|
48
|
Theodoro RC, Volkmann G, Liu XQ, Bagagli E. PRP8 intein in Ajellomycetaceae family pathogens: sequence analysis, splicing evaluation and homing endonuclease activity. Fungal Genet Biol 2010; 48:80-91. [PMID: 20682355 DOI: 10.1016/j.fgb.2010.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/28/2010] [Accepted: 07/22/2010] [Indexed: 12/25/2022]
Abstract
Inteins are intervening sequences that are transcribed and translated with flanking host protein sequences and then self-excised by protein splicing. Bi-functional inteins also contain a homing endonuclease responsible for their genetic mobility. The PRP8 intein, the most widespread among fungi, occurs in important pathogens such as Histoplasma capsulatum and Paracoccidioides brasiliensis, from the Ajellomycetaceae family. Herein, we describe the bi-functional PRP8 intein in two other Ajellomycetacean pathogens, Blastomyces dermatitidis and Emmonsia parva. Sequence analysis and experimental evidence suggest that the homing endonuclease from PbrPRP8 is inactive. The splicing activity of the PRP8 intein from the B. dermatitidis, E. parva and P. brasiliensis species complex was demonstrated in a non-native protein context in Escherichia coli. Since the PRP8 intein is located in a functionally essential nuclear protein, it can be considered a promising therapeutic target for anti-fungal drugs, because inhibition of intein splicing should inhibit proliferation of intein-containing pathogens.
Collapse
Affiliation(s)
- Raquel Cordeiro Theodoro
- Department of Microbiology and Immunology, Institute of Biosciences, UNESP, Botucatu, SP, Brazil
| | | | | | | |
Collapse
|
49
|
Elleuche S, Pöggeler S. Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 2010; 87:479-89. [PMID: 20449740 PMCID: PMC2874743 DOI: 10.1007/s00253-010-2628-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 12/13/2022]
Abstract
Inteins are internal protein elements that self-excise from their host protein and catalyze ligation of the flanking sequences (exteins) with a peptide bond. They are found in organisms in all three domains of life, and in viral proteins. Intein excision is a posttranslational process that does not require auxiliary enzymes or cofactors. This self-excision process is called protein splicing, by analogy to the splicing of RNA introns from pre-mRNA. Protein splicing involves only four intramolecular reactions, and a small number of key catalytic residues in the intein and exteins. Protein-splicing can also occur in trans. In this case, the intein is separated into N- and C-terminal domains, which are synthesized as separate components, each joined to an extein. The intein domains reassemble and link the joined exteins into a single functional protein. Understanding the cis- and trans-protein splicing mechanisms led to the development of intein-mediated protein-engineering applications, such as protein purification, ligation, cyclization, and selenoprotein production. This review summarizes the catalytic activities and structures of inteins, and focuses on the advantages of some recent intein applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstr. 12, 21073 Hamburg, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department Genetics of Eukaryotic Microorganisms, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Wu WY, Fong BA, Gilles AG, Wood DW. Recombinant protein purification by self-cleaving elastin-like polypeptide fusion tag. ACTA ACUST UNITED AC 2010; Chapter 26:26.4.1-26.4.18. [PMID: 19937722 DOI: 10.1002/0471140864.ps2604s58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit presents a rapid and simple method for the nonchromatographic purification of recombinant proteins expressed in E. coli. This method relies on a thermally responsive elastin-like polypeptide (ELP) tag, where the tagged protein is precipitated using a mild temperature shift. The tag is then induced to self-cleave by a mild pH shift and is subsequently removed by a final thermal precipitation. The result is a purified native protein target, without the requirement for affinity apparatus or protease removal of the tag. This protocol describes the required cloning methods to insert a given target into the expression vector, as well as the general method for purifying the resulting expressed protein.
Collapse
Affiliation(s)
- Wan-Yi Wu
- Princeton University, Princeton, New Jersey, USA
| | | | | | | |
Collapse
|