1
|
Osborne M, Fubara A, Ó Cinnéide E, Coughlan AY, Wolfe KH. WHO elements - A new category of selfish genetic elements at the borderline between homing elements and transposable elements. Semin Cell Dev Biol 2024; 163:2-13. [PMID: 38664119 DOI: 10.1016/j.semcdb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an 'arms race' between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.
Collapse
Affiliation(s)
- Matthieu Osborne
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Athaliah Fubara
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Eoin Ó Cinnéide
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Aisling Y Coughlan
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
2
|
Zhou C, He N, Lin X, Liu H, Lu Z, Zhang G. Site-directed display of zearalenone lactonase on spilt-intein functionalized nanocarrier for green and efficient detoxification of zearalenone. Food Chem 2024; 446:138804. [PMID: 38402766 DOI: 10.1016/j.foodchem.2024.138804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
In this study, we prepared a functional organic-inorganic hybrid nanoflower (InHNF) via split intein moiety in a biomineralization process without using organic solvents. InHNF could specifically bind the target enzymes from crude cell lysates within seconds and site-directedly display them on the surface by forming a peptide bond with enzyme's terminal amino acid residue. This unique feature enabled InHNF to increase the specific activity of zearalenone detoxifying enzyme ZHD518 by 40 ∼ 60% at all tested temperatures and prevented enzyme denaturation even under extreme pH conditions (pH 3-11). Furthermore, it exhibited excellent operational stability, with a residual activity of over 70% after eight reaction cycles. Strikingly, InHNF-ZHD518 achieved above 50% ZEN degradation despite the near inactivation of free ZHD518 in beer sample. Overall, InHNF nanocarriers can achieve environmentally friendly, purification-free, and site-directed immobilization of food enzymes and enhance their catalytic properties, making them suitable for a wide range of industrial applications.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaofan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hailin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Mariano A, Di Cristofano S, Raimondo D, Scotto d'Abusco A. Split Gp41-1 intein splicing as a model to evaluate the cellular location of the oncosuppressor Maspin in an in vitro model of osteosarcoma. Cell Biochem Funct 2024; 42:e3987. [PMID: 38509770 DOI: 10.1002/cbf.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Inteins are proteins involved in the protein splicing mechanism, an autoprocessing event, where sequences (exteins) separated by inteins become ligated each other after recombination. Two kinds of inteins have been described, contiguous inteins and split inteins. The former ones are transcribed and translated as a single peptide along with their exteins, while the latter are fragmented between two different genes and are transcribed and translated separately. The aim of this study is to establish a method to obtain a fluorescent eukaryotic protein to analyze its cellular localization, using the natural split gp41-1 inteins. We chose natural split inteins due to their distribution in all three domains of life. Two constructs were prepared, one containing the N-terminal split intein along with the N-moiety of the Red Fluorescent Protein (RFP) and a second construct containing the C-terminal of split intein, the C-moiety of RFP and the gene coding for Maspin, a tumor suppressor protein. The trans-splicing was verified by transfecting both N-terminal and C-terminal constructs into mammalian cells. The success of the recombination event was highlighted through the fluorescence produced by reconstituted RFP after recombination, along with the overlap of the red fluorescence produced by recombined RFP and the green fluorescence produced by the hybridization of the recombinant Maspin with a specific antibody. In conclusion, we opted to use this mechanism of recombination to obtain a fluorescent Maspin instead to express a large fusion protein, considering that it could interfere with Maspin's structure and function.
Collapse
Affiliation(s)
- Alessia Mariano
- Department. of Biochemical Sciences, Sapienza University of Roma, Rome, Italy
| | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
4
|
Gallot-Lavallée L, Jerlström-Hultqvist J, Zegarra-Vidarte P, Salas-Leiva DE, Stairs CW, Čepička I, Roger AJ, Archibald JM. Massive intein content in Anaeramoeba reveals aspects of intein mobility in eukaryotes. Proc Natl Acad Sci U S A 2023; 120:e2306381120. [PMID: 38019867 PMCID: PMC10710043 DOI: 10.1073/pnas.2306381120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.
Collapse
Affiliation(s)
- Lucie Gallot-Lavallée
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Jon Jerlström-Hultqvist
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Paula Zegarra-Vidarte
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Dayana E. Salas-Leiva
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Courtney W. Stairs
- Microbiology Group, Department of Biology, Lund University, Lund223 62, Sweden
| | - Ivan Čepička
- Department of Zoology, Charles University, Prague128 00, Czech Republic
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| |
Collapse
|
5
|
Kumam Y, Trick HN, Vara Prasad P, Jugulam M. Transformative Approaches for Sustainable Weed Management: The Power of Gene Drive and CRISPR-Cas9. Genes (Basel) 2023; 14:2176. [PMID: 38136999 PMCID: PMC10742955 DOI: 10.3390/genes14122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.
Collapse
Affiliation(s)
- Yaiphabi Kumam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA;
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| |
Collapse
|
6
|
Lee Y, Kim KM, Nguyen DL, Jannah F, Seong HJ, Kim JM, Kim YP. Cyclized proteins with tags as permeable and stable cargos for delivery into cells and liposomes. Int J Biol Macromol 2023; 252:126520. [PMID: 37625744 DOI: 10.1016/j.ijbiomac.2023.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Despite the therapeutic potential of recombinant proteins, their cell permeabilities and stabilities remain significant challenges. Here we demonstrate that cyclized recombinant proteins can be used as universal cargos for permeable and stable delivery into cells and polydiacetylene liposomes. Utilizing a split intein-mediated process, cyclized model fluorescent proteins containing short tetraarginine (R4) and hexahistidine (H6) tags were generated without compromising their native protein functions. Strikingly, as compared to linear R4/H6-tagged proteins, the cyclized counterparts have substantially increased permeabilities in both cancer cells and synthetic liposomes, as well as higher resistances to enzymatic degradation in cancer cells. These properties are likely a consequence of structural constraints imposed on the proteins in the presence of short functional peptides. Additionally, photodynamic therapy by cyclized photoprotein-loaded liposomes in cancer cells was significantly improved in comparison to that by their non-cyclized counterparts. These findings suggest that our strategy will be universally applicable to intercellular delivery of proteins and therapeutics.
Collapse
Affiliation(s)
- Yeonju Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Duc Long Nguyen
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Fadilatul Jannah
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jung Seong
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
de Groot A, Blanchard L. DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi. Can J Microbiol 2023; 69:416-431. [PMID: 37552890 DOI: 10.1139/cjm-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Deinococcus murrayi is a bacterium isolated from hot springs in Portugal, and named after Dr. Robert G.E. Murray in recognition of his research on the genus Deinococcus. Like other Deinococcus species, D. murrayi is extremely resistant to ionizing radiation. Repair of massive DNA damage and limitation of oxidative protein damage are two important factors contributing to the robustness of Deinococcus bacteria. Here, we identify, among others, the DNA repair and oxidative stress defense proteins in D. murrayi, and highlight special features of D. murrayi. For DNA repair, D. murrayi does not contain a standalone uracil-DNA glycosylase (Ung), but it encodes a protein in which Ung is fused to a DNA photolyase domain (PhrB). UvrB and UvrD contain large insertions corresponding to inteins. One of its endonuclease III enzymes lacks a [4Fe-4S] cluster. Deinococcus murrayi possesses a homolog of the error-prone DNA polymerase IV. Concerning oxidative stress defense, D. murrayi encodes a manganese catalase in addition to a heme catalase. Its organic hydroperoxide resistance protein Ohr is atypical because the redox active cysteines are present in a CXXC motif. These and other characteristics of D. murrayi show further diversity among Deinococcus bacteria with respect to resistance-associated mechanisms.
Collapse
Affiliation(s)
- Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
8
|
Turgeman-Grott I, Arsenault D, Yahav D, Feng Y, Miezner G, Naki D, Peri O, Papke RT, Gogarten JP, Gophna U. Neighboring inteins interfere with one another's homing capacity. PNAS NEXUS 2023; 2:pgad354. [PMID: 38024399 PMCID: PMC10643990 DOI: 10.1093/pnasnexus/pgad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.
Collapse
Affiliation(s)
- Israela Turgeman-Grott
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Danielle Arsenault
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Dekel Yahav
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Guy Miezner
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Doron Naki
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Omri Peri
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06268-3003, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| |
Collapse
|
9
|
Zhan Q, Shi C, Jiang Y, Gao X, Lin Y. Efficient splicing of the CPE intein derived from directed evolution of the Cryptococcus neoformans PRP8 intein. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1310-1318. [PMID: 37489009 PMCID: PMC10448054 DOI: 10.3724/abbs.2023135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/19/2023] [Indexed: 07/26/2023] Open
Abstract
Intein-mediated protein splicing has been widely used in protein engineering; however, the splicing efficiency and extein specificity usually limit its further application. Thus, there is a demand for more general inteins that can overcome these limitations. Here, we study the trans-splicing of CPE intein obtained from the directed evolution of Cne PRP8, which shows that its splicing rate is ~29- fold higher than that of the wild-type. When the +1 residue of C-extein is changed to cysteine, CPE also shows high splicing activity. Faster association and higher affinity may contribute to the high splicing rate compared with wild-type intein. These findings have important implications for the future engineering of inteins and provide clues for fundamental studies of protein structure and folding.
Collapse
Affiliation(s)
- Qin Zhan
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Changhua Shi
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yu Jiang
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Xianling Gao
- Shandong Guoli Biotechnology Co.Ltd.Jinan250101China
| | - Ying Lin
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
10
|
Smith L, Goldobina E, Govi B, Shkoporov AN. Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome? Biomolecules 2023; 13:584. [PMID: 37189332 PMCID: PMC10136315 DOI: 10.3390/biom13040584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics.
Collapse
|
11
|
The Evolutionary History of a DNA Methylase Reveals Frequent Horizontal Transfer and Within-Gene Recombination. Genes (Basel) 2023; 14:genes14020288. [PMID: 36833214 PMCID: PMC9957025 DOI: 10.3390/genes14020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Inteins, often referred to as protein introns, are highly mobile genetic elements that invade conserved genes throughout the tree of life. Inteins have been found to invade a wide variety of key genes within actinophages. While in the process of conducting a survey of these inteins in actinophages, we discovered that one protein family of methylases contained a putative intein, and two other unique insertion elements. These methylases are known to occur commonly in phages as orphan methylases (possibly as a form of resistance to restriction-modification systems). We found that the methylase family is not conserved within phage clusters and has a disparate distribution across divergent phage groups. We determined that two of the three insertion elements have a patchy distribution within the methylase protein family. Additionally, we found that the third insertion element is likely a second homing endonuclease, and that all three elements (the intein, the homing endonuclease, and what we refer to as the ShiLan domain) have different insertion sites that are conserved in the methylase gene family. Furthermore, we find strong evidence that both the intein and ShiLan domain are partaking in long-distance horizontal gene transfer events between divergent methylases in disparate phage hosts within the already dispersed methylase distribution. The reticulate evolutionary history of methylases and their insertion elements reveals high rates of gene transfer and within-gene recombination in actinophages.
Collapse
|
12
|
Huang TP, Heins ZJ, Miller SM, Wong BG, Balivada PA, Wang T, Khalil AS, Liu DR. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat Biotechnol 2023; 41:96-107. [PMID: 36076084 PMCID: PMC9849140 DOI: 10.1038/s41587-022-01410-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023]
Abstract
Despite the availability of Cas9 variants with varied protospacer-adjacent motif (PAM) compatibilities, some genomic loci-especially those with pyrimidine-rich PAM sequences-remain inaccessible by high-activity Cas9 proteins. Moreover, broadening PAM sequence compatibility through engineering can increase off-target activity. With directed evolution, we generated four Cas9 variants that together enable targeting of most pyrimidine-rich PAM sequences in the human genome. Using phage-assisted noncontinuous evolution and eVOLVER-supported phage-assisted continuous evolution, we evolved Nme2Cas9, a compact Cas9 variant, into variants that recognize single-nucleotide pyrimidine-PAM sequences. We developed a general selection strategy that requires functional editing with fully specified target protospacers and PAMs. We applied this selection to evolve high-activity variants eNme2-T.1, eNme2-T.2, eNme2-C and eNme2-C.NR. Variants eNme2-T.1 and eNme2-T.2 offer access to N4TN PAM sequences with comparable editing efficiencies as existing variants, while eNme2-C and eNme2-C.NR offer less restrictive PAM requirements, comparable or higher activity in a variety of human cell types and lower off-target activity at N4CN PAM sequences.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary J Heins
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Shannon M Miller
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brandon G Wong
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pallavi A Balivada
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Tina Wang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Kang C, Shrestha KL, Kwon S, Park S, Kim J, Kwon Y. Intein-Mediated Protein Engineering for Cell-Based Biosensors. BIOSENSORS 2022; 12:bios12050283. [PMID: 35624584 PMCID: PMC9138240 DOI: 10.3390/bios12050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Cell-based sensors provide a flexible platform for screening biologically active targets and for monitoring their interactions in live cells. Their applicability extends across a vast array of biological research and clinical applications. Particularly, cell-based sensors are becoming a potent tool in drug discovery and cell-signaling studies by allowing function-based screening of targets in biologically relevant environments and enabling the in vivo visualization of cellular signals in real-time with an outstanding spatiotemporal resolution. In this review, we aim to provide a clear view of current cell-based sensor technologies, their limitations, and how the recent improvements were using intein-mediated protein engineering. We first discuss the characteristics of cell-based sensors and present several representative examples with a focus on their design strategies, which differentiate cell-based sensors from in vitro analytical biosensors. We then describe the application of intein-mediated protein engineering technology for cell-based sensor fabrication. Finally, we explain the characteristics of intein-mediated reactions and present examples of how the intein-mediated reactions are used to improve existing methods and develop new approaches in sensor cell fabrication to address the limitations of current technologies.
Collapse
|
14
|
Allemann RK, Samperio R, Mart R, Luk L, Tsai YH, Jones A, Cruz-Samperio R. Spatio-temporal control of cell death by selective delivery of photo-activatable proteins. Chembiochem 2022; 23:e202200115. [PMID: 35420232 PMCID: PMC9321962 DOI: 10.1002/cbic.202200115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Protein therapeutics offer exquisite selectivity in targeting cellular processes and behaviors, but are rarely used against non‐cell surface targets due to their poor cellular uptake. While cell‐penetrating peptides can be used to deliver recombinant proteins to the cytosol, it is generally difficult to selectively deliver active proteins to target cells. Here, we report a recombinantly produced, intracellular protein delivery and targeting platform that uses a photocaged intein to regulate the spatio‐temporal activation of protein activity in selected cells upon irradiation with light. The platform was successfully demonstrated for two cytotoxic proteins to selectively kill cancer cells after photoactivation of intein splicing. This platform can generically be applied to any protein whose activity can be disrupted by a fused intein, allowing it to underpin a wide variety of future protein therapeutics.
Collapse
Affiliation(s)
- Rudolf K Allemann
- Cardiff University, School of Chemistry, Main Building, Park Place, CF10 3AT, Cardiff, UNITED KINGDOM
| | - Raquel Samperio
- Cardiff University, Chemistry, SchooCardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UNITED KINGDOM
| | - Robert Mart
- Cardiff University, Chemistry, UNITED KINGDOM
| | - Louis Luk
- Cardiff University, Chemistry, UNITED KINGDOM
| | | | - Arwyn Jones
- Cardiff University, School of Pharmacy and Pharmaceutical Sciences, UNITED KINGDOM
| | - Raquel Cruz-Samperio
- University of Bristol School of Cellular and Molecular Medicine, School of Cellular and Molecular Medicine, UNITED KINGDOM
| |
Collapse
|
15
|
SufB intein splicing in Mycobacterium tuberculosis is influenced by two remote conserved N-extein histidines. Biosci Rep 2022; 42:230724. [PMID: 35234249 PMCID: PMC8891592 DOI: 10.1042/bsr20212207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Inteins are auto-processing domains that implement a multistep biochemical reaction termed protein splicing, marked by cleavage and formation of peptide bonds. They excise from a precursor protein, generating a functional protein via covalent bonding of flanking exteins. We report the kinetic study of splicing and cleavage reaction in [Fe–S] cluster assembly protein SufB from Mycobacterium tuberculosis (Mtu). Although it follows a canonical intein splicing pathway, distinct features are added by extein residues present in the active site. Sequence analysis identified two conserved histidines in the N-extein region; His-5 and His-38. Kinetic analyses of His-5Ala and His-38Ala SufB mutants exhibited significant reductions in splicing and cleavage rates relative to the SufB wildtype (WT) precursor protein. Structural analysis and molecular dynamics (MD) simulations suggested that Mtu SufB displays a unique mechanism where two remote histidines work concurrently to facilitate N-terminal cleavage reaction. His-38 is stabilized by the solvent-exposed His-5, and can impact N–S acyl shift by direct interaction with the catalytic Cys1. Development of inteins as biotechnological tools or as pathogen-specific novel antimicrobial targets requires a more complete understanding of such unexpected roles of conserved extein residues in protein splicing.
Collapse
|
16
|
Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins. Microorganisms 2021; 9:microorganisms9061226. [PMID: 34198729 PMCID: PMC8229266 DOI: 10.3390/microorganisms9061226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022] Open
Abstract
Inteins are prevalent among extremophiles. Mini-inteins with robust splicing properties are of particular interest for biotechnological applications due to their small size. However, biochemical and structural characterization has still been limited to a small number of inteins, and only a few serve as widely used tools in protein engineering. We determined the crystal structure of a naturally occurring Pol-II mini-intein from Pyrococcus horikoshii and compared all three mini-inteins found in the genome of P. horikoshii. Despite their similar sizes, the comparison revealed distinct differences in the insertions and deletions, implying specific evolutionary pathways from distinct ancestral origins. Our studies suggest that sporadically distributed mini-inteins might be more promising for further protein engineering applications than highly conserved mini-inteins. Structural investigations of additional inteins could guide the shortest path to finding novel robust mini-inteins suitable for various protein engineering purposes.
Collapse
|
17
|
Matriano DM, Alegado RA, Conaco C. Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta. Sci Rep 2021; 11:5993. [PMID: 33727612 PMCID: PMC7971027 DOI: 10.1038/s41598-021-85259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome-evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.
Collapse
Affiliation(s)
- Danielle M Matriano
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Rosanna A Alegado
- Department of Oceanography, Hawai'i Sea Grant, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, USA
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| |
Collapse
|
18
|
Panda S, Nanda A, Nasker SS, Sen D, Mehra A, Nayak S. Metal effect on intein splicing: A review. Biochimie 2021; 185:53-67. [PMID: 33727137 DOI: 10.1016/j.biochi.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Inteins are intervening polypeptides that interrupt the functional domains of several important proteins across the three domains of life. Inteins excise themselves from the precursor protein, ligating concomitant extein residues in a process called protein splicing. Post-translational auto-removal of inteins remain critical for the generation of active proteins. The perspective of inteins in science is a robust field of research, however fundamental studies centralized upon splicing regulatory mechanism are imperative for addressing more intricate issues. Controlled engineering of intein splicing has many applications; intein inhibition can facilitate novel drug design, while activation of intein splicing is exploited in protein purification. This paper provides a comprehensive review of the past and recent advances in the splicing regulation via metal-intein interaction. We compare the behavior of different metal ions on diverse intein systems. Though metals such as Zn, Cu, Pt, Cd, Co, Ni exhibit intein inhibitory effect heterogeneously on different inteins, divalent metal ions such as Ca and Mg fail to do so. The observed diversity in the metal-intein interaction arises mostly due to intein polymorphism and variations in atomic structure of metals. A mechanistic understanding of intein regulation by metals in native as well as synthetically engineered intein systems may yield potent intein inhibitors via direct or indirect approach.
Collapse
Affiliation(s)
- Sunita Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Debjani Sen
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ashwaria Mehra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
19
|
Khaleghi R, Asad S. Heterologous expression of recombinant urate oxidase using the intein-mediated protein purification in Pichia pastoris. 3 Biotech 2021; 11:120. [PMID: 33628707 PMCID: PMC7870736 DOI: 10.1007/s13205-021-02670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022] Open
Abstract
The potential of urate oxidase (uricase) for clinical use has been highlighted because of its role in lowering the blood uric acid levels for the treatment of tumor lysis syndrome. In the present study, the codon-optimized synthetic gene of Aspergillus flavus uricase was fused to the Mxe GyrA intein and chitin-binding domain. The construct was inserted into pPICZA and pPICZαA vectors and electroporated into Pichia pastoris GS115 for the cytosolic and secretory expression. Transformants were screened on gradients of Zeocin up to 2000 μg/ml to find multi-copy integrants. For both constructs, colonies with more resistance were screened for the highest uricase producers by enzyme assay. PCR analysis confirmed successful cassettes insertion into the genome and Mut + phenotype. The gene copy index was determined to be two and five for cytosolic and secretory strains, respectively. Productivity of the cytosolic and secretory strains was found to be 0.74 and 0.001 U/ml culture media in order while the cytosolic recombinant enzyme accounted for about 6% of total proteins. One-step purification of the expressed uricase was done with the aid of the chitin affinity column, followed by DTT induction for intein on-column cleavage. The yield of 40.8 mg/L and K m of 0.22 mM was obtained for intracellular expression. It seems that the intracellular production of uricase can indeed serve as an effective alternative to secretory expression. Moreover, this is the first report considering cytosolic production of uricase using the intein-mediated protein purification in the methylotrophic yeast, P. pastoris.
Collapse
Affiliation(s)
- Reihaneh Khaleghi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
21
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
22
|
Robinzon S, Cawood AR, Ruiz MA, Gophna U, Altman-Price N, Mills KV. Protein Splicing Activity of the Haloferax volcanii PolB-c Intein Is Sensitive to Homing Endonuclease Domain Mutations. Biochemistry 2020; 59:3359-3367. [PMID: 32822531 DOI: 10.1021/acs.biochem.0c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon Haloferax volcanii has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic H. volcanii. Here, we show that mutation of a conserved residue in the HEN domain not only reduces intein homing but also slows growth. Surprisingly, although this mutation is far from the protein splicing active site, it also significantly reduces in vitro protein splicing. Moreover, two additional HEN domain mutations, which could not be introduced to H. volcanii, presumably due to lethality, also eliminate protein splicing activity in vitro. These results suggest an interplay between HEN residues and the protein splicing domain, despite an over 35 Å separation in a PolB intein homology model. The combination of in vivo and in vitro evidence strongly supports a model of codependence between the self-splicing domain and the HEN domain that has been alluded to by previous in vitro studies of protein splicing with HEN domain-containing inteins.
Collapse
Affiliation(s)
- Shachar Robinzon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra R Cawood
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Mercedes A Ruiz
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Open University, Raanana 43107, Israel
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
23
|
Mazo N, Navo CD, Peregrina JM, Busto JH, Jiménez-Osés G. Selective modification of sulfamidate-containing peptides. Org Biomol Chem 2020; 18:6265-6275. [PMID: 32618321 DOI: 10.1039/d0ob01061h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid peptides whose N-terminal residues are activated in the form of α-methylisoserine-derived cyclic sulfamidates exhibit rich reactivity as electrophiles, allowing site- and stereoselective modifications at different backbone and side chain positions. The unique properties of this scaffold allow the stereocontrolled late-stage functionalization of the peptide backbone by nucleophilic ring opening with fluorescent probes, thiocarbohydrates and tags for strain-promoted azide-alkyne cycloaddition as well as by installing labile N-terminal affinity tags (biotin) and cytotoxic drugs (chlorambucil) for pH-controlled release. Finally, an unexpected base-promoted acyl group migration from the sulfamidate N-terminus allows fast and quantitative intramolecular modification of nucleophilic side chains on the fully unprotected peptides.
Collapse
Affiliation(s)
- Nuria Mazo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
| |
Collapse
|
24
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
25
|
Jaakkonen A, Volkmann G, Iwaï H. An off-the-Shelf Approach for the Production of Fc Fusion Proteins by Protein Trans-Splicing towards Generating a Lectibody In Vitro. Int J Mol Sci 2020; 21:ijms21114011. [PMID: 32503354 PMCID: PMC7313076 DOI: 10.3390/ijms21114011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, engineered antibodies, and antibody fragments have become important biological therapeutic platforms. The IgG format with bivalent binding sites has a modular structure with different biological roles, i.e., effector and binding functions, in different domains. We demonstrated the reconstruction of an IgG-like domain structure in vitro by protein ligation using protein trans-splicing. We produced various binding domains to replace the binding domain of IgG from Escherichia coli and the Fc domain of human IgG from Brevibacillus choshinensis as split-intein fusions. We showed that in vitro protein ligation could produce various Fc-fusions at the N-terminus in vitro from the independently produced domains from different organisms. We thus propose an off-the-shelf approach for the combinatorial production of Fc fusions in vitro with several distinct binding domains, particularly from naturally occurring binding domains. Antiviral lectins from algae are known to inhibit virus entry of HIV and SARS coronavirus. We demonstrated that a lectin could be fused with the Fc-domain in vitro by protein ligation, producing an IgG-like molecule as a “lectibody”. Such an Fc-fusion could be produced in vitro by this approach, which could be an attractive method for developing potential therapeutic agents against rapidly emerging infectious diseases like SARS coronavirus without any genetic fusion and expression optimization.
Collapse
Affiliation(s)
- Anniina Jaakkonen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
- Present Address: Microbiology Unit, Finnish Food Authority, FI-00790 Helsinki, Finland
| | - Gerrit Volkmann
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
- Correspondence: ; Tel.: +358-2941-59752
| |
Collapse
|
26
|
Yao Z, Aboualizadeh F, Kroll J, Akula I, Snider J, Lyakisheva A, Tang P, Kotlyar M, Jurisica I, Boxem M, Stagljar I. Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Nat Commun 2020; 11:2440. [PMID: 32415080 PMCID: PMC7229206 DOI: 10.1038/s41467-020-16299-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Here, to overcome many limitations accompanying current available methods to detect protein-protein interactions (PPIs), we develop a live cell method called Split Intein-Mediated Protein Ligation (SIMPL). In this approach, bait and prey proteins are respectively fused to an intein N-terminal fragment (IN) and C-terminal fragment (IC) derived from a re-engineered split intein GP41-1. The bait/prey binding reconstitutes the intein, which splices the bait and prey peptides into a single intact protein that can be detected by regular protein detection methods such as Western blot analysis and ELISA, serving as readouts of PPIs. The method is robust and can be applied not only in mammalian cell lines but in animal models such as C. elegans. SIMPL demonstrates high sensitivity and specificity, and enables exploration of PPIs in different cellular compartments and tracking of kinetic interactions. Additionally, we establish a SIMPL ELISA platform that enables high-throughput screening of PPIs and their inhibitors. Protein-protein interactions are fundamental to the regulation of protein activity and cellular phyisology. Here the authors present Split Intein-Mediated Protein Ligation, which uses bait and prey proteins fused to intein fragments to generate single intact proteins upon interaction.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jason Kroll
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Indira Akula
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Priscilla Tang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia.
| |
Collapse
|
27
|
Expression of Highly Active Bacterial Phospholipase A 2 in Yeast Using Intein-Mediated Delayed Protein Autoactivation. Appl Biochem Biotechnol 2020; 193:1351-1364. [PMID: 32388605 DOI: 10.1007/s12010-020-03333-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
Phospholipase A2 (PLA2) has found extensive use in industry. However, recombinant PLA2 production in different expression systems is a difficult task because of its toxicity to cell membranes. We report here the development of an effective method for production of highly active PLA2 from Streptomyces violaceoruber strain A-2688 in the yeast Saccharomyces cerevisiae. The method is based on the use of the PRP8 mini-intein (from Penicillium chrysogenum) inserted into the phospholipase sequence with the purpose of temporal inactivation of the enzyme and its subsequent delayed autoactivation. We demonstrate that the most effective site for intein insertion is Ser76 of the mature phospholipase. As a result of intein-containing precursor secretion from yeast cells and its subsequent autocatalytic splicing, highly active enzyme accumulated in the yeast culture fluid. The properties of the obtained recombinant phospholipase A2 protein were similar to those of the native Streptomyces violaceoruber PLA2 protein. A possible evolutionary role of delayed autoactivation of intein-containing proteins is also discussed.
Collapse
|
28
|
Azari M, Asad S, Mehrnia MR. Heterologous production of porcine derived antimicrobial peptide PR-39 in Escherichia coli using SUMO and intein fusion systems. Protein Expr Purif 2020; 169:105568. [PMID: 31935447 DOI: 10.1016/j.pep.2020.105568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
About half a century after antibiotics discovery, multi-antibiotic-resistant bacteria posed a new challenge to medicine. Attempts to discover new antibiotics have drawn the attention to Antimicrobial Peptides (AMPs). The rapid growth, besides its known genetic and manipulation systems, makes E. coli the preferred host system for production of recombinant proteins on an industrial scale. To produce AMPs in E. coli, the application of fusion-tags with the aim of stability, solubility, and prevention of antimicrobial activity is one of the best practices in this regard. In this study, we presented two different expression systems for the production of PR-39 in E. coli; one in fusion with intein-Chitin binding domain (CBD) and another in fusion with SUMO accompanied by polyhistidine affinity tag. Both were cloned in the NdeI-XhoI sites of pET-17b and transformed to E. coli BL21 (DE3) pLysS. Recombinant bacteria were cultured and induced with 0.4 mM IPTG at 30 °C. Expression and purification of target proteins were confirmed by Tricine- SDS-PAGE and dot blot analysis. Recovery of 250 μg PR-39/L from SUMO fusion system and 280 μg PR-39/L from the intein fusion system was achieved. Both purified peptides showed antibacterial activity using MIC/MBC demonstrating their functionality after SUMO and intein mediated purification.
Collapse
Affiliation(s)
- Mandana Azari
- School of Chemical Engineering-Biotechnology, College of Engineering, Kish International Campus, University of Tehran, Kish, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Hosseini ES, Zeinoddini M, Saeedinia AR, Babaeipour V. Optimization and One-Step Purification of Recombinant V Antigen Production from Yersinia pestis. Mol Biotechnol 2020; 62:177-184. [PMID: 31894514 PMCID: PMC7222043 DOI: 10.1007/s12033-019-00234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The purpose of this study was to develop an efficient and inexpensive method for the useful production of recombinant protein V antigen, an important virulence factor for Yersinia pestis. To this end, the synthetic gene encoding the V antigen was subcloned into the downstream of the intein (INT) and chitin-binding domain (CBD) from the pTXB1 vector using specific primers. In the following, the produced new plasmid, pTX-V, was transformed into E. coli ER2566 strain, and the expression accuracy was confirmed using electrophoresis and Western blotting. In addition, the effects of medium, inducer, and temperature on the enhancement of protein production were studied using the Taguchi method. Finally, the V antigen was purified by a chitin affinity column using INT and CBD tag. The expression was induced by 0.05 mM IPTG at 25 °C under optimal conditions including TB medium. It was observed that the expression of the V-INT–CBD fusion protein was successfully increased to more than 40% of the total protein. The purity of V antigen was as high as 90%. This result indicates that V antigen can be produced at low cost and subjected to one-step purification using a self-cleaving INT tag.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Zeinoddini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran. .,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Ali Reza Saeedinia
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Valiollah Babaeipour
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Crystal structures of CDC21-1 inteins from hyperthermophilic archaea reveal the selection mechanism for the highly conserved homing endonuclease insertion site. Extremophiles 2019; 23:669-679. [PMID: 31363851 PMCID: PMC6801210 DOI: 10.1007/s00792-019-01117-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 11/27/2022]
Abstract
Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.
Collapse
|
31
|
Zhang J, Chen L, Zhang J, Wang Y. Drug Inducible CRISPR/Cas Systems. Comput Struct Biotechnol J 2019; 17:1171-1177. [PMID: 31462973 PMCID: PMC6709367 DOI: 10.1016/j.csbj.2019.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/18/2019] [Accepted: 07/26/2019] [Indexed: 11/24/2022] Open
Abstract
Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have been employed as a powerful versatile technology for programmable gene editing, transcriptional modulation, epigenetic modulation, and genome labeling, etc. Yet better control of their activity is important to accomplish greater precision and to reduce undesired outcomes such as off-target events. The use of small molecules to control CRISPR/Cas activity represents a promising direction. Here, we provide an updated review on multiple drug inducible CRISPR/Cas systems and discuss their distinct properties. We arbitrarily divided the emerging drug inducible CRISPR/Cas systems into two categories based on whether at transcription or protein level does chemical control occurs. The first category includes Tet-On/Off system and Cre-dependent system. The second category includes chemically induced proximity systems, intein splicing system, 4-Hydroxytamoxifen-Estrogen Receptor based nuclear localization systems, allosterically regulated Cas9 system, and destabilizing domain mediated protein degradation systems. Finally, the advantages and limitations of each system were summarized.
Collapse
Key Words
- 4-OHT, 4-Hydroxytamoxifen
- ABA, abscisic acid
- ADs, activation domains
- CIP, chemically induced proximity
- CRISPR, clustered, regularly interspaced, short palindromic repeats
- Cas, CRISPR-associated protein
- CrRNA, CRISPR RNA
- DD, destabilizing domain
- DHFR, dihydrofolate reductase
- ER, Estrogen Receptor
- FKBP, FK506-binding protein
- FRB, FKBP-rapamycin-binding domain
- GA, gibberellin
- HIT, Hybrid drug Inducible CRISPR/Cas9 Technologies
- Hsp90, heat shock protein 90
- LBD, ligand binding domain
- LSL, loxP-stop-loxP
- MST, multiplex single transcript
- NES, nuclear export sequence
- NLS, nuclear localization sequence
- Ptet, tetO-containing promoter
- Sa, Staphylococcus areus
- Sp, Streptococcus pyogenes
- TMP, trimethoprim
- TRE, tetracycline response element
- TRE3G, Tet-On 3G protein
- TetO, tet operator
- TetR, Tet repressor protein
- VPR, VP64-P65-Rta
- arC9, allosterically regulated Cas9
- dCas9, dead Cas9
- dCpf1, dead Cpf1
- dLbCpf1, Lachnospiraceae bacterium dCpf1
- dox, doxycycline
- iPSCs, induced pluripotent stem cells
- rtTA, reverse-tTA
- sgRNA, single guide RNA
Collapse
Affiliation(s)
- Jingfang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Harrison AO, Moore RM, Polson SW, Wommack KE. Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton. Front Microbiol 2019; 10:134. [PMID: 30804913 PMCID: PMC6370689 DOI: 10.3389/fmicb.2019.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ribonucleotide reductases (RNRs) are ancient enzymes that catalyze the reduction of ribonucleotides to deoxyribonucleotides. They are required for virtually all cellular life and are prominent within viral genomes. RNRs share a common ancestor and must generate a protein radical for direct ribonucleotide reduction. The mechanisms by which RNRs produce radicals are diverse and divide RNRs into three major classes and several subclasses. The diversity of radical generation methods means that cellular organisms and viruses typically contain the RNR best-suited to the environmental conditions surrounding DNA replication. However, such diversity has also fostered high rates of RNR misannotation within subject sequence databases. These misannotations have resulted in incorrect translative presumptions of RNR biochemistry and have diminished the utility of this marker gene for ecological studies of viruses. We discovered a misannotation of the RNR gene within the Prochlorococcus phage P-SSP7 genome, which caused a chain of misannotations within commonly observed RNR genes from marine virioplankton communities. These RNRs are found in marine cyanopodo- and cyanosiphoviruses and are currently misannotated as Class II RNRs, which are O2-independent and require cofactor B12. In fact, these cyanoviral RNRs are Class I enzymes that are O2-dependent and may require a di-metal cofactor made of Fe, Mn, or a combination of the two metals. The discovery of an overlooked Class I β subunit in the P-SSP7 genome, together with phylogenetic analysis of the α and β subunits confirms that the RNR from P-SSP7 is a Class I RNR. Phylogenetic and conserved residue analyses also suggest that the P-SSP7 RNR may constitute a novel Class I subclass. The reannotation of the RNR clade represented by P-SSP7 means that most lytic cyanophage contain Class I RNRs, while their hosts, B12-producing Synechococcus and Prochlorococcus, contain Class II RNRs. By using a Class I RNR, cyanophage avoid a dependence on host-produced B12, a more effective strategy for a lytic virus. The discovery of a novel RNR β subunit within cyanopodoviruses also implies that some unknown viral genes may be familiar cellular genes that are too divergent for homology-based annotation methods to identify.
Collapse
Affiliation(s)
- Amelia O. Harrison
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Ryan M. Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - K. Eric Wommack
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| |
Collapse
|
33
|
Garcia Garces H, Cordeiro RT, Bagagli E. PRP8 intein in dermatophytes: Evolution and species identification. Med Mycol 2018; 56:746-758. [PMID: 29228309 DOI: 10.1093/mmy/myx102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/27/2017] [Indexed: 11/14/2022] Open
Abstract
Dermatophytes are keratinophilic fungi belonging to the family Arthrodermataceae. Despite having a monophyletic origin, its systematics has always been complex and controversial. Sequencing of nuclear ribosomal ITS and D1/D2 rDNA has been proposed as an efficient tool for identifying species in this group of fungi, while multilocus analyses have been used for phylogenetic species recognition. However, the search for new markers, with sequence and size variation, which enable species identification in only one polymerase chain reaction (PCR) step, is very attractive. Inteins seems to fulfill these characteristics. They are self-splicing genetic elements present within housekeeping coding genes, such as PRP8, that codify the most important protein of the spliceosome. The PRP8 intein has been described for Microsporum canis in databases but has not been studied in dermatophytes in any other published work. Thus, our aim was to determine the potential of this intervening element for establishing phylogenetic relationships among dermatophytes and for identifying species. It was found that all studied species have a full-length PRP8 intein with a Homing Endonuclease belonging to the family LAGLIDADG. Phylogenetic analyses were consistent with other previous phylogenies, confirming Epidermophyton floccosum in the same clade of the Arthroderma gypseum complex, Microsporum audouinii close to M. canis, differentiating A. gypseum from Arthroderma incurvatum, and in addition, better defining the Trichophyton interdigitale and Trichophyton rubrum species grouping. Length polymorphism in the HE region enables identification of the most relevant Microsporum species by a simple PCR-electrophoresis assay. Intein PRP8 within dermatophytes is a powerful additional tool for identifying and systematizing dermatophytes.
Collapse
Affiliation(s)
- Hans Garcia Garces
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual de São Paulo. São Paulo. Brasil
| | - Raquel Theodoro Cordeiro
- Instituto de Medicina Tropical do RN, Universidade Federal de Rio Grande do Norte. Rio Grande do Norte. Brasil
| | - E Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual de São Paulo. São Paulo. Brasil
| |
Collapse
|
34
|
Xu Y, Zhang L, Ma B, Hu L, Lu H, Dou T, Chen J, Zhu J. Intermolecular disulfide bonds between unpaired cysteines retard the C-terminal trans-cleavage of Npu DnaE. Enzyme Microb Technol 2018; 118:6-12. [PMID: 30143201 DOI: 10.1016/j.enzmictec.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Npu DnaE is a naturally occurred split intein possessing robust trans-splicing activity and could be engineered to perform rapid C-terminal cleavage module by a single mutation D118G. Unfortunately, however, for this modified selfcleaving module, reducing agents were needed to trigger the rapid cleavage, which prevents the utilization in purification of disulfide bonds containing recombinant proteins. In this study, we demonstrated that the unpaired cysteine residues in Npu DnaE tend to form disulfide bonds, and contributed to the reduction of the cleavage under non-reducing conditions. This redox trap can be disrupted by site-directed mutation of these unpaired cysteines. The results further indicated that the position 28 and 59 may play certain roles in the correct folding of the active conformation.
Collapse
Affiliation(s)
- Yanran Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tonglu Dou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD, USA.
| |
Collapse
|
35
|
Gagunashvili AN, Andrésson ÓS. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 2018; 19:434. [PMID: 29866043 PMCID: PMC5987646 DOI: 10.1186/s12864-018-4743-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cyanobacteria of the genus Nostoc are capable of forming symbioses with a wide range of organism, including a diverse assemblage of cyanolichens. Only certain lineages of Nostoc appear to be able to form a close, stable symbiosis, raising the question whether symbiotic competence is determined by specific sets of genes and functionalities. RESULTS We present the complete genome sequencing, annotation and analysis of two lichen Nostoc strains. Comparison with other Nostoc genomes allowed identification of genes potentially involved in symbioses with a broad range of partners including lichen mycobionts. The presence of additional genes necessary for symbiotic competence is likely reflected in larger genome sizes of symbiotic Nostoc strains. Some of the identified genes are presumably involved in the initial recognition and establishment of the symbiotic association, while others may confer advantage to cyanobionts during cohabitation with a mycobiont in the lichen symbiosis. CONCLUSIONS Our study presents the first genome sequencing and genome-scale analysis of lichen-associated Nostoc strains. These data provide insight into the molecular nature of the cyanolichen symbiosis and pinpoint candidate genes for further studies aimed at deciphering the genetic mechanisms behind the symbiotic competence of Nostoc. Since many phylogenetic studies have shown that Nostoc is a polyphyletic group that includes several lineages, this work also provides an improved molecular basis for demarcation of a Nostoc clade with symbiotic competence.
Collapse
Affiliation(s)
- Andrey N. Gagunashvili
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, Reykjavík, 101 Iceland
| | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, Reykjavík, 101 Iceland
| |
Collapse
|
36
|
Hosseini ES, Moniri R, Goli YD, Kashani HH. Purification of Antibacterial CHAP K Protein Using a Self-Cleaving Fusion Tag and Its Activity Against Methicillin-Resistant Staphylococcus aureus. Probiotics Antimicrob Proteins 2018; 8:202-210. [PMID: 27797005 DOI: 10.1007/s12602-016-9236-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Therapeutic LysK-CHAP is a potent anti-staphylococcal protein that could be utilized as an antibiotic substitute. Intein-mediated protein purification is a reasonable and cost-effective method that is most recently used for recombinant therapeutic protein production. Intein (INT) is the internal parts of the protein that can be separated from the immature protein during protein splicing process. This sequence requires no specific enzyme or cofactor for separation. INT sequence and their characteristic of self-cleavage by thiol induction, temperature, and pH changes are used for protein purification. The current study presents the expression of CHAPK262 domain of LysK gene that is fused with INT/chitin-binding sequence while evaluating its purification procedure and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The coding gene sequence of LysK-CHAP (CHAPK262) in pET22-b was amplified with polymerase chain reaction (PCR); the digested product was then cloned into the pTXB1 vector. Electrophoresis confirmed the cloning accuracy of the gene. The pTXB1-CHAPK262 plasmid was transformed to the Escherichia coli ER2566 (E. coli ER2566) expression strain and analyzed for expression of the recombinant protein by SDS-PAGE and Western blotting methods. Finally, CHAPK262 was purified by chitin affinity column using INT tag technology and confirmed by SDS-PAGE. Lytic activity of the purified protein was investigated by disk diffusion method. Cloning of CHAPK262 into the pTXB1 vector, which comprised INT/chitin-binding sequence, was successfully achieved. The SDS-PAGE data also revealed successful expression of the CHAPK262-INT fusion protein and Western blotting method validated the accuracy of the protein. Moreover, purification of CHAPK262 protein was induced by dithiothreitol (DTT) and confirmed by SDS-PAGE. Finally, inhibition zone in MRAS culture medium confirmed antibacterial activity of the protein. Application of intein-mediated antibacterial protein is an appropriate and streamlined method for one-step purification of CHAPK262 as a therapeutic and antibacterial protein. Self-cleaving tags like intein are cost-effective and could be used as a proper purification method for industrial purposes.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Hernandez-Morales AC, Lessor LL, Wood TL, Migl D, Mijalis EM, Cahill J, Russell WK, Young RF, Gill JJ. Genomic and Biochemical Characterization of Acinetobacter Podophage Petty Reveals a Novel Lysis Mechanism and Tail-Associated Depolymerase Activity. J Virol 2018; 92:e01064-17. [PMID: 29298884 PMCID: PMC5827379 DOI: 10.1128/jvi.01064-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
The increased prevalence of drug-resistant, nosocomial Acinetobacter infections, particularly from pathogenic members of the Acinetobacter calcoaceticus-baumannii complex, necessitates the exploration of novel treatments such as phage therapy. In the present study, we characterized phage Petty, a novel podophage that infects multidrug-resistant Acinetobacter nosocomialis and Acinetobacter baumannii Genome analysis reveals that phage Petty is a 40,431-bp ϕKMV-like phage, with a coding density of 92.2% and a G+C content of 42.3%. Interestingly, the lysis cassette encodes a class I holin and a single-subunit endolysin, but it lacks canonical spanins to disrupt the outer membrane. Analysis of other ϕKMV-like genomes revealed that spaninless lysis cassettes are a feature of phages infecting Acinetobacter within this subfamily of bacteriophages. The observed halo surrounding Petty's large clear plaques indicated the presence of a phage-encoded depolymerase capable of degrading capsular exopolysaccharides (EPS). The product of gene 39, a putative tail fiber, was hypothesized to possess depolymerase activity based on weak homology to previously reported phage tail fibers. The 101.4-kDa protein gene product 39 (gp39) was cloned and expressed, and its activity against Acinetobacter EPS in solution was determined. The enzyme degraded purified EPS from its host strain A. nosocomialis AU0783, reducing its viscosity, and generated reducing ends in solution, indicative of hydrolase activity. Given that the accessibility to cells within a biofilm is enhanced by degradation of EPS, phages with depolymerases may have enhanced diagnostic and therapeutic potential against drug-resistant Acinetobacter strains.IMPORTANCE Bacteriophage therapy is being revisited as a treatment for difficult-to-treat infections. This is especially true for Acinetobacter infections, which are notorious for being resistant to antimicrobials. Thus, sufficient data need to be generated with regard to phages with therapeutic potential, if they are to be successfully employed clinically. In this report, we describe the isolation and characterization of phage Petty, a novel lytic podophage, and its depolymerase. To our knowledge, it is the first phage reported to be able to infect both A. baumannii and A. nosocomialis The lytic phage has potential as an alternative therapeutic agent, and the depolymerase could be used for modulating EPS both during infections and in biofilms on medical equipment, as well as for capsular typing. We also highlight the lack of predicted canonical spanins in the phage genome and confirm that, unlike the rounding of lambda lysogens lacking functional spanin genes, A. nosocomialis cells infected with phage Petty lyse by bursting. This suggests that phages like Petty employ a different mechanism to disrupt the outer membrane of Acinetobacter hosts during lysis.
Collapse
Affiliation(s)
- A C Hernandez-Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - L L Lessor
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - T L Wood
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - D Migl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - E M Mijalis
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - J Cahill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - W K Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - R F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - J J Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
38
|
Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol 2018; 43:127-133. [PMID: 29414531 DOI: 10.1016/j.cbpa.2018.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
Abstract
Nature has developed a robust toolbox for the formation of amide bonds, enabling a variety of disconnections applicable to small molecule synthesis. In spite of this, the exploitation of biocatalytic techniques for industrial synthesis remains limited to a few very important cases. This review discusses previously demonstrated techniques for the biocatalytic synthesis of amide bonds, reviews examples of industrial scale-up of these techniques, and identifies a number of limitations to the scalability within the current state of the art.
Collapse
Affiliation(s)
- Brent M Dorr
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, United States
| | - Douglas E Fuerst
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, United States.
| |
Collapse
|
39
|
Iwaï H, Mikula KM, Oeemig JS, Zhou D, Li M, Wlodawer A. Structural Basis for the Persistence of Homing Endonucleases in Transcription Factor IIB Inteins. J Mol Biol 2017; 429:3942-3956. [PMID: 29055778 PMCID: PMC6309676 DOI: 10.1016/j.jmb.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022]
Abstract
Inteins are mobile genetic elements that are spliced out of proteins after translation. Some inteins contain a homing endonuclease (HEN) responsible for their propagation. Hedgehog/INTein (HINT) domains catalyzing protein splicing and their nested HEN domains are thought to be functionally independent because of the existence of functional mini-inteins without HEN domains. Despite the lack of obvious mutualism between HEN and HINT domains, HEN domains are persistently found at one specific site in inteins, indicating their potential functional role in protein splicing. Here we report crystal structures of inactive and active mini-inteins derived from inteins residing in the transcription factor IIB of Methanococcus jannaschii and Methanocaldococcus vulcanius, revealing a novel modified HINT fold that might provide new insights into the mutualism between the HEN and HINT domains. We propose an evolutionary model of inteins and a functional role of HEN domains in inteins.
Collapse
Affiliation(s)
- Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland.
| | - Kornelia M Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Jesper S Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Dongwen Zhou
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
40
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
41
|
Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol 2017; 91:JVI.00230-17. [PMID: 28446675 DOI: 10.1128/jvi.00230-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae, the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage.
Collapse
|
42
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
43
|
Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of Fusion Tags for Recombinant Proteins. BIOCHEMISTRY (MOSCOW) 2017; 81:187-200. [PMID: 27262188 DOI: 10.1134/s0006297916030019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.
Collapse
Affiliation(s)
- E N Kosobokova
- Blokhin Russian Cancer Research Center, Moscow, 115478, Russia.
| | | | | |
Collapse
|
44
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
45
|
Alishah K, Asad S, Khajeh K, Akbari N. Utilizing intein-mediated protein cleaving for purification of uricase, a multimeric enzyme. Enzyme Microb Technol 2016; 93-94:92-98. [PMID: 27702489 DOI: 10.1016/j.enzmictec.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
Uric acid, a side product of nucleotide metabolism, should be cleared from blood stream since its accumulation can cause cardiovascular diseases and gout. Uricase (urate oxidase) converts uric acid to 5-hydroxyisourate, but it is absent in human and other higher apes. Yet, the recombinant form of uricase, Rasburicase, is now commercially available to cure tumor lysis syndrome by lowering serum uric acid level. Developing new methods to efficiently purify pharmaceutical proteins like uricase has attracted researchers' attention. Self-cleaving intein mediated single column purification is one of these novel approaches. Self-cleaving inteins are modified forms of natural inteins that can excise and join only at one junction site. In this study, the synthetic gene of Aspergillus flavus uricase, a homotetrameric protein, was cloned into pTXB1 vector as a fusion with the N-terminal of Mxe GyrA intein and chitin-binding domain (CBD) for simple purification. Expression was confirmed by western blot analysis. The fusion protein containing uricase-intein-CBD was purified on a chitin column. The cleavage was induced by adding DTT,1 as a reducing agent to release uricase. The purity of uricase and complete excision of the intein and CBD were confirmed by SDS-PAGE2 while its proper folding was proved by circular dichroism and fluorescent emission studies. Isoelectric focusing further confirmed its homogeneity when a single protein band was observed at the predicted pI value. This is the first report of successful purification of a multimeric therapeutic enzyme by intein-mediated protein cleaving using a well-established and facile system.
Collapse
Affiliation(s)
- Khadijeh Alishah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Neda Akbari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| |
Collapse
|
46
|
Impact of a homing intein on recombination frequency and organismal fitness. Proc Natl Acad Sci U S A 2016; 113:E4654-61. [PMID: 27462108 DOI: 10.1073/pnas.1606416113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel's Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.
Collapse
|
47
|
Burger G, Moreira S, Valach M. Genes in Hiding. Trends Genet 2016; 32:553-565. [PMID: 27460648 DOI: 10.1016/j.tig.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/25/2022]
Abstract
Unrecognizable genes are an unsettling problem in genomics. Here, we survey the various types of cryptic genes and the corresponding deciphering strategies employed by cells. Encryption that renders genes substantially different from homologs in other species includes sequence substitution, insertion, deletion, fragmentation plus scrambling, and invasion by mobile genetic elements. Cells decode cryptic genes at the DNA, RNA or protein level. We will focus on a recently discovered case of unparalleled encryption involving massive gene fragmentation and nucleotide deletions and substitutions, occurring in the mitochondrial genome of a poorly understood protist group, the diplonemids. This example illustrates that comprehensive gene detection requires not only auxiliary sequence information - transcriptome and proteome data - but also knowledge about a cell's deciphering arsenal.
Collapse
Affiliation(s)
- Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada.
| | - Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| |
Collapse
|
48
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
49
|
Novikova O, Jayachandran P, Kelley DS, Morton Z, Merwin S, Topilina NI, Belfort M. Intein Clustering Suggests Functional Importance in Different Domains of Life. Mol Biol Evol 2015; 33:783-99. [PMID: 26609079 PMCID: PMC4760082 DOI: 10.1093/molbev/msv271] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | | | - Danielle S Kelley
- Department of Biomedical Sciences, School of Public Health, University at Albany
| | - Zachary Morton
- Department of Biological Sciences and RNA Institute, University at Albany
| | | | - Natalya I Topilina
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany Department of Biomedical Sciences, School of Public Health, University at Albany
| |
Collapse
|
50
|
Wong S, Mosabbir AA, Truong K. An Engineered Split Intein for Photoactivated Protein Trans-Splicing. PLoS One 2015; 10:e0135965. [PMID: 26317656 PMCID: PMC4552755 DOI: 10.1371/journal.pone.0135965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.
Collapse
Affiliation(s)
- Stanley Wong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Abdullah A. Mosabbir
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario, M5S 3G4, Canada
- * E-mail:
| |
Collapse
|