1
|
Kim SH, Bathige SDNK, Lee D, Kalhari WAAH, Kim HJ, Park KI. Molecular phylogeny, morphology, and ultrastructure of a Mesomycetozoea member, Sphaeroforma nootkatensis isolated from Pacific oyster, Crassostrea gigas, on the Southern coast of Korea. Protist 2024; 176:126084. [PMID: 39742564 DOI: 10.1016/j.protis.2024.126084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
This study discovered the first Asian population of Sphaeroforma nootkatensis (SphX), a member of Mesomycetozoea, in the southern coastal region of South Korea. Although investigating parasites in Pacific oysters (Crassostrea gigas), a single-cell microorganism was isolated from gill tissues. Comprehensive phylogenetic analysis of its 18S rDNA revealed its placement within the order Ichthyophonida, class Mesomycetozoea. SphX formed a distinct cluster within Sphaeroforma spp., separate from Pseudoperkinsus tapetis. Morphological examinations of in vitro cultured cells revealed two distinctive life stages characterized by multilobe and granular sporangium, accompanied by corresponding non-motile larger and motile smaller endospores, respectively. Scanning electron microscope analysis depicted lobular and smooth surfaces on vegetative cells, indicative of differing life cycle stages. Transmission electron microscope observations revealed intriguing features consistent with previous reports on Mesomycetozoea. A prominent fibrillar structure was noted in a vegetative cell. In contrast, smaller endospores were observed with cilia-like structures surrounding the cell wall, indicating their mode of movement. The Ray's fluid thioglycollate medium assay showed that SphX cells were digested, whereas some small endospores remained resistant. This discovery provides novel insights into the life stages of Mesomycetozoans and geographical distribution and underscores the importance of monitoring oyster health for effective aquaculture management.
Collapse
Affiliation(s)
- Seung-Hyeon Kim
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - S D N K Bathige
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Donghyun Lee
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - W A A H Kalhari
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Hyoun Joong Kim
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Kyung-Il Park
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea.
| |
Collapse
|
2
|
López-Rodríguez MR, Gérikas Ribeiro C, Rodríguez-Marconi S, Parada-Pozo G, Manrique-de-la-Cuba M, Trefault N. Stable dominance of parasitic dinoflagellates in Antarctic sponges. PeerJ 2024; 12:e18365. [PMID: 39529628 PMCID: PMC11552495 DOI: 10.7717/peerj.18365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background Marine sponges are dominant components of Antarctic benthos and representative of the high endemism that characterizes this environment. All microbial groups are part of the Antarctic sponge holobionts, but microbial eukaryotes have been studied less, and their symbiotic role still needs to be better understood. Here, we characterize the dynamics of microbial eukaryotes associated with Antarctic sponges, focusing on dinoflagellates over three summer periods to better understand the members, interannual variations, and trophic and lifestyle strategies. Results The analysis revealed that dinoflagellates dominate microeukaryotic communities in Antarctic sponges. The results also showed significant differences in the diversity and composition of dinoflagellate communities associated with sponges compared to those in seawater. Antarctic sponges were dominated by a single dinoflagellate family, Syndiniales Dino-Group-I-Clade 1, which was present in high abundance in Antarctic sponges compared to seawater communities. Despite minor differences, the top microeukaryotic amplicon sequence variants (ASVs) showed no significant interannual abundance changes, indicating general temporal stability within the studied sponge species. Our findings highlight the abundance and importance of parasitic groups, particularly the classes Coccidiomorphea, Gregarinomorphea, and Ichthyosporea, with the exclusive dominance of Syndiniales Dino-Group-I-Clade 1 within sponges. Conclusions The present study comprehensively characterizes the microbial eukaryotes associated with Antarctic sponges, showing a remarkable stability of parasitic dinoflagellates in Antarctic sponges. These findings underscore the significant role of parasites in these marine hosts, with implications for population dynamics of the microeukaryome and the holobiont response to a changing ocean.
Collapse
Affiliation(s)
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile
| |
Collapse
|
3
|
Bathige SDNK, Kim SH, Chen Y, Kalhari WAAH, Lee D, Jeon HB, Kim HJ, Park KI. Molecular and ultrastructural characterization of a novel cryptic species of the Mesomycetozoea clade isolated from Manila clam, Ruditapes philippinarum, on the west coast of Korea. J Invertebr Pathol 2024; 207:108202. [PMID: 39322011 DOI: 10.1016/j.jip.2024.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In the present study, a cryptic species (IchX) was isolated from the hemolymph of the Manila clam, Ruditapes philippinarum, collected from the west coast region of South Korea. Following comprehensive molecular analysis, a partial sequence resembling the small subunit of the ribosomal RNA (SSU rRNA) gene was obtained, indicating that this species belonged to the class Mesomycetozoea, also known as Ichthyosporea. Detailed phylogenetic analyses based on SSU rRNA sequences placed IchX in a distinct clade within the order Dermocystida, class Mesomycetozoea, and showed that IchX is closely related to Ichthyosporea sp. Microscopic examination of in vitro cultured IchX cells revealed life-cycle stages of different sizes, from the endospore to sporangium through vegetative stages. An ameboid-like structure was observed in the early endospore stages as the characteristic feature of zoospores. Ultrastructural analyses using scanning electron microscopy revealed that all endospores and vegetative cell stages are spherical. Transmission electron microscopy revealed characteristic features, including a spindle pole body and membrane-decorated hyaline vesicles, consistent with those previously described in Mesomycetozoea. In addition, a prominent fibrillar structure was observed. Notably, the cell wall of mature IchX sporangia was digested with 2 M NaOH, while that of the endospores was resistant. This is the first report of a novel Mesomycetozoean from the Manila clams. Further taxonomic study of this organism and elucidation of its pathological characteristics are necessary.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Seung-Hyeon Kim
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Yu Chen
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - W A A H Kalhari
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Donghyun Lee
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Hyung-Bae Jeon
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Hyoun Joong Kim
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea
| | - Kyung-Il Park
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea.
| |
Collapse
|
4
|
Olivetta M, Bhickta C, Chiaruttini N, Burns J, Dudin O. A multicellular developmental program in a close animal relative. Nature 2024; 635:382-389. [PMID: 39506108 DOI: 10.1038/s41586-024-08115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
All animals develop from a single-celled zygote into a complex multicellular organism through a series of precisely orchestrated processes1,2. Despite the remarkable conservation of early embryogenesis across animals, the evolutionary origins of how and when this process first emerged remain elusive. Here, by combining time-resolved imaging and transcriptomic profiling, we show that single cells of the ichthyosporean Chromosphaera perkinsii-a close relative that diverged from animals about 1 billion years ago3,4-undergo symmetry breaking and develop through cleavage divisions to produce a prolonged multicellular colony with distinct co-existing cell types. Our findings about the autonomous and palintomic developmental program of C. perkinsii hint that such multicellular development either is much older than previously thought or evolved convergently in ichthyosporeans.
Collapse
Affiliation(s)
- Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Chandni Bhickta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Behera SK, Dhal A, Singh R. Disseminated rhinosporidial osteomyelitis: A rare case report. INDIAN J PATHOL MICR 2024; 67:951-952. [PMID: 38847199 DOI: 10.4103/ijpm.ijpm_1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT Rhinosporidiosis is a chronic granulomatous disease caused by Rhinosporidiumseeberi , that affects mostly nasal and nasopharyngeal mucosa. Occurrence at extranasal sites such as cutaneous, subcutaneous, and bone is extremely rare. We hereby report a very rare case of disseminated rhinosporidial osteomyelitis.
Collapse
Affiliation(s)
- Samira Kumar Behera
- Department of Pathology, Maharaja Krushna Chandra Gajapati Medical College Hospital, Berhampur, Odisha, India
| | | | | |
Collapse
|
6
|
Heutte C, Gargala G, Menotti J, Trecourt A, Muraine M, Gueudry J, Gueit I, Cellier L, Thorel D. Ocular Rhinosporidium seeberi: A case of conjunctival involvement. J Fr Ophtalmol 2024; 47:104222. [PMID: 38821816 DOI: 10.1016/j.jfo.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 06/02/2024]
Affiliation(s)
- C Heutte
- Service d'ophtalmologie, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France.
| | - G Gargala
- Service de parasitologie et mycologie, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France
| | - J Menotti
- Service de parasitologie et mycologie, hospices civils de Lyon, 3, quai des Célestins, 69002 Lyon, France
| | - A Trecourt
- Service de parasitologie et mycologie, hospices civils de Lyon, 3, quai des Célestins, 69002 Lyon, France
| | - M Muraine
- Service d'ophtalmologie, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France
| | - J Gueudry
- Service d'ophtalmologie, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France
| | - I Gueit
- Service des maladies infectieuses, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France
| | - L Cellier
- Service d'anatomie et cytologie pathologiques, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France
| | - D Thorel
- Service d'ophtalmologie, hôpital Charles-Nicolle, CHU de Rouen, 37, boulevard Gambetta, 76000 Rouen, France
| |
Collapse
|
7
|
Liu H, Steenwyk JL, Zhou X, Schultz DT, Kocot KM, Shen XX, Rokas A, Li Y. A taxon-rich and genome-scale phylogeny of Opisthokonta. PLoS Biol 2024; 22:e3002794. [PMID: 39283949 PMCID: PMC11426530 DOI: 10.1371/journal.pbio.3002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences.
Collapse
Affiliation(s)
- Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Kevin M Kocot
- University of Alabama, Department of Biological Sciences & Alabama Museum of Natural History, Tuscaloosa, Alabama, United States of America
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
8
|
Gunn BK, Leary JH, Lee VM, Kirby AJ, Scott G, Camus AC. First report of the emerging rosette agent (Sphaerothecum destruens) in a captive held native north American cyprinid, the warpaint shiner (Luxilus coccogenis, Cope). JOURNAL OF FISH DISEASES 2024; 47:e13980. [PMID: 38857293 DOI: 10.1111/jfd.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Affiliation(s)
- Bridgette K Gunn
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - John H Leary
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Vivian M Lee
- Department of Animal Health, Georgia Aquarium, Atlanta, Georgia, USA
| | - Ashley J Kirby
- Department of Animal Health, Georgia Aquarium, Atlanta, Georgia, USA
| | - Gregory Scott
- Department of Animal Health, Georgia Aquarium, Atlanta, Georgia, USA
| | - Alvin C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Radosavljevic V, Radanovic O, Glišic D, Zdravkovic N, Maksimovic-Zoric J, Nesic K, Savic B, Raškovic B. First case of ichthyophonosis in farmed rainbow trout Oncorhynchus mykiss in Serbia. DISEASES OF AQUATIC ORGANISMS 2024; 159:91-97. [PMID: 39145475 DOI: 10.3354/dao03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ichthyophonosis is a disease caused by the mesomycetozoean parasite Ichthyophonus hoferi that affects a variety of fish species, including rainbow trout Oncorhynchus mykiss Walbaum. This disease is characterized by granulomatous lesions and necrosis in various organs, which can have severe impacts on the health and welfare of the fish. Ichthyophonosis has been found in several parts of the world, including Europe, and is a significant concern in the aquaculture industry and for populations of wild marine fishes. The rainbow trout is a widely cultured salmonid species in many countries, including Serbia. Although the presence of I. hoferi in rainbow trout has been reported in several countries, it has never been documented in Serbia. In this article, we report the first case of ichthyophonosis in rainbow trout in Serbia.
Collapse
Affiliation(s)
| | - Oliver Radanovic
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Dimitrije Glišic
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Nemanja Zdravkovic
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | | | - Ksenija Nesic
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Bozidar Savic
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Bozidar Raškovic
- Institute of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| |
Collapse
|
10
|
Gu Y, Oliferenko S. Mitosis: An expanded view of mitotic mechanisms that arose in evolution. Curr Biol 2024; 34:R741-R744. [PMID: 39106834 DOI: 10.1016/j.cub.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Mitosis exhibits astonishing evolutionary plasticity, with dividing eukaryotic cells differing in the organization of the mitotic spindle and the extent of nuclear envelope breakdown. A new study suggests that a multinucleated lifestyle may favor the evolution of closed nuclear division.
Collapse
Affiliation(s)
- Ying Gu
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
11
|
Shabardina V, Dharamshi JE, Ara PS, Antó M, Bascón FJ, Suga H, Marshall W, Scazzocchio C, Casacuberta E, Ruiz-Trillo I. Ichthyosporea: a window into the origin of animals. Commun Biol 2024; 7:915. [PMID: 39075159 PMCID: PMC11286789 DOI: 10.1038/s42003-024-06608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Ichthyosporea is an underexplored group of unicellular eukaryotes closely related to animals. Thanks to their phylogenetic position, genomic content, and development through a multinucleate coenocyte reminiscent of some animal embryos, the members of Ichthyosporea are being increasingly recognized as pivotal to the study of animal origins. We delve into the existing knowledge of Ichthyosporea, identify existing gaps and discuss their life cycles, genomic insights, development, and potential to be model organisms. We also discuss the underestimated diversity of ichthyosporeans, based on new environmental data analyses. This review will be an essential resource for researchers venturing into the study of ichthyosporeans.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| | - Jennah E Dharamshi
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Patricia S Ara
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Fernando J Bascón
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Wyth Marshall
- Bluefrontier Biological Services, Campbell River, BC, Canada
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
12
|
Shah H, Olivetta M, Bhickta C, Ronchi P, Trupinić M, Tromer EC, Tolić IM, Schwab Y, Dudin O, Dey G. Life-cycle-coupled evolution of mitosis in close relatives of animals. Nature 2024; 630:116-122. [PMID: 38778110 PMCID: PMC11153136 DOI: 10.1038/s41586-024-07430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.
Collapse
Affiliation(s)
- Hiral Shah
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Chandni Bhickta
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Monika Trupinić
- Division of Molecular Biology, Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - Yannick Schwab
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
13
|
Sun W, Yin Z, Liu P, Zhu M, Donoghue P. Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans. Proc Biol Sci 2024; 291:20240101. [PMID: 38808442 DOI: 10.1098/rspb.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.
Collapse
Affiliation(s)
- Weichen Sun
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China
| | - Pengju Liu
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, People's Republic of China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China
| | - Philip Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Lamża Ł. Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity. Biol Rev Camb Philos Soc 2023; 98:2188-2209. [PMID: 37475165 DOI: 10.1111/brv.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.
Collapse
Affiliation(s)
- Łukasz Lamża
- Copernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepanska 1, Kraków, 31-011, Poland
| |
Collapse
|
15
|
Ruiz-Trillo I, Kin K, Casacuberta E. The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annu Rev Microbiol 2023; 77:499-516. [PMID: 37406343 DOI: 10.1146/annurev-micro-032421-120023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
- ICREA, Barcelona, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| |
Collapse
|
16
|
Ondracka A, Dudin O, Bråte J. Time-resolved small RNA transcriptomics of the ichthyosporean Sphaeroforma arctica. F1000Res 2023; 12:542. [PMID: 38778808 PMCID: PMC11109566 DOI: 10.12688/f1000research.133935.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/25/2024] Open
Abstract
Ichthyosporea, a clade of holozoans, represent a clade closely related to animals, and thus hold a key phylogenetic position for understanding the origin of animals. We have previously discovered that an ichthyosporean, Sphaeroforma arctica, contains microRNAs (miRNAs) as well as the miRNA processing machinery. This was the first discovery of miRNAs among the closest single-celled relatives of animals and raised intriguing questions about the roles of regulatory small RNAs in cell development and differentiation in unicellular eukaryotes. Like many ichthyosporeans, S. arctica also undergoes a transient multicellular developmental life cycle. As miRNAs are, among other roles, key regulators of gene expression during development in animals, we wanted to investigate the dynamics of miRNAs during the developmental cycle in S. arctica. Here we have therefore collected a comprehensive time-resolved small RNA transcriptome linked to specific life stages with a substantially higher sequencing depth than before, which can enable further discovery of functionally relevant small RNAs. The data consists of Illumina-sequenced small RNA libraries from two independent biological replicates of the entire life cycle of S. arctica with high temporal resolution. The dataset is directly linked and comes from the same samples as a previously published mRNA-seq dataset, thus enabling direct cross-functional analyses.
Collapse
Affiliation(s)
- Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015, Switzerland
| | - Jon Bråte
- Department of Biosciences, University of Oslo, Oslo, 0316, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, 0456, Norway
| |
Collapse
|
17
|
Gozlan RE, Combe M. Emergence of the Fungal Rosette Agent in the World: Current Risk to Fish Biodiversity and Aquaculture. J Fungi (Basel) 2023; 9:jof9040426. [PMID: 37108882 PMCID: PMC10145687 DOI: 10.3390/jof9040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of pathogenic fungi is a major and rapidly growing problem (7% increase) that affects human and animal health, ecosystems, food security, and the economy worldwide. The Dermocystida group in particular has emerged relatively recently and includes species that affect both humans and animals. Within this group, one species in particular, Sphareothecum destruens, also known as the rosette agent, represents a major risk to global aquatic biodiversity and aquaculture, and has caused severe declines in wild fish populations in Europe and large losses in salmon farms in the USA. It is a species that has been associated with a healthy carrier for millions of years, but in recent decades, the host has managed to invade parts of Southeast Asia, Central Asia, Europe, and North Africa. In order to better understand the emergence of this new disease, for the first time, we have synthesized current knowledge on the distribution, detection, and prevalence of S. destruens, as well as the associated mortality curves, and the potential economic impact in countries where the healthy carrier has been introduced. Finally, we propose solutions and perspectives to manage and mitigate the emergence of this fungus in countries where it has been introduced.
Collapse
Affiliation(s)
| | - Marine Combe
- ISEM, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| |
Collapse
|
18
|
Olivetta M, Dudin O. The nuclear-to-cytoplasmic ratio drives cellularization in the close animal relative Sphaeroforma arctica. Curr Biol 2023; 33:1597-1605.e3. [PMID: 36996815 DOI: 10.1016/j.cub.2023.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to-zygotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and deregulates the timing and outcome of embryogenesis.1,2,3 Despite being ubiquitous across animals, little is known about when the N/C ratio evolved to control multicellular development. Such capacity either originated with the emergence of animal multicellularity or was co-opted from the mechanisms present in unicellular organisms.4 An effective strategy to tackle this question is to investigate the close relatives of animals exhibiting life cycles with transient multicellular stages.5 Among these are ichthyosporeans, a lineage of protists undergoing coenocytic development followed by cellularization and cell release.6,7,8 During cellularization, a transient multicellular stage resembling animal epithelia is generated, offering a unique opportunity to examine whether the N/C ratio regulates multicellular development. Here, we use time-lapse microscopy to characterize how the N/C ratio affects the life cycle of the best-studied ichthyosporean model, Sphaeroforma arctica. We uncover that the last stages of cellularization coincide with a significant increase in the N/C ratio. Increasing the N/C ratio by reducing the coenocytic volume accelerates cellularization, whereas decreasing the N/C ratio by lowering the nuclear content halts it. Moreover, centrifugation and pharmacological inhibitor experiments suggest that the N/C ratio is locally sensed at the cortex and relies on phosphatase activity. Altogether, our results show that the N/C ratio drives cellularization in S. arctica, suggesting that its capacity to control multicellular development predates animal emergence.
Collapse
|
19
|
McCartney B, Dudin O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr Opin Cell Biol 2023; 80:102157. [PMID: 36857882 DOI: 10.1016/j.ceb.2023.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Many eukaryotes form multinucleated cells during their development. Some cells persist as such during their lifetime, others choose to cleave each nucleus individually using a specialized cytokinetic process known as cellularization. What is cellularization and how is it achieved across the eukaryotic tree of life? Are there common pathways among all species supporting a shared ancestry, or are there key differences, suggesting independent evolutionary paths? In this review, we discuss common strategies and key mechanistic differences in how cellularization is executed across vastly divergent eukaryotic species. We present a number of novel methods and non-model organisms that may provide important insight into the evolutionary origins of cellularization.
Collapse
Affiliation(s)
- Brooke McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
20
|
Cofre J, Saalfeld K. The first embryo, the origin of cancer and animal phylogeny. I. A presentation of the neoplastic process and its connection with cell fusion and germline formation. Front Cell Dev Biol 2023; 10:1067248. [PMID: 36684435 PMCID: PMC9846517 DOI: 10.3389/fcell.2022.1067248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023] Open
Abstract
The decisive role of Embryology in understanding the evolution of animal forms is founded and deeply rooted in the history of science. It is recognized that the emergence of multicellularity would not have been possible without the formation of the first embryo. We speculate that biophysical phenomena and the surrounding environment of the Ediacaran ocean were instrumental in co-opting a neoplastic functional module (NFM) within the nucleus of the first zygote. Thus, the neoplastic process, understood here as a biological phenomenon with profound embryologic implications, served as the evolutionary engine that favored the formation of the first embryo and cancerous diseases and allowed to coherently create and recreate body shapes in different animal groups during evolution. In this article, we provide a deep reflection on the Physics of the first embryogenesis and its contribution to the exaptation of additional NFM components, such as the extracellular matrix. Knowledge of NFM components, structure, dynamics, and origin advances our understanding of the numerous possibilities and different innovations that embryos have undergone to create animal forms via Neoplasia during evolutionary radiation. The developmental pathways of Neoplasia have their origins in ctenophores and were consolidated in mammals and other apical groups.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil,*Correspondence: Jaime Cofre,
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
21
|
Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 2022; 265:127199. [PMID: 36137486 DOI: 10.1016/j.micres.2022.127199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The rhizosphere is a narrow and dynamic region of plant root-soil interfaces, and it's considered one of the most intricate and functionally active ecosystems on the Earth, which boosts plant health and alleviates the impact of biotic and abiotic stresses. Improving the key functions of the microbiome via engineering the rhizosphere microbiome is an emerging tool for improving plant growth, resilience, and soil-borne diseases. Recently, the advent of omics tools, gene-editing techniques, and sequencing technology has allowed us to unravel the entangled webs of plant-microbes interactions, enhancing plant fitness and tolerance to biotic and abiotic challenges. Plants secrete signaling compounds with low molecular weight into the rhizosphere, that engage various species to generate a massive deep complex array. The underlying principle governing the multitrophic interactions of the rhizosphere microbiome is yet unknown, however, some efforts have been made for disease management and agricultural sustainability. This review discussed the intra- and inter- microbe-microbe and microbe-animal interactions and their multifunctional roles in rhizosphere microbiome engineering for plant health and soil-borne disease management. Simultaneously, it investigates the significant impact of immunity utilizing PGPR and cover crop strategy in increasing rhizosphere microbiome functions for plant development and protection using omics techniques. The ecological engineering of rhizosphere plant interactions could be used as a potential alternative technology for plant growth improvement, sustainable disease control management, and increased production of economically significant crops.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ali Fakhar
- Division of Applied Science, Gyeongsang National University, South Korea
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hina Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
22
|
Jacques F, Baratchart E, Pienta KJ, Hammarlund EU. Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics. Med Oncol 2022; 39:160. [PMID: 35972622 PMCID: PMC9381480 DOI: 10.1007/s12032-022-01740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
The rise of animals represents a major but enigmatic event in the evolutionary history of life. In recent years, numerous studies have aimed at understanding the genetic basis of this transition. However, genome comparisons of diverse animal and protist lineages suggest that the appearance of gene families that were previously considered animal specific indeed preceded animals. Animals' unicellular relatives, such as choanoflagellates, ichthyosporeans, and filastereans, demonstrate complex life cycles including transient multicellularity as well as genetic toolkits for temporal cell differentiation, cell-to-cell communication, apoptosis, and cell adhesion. This has warranted further exploration of the genetic basis underlying transitions in cellular organization. An alternative model for the study of transitions in cellular organization is tumors, which exploit physiological programs that characterize both unicellularity and multicellularity. Tumor cells, for example, switch adhesion on and off, up- or downregulate specific cell differentiation states, downregulate apoptosis, and allow cell migration within tissues. Here, we use insights from both the fields of phylogenomics and tumor biology to review the evolutionary history of the regulatory systems of multicellularity and discuss their overlap. We claim that while evolutionary biology has contributed to an increased understanding of cancer, broad investigations into tissue-normal and transformed-can also contribute the framework for exploring animal evolution.
Collapse
Affiliation(s)
- Florian Jacques
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Etienne Baratchart
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenneth J Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Emma U Hammarlund
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Gregg JL, Hershberger PK, Neat AS, Jayasekera HT, Ferguson JA, Powers RL, Purcell MK. A phylogeny based on cytochrome-c oxidase gene sequences identifies sympatric Ichthyophonus genotypes in the NE Pacific Ocean. DISEASES OF AQUATIC ORGANISMS 2022; 150:61-67. [PMID: 35833545 DOI: 10.3354/dao03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent decades, evidence has accumulated to suggest that the widespread and highly variable parasite Ichthyophonus hoferi is actually a species complex. Highly plastic morphology and a general lack of defining structures has contributed to the likely underestimate of biodiversity within this group. Molecular methods are a logical next step in the description of these parasites, but markers used to date have been too conserved to resolve species boundaries. Here we use mitochondrial encoded cytochrome-c oxidase (MTCO1) gene sequences and phylogenic analysis to compare Ichthyophonus spp. isolates from several marine and anadromous fish hosts. The resulting phylogeny displays lineage separation among isolates and possible host/niche segregation not previously described. The parasite type that infects Pacific herring Clupea pallasii, Atlantic herring C. harengus, Atlantic salmon Salmo salar, and Pacific staghorn sculpin Oligocottus maculosus (Clade A) is different from that which infects Chinook salmon Oncorhynchus tshawytscha, walleye pollock Gadus chalcogrammus, Greenland halibut Reinhardtius hippoglossoides, and Pacific halibut Hippoglossus stenolepsis (Clade B). MTCO1 sequences confirmed the presence of a more divergent Ichthyophonus sp. isolated from American shad Alosa sapidissima in rivers of eastern North America (Clade C), while American shad introduced to the Pacific Ocean are infected with the same parasite that infects Pacific herring (Clade A). Currently there are no consensus criteria for delimiting species within Ichthyophonidae, but MTCO1 sequences hold promise as a potential species identifying marker and useful epizootiological tool.
Collapse
Affiliation(s)
- Jacob L Gregg
- U.S. Geological Survey - Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Sellyei B, Molnár K, Cech G, Varga Á, Székely C. Extreme pathological symptom generated by Dermocystidium koi infection of common carp (Cyprinus carpio L.) in Hungary. JOURNAL OF FISH DISEASES 2022; 45:825-832. [PMID: 35263450 DOI: 10.1111/jfd.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Dermocystidiosis in common carp (Cyprinus carpio L.) as a skin infection in the form of small, pea-sized bulging nodules is well-known in Hungary. Its occurrence is sporadic, and the pathogenic effect is generally moderate. Nonetheless, here we report an unusual case of the infection when a mass of dermocystid spore-filled hyphae-like cysts formed a large tumour-like nodule under the skin intruding deeply in the red muscle on one side occipital region of the fish body. Histological sections showed that the tumour-like nodule was composed of two layers, a pale peripheral part with a high mass of cysts surrounded by some cell debris of muscle cells and a dark central part with a less dense meshwork of tubular cysts which were embedded in the partially damaged red muscle tissue. No infection was found in the white muscle. Sequences of 18S rDNA of spores from the tumour-like nodule showed a complete identity to sequences from typical bulging nodules in skin. They were also highly similar to the sequences of D. anguillae clones (99.5%-99.4%), to some samples of D. salmonis (99.7% and 99.4%), and to the Dermocystidium sp. CM-2002 (99.4%) from European perch.
Collapse
Affiliation(s)
| | - Kálmán Molnár
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Gábor Cech
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Ádám Varga
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Csaba Székely
- Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
25
|
Bessette E, Williams B. Protists in the Insect Rearing Industry: Benign Passengers or Potential Risk? INSECTS 2022; 13:482. [PMID: 35621816 PMCID: PMC9144225 DOI: 10.3390/insects13050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
As the insects for food and feed industry grows, a new understanding of the industrially reared insect microbiome is needed to better comprehend the role that it plays in both maintaining insect health and generating disease. While many microbiome projects focus on bacteria, fungi or viruses, protists (including microsporidia) can also make up an important part of these assemblages. Past experiences with intensive invertebrate rearing indicate that these parasites, whilst often benign, can rapidly sweep through populations, causing extensive damage. Here, we review the diversity of microsporidia and protist species that are found in reared insect hosts and describe the current understanding of their host spectra, life cycles and the nature of their interactions with hosts. Major entomopathogenic parasite groups with the potential to infect insects currently being reared for food and feed include the Amoebozoa, Apicomplexa, Ciliates, Chlorophyta, Euglenozoa, Ichtyosporea and Microsporidia. However, key gaps exist in the understanding of how many of these entomopathogens affect host biology. In addition, for many of them, there are very limited or even no molecular data, preventing the implementation of molecular detection methods. There is now a pressing need to develop and use novel molecular tools, coupled with standard molecular diagnostic methods, to help unlock their biology and predict the effects of these poorly studied protist parasites in intensive insect rearing systems.
Collapse
Affiliation(s)
- Edouard Bessette
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Bryony Williams
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
26
|
Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. Curr Biol 2022; 32:R385-R397. [DOI: 10.1016/j.cub.2022.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Manenti R, Mercurio S, Melotto A, Barzaghi B, Epis S, Tecilla M, Pennati R, Scarì GU, Ficetola GF. A New Disease Caused by an Unidentified Etiological Agent Affects European Salamanders. Animals (Basel) 2022; 12:ani12060696. [PMID: 35327092 PMCID: PMC8944795 DOI: 10.3390/ani12060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
New pathologies are causing dramatic declines and extinctions of multiple amphibian species. In 2013, in one fire salamander population of Northern Italy, we found individuals with undescribed cysts at the throat level, a malady whose existence has not previously been reported in amphibians. With the aim of describing this novel disease, we performed repeated field surveys to assess the frequency of affected salamanders from 2014 to 2020, and integrated morphological, histological, and molecular analyses to identify the pathogen. The novel disease affected up to 22% of salamanders of the study population and started spreading to nearby populations. Cysts are formed by mucus surrounding protist-like cells about 30 µm long, characterized by numerous cilia/undulipodia. Morphological and genetic analyses did not yield a clear match with described organisms. The existence of this pathogen calls for the implementation of biosecurity protocols and more studies on the dynamics of transmission and the impact on wild populations.
Collapse
Affiliation(s)
- Raoul Manenti
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy; (B.B.); (R.P.); (G.F.F.)
- Correspondence: (R.M.); (S.M.); Tel.: +39-3490733107 (R.M.)
| | - Silvia Mercurio
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy; (B.B.); (R.P.); (G.F.F.)
- Correspondence: (R.M.); (S.M.); Tel.: +39-3490733107 (R.M.)
| | - Andrea Melotto
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa;
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy; (B.B.); (R.P.); (G.F.F.)
| | - Sara Epis
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (S.E.); (M.T.); (G.U.S.)
| | - Marco Tecilla
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (S.E.); (M.T.); (G.U.S.)
| | - Roberta Pennati
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy; (B.B.); (R.P.); (G.F.F.)
| | - Giorgio Ulisse Scarì
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (S.E.); (M.T.); (G.U.S.)
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy; (B.B.); (R.P.); (G.F.F.)
- Laboratoire d’Ecologie Alpine (LECA), University Grenoble Alpes, CNRS, 38400 Grenoble, France
- Laboratoire d’Ecologie Alpine (LECA), University Savoie Mont Blanc, CNRS, 38400 Grenoble, France
| |
Collapse
|
28
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
29
|
Leger MM, Ros-Rocher N, Najle SR, Ruiz-Trillo I. Rel/NF-κB Transcription Factors Emerged at the Onset of Opisthokonts. Genome Biol Evol 2022; 14:6499270. [PMID: 34999783 PMCID: PMC8763368 DOI: 10.1093/gbe/evab289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The Rel/NF-κB transcription factor family has myriad roles in immunity, development, and differentiation in animals, and was considered a key innovation for animal multicellularity. Rel homology domain-containing proteins were previously hypothesized to have originated in a last common ancestor of animals and some of their closest unicellular relatives. However, key taxa were missing from previous analyses, necessitating a systematic investigation into the distribution and evolution of these proteins. Here, we address this knowledge gap by surveying taxonomically broad data from eukaryotes, with a special emphasis on lineages closely related to animals. We report an earlier origin for Rel/NF-κB proteins than previously described, in the last common ancestor of animals and fungi, and show that even in the sister group to fungi, these proteins contain elements that in animals are necessary for the subcellular regulation of Rel/NF-κB.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Núria Ros-Rocher
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sebastián R Najle
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Cardoso PHM, Relvas RS, Balian SDC, Moreno AM, Soares HS, Silva LAS, Martins ML. Dermocystidium sp. infection in farmed striped catfish Pangasianodon hypophthalmus farmed in Ceará state, Northeastern Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e001522. [PMID: 35613150 PMCID: PMC9901851 DOI: 10.1590/s1984-29612022025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
The genus Dermocystidium infects a wide range of animals. The host infection often occurs through the ingestion of endospores. The diagnosis depends on wet mounts and histopathological analysis of the affected tissue. The aim of this study was to investigate the incidence of Dermocystidium sp. infection on the skin of farmed striped catfish (Pangasianodon hypophthalmus) from a fish farm located in Fortaleza, Ceará state, northeastern Brazil. From these observations, we determined that 100% of the analyzed animals were infected with Dermocystidium sp. The wet mount and histopathology of the fish lesions revealed spore-filled cysts between the dermis and epidermis, encapsulated by connective tissue. Owing to a lack of research on the parasite and its prevalence among different fish species in Brazil and the rest of the world, additional studies are required to understand their endemicity in fish farms of Brazil, and consequently develop better disease prevention methods and increase the overall productivity.
Collapse
Affiliation(s)
- Pedro Henrique Magalhães Cardoso
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Rachel Sordi Relvas
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Simone de Carvalho Balian
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Andrea Micke Moreno
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Herbert Sousa Soares
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Veterinária e Bem Estar Animal e Saúde Única, Universidade Santo Amaro - UNISA, São Paulo, SP, Brasil
| | | | - Maurício Laterça Martins
- Laboratório de Sanidade de Organismos Aquáticos - AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil
| |
Collapse
|
31
|
Urrutia A, Mitsi K, Foster R, Ross S, Carr M, Ward GM, van Aerle R, Marigomez I, Leger MM, Ruiz-Trillo I, Feist SW, Bass D. Txikispora philomaios n. sp., n. g., a Micro-Eukaryotic Pathogen of Amphipods, Reveals Parasitism and Hidden Diversity in Class Filasterea. J Eukaryot Microbiol 2021; 69:e12875. [PMID: 34726818 DOI: 10.1111/jeu.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting amphipod genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly haemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host haemocytes, resulting in haemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.
Collapse
Affiliation(s)
- Ander Urrutia
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK.,Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology (Faculty of Science and Technology), Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Pasealekua z/g, Plentzia, 48620, Basque Country, Spain
| | - Konstantina Mitsi
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain
| | - Rachel Foster
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Stuart Ross
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - Martin Carr
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Georgia M Ward
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - Ionan Marigomez
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology (Faculty of Science and Technology), Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Pasealekua z/g, Plentzia, 48620, Basque Country, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.,Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, 08028, Catalonia, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Stephen W Feist
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK.,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
32
|
Hewson I, Sewell MA. Surveillance of densoviruses and mesomycetozoans inhabiting grossly normal tissues of three Aotearoa New Zealand asteroid species. PLoS One 2021; 16:e0241026. [PMID: 33886557 PMCID: PMC8061988 DOI: 10.1371/journal.pone.0241026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Asteroid wasting events and mass mortality have occurred for over a century. We currently lack a fundamental understanding of the microbial ecology of asteroid disease, with disease investigations hindered by sparse information about the microorganisms associated with grossly normal specimens. We surveilled viruses and protists associated with grossly normal specimens of three asteroid species (Patiriella regularis, Stichaster australis, Coscinasterias muricata) on the North Island / Te Ika-a-Māui, Aotearoa New Zealand, using metagenomes prepared from virus and ribosome-sized material. We discovered several densovirus-like genome fragments in our RNA and DNA metagenomic libraries. Subsequent survey of their prevalence within populations by quantitative PCR (qPCR) demonstrated their occurrence in only a few (13%) specimens (n = 36). Survey of large and small subunit rRNAs in metagenomes revealed the presence of a mesomycete (most closely matching Ichthyosporea sp.). Survey of large subunit prevalence and load by qPCR revealed that it is widely detectable (80%) and present predominately in body wall tissues across all 3 species of asteroid. Our results raise interesting questions about the roles of these microbiome constituents in host ecology and pathogenesis under changing ocean conditions.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Mary A. Sewell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Strother PK, Brasier MD, Wacey D, Timpe L, Saunders M, Wellman CH. A possible billion-year-old holozoan with differentiated multicellularity. Curr Biol 2021; 31:2658-2665.e2. [PMID: 33852871 DOI: 10.1016/j.cub.2021.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023]
Abstract
Sediments of the Torridonian sequence of the Northwest Scottish Highlands contain a wide array of microfossils, documenting life in a non-marine setting a billion years ago (1 Ga).1-4 Phosphate nodules from the Diabaig Formation at Loch Torridon preserve microorganisms with cellular-level fidelity,5,6 allowing for partial reconstruction of the developmental stages of a new organism, Bicellum brasieri gen. et sp. nov. The mature form of Bicellum consists of a solid, spherical ball of tightly packed cells (a stereoblast) of isodiametric cells enclosed in a monolayer of elongated, sausage-shaped cells. However, two populations of naked stereoblasts show mixed cell shapes, which we infer to indicate incipient development of elongated cells that were migrating to the periphery of the cell mass. These simple morphogenetic movements could be explained by differential cell-cell adhesion.7,8 In fact, the basic morphology of Bicellum is topologically similar to that of experimentally produced cell masses that were shown to spontaneously segregate into two distinct domains based on differential cadherin-based cell adhesion.9 The lack of rigid cell walls in the stereoblast renders an algal affinity for Bicellum unlikely: its overall morphology is more consistent with a holozoan origin. Unicellular holozoans are known today to form multicellular stages within complex life cycles,10-13 so the occurrence of such simple levels of transient multicellularity seen here is consistent with a holozoan affinity. Regardless of precise phylogenetic placement, these fossils demonstrate simple cell differentiation and morphogenic processes that are similar to those seen in some metazoans today.
Collapse
Affiliation(s)
- Paul K Strother
- Department of Earth & Environmental Sciences, Weston Observatory of Boston College, 381 Concord Road, Weston, MA 02493, USA.
| | - Martin D Brasier
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - David Wacey
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Leslie Timpe
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles H Wellman
- Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
34
|
Cell-cell fusions and cell-in-cell phenomena in healthy cells and cancer: Lessons from protists and invertebrates. Semin Cancer Biol 2021; 81:96-105. [PMID: 33713795 DOI: 10.1016/j.semcancer.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Herein we analyze two special routes of the multinucleated cells' formation - the fusion of mononuclear cells and the formation of cell-in-cell structures - in the healthy tissues and in tumorigenesis. There are many theories of tumorigenesis based on the phenomenon of emergence of the hybrid cancer cells. We consider the phenomena, which are rarely mentioned in those theories: namely, cellularization of syncytium or coenocytes, and the reversible or irreversible somatogamy. The latter includes the short-term and the long-term vegetative (somatic) cells' fusions in the life cycles of unicellular organisms. The somatogamy and multinuclearity have repeatedly and independently emerged in various groups of unicellular eukaryotes. These phenomena are among dominant survival and biodiversity sustaining strategies in protists and we admit that they can likely play an analogous role in cancer cells.
Collapse
|
35
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
36
|
Castro T, Mendoza L, Vilela R, Vilela C, Mateo EC. Ichthyophonosis in Peruvian rainbow trout Oncorhynchus mykiss: identification of endemic areas using molecular and histopathological tools. DISEASES OF AQUATIC ORGANISMS 2021; 143:129-138. [PMID: 33570046 DOI: 10.3354/dao03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ichthyophonus infection was first detected in Peruvian Oncorhynchus mykiss in 1986, but the occurrence of ichthyophonosis disease in the region is unknown. This study investigated the presence and distribution of Ichthyophonus sp. in Peruvian rainbow trout using traditional and DNA sequencing tools. Between 2007 and 2008, 205 rainbow trout from 13 hatcheries in the Mantaro river basin were examined for the presence of Ichthyophonus, and at that time only 3 farms were positive. This early study confirmed the presence of Ichthyophonus sp. in the Tranca Grande lagoon for the first time, at a prevalence of 50%. In 2012, examination of 240 trout from 24 fish farms in 2 Peruvian Departments found 9 infected farms. More recently, in 2018, Ichthyophonus sp. was found in Lake Titicaca, infecting a trout in the Ichu area (in the Department of Puno). Our molecular analysis of the infected trout showed that ichthyophonosis disease in the Peruvian trout was caused by Ichthyophonus sp. Clade C. The finding of this pathogen in Lake Titicaca should be an alert for nearby farms and entities dealing with fish of economic importance in the rivers of Peru.
Collapse
Affiliation(s)
- Teresa Castro
- Laboratorio de Patobiología Acuática, Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Peru (IMARPE), Esquina Gamarra y General Valle s/n. Casilla Postal 22, Callao, Peru
| | | | | | | | | |
Collapse
|
37
|
Käse L, Metfies K, Neuhaus S, Boersma M, Wiltshire KH, Kraberg AC. Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them? PLoS One 2021; 16:e0244817. [PMID: 33411833 PMCID: PMC7790432 DOI: 10.1371/journal.pone.0244817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022] Open
Abstract
In this study, we created a dataset of a continuous three-year 18S metabarcoding survey to identify eukaryotic parasitoids, and potential connections to hosts at the Long-Term Ecological Research station Helgoland Roads. The importance of parasites and parasitoids for food web dynamics has previously been recognized mostly in terrestrial and freshwater systems, while marine planktonic parasitoids have been understudied in comparison to those. Therefore, the occurrence and role of parasites and parasitoids remains mostly unconsidered in the marine environment. We observed high abundances and diversity of parasitoid operational taxonomic units in our dataset all year round. While some parasitoid groups were present throughout the year and merely fluctuated in abundances, we also detected a succession of parasitoid groups with peaks of individual species only during certain seasons. Using co-occurrence and patterns of seasonal occurrence, we were able to identify known host-parasitoid dynamics, however identification of new potential host-parasitoid interactions was not possible due to their high dynamics and variability in the dataset.
Collapse
Affiliation(s)
- Laura Käse
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Schleswig-Holstein, Germany
| | - Katja Metfies
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, Germany
- Helmholtz-Institut für Funktionelle Marine Biodiversität, Oldenburg, Germany
| | - Stefan Neuhaus
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, Germany
| | - Maarten Boersma
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Schleswig-Holstein, Germany
- University of Bremen, Bremen, Bremen, Germany
| | - Karen Helen Wiltshire
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Schleswig-Holstein, Germany
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Wadden Sea Station, List auf Sylt, Schleswig-Holstein, Germany
| | - Alexandra Claudia Kraberg
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, Germany
| |
Collapse
|
38
|
Arias Sánchez AF, Romero Arias SD, Garcés Samudio CG. Case Report: Rhinosporidiosis, Case Report, and Literature Review. Am J Trop Med Hyg 2020; 104:708-711. [PMID: 33289469 DOI: 10.4269/ajtmh.20-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022] Open
Abstract
Rhinosporidiosis is caused by Rhinosporidium seeberi, a pathogen currently considered a fungus-like parasite of the eukaryotic group Mesomycetozoea. It is usually a benign condition, with slow growth of polypoid lesions, with involvement of the nose, nasopharynx, or eyes. The clinical characteristics of a painless, friable, polypoid mass, usually unilateral, can guide the diagnosis, but the gold standard for diagnosis is histopathological findings. This article reviews the epidemiology, pathobiology, clinical manifestations, diagnostic strategies, and treatment approach for rhinosporidiosis.
Collapse
Affiliation(s)
- Andrés F Arias Sánchez
- Pediatric Infectious Diseases, Erasmo Meoz Hospital Colombia, University of Pamplona, Cúcuta, Colombia
| | | | - Carlos G Garcés Samudio
- Pediatric Infectious Diseases, University of Antioquia, Cardiovid Clinic, Medellín, Colombia
| |
Collapse
|
39
|
Sellyei B, Cech G, Varga Á, Molnár K, Székely C, Somogyi D, Nyeste K, Antal L. Infection of the Carpathian brook lamprey (Eudontomyzon danfordi Regan, 1911) with a dermocystid parasite in the Tisza River Basin, Hungary. JOURNAL OF FISH DISEASES 2020; 43:1571-1577. [PMID: 32914485 DOI: 10.1111/jfd.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The Carpathian brook lamprey (Eudontomyzon danfordi Regan, 1911) is an endemic protected species of Cephalaspidomorphi in the Carpathian Basin. No parasites have become known from these jawless vertebrates to date. Here, the authors describe an infection from a single specimen manifesting in protuberant skin cysts 7-10 mm in diameter, scattered on the body surface. Similar dermal infection was observed in 25 of the 274 lampreys recorded in the population survey. Skin cysts filled with round spore-like structures of a dermocystid parasite were found. These particles measured 8-14 µm in diameter and had an about 0.5 µm thick wall, and containing mainly a granular mass and a relatively scarce plasma. No hyphae were recorded. Despite conspicuous morphological changes in the skin, no inflammatory reactions were found. The molecular analysis of 18S rDNA showed similarity to dermocystid species of several fish species but differed from them approximately by 2%. This is the first record of a dermocystid parasite infecting a jawless vertebrate.
Collapse
Affiliation(s)
- Boglárka Sellyei
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| | - Gábor Cech
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| | - Ádám Varga
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| | - Kálmán Molnár
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| | - Csaba Székely
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| | - Dóra Somogyi
- Department of Hydrobiology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Krisztián Nyeste
- Department of Hydrobiology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - László Antal
- Department of Hydrobiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
Relvas RS, Balian SDC, Soares HS, Martins ML, Cardoso PHM. Parasitological diagnosis in food fish produced in a fish farm, in the Zona da Mata, Minas Gerais, southeastern Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2020; 29:e019520. [PMID: 33237195 DOI: 10.1590/s1984-29612020100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
This study identified the parasitic species in juvenile freshwater finfishes during the fattening stage, from a fish farm located in the Zona da Mata (MG), southeastern Brazil, and revealed both macro and microscopical lesions in fish gills. A total of 172 juvenile fishes of different species (Oreochromis niloticus, Ictalurus punctatus, Ctenopharyngodon idella, Cyprinus carpio, Astyanax bimaculatus and Brycon amazonicus) were transported to a laboratory in São Paulo city. The fish were sedated and then euthanized for parasitological analysis. All fish were infected by at least one parasite species. Ten different species of parasites were identified: Apiosoma sp., Epistylis sp., Ichthyobodo sp., trichodinids, Piscinoodinium pillulare, Ichthyophthirius multifiliis, Tetrahymena sp., monogeneans, Centrocestus formosanus metacercariae, and Dermocystidium sp. The best management practices and lack of sanitary control were also discussed.
Collapse
Affiliation(s)
- Rachel Sordi Relvas
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Simone de Carvalho Balian
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Herbert Sousa Soares
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil.,Programa de Pós-graduação em Medicina Veterinária e Bem Estar Animal e Saúde Única, Universidade Santo Amaro - UNISA, São Paulo, SP, Brasil
| | - Maurício Laterça Martins
- Laboratório de Sanidade de Organismos Aquáticos - AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil
| | - Pedro Henrique Magalhães Cardoso
- Departamento de Medicina Veterinária Preventiva, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| |
Collapse
|
41
|
Arroyo AS, Lannes R, Bapteste E, Ruiz-Trillo I. Gene Similarity Networks Unveil a Potential Novel Unicellular Group Closely Related to Animals from the Tara Oceans Expedition. Genome Biol Evol 2020; 12:1664-1678. [PMID: 32533833 PMCID: PMC7533066 DOI: 10.1093/gbe/evaa117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
The Holozoa clade comprises animals and several unicellular lineages (choanoflagellates, filastereans, and teretosporeans). Understanding their full diversity is essential to address the origins of animals and other evolutionary questions. However, they are poorly known. To provide more insights into the real diversity of holozoans and check for undiscovered diversity, we here analyzed 18S rDNA metabarcoding data from the global Tara Oceans expedition. To overcome the low phylogenetic information contained in the metabarcoding data set (composed of sequences from the short V9 region of the gene), we used similarity networks by combining two data sets: unknown environmental sequences from Tara Oceans and known reference sequences from GenBank. We then calculated network metrics to compare environmental sequences with reference sequences. These metrics reflected the divergence between both types of sequences and provided an effective way to search for evolutionary relevant diversity, further validated by phylogenetic placements. Our results showed that the percentage of unicellular holozoan diversity remains hidden. We found novelties in several lineages, especially in Acanthoecida choanoflagellates. We also identified a potential new holozoan group that could not be assigned to any of the described extant clades. Data on geographical distribution showed that, although ubiquitous, each unicellular holozoan lineage exhibits a different distribution pattern. We also identified a positive association between new animal hosts and the ichthyosporean symbiont Creolimax fragrantissima, as well as for other holozoans previously reported as free-living. Overall, our analyses provide a fresh perspective into the diversity and ecology of unicellular holozoans, highlighting the amount of undescribed diversity.
Collapse
Affiliation(s)
- Alicia S Arroyo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Romain Lannes
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Departament de Genètica, Microbiologia I Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
42
|
Raymond JA, Morgan-Kiss R, Stahl-Rommel S. Glycerol Is an Osmoprotectant in Two Antarctic Chlamydomonas Species From an Ice-Covered Saline Lake and Is Synthesized by an Unusual Bidomain Enzyme. FRONTIERS IN PLANT SCIENCE 2020; 11:1259. [PMID: 32973829 PMCID: PMC7468427 DOI: 10.3389/fpls.2020.01259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Glycerol, a compatible solute, has previously been found to act as an osmoprotectant in some marine Chlamydomonas species and several species of Dunaliella from hypersaline ponds. Recently, Chlamydomonas reinhardtii and Dunaliella salina were shown to make glycerol with an unusual bidomain enzyme, which appears to be unique to algae, that contains a phosphoserine phosphatase and glycerol-3-phosphate dehydrogenase. Here we report that two psychrophilic species of Chlamydomonas (C. spp. UWO241 and ICE-MDV) from Lake Bonney, Antarctica also produce high levels of glycerol to survive in the lake's saline waters. Glycerol concentration increased linearly with salinity and at 1.3 M NaCl, exceeded 400 mM in C. sp. UWO241, the more salt-tolerant strain. We also show that both species expressed several isoforms of the bidomain enzyme. An analysis of one of the isoforms of C. sp. UWO241 showed that it was strongly upregulated by NaCl and is thus the likely source of glycerol. These results reveal another adaptation of the Lake Bonney Chlamydomonas species that allow them to survive in an extreme polar environment.
Collapse
Affiliation(s)
- James A. Raymond
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | | | | |
Collapse
|
43
|
Lu Y, Ocaña-Pallarès E, López-Escardó D, Dennis SR, Monaghan MT, Ruiz-Trillo I, Spaak P, Wolinska J. Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes. Mol Phylogenet Evol 2020; 151:106891. [PMID: 32562822 DOI: 10.1016/j.ympev.2020.106891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/01/2023]
Abstract
Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century. However, a recent molecular phylogeny based on the 18S rRNA gene suggested it belonged to the Ichthyosporea, a class of protists closely related to animals within the Opisthokonta clade. The exact phylogenetic position of C. mesnili remained uncertain because it appeared in the 18S rRNA tree with a very long branch and separated from all other taxa, suggesting that its position could be artifactual. A better understanding of its phylogenetic position has been constrained by a lack of molecular markers and the difficulty of obtaining a suitable quantity and quality of DNA from in vitro cultures, as this intracellular parasite cannot be cultured without its host. We isolated and collected spores of C. mesnili and sequenced genomic libraries. Phylogenetic analyses of a newly generated multi-protein data set (22 proteins, 4998 amino acids) and of sequences from the 18S rRNA gene both placed C. mesnili within the Ichthyophonida sub-clade of Ichthyosporea, as sister-taxon to Abeoforma whisleri and Pirum gemmata. Our study highlights the utility of metagenomic approaches for obtaining genomic information from intracellular parasites and for more accurate phylogenetic placement in evolutionary studies.
Collapse
Affiliation(s)
- Yameng Lu
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
| | - Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain; Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Stuart R Dennis
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany; Institut für Biologie, Freie Universität Berlin (FU), Berlin, Germany
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Catalonia, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Piet Spaak
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Justyna Wolinska
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institut für Biologie, Freie Universität Berlin (FU), Berlin, Germany
| |
Collapse
|
44
|
Fagotti A, Rossi R, Paracucchi R, Lucentini L, Simoncelli F, Di Rosa I. Developmental stages of Amphibiocystidium sp., a parasite from the Italian stream frog (Rana italica). ZOOLOGY 2020; 141:125813. [PMID: 32623097 DOI: 10.1016/j.zool.2020.125813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Amphibian parasites of the genus Amphibiocystidium are members of the class Ichthyosporea (=Mesomycetozoea), within the order Dermocystida. Most of the species in the Dermocystida fail to grow in ordinary culture media, so their life cycle has only been partially constructed by studies in host tissues. However, to date, there have been few reports on the life cycle of Amphibiocystidium parasites with respect to the developmental life stages of both Dermocystidium and Rhinosporidium parasites. In this study, we provide light and electron microscopic findings of developmental phenotypes of Amphibiocystidium sp., a parasite previously characterized in the Italian stream frog (Rana italica), which has caused an ongoing infection in a natural population of Central Italy. These phenotypes exhibited distinct morphological characteristics that were similar to A. ranae from the skin of R. temporaria, but showed histochemical properties particularly comparable with those of maturing phenotypes of Rhinosporidium seeberi, and compatible with fungal-like parasites. Therefore, for Amphibiocystidium sp. phenotypes, we suggest adopting the terminology used for maturing stages of R. seeberi, such as juvenile sporangia, early mature sporangia and mature sporangia. The characterization of these developmental stages will be useful to increase the understanding of the life cycle of parasites of the genus Amphibiocystidium and of the interactions with their amphibian hosts.
Collapse
Affiliation(s)
- Anna Fagotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Roberta Rossi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Romina Paracucchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
45
|
Rodríguez-Martínez R, Leonard G, Milner DS, Sudek S, Conway M, Moore K, Hudson T, Mahé F, Keeling PJ, Santoro AE, Worden AZ, Richards TA. Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink. ISME JOURNAL 2020; 14:984-998. [PMID: 31919469 PMCID: PMC7082347 DOI: 10.1038/s41396-019-0581-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022]
Abstract
Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the 'ribosomally active' eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic-saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic-saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.
Collapse
Affiliation(s)
- Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - David S Milner
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Mike Conway
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Karen Moore
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Theresa Hudson
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Frédéric Mahé
- CIRAD, UMR LSTM, Montpellier, France.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thomas A Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
46
|
Characterization of Dermotheca sp. Infection in a midwestern state-endangered salamander ( Ambystoma platineum) and a co-occurring common species ( Ambystoma texanum). Parasitology 2020; 147:360-370. [PMID: 31840622 DOI: 10.1017/s0031182019001677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ichthyosporean parasites (order Dermocystida) can cause morbidity and mortality in amphibians, but their ecology and epidemiology remain understudied. We investigated the prevalence, gross and histologic appearance, and molecular phylogeny of a novel dermocystid in the state-endangered silvery salamander (Ambystoma platineum) and the co-occurring, non-threatened small-mouthed salamander (Ambystoma texanum) from Illinois. Silvery salamanders (N = 610) were sampled at six ephemeral wetlands from 2016 to 2018. Beginning in 2017, 1-3 mm raised, white skin nodules were identified in 24 silvery salamanders and two small-mouthed salamanders from five wetlands (prevalence = 0-11.1%). Skin biopsy histology (N = 4) was consistent with dermocystid sporangia, and necropsies (N = 3) identified infrequent hepatic sporangia. Parasitic 18S rRNA sequences (N = 5) from both salamander species were identical, and phylogenetic analysis revealed a close relationship to Dermotheca viridescens. Dermocystids were not identified in museum specimens from the same wetlands (N = 125) dating back to 1973. This is the first report of Dermotheca sp. affecting caudates in the Midwestern United States. Future research is needed to determine the effects of this pathogen on individual and population health, and to assess whether this organism poses a threat to the conservation of ambystomatid salamanders.
Collapse
|
47
|
Mohler D, Wilson MH, Kesner S, Schambach JY, Vaughan D, Frazar M, Stewart J, Groppo J, Pace R, Crocker M. Beneficial re-use of industrial CO 2 emissions using microalgae: Demonstration assessment and biomass characterization. BIORESOURCE TECHNOLOGY 2019; 293:122014. [PMID: 31454733 DOI: 10.1016/j.biortech.2019.122014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
A novel cyclic flow photobioreactor, designed for the capture and recycle of CO2 using microalgae, was deployed at a coal-fired power plant. Scenedesmus acutus was cultured continuously for a four-month period, during which a biomass productivity of 0.1-0.2 g L-1 day-1 was observed. Samples taken for DNA sequencing showed a strong correlation between the composition of the culture and environmental conditions. Dry and liquid biomass samples and the industrial fertilizers used for preparation of the nutrient medium were analyzed to determine the presence of heavy metals (As, Cd, Hg, Se) and results were compared with standardized and/or regulated maximum contaminant levels (MCLs) for metals in several possible algae derived products. Concentrations of the metals in dry algae biomass were consistent with the incorporation of metals from the supplied nutrients.
Collapse
Affiliation(s)
- Daniel Mohler
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - Michael H Wilson
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - Stephanie Kesner
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - Jenna Y Schambach
- College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716, USA
| | - Darin Vaughan
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Molly Frazar
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - Jennifer Stewart
- College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716, USA
| | - Jack Groppo
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - Robert Pace
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Mark Crocker
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
48
|
Spikmans F, Lemmers P, op den Camp HJM, van Haren E, Kappen F, Blaakmeer A, van der Velde G, van Langevelde F, Leuven RSEW, van Alen TA. Impact of the invasive alien topmouth gudgeon (Pseudorasbora parva) and its associated parasite Sphaerothecum destruens on native fish species. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02114-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The Asian cyprinid Pseudorasbora parva is considered to be a major threat to native fish communities and listed as an invasive alien species of European Union concern. Our study aims to gain evidence-based knowledge on the impact of both P. parva and its parasite Sphaerothecum destruens on native fish populations by analysing fish assemblages and body condition of individuals of native fish species in floodplain water bodies that were invaded and uninvaded by P. parva. We explored the use of environmental DNA (eDNA) techniques to detect S. destruens. Prevalence of S. destruens in native fish species was assessed. Fish samplings showed significantly negative correlations between the abundance of P. parva and the native Leucaspius delineatus, and Pungitius pungitius and three biodiversity indices of the fish assemblages (Simpson’s diversity index, Shannon–Wiener index and evenness). Contrastingly, the abundances of the native Gasterosteus aculeatus and P. parva were positively related. In nearly all isolated water bodies with P. parva, this species is outnumbering native fish species. No effect of P. parva presence was found on body condition of native fish species. Sphaerothecum destruens was demonstrated to occur in both P. parva and G. aculeatus. Gasterosteus aculeatus is suggested to be an asymptomatic carrier that can aid the further spread of S. destruens. Analysis of eDNA proved to be a promising method for early detection of S. destruens, here showing that S. destruens presence coincided with P. parva presence. The ongoing invasion of both P. parva and S. destruens is predicted to pose a significant risk to native fish communities.
Collapse
|
49
|
Dudin O, Ondracka A, Grau-Bové X, Haraldsen AA, Toyoda A, Suga H, Bråte J, Ruiz-Trillo I. A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife 2019; 8:49801. [PMID: 31647412 PMCID: PMC6855841 DOI: 10.7554/elife.49801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arthur Ab Haraldsen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
50
|
Hershberger PK, MacKenzie AH, Gregg JL, Lindquist A, Sandell T, Groner ML, Lowry D. A geographic hot spot of Ichthyophonus infection in the southern Salish Sea, USA. DISEASES OF AQUATIC ORGANISMS 2019; 136:157-162. [PMID: 31621648 DOI: 10.3354/dao03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The prevalence of Ichthyophonus infection in Pacific herring Clupea pallasii was spatially heterogeneous in the southern Salish Sea, Washington State, USA. Over the course of 13 mo, 2232 Pacific herring were sampled from 38 midwater trawls throughout the region. Fork length was positively correlated with Ichthyophonus infection at all sites. After controlling for the positive relationship between host size and Ichthyophonus infection, the probability of infection was approximately 6-fold higher in North Hood Canal than in Puget Sound and the northern Straits (12 vs. 2% predicted probability for a 100 mm fish and 30 vs. 7% predicted probability for a 180 mm fish). Temporal changes in Ichthyophonus infection probability were explained by seasonal differences in fish length, owing to Pacific herring life history and movement patterns. Reasons for the spatial heterogeneity remain uncertain but may be associated with density-dependent factors inherent to the boom-bust cycles that commonly occur in clupeid populations.
Collapse
Affiliation(s)
- P K Hershberger
- US Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, WA 98358, USA
| | | | | | | | | | | | | |
Collapse
|