1
|
Ragunathan P, Sae-Lao P, Harikishore A, Daher W, Roquet-Banères F, Kremer L, Bates RW, Grüber G. SQ31f is a potent non-tuberculous mycobacteria antibiotic by specifically targeting the mycobacterial F-ATP synthase. J Antimicrob Chemother 2025; 80:270-280. [PMID: 39499211 DOI: 10.1093/jac/dkae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) infection presents a growing global health problem and requires new antibiotics targeting enzymes that are essential for the pathogens under various metabolic conditions, with high target specificity, good solubility and with attractive combinatory potency. METHODS SQ31f was synthesized by a simplified synthesis protocol, and its effect on growth inhibition of fast- and slow-growing NTM and clinical isolates, whole-cell ATP depletion, ex vivo macrophages and its potency in combination with other antibiotics were evaluated. Molecular docking studies were employed to assess SQ31f's binding mode. RESULTS We present- squaramide SQ31f as a novel anti-NTM inhibitor targeting the NTM F1FO-ATP synthase, essential for ATP formation, regulation of ATP homeostasis and proton motive force under multiple growth conditions. The potency of SQ31f in growth inhibition of fast- and slow-growing NTM and clinical isolates correlates with whole-cell ATP depletion, which is not caused by altered oxygen consumption. SQ31f's high aqueous solubility enables binding to the waterfilled cytosolic proton half channel in the subunits a-c interface of the FO domain. As presented for the fast-growing Mycobacterium abscessus, the compound is active against intracellular-residing M. abscessus. Importantly, SQ31f shows an additive effect of the anti-M. abscessus drugs clofazimine, rifabutin or amikacin, and an attractive potentiation of linezolid, clarithromycin, or the oral pair tebipenem and avibactam. CONCLUSIONS SQ31f represents an attractive inhibitor to tackle the issues associated with NTM drug tolerance and toxicity. Its combinatory potency with anti-M. abscessus drugs holds potential for overcoming resistance, while also reducing intensive compound synthesis and associated costs.
Collapse
Affiliation(s)
- Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Patcharaporn Sae-Lao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Roderick W Bates
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore 138671, Republic of Singapore
| |
Collapse
|
2
|
Vladimirova ME, Roumiantseva ML, Saksaganskaia AS, Muntyan VS, Gaponov SP, Mengoni A. Hot Spots of Site-Specific Integration into the Sinorhizobium meliloti Chromosome. Int J Mol Sci 2024; 25:10421. [PMID: 39408745 PMCID: PMC11476347 DOI: 10.3390/ijms251910421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The diversity of phage-related sequences (PRSs) and their site-specific integration into the genomes of nonpathogenic, agriculturally valuable, nitrogen-fixing root nodule bacteria, such as Sinorhizobium meliloti, were evaluated in this study. A total of 314 PRSs, ranging in size from 3.24 kb to 88.98 kb, were identified in the genomes of 27 S. meliloti strains. The amount of genetic information foreign to S. meliloti accumulated in all identified PRSs was 6.30 Mb. However, more than 53% of this information was contained in prophages (Phs) and genomic islands (GIs) integrated into genes encoding tRNAs (tRNA genes) located on the chromosomes of the rhizobial strains studied. It was found that phiLM21-like Phs were predominantly abundant in the genomes of S. meliloti strains of distant geographical origin, whereas RR1-A- and 16-3-like Phs were much less common. In addition, GIs predominantly contained fragments of phages infecting bacteria of distant taxa, while rhizobiophage-like sequences were unique. A site-specific integration analysis revealed that not all tRNA genes in S. meliloti are integration sites, but among those in which integration occurred, there were "hot spots" of integration into which either Phs or GIs were predominantly inserted. For the first time, it is shown that at these integration "hot spots", not only is the homology of attP and attB strictly preserved, but integrases in PRSs similar to those of phages infecting the Proteobacteria genera Azospirillum or Pseudomonas are also present. The data presented greatly expand the understanding of the fate of phage-related sequences in host bacterial genomes and also raise new questions about the role of phages in bacterial-phage coevolution.
Collapse
Affiliation(s)
- Maria E. Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Marina L. Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Alla S. Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Victoria S. Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
3
|
Reed TT, Kendal AH, Wozniak KJ, Simmons LA. DNA replication initiation timing is important for maintaining genome integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599555. [PMID: 38948856 PMCID: PMC11212987 DOI: 10.1101/2024.06.18.599555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
DNA replication is regulated by factors that promote or inhibit initiation. In Bacillus subtilis, YabA is a negative regulator of DNA replication initiation while the newly identified kinase CcrZ is a positive regulator. The consequences of under-initiation or over-initiation of DNA replication to genome stability remain unclear. In this work, we measure origin to terminus ratios as a proxy for replication initiation activity. We show that ΔccrZ and several ccrZ alleles under-initiate DNA replication while ablation of yabA or overproduction of CcrZ leads to over-initiation. We find that cells under-initiating DNA replication have few incidents of replication fork stress as determined by low formation of RecA-GFP foci compared with wild type. In contrast, cells over-initiating DNA replication show levels of RecA-GFP foci formation analogous to cells directly challenged with DNA damaging agents. We show that cells under-initiating and over-initiating DNA replication were both sensitive to mitomycin C and that changes in replication initiation frequency cause increased sensitivity to genotoxic stress. With these results, we propose that cells under-initiating DNA replication are sensitive to DNA damage due to a shortage of DNA for repair through homologous recombination. For cells over-initiating DNA replication, we propose that an increase in the number of replication forks leads to replication fork stress which is further exacerbated by chromosomal DNA damage. Together, our study shows that DNA replication initiation frequency must be tightly controlled as changes in initiation influence replication fork fate and the capacity of cells to efficiently repair damage to their genetic material.
Collapse
Affiliation(s)
- Tristan T. Reed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Abigail H. Kendal
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Present address: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Erkelens AM, van Erp B, Meijer WJJ, Dame RT. Rok from B. subtilis: Bridging genome structure and transcription regulation. Mol Microbiol 2024. [PMID: 38511404 DOI: 10.1111/mmi.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Bacterial genomes are folded and organized into compact yet dynamic structures, called nucleoids. Nucleoid orchestration involves many factors at multiple length scales, such as nucleoid-associated proteins and liquid-liquid phase separation, and has to be compatible with replication and transcription. Possibly, genome organization plays an intrinsic role in transcription regulation, in addition to classical transcription factors. In this review, we provide arguments supporting this view using the Gram-positive bacterium Bacillus subtilis as a model. Proteins BsSMC, HBsu and Rok all impact the structure of the B. subtilis chromosome. Particularly for Rok, there is compelling evidence that it combines its structural function with a role as global gene regulator. Many studies describe either function of Rok, but rarely both are addressed at the same time. Here, we review both sides of the coin and integrate them into one model. Rok forms unusually stable DNA-DNA bridges and this ability likely underlies its repressive effect on transcription by either preventing RNA polymerase from binding to DNA or trapping it inside DNA loops. Partner proteins are needed to change or relieve Rok-mediated gene repression. Lastly, we investigate which features characterize H-NS-like proteins, a family that, at present, lacks a clear definition.
Collapse
Affiliation(s)
- Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, the Netherlands
| | - Bert van Erp
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, the Netherlands
| | - Wilfried J J Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Madrid, Spain
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
5
|
Zhang D, Wu Q, Zhao Y, Yan Z, Xiao A, Yu H, Cao Y. Dual RNA-Seq Analysis Pinpoints a Balanced Regulation between Symbiosis and Immunity in Medicago truncatula- Sinorhizobium meliloti Symbiotic Nodules. Int J Mol Sci 2023; 24:16178. [PMID: 38003367 PMCID: PMC10671737 DOI: 10.3390/ijms242216178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| |
Collapse
|
6
|
Anderson ME, Smith JL, Grossman AD. Multiple mechanisms for overcoming lethal over-initiation of DNA replication. Mol Microbiol 2022; 118:426-442. [PMID: 36053906 PMCID: PMC9825946 DOI: 10.1111/mmi.14976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
DNA replication is highly regulated and primarily controlled at the step of initiation. In bacteria, the replication initiator DnaA and the origin of replication oriC are the primary targets of regulation. Perturbations that increase or decrease replication initiation can cause a decrease in cell fitness. We found that multiple mechanisms, including an increase in replication elongation and a decrease in replication initiation, can compensate for lethal over-initiation. We found that in Bacillus subtilis, under conditions of rapid growth, loss of yabA, a negative regulator of replication initiation, caused a synthetic lethal phenotype when combined with the dnaA1 mutation that also causes replication over-initiation. We isolated several classes of suppressors that restored viability to dnaA1 ∆yabA double mutants. Some suppressors (relA, nrdR) stimulated replication elongation. Others (dnaC, cshA) caused a decrease in replication initiation. One class of suppressors decreased replication initiation in the dnaA1 ∆yabA mutant by causing a decrease in the amount of the replicative helicase, DnaC. We found that decreased levels of helicase in otherwise wild-type cells were sufficient to decrease replication initiation during rapid growth, indicating that the replicative helicase is limiting for replication initiation. Our results highlight the multiple mechanisms cells use to regulate DNA replication.
Collapse
Affiliation(s)
- Mary E. Anderson
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Janet L. Smith
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alan D. Grossman
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
7
|
McLean EK, Nye TM, Lowder FC, Simmons LA. The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria. Annu Rev Microbiol 2022; 76:461-480. [PMID: 35655343 PMCID: PMC9527769 DOI: 10.1146/annurev-micro-102521-014450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Collapse
Affiliation(s)
- Emma K McLean
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Taylor M Nye
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
- Current affiliation: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frances C Lowder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
8
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
9
|
Wozniak KJ, Burby PE, Nandakumar J, Simmons LA. Structure and kinase activity of bacterial cell cycle regulator CcrZ. PLoS Genet 2022; 18:e1010196. [PMID: 35576203 PMCID: PMC9135335 DOI: 10.1371/journal.pgen.1010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/26/2022] [Accepted: 04/09/2022] [Indexed: 11/24/2022] Open
Abstract
CcrZ is a recently discovered cell cycle regulator that connects DNA replication initiation with cell division in pneumococci and may have a similar function in related bacteria. CcrZ is also annotated as a putative kinase, suggesting that CcrZ homologs could represent a novel family of bacterial kinase-dependent cell cycle regulators. Here, we investigate the CcrZ homolog in Bacillus subtilis and show that cells lacking ccrZ are sensitive to a broad range of DNA damage. We demonstrate that increased expression of ccrZ results in over-initiation of DNA replication. In addition, increased expression of CcrZ activates the DNA damage response. Using sensitivity to DNA damage as a proxy, we show that the negative regulator for replication initiation (yabA) and ccrZ function in the same pathway. We show that CcrZ interacts with replication initiation proteins DnaA and DnaB, further suggesting that CcrZ is important for replication timing. To understand how CcrZ functions, we solved the crystal structure bound to AMP-PNP to 2.6 Å resolution. The CcrZ structure most closely resembles choline kinases, consisting of a bilobal structure with a cleft between the two lobes for binding ATP and substrate. Inspection of the structure reveals a major restructuring of the substrate-binding site of CcrZ relative to the choline-binding pocket of choline kinases, consistent with our inability to detect activity with choline for this protein. Instead, CcrZ shows activity on D-ribose and 2-deoxy-D-ribose, indicating adaptation of the choline kinase fold in CcrZ to phosphorylate a novel substrate. We show that integrity of the kinase active site is required for ATPase activity in vitro and for function in vivo. This work provides structural, biochemical, and functional insight into a newly identified, and conserved group of bacterial kinases that regulate DNA replication initiation.
Collapse
Affiliation(s)
- Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
10
|
Putative Cooperative ATP-DnaA Binding to Double-Stranded DnaA Box and Single-Stranded DnaA-Trio Motif upon Helicobacter pylori Replication Initiation Complex Assembly. Int J Mol Sci 2021; 22:ijms22126643. [PMID: 34205762 PMCID: PMC8235120 DOI: 10.3390/ijms22126643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA-ssDNA oligomer formation-stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP-DnaA boxes. Indeed, in vitro ATP-DnaA unwinds H. pylori oriC more efficiently than ADP-DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly.
Collapse
|
11
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
12
|
Zhang Q, Zhang Z, Shi H. Cell Size Is Coordinated with Cell Cycle by Regulating Initiator Protein DnaA in E. coli. Biophys J 2020; 119:2537-2557. [PMID: 33189684 DOI: 10.1016/j.bpj.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Sixty years ago, bacterial cell size was found to be an exponential function of growth rate. Fifty years ago, a more general relationship was proposed, in which cell mass was equal to the initiation mass multiplied by 2 to the power of the ratio of the total time of C and D periods to the doubling time. This relationship has recently been experimentally confirmed by perturbing doubling time, C period, D period, or initiation mass. However, the underlying molecular mechanism remains unclear. Here, we developed a theoretical model for initiator protein DnaA mediating DNA replication initiation in Escherichia coli. We introduced an initiation probability function for competitive binding of DnaA-ATP and DnaA-ADP at oriC. We established a kinetic description of regulatory processes (e.g., expression regulation, titration, inactivation, and reactivation) of DnaA. Cell size as a spatial constraint also participates in the regulation of DnaA. By simulating DnaA kinetics, we obtained a regular DnaA oscillation coordinated with cell cycle and a converged cell size that matches replication initiation frequency to the growth rate. The relationship between the simulated cell size and growth rate, C period, D period, or initiation mass reproduces experimental results. The model also predicts how DnaA number and initiation mass vary with perturbation parameters, comparable with experimental data. The results suggest that 1) when growth rate, C period, or D period changes, the regulation of DnaA determines the invariance of initiation mass; 2) ppGpp inhibition of replication initiation may be important for the growth rate independence of initiation mass because three possible mechanisms therein produce different DnaA dynamics, which is experimentally verifiable; and 3) perturbation of some DnaA regulatory process causes a changing initiation mass or even an abnormal cell cycle. This study may provide clues for concerted control of cell size and cell cycle in synthetic biology.
Collapse
Affiliation(s)
- Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhichao Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Kalaivani R, Maruthupandy M, Muneeswaran T, Singh M, Sureshkumar S, Anand M, Ramakritinan C, Quero F, Kumaraguru A. Chitosan mediated gold nanoparticles against pathogenic bacteria, fungal strains and MCF-7 cancer cells. Int J Biol Macromol 2020; 146:560-568. [DOI: 10.1016/j.ijbiomac.2020.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
|
14
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
15
|
Disrupting coupling within mycobacterial F-ATP synthases subunit ε causes dysregulated energy production and cell wall biosynthesis. Sci Rep 2019; 9:16759. [PMID: 31727946 PMCID: PMC6856130 DOI: 10.1038/s41598-019-53107-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε’s coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.
Collapse
|
16
|
Blocking the Trigger: Inhibition of the Initiation of Bacterial Chromosome Replication as an Antimicrobial Strategy. Antibiotics (Basel) 2019; 8:antibiotics8030111. [PMID: 31390740 PMCID: PMC6784150 DOI: 10.3390/antibiotics8030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
All bacterial cells must duplicate their genomes prior to dividing into two identical daughter cells. Chromosome replication is triggered when a nucleoprotein complex, termed the orisome, assembles, unwinds the duplex DNA, and recruits the proteins required to establish new replication forks. Obviously, the initiation of chromosome replication is essential to bacterial reproduction, but this process is not inhibited by any of the currently-used antimicrobial agents. Given the urgent need for new antibiotics to combat drug-resistant bacteria, it is logical to evaluate whether or not unexploited bacterial processes, such as orisome assembly, should be more closely examined for sources of novel drug targets. This review will summarize current knowledge about the proteins required for bacterial chromosome initiation, as well as how orisomes assemble and are regulated. Based upon this information, we discuss current efforts and potential strategies and challenges for inhibiting this initiation pharmacologically.
Collapse
|
17
|
Grimwade JE, Rozgaja TA, Gupta R, Dyson K, Rao P, Leonard AC. Origin recognition is the predominant role for DnaA-ATP in initiation of chromosome replication. Nucleic Acids Res 2019; 46:6140-6151. [PMID: 29800247 PMCID: PMC6158602 DOI: 10.1093/nar/gky457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
In all cells, initiation of chromosome replication depends on the activity of AAA+ initiator proteins that form complexes with replication origin DNA. In bacteria, the conserved, adenosine triphosphate (ATP)-regulated initiator protein, DnaA, forms a complex with the origin, oriC, that mediates DNA strand separation and recruitment of replication machinery. Complex assembly and origin activation requires DnaA-ATP, which differs from DnaA-ADP in its ability to cooperatively bind specific low affinity sites and also to oligomerize into helical filaments. The degree to which each of these activities contributes to the DnaA-ATP requirement for initiation is not known. In this study, we compared the DnaA-ATP dependence of initiation from wild-type Escherichia coli oriC and a synthetic origin (oriCallADP), whose multiple low affinity DnaA sites bind DnaA-ATP and DnaA-ADP similarly. OriCallADP was fully occupied and unwound by DnaA-ADP in vitro, and, in vivo, oriCallADP suppressed lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, loss of preferential DnaA-ATP binding caused over-initiation and increased sensitivity to replicative stress. The findings indicate both DnaA-ATP and DnaA-ADP can perform most of the mechanical functions needed for origin activation, and suggest that a key reason for ATP-regulation of DnaA is to control replication initiation frequency.
Collapse
Affiliation(s)
- Julia E Grimwade
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Tania A Rozgaja
- AREVA Inc North America, 6100 Southwest Blvd #400, Benbrook, TX 76109, USA
| | - Rajat Gupta
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Kyle Dyson
- University of Florida College of Medicine, P.O. Box 100215, Gainesville, FL 32610, USA
| | - Prassanna Rao
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| |
Collapse
|
18
|
Martin E, Williams HEL, Pitoulias M, Stevens D, Winterhalter C, Craggs TD, Murray H, Searle MS, Soultanas P. DNA replication initiation in Bacillus subtilis: structural and functional characterization of the essential DnaA-DnaD interaction. Nucleic Acids Res 2019; 47:2101-2112. [PMID: 30534966 PMCID: PMC6393240 DOI: 10.1093/nar/gky1220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
The homotetrameric DnaD protein is essential in low G+C content gram positive bacteria and is involved in replication initiation at oriC and re-start of collapsed replication forks. It interacts with the ubiquitously conserved bacterial master replication initiation protein DnaA at the oriC but structural and functional details of this interaction are lacking, thus contributing to our incomplete understanding of the molecular details that underpin replication initiation in bacteria. DnaD comprises N-terminal (DDBH1) and C-terminal (DDBH2) domains, with contradicting bacterial two-hybrid and yeast two-hybrid studies suggesting that either the former or the latter interact with DnaA, respectively. Using Nuclear Magnetic Resonance (NMR) we showed that both DDBH1 and DDBH2 interact with the N-terminal domain I of DnaA and studied the DDBH2 interaction in structural detail. We revealed two families of conformations for the DDBH2-DnaA domain I complex and showed that the DnaA-interaction patch of DnaD is distinct from the DNA-interaction patch, suggesting that DnaD can bind simultaneously DNA and DnaA. Using sensitive single-molecule FRET techniques we revealed that DnaD remodels DnaA-DNA filaments consistent with stretching and/or untwisting. Furthermore, the DNA binding activity of DnaD is redundant for this filament remodelling. This in turn suggests that DnaA and DnaD are working collaboratively in the oriC to locally melt the DNA duplex during replication initiation.
Collapse
Affiliation(s)
- Eleyna Martin
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Timothy D Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence may also be addressed to Mark S. Searle. Tel: +44 115 9513567; Fax: +44 115 9513564;
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- To whom correspondence should be addressed. Tel: +44 115 9513525; Fax: +44 115 9513564;
| |
Collapse
|
19
|
Liu Y, Xie Z, Zhou X, Li W, Zhang H, He ZG. NapM enhances the survival of Mycobacterium tuberculosis under stress and in macrophages. Commun Biol 2019; 2:65. [PMID: 30793043 PMCID: PMC6377630 DOI: 10.1038/s42003-019-0314-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Hostile environmental cues cause Mycobacterium tuberculosis to enter a state of slow growth for survival. However, the underlying regulatory mechanism remains unclear. DnaA is essential for DNA replication initiation and represents an efficient target for growth regulation in bacteria. Here, we show that the nucleoid-associated protein NapM is a DnaA antagonist, protecting M. tuberculosis from stress-mediated killing. NapM can be induced by diverse stressful signals. It binds to DnaA to inhibit both its DNA replication origin-binding and ATP hydrolysis activity. As a DnaA antagonist, NapM inhibits the mycobacterial DNA synthesis in vitro and in vivo in M. tuberculosis. Furthermore, we show that NapM contributes to the survival of M. tuberculosis under stress and within macrophages during infection. Our findings provide a previously unidentified mechanism of mycobacterial survival under stress and also suggest NapM as a potential drug target for tuberculosis control.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiling Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihui Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zheng-Guo He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Ricke SC, Dawoud TM, Kim SA, Park SH, Kwon YM. Salmonella Cold Stress Response: Mechanisms and Occurrence in Foods. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:1-38. [PMID: 30143250 DOI: 10.1016/bs.aambs.2018.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since bacteria in foods often encounter various cold environments during food processing, such as chilling, cold chain distribution, and cold storage, lower temperatures can become a major stress environment for foodborne pathogens. Bacterial responses in stressful environments have been considered in the past, but now the importance of stress responses at the molecular level is becoming recognized. Documenting how bacterial changes occur at the molecular level may help to achieve the in-depth understanding of stress responses, to predict microbial fate when they encounter cold temperatures, and to design and develop more effective strategies to control pathogens in food for ensuring food safety. Microorganisms differ in responding to a sudden downshift in temperature and this, in turn, impacts their metabolic processes and can cause various structural modifications. In this review, the fundamental aspects of bacterial cold stress responses focused on cell membrane modification, DNA supercoiling modification, transcriptional and translational responses, cold-induced protein synthesis including CspA, CsdA, NusA, DnaA, RecA, RbfA, PNPase, KsgA, SrmB, trigger factors, and initiation factors are discussed. In this context, specific Salmonella responses to cold temperature including growth, injury, and survival and their physiological and genetic responses to cold environments with a focus on cross-protection, different gene expression levels, and virulence factors will be discussed.
Collapse
Affiliation(s)
- Steven C Ricke
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Food Science, University of Arkansas, Fayetteville, AR, United States.
| | - Turki M Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Food Science, University of Arkansas, Fayetteville, AR, United States; Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
21
|
Abstract
How cells establish, maintain, and modulate size has always been an area of great interest and fascination. Until recently, technical limitations curtailed our ability to understand the molecular basis of bacterial cell size control. In the past decade, advances in microfluidics, imaging, and high-throughput single-cell analysis, however, have led to a flurry of work revealing size to be a highly complex trait involving the integration of three core aspects of bacterial physiology: metabolism, growth, and cell cycle progression.
Collapse
Affiliation(s)
- Corey S Westfall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130; ,
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130; ,
| |
Collapse
|
22
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
23
|
Felletti M, Omnus DJ, Jonas K. Regulation of the replication initiator DnaA in Caulobacter crescentus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:697-705. [PMID: 29382570 DOI: 10.1016/j.bbagrm.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing α-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an α-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Deike J Omnus
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
24
|
van Eijk E, Paschalis V, Green M, Friggen AH, Larson MA, Spriggs K, Briggs GS, Soultanas P, Smits WK. Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen Clostridium difficile. Open Biol 2017; 6:rsob.160272. [PMID: 28003473 PMCID: PMC5204125 DOI: 10.1098/rsob.160272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
DNA replication is an essential and conserved process in all domains of life and may serve as a target for the development of new antimicrobials. However, such developments are hindered by subtle mechanistic differences and limited understanding of DNA replication in pathogenic microorganisms. Clostridium difficile is the main cause of healthcare-associated diarrhoea and its DNA replication machinery is virtually uncharacterized. We identify and characterize the mechanistic details of the putative replicative helicase (CD3657), helicase-loader ATPase (CD3654) and primase (CD1454) of C. difficile, and reconstitute helicase and primase activities in vitro. We demonstrate a direct and ATP-dependent interaction between the helicase loader and the helicase. Furthermore, we find that helicase activity is dependent on the presence of primase in vitro. The inherent trinucleotide specificity of primase is determined by a single lysine residue and is similar to the primase of the extreme thermophile Aquifex aeolicus. However, the presence of helicase allows more efficient de novo synthesis of RNA primers from non-preferred trinucleotides. Thus, loader–helicase–primase interactions, which crucially mediate helicase loading and activation during DNA replication in all organisms, differ critically in C. difficile from that of the well-studied Gram-positive Bacillus subtilis model.
Collapse
Affiliation(s)
- Erika van Eijk
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Matthew Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Annemieke H Friggen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.,National Strategic Research Institute, Omaha, NE 68105, USA
| | | | - Geoffrey S Briggs
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Panos Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Kim JS, Nanfara MT, Chodavarapu S, Jin KS, Babu VMP, Ghazy MA, Chung S, Kaguni JM, Sutton MD, Cho Y. Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing. Nucleic Acids Res 2017; 45:3888-3905. [PMID: 28168278 PMCID: PMC5397184 DOI: 10.1093/nar/gkx081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda–sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda–β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda–β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda–β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function.
Collapse
Affiliation(s)
- Jin S Kim
- Department of Life Science, Pohang University of Science and Technology, 35398 Pohang, South Korea
| | - Michael T Nanfara
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mi 48824-1319, USA
| | - Kyeong S Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 35398 Pohang, South Korea
| | - Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Mohamed A Ghazy
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Scisung Chung
- Department of Life Science, Pohang University of Science and Technology, 35398 Pohang, South Korea
| | - Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mi 48824-1319, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, 35398 Pohang, South Korea
| |
Collapse
|
26
|
Washington TA, Smith JL, Grossman AD. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis. Mol Microbiol 2017; 106:109-128. [PMID: 28752667 DOI: 10.1111/mmi.13755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
DnaA is the widely conserved bacterial AAA+ ATPase that functions as both the replication initiator and a transcription factor. In many organisms, DnaA controls expression of its own gene and likely several others during growth and in response to replication stress. To evaluate the effects of DnaA on gene expression, separate from its role in replication initiation, we analyzed changes in mRNA levels in Bacillus subtilis cells with and without dnaA, using engineered strains in which dnaA is not essential. We found that dnaA was required for many of the changes in gene expression in response to replication stress. We also found that dnaA indirectly affected expression of several regulons during growth, including those controlled by the transcription factors Spo0A, AbrB, PhoP, SinR, RemA, Rok and YvrH. These effects were largely mediated by the effects of DnaA on expression of sda. DnaA activates transcription of sda, and Sda inhibits histidine protein kinases required for activation of the transcription factor Spo0A. We also found that loss of dnaA caused a decrease in the development of genetic competence. Together, our results indicate that DnaA plays an important role in modulating cell physiology, separate from its role in replication initiation.
Collapse
Affiliation(s)
- Tracy A Washington
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Pang T, Wang X, Lim HC, Bernhardt TG, Rudner DZ. The nucleoid occlusion factor Noc controls DNA replication initiation in Staphylococcus aureus. PLoS Genet 2017; 13:e1006908. [PMID: 28723932 PMCID: PMC5540599 DOI: 10.1371/journal.pgen.1006908] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/02/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Successive division events in the spherically shaped bacterium Staphylococcus aureus are oriented in three alternating perpendicular planes. The mechanisms that underlie this relatively unique pattern of division and coordinate it with chromosome segregation remain largely unknown. Thus far, the only known spatial regulator of division in this organism is the nucleoid occlusion protein Noc that inhibits assembly of the cytokinetic ring over the chromosome. However, Noc is not essential in S. aureus, indicating that additional regulators are likely to exist. To search for these factors, we screened for mutants that are synthetic lethal with Noc inactivation. Our characterization of these mutants led to the discovery that S. aureus Noc also controls the initiation of DNA replication. We show that cells lacking Noc over-initiate and mutations in the initiator gene dnaA suppress this defect. Importantly, these dnaA mutations also partially suppress the division problems associated with Δnoc. Reciprocally, we show that over-expression of DnaA enhances the over-initiation and cell division phenotypes of the Δnoc mutant. Thus, a single factor both blocks cell division over chromosomes and helps to ensure that new rounds of DNA replication are not initiated prematurely. This degree of economy in coordinating key cell biological processes has not been observed in rod-shaped bacteria and may reflect the challenges posed by the reduced cell volume and complicated division pattern of this spherical pathogen.
Collapse
Affiliation(s)
- Ting Pang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Hoong Chuin Lim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DZR); (TGB)
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DZR); (TGB)
| |
Collapse
|
28
|
Babu VMP, Itsko M, Baxter JC, Schaaper RM, Sutton MD. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Δhda E. coli strain. Mol Microbiol 2017; 104:377-399. [PMID: 28130843 DOI: 10.1111/mmi.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
The ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C. Strains impaired for the other regulators of initiation (i.e., ΔseqA or ΔdatA) fail to exhibit cold sensitivity. The goal of this study was to gain insight into why loss of hda function impedes growth. We used a genetic approach to isolate 9 suppressors of Δhda cold sensitivity, and characterized the mechanistic basis by which these suppressors alleviated Δhda cold sensitivity. Taken together, our results provide strong support for the view that the fundamental defect associated with Δhda is diminished levels of DNA precursors, particularly dGTP and dATP. We discuss possible mechanisms by which the suppressors identified here may regulate dNTP pool size, as well as similarities in phenotypes between the Δhda strain and hda+ strains exposed to the ribonucleotide reductase inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Itsko
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jamie C Baxter
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
29
|
Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology. PLoS One 2017; 12:e0168818. [PMID: 28081159 PMCID: PMC5231179 DOI: 10.1371/journal.pone.0168818] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/17/2016] [Indexed: 12/02/2022] Open
Abstract
Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential.
Collapse
|
30
|
Jameson KH, Wilkinson AJ. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes (Basel) 2017; 8:E22. [PMID: 28075389 PMCID: PMC5295017 DOI: 10.3390/genes8010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.
Collapse
Affiliation(s)
- Katie H Jameson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
31
|
Wessel SR, Cornilescu CC, Cornilescu G, Metz A, Leroux M, Hu K, Sandler SJ, Markley JL, Keck JL. Structure and Function of the PriC DNA Replication Restart Protein. J Biol Chem 2016; 291:18384-96. [PMID: 27382050 DOI: 10.1074/jbc.m116.738781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks.
Collapse
Affiliation(s)
- Sarah R Wessel
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Claudia C Cornilescu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Alice Metz
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maxime Leroux
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kaifeng Hu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Steven J Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706,
| |
Collapse
|
32
|
Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. Semin Cell Dev Biol 2016; 53:2-9. [DOI: 10.1016/j.semcdb.2015.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
|
33
|
Frage B, Döhlemann J, Robledo M, Lucena D, Sobetzko P, Graumann PL, Becker A. Spatiotemporal choreography of chromosome and megaplasmids in theSinorhizobium meliloticell cycle. Mol Microbiol 2016; 100:808-23. [DOI: 10.1111/mmi.13351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Frage
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Marta Robledo
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Daniella Lucena
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, 35032; Marburg Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Peter L. Graumann
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, 35032; Marburg Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| |
Collapse
|
34
|
Abstract
Cells of a given type maintain a characteristic cell size to function efficiently in their ecological or organismal context. They achieve this through the regulation of growth rates or by actively sensing size and coupling this signal to cell division. We focus this review on potential size-sensing mechanisms, including geometric, external cue, and titration mechanisms. Mechanisms that titrate proteins against DNA are of particular interest because they are consistent with the robust correlation of DNA content and cell size. We review the literature, which suggests that titration mechanisms may underlie cell-size sensing in Xenopus embryos, budding yeast, and Escherichia coli, whereas alternative mechanisms may function in fission yeast.
Collapse
Affiliation(s)
- Amanda A Amodeo
- Department of Biology, Stanford University, Stanford, California 94305
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
35
|
Verma V, Kumar A, Nitharwal RG, Alam J, Mukhopadhyay AK, Dasgupta S, Dhar SK. 'Modulation of the enzymatic activities of replicative helicase (DnaB) by interaction with Hp0897: a possible mechanism for helicase loading in Helicobacter pylori'. Nucleic Acids Res 2016; 44:3288-303. [PMID: 27001508 PMCID: PMC4838378 DOI: 10.1093/nar/gkw148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
DNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site. In the absence of an obvious DnaC homologue in H. pylori, the question arises as to whether HpDnaB helicase is loaded at the Hp-replication origin by itself or is assisted by other unidentified protein(s). A high-throughput yeast two-hybrid study has revealed two proteins of unknown functions (Hp0897 and Hp0340) that interact with HpDnaB. Here we demonstrate that Hp0897 interacts with HpDnaB helicase in vitro as well as in vivo. Furthermore, the interaction stimulates the DNA binding activity of HpDnaB and modulates its adenosine triphosphate hydrolysis and helicase activities significantly. Prior complex formation of Hp0897 and HpDnaB enhances the binding/loading of DnaB onto DNA. Hp0897, along with HpDnaB, colocalizes with replication complex at initiation but does not move with the replisome during elongation. Together, these results suggest a possible role of Hp0897 in loading of HpDnaB at oriC.
Collapse
Affiliation(s)
- Vijay Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ajay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ram Gopal Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala-75124, Sweden
| | - Jawed Alam
- National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | | | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala-75124, Sweden
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
36
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
37
|
Dies M, Galera-Laporta L, Garcia-Ojalvo J. Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle. Integr Biol (Camb) 2015; 8:533-41. [PMID: 26674636 DOI: 10.1039/c5ib00262a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correct functioning of cells requires the orchestration of multiple cellular processes, many of which are inherently dynamical. The conditions under which these dynamical processes entrain each other remain unclear. Here we use synthetic biology to address this question in the case of concurrent cellular oscillations. Specifically, we study at the single-cell level the interaction between the cell division cycle and a robust synthetic gene oscillator in Escherichia coli. Our results suggest that cell division is able to partially entrain the synthetic oscillations under normal growth conditions, by driving the periodic replication of the genes involved in the oscillator. Coupling the synthetic oscillations back into the cell cycle via the expression of a key regulator of chromosome replication increases the synchronization between the two periodic processes. A simple computational model allows us to confirm this effect.
Collapse
Affiliation(s)
- Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
38
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
39
|
The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA. J Bacteriol 2015; 197:3521-32. [PMID: 26324449 DOI: 10.1128/jb.00460-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It is not known how diverse bacteria regulate chromosome replication. Based on Escherichia coli studies, DnaA initiates replication and the homolog of DnaA (Hda) inactivates DnaA using the RIDA (regulatory inactivation of DnaA) mechanism that thereby prevents extra chromosome replication cycles. RIDA may be widespread, because the distantly related Caulobacter crescentus homolog HdaA also prevents extra chromosome replication (J. Collier and L. Shapiro, J Bacteriol 191:5706-5715, 2009, http://dx.doi.org/10.1128/JB.00525-09). To further study the HdaA/RIDA mechanism, we created a C. crescentus strain that shuts off hdaA transcription and rapidly clears HdaA protein. We confirm that HdaA prevents extra replication, since cells lacking HdaA accumulate extra chromosome DNA. DnaA binds nucleotides ATP and ADP, and our results are consistent with the established E. coli mechanism whereby Hda converts active DnaA-ATP to inactive DnaA-ADP. However, unlike E. coli DnaA, C. crescentus DnaA is also regulated by selective proteolysis. C. crescentus cells lacking HdaA reduce DnaA proteolysis in logarithmically growing cells, thereby implicating HdaA in this selective DnaA turnover mechanism. Also, wild-type C. crescentus cells remove all DnaA protein when they enter stationary phase. However, cells lacking HdaA retain stable DnaA protein even when they stop growing in nutrient-depleted medium that induces complete DnaA proteolysis in wild-type cells. Additional experiments argue for a distinct HdaA-dependent mechanism that selectively removes DnaA prior to stationary phase. Related freshwater Caulobacter species also remove DnaA during entry to stationary phase, implying a wider role for HdaA as a novel component of programed proteolysis. IMPORTANCE Bacteria must regulate chromosome replication, and yet the mechanisms are not completely understood and not fully exploited for antibiotic development. Based on Escherichia coli studies, DnaA initiates replication, and the homolog of DnaA (Hda) inactivates DnaA to prevent extra replication. The distantly related Caulobacter crescentus homolog HdaA also regulates chromosome replication. Here we unexpectedly discovered that unlike the E. coli Hda, the C. crescentus HdaA also regulates DnaA proteolysis. Furthermore, this HdaA proteolysis acts in logarithmically growing and in stationary-phase cells and therefore in two very different physiological states. We argue that HdaA acts to help time chromosome replications in logarithmically growing cells and that it is an unexpected component of the programed entry into stationary phase.
Collapse
|
40
|
N-terminal-mediated oligomerization of DnaA drives the occupancy-dependent rejuvenation of the protein on the membrane. Biosci Rep 2015; 35:BSR20150175. [PMID: 26272946 PMCID: PMC4721551 DOI: 10.1042/bsr20150175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/17/2023] Open
Abstract
Initiation of DNA replication in bacteria requires recharging of DnaA with ATP. We demonstrate in the present study that this process involves the N-terminal domain-mediated oligomerization of the protein on the membrane, which can be modelled as a surface density-driven phase transition switch. DnaA, the initiator of chromosome replication in most known eubacteria species, is activated once per cell division cycle. Its overall activity cycle is driven by ATP hydrolysis and ADP–ATP exchange. The latter can be promoted by binding to specific sequences on the chromosome and/or to acidic phospholipids in the membrane. We have previously shown that the transition into an active form (rejuvenation) is strongly co-operative with respect to DnaA membrane occupancy. Only at low membrane occupancy is DnaA reactivation efficiently catalysed by the acidic phospholipids. The present study was aimed at unravelling the molecular mechanism underlying the occupancy-dependent DnaA rejuvenation. We found that truncation of the DnaA N-terminal completely abolishes the co-operative transformation between the high and low occupancy states (I and II respectively) without affecting the membrane binding. The environmentally sensitive fluorophore specifically attached to the N-terminal cysteines of DnaA reported on occupancy-correlated changes in its vicinity. Cross-linking of DnaA with a short homobifunctional reagent revealed that state II of the protein on the membrane corresponds to a distinct oligomeric form of DnaA. The kinetic transition of DnaA on the membrane surface is described in the present study by a generalized 2D condensation phase transition model, confirming the existence of two states of DnaA on the membrane and pointing to the possibility that membrane protein density serves as an on-off switch in vivo. We conclude that the DnaA conformation attained at low surface density drives its N-terminal-mediated oligomerization, which is presumably a pre-requisite for facilitated nt exchange.
Collapse
|
41
|
Smith JL, Grossman AD. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA. PLoS Genet 2015; 11:e1005258. [PMID: 26020636 PMCID: PMC4447404 DOI: 10.1371/journal.pgen.1005258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq). We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.
Collapse
Affiliation(s)
- Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Ostrer L, Hamann BL, Khodursky A. Perturbed states of the bacterial chromosome: a thymineless death case study. Front Microbiol 2015; 6:363. [PMID: 25964781 PMCID: PMC4408854 DOI: 10.3389/fmicb.2015.00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/10/2015] [Indexed: 11/24/2022] Open
Abstract
Spatial patterns of transcriptional activity in the living genome of Escherichia coli represent one of the more peculiar aspects of the E. coli chromosome biology. Spatial transcriptional correlations can be observed throughout the chromosome, and their formation depends on the state of replication in the cell. The condition of thymine starvation leading to thymineless death (TLD) is at the "cross-roads" of replication and transcription. According to a current view, e.g., (Cagliero et al., 2014), one of the cellular objectives is to segregate the processes of transcription and replication in time and space. An ultimate segregation would take place when one process is inhibited and another is not, as it happens during thymine starvation, which results in numerous molecular and physiological abnormalities associated with TLD. One of such abnormalities is the loss of spatial correlations in the vicinity of the origin of replication. We review the transcriptional consequences of replication inhibition by thymine starvation in a context of the state of DNA template in the starved cells and opine about a possible significance of normal physiological coupling between the processes of replication and transcription.
Collapse
Affiliation(s)
| | | | - Arkady Khodursky
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
43
|
Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2015; 5:735. [PMID: 25610430 PMCID: PMC4285127 DOI: 10.3389/fmicb.2014.00735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Replication of the bacterial chromosome initiates at a single origin of replication that is called oriC. This occurs via the concerted action of numerous proteins, including DnaA, which acts as an initiator. The origin sequences vary across species, but all bacterial oriCs contain the information necessary to guide assembly of the DnaA protein complex at oriC, triggering the unwinding of DNA and the beginning of replication. The requisite information is encoded in the unique arrangement of specific sequences called DnaA boxes, which form a framework for DnaA binding and assembly. Other crucial sequences of bacterial origin include DNA unwinding element (DUE, which designates the site at which oriC melts under the influence of DnaA) and binding sites for additional proteins that positively or negatively regulate the initiation process. In this review, we summarize our current knowledge and understanding of the information encoded in bacterial origins of chromosomal replication, particularly in the context of replication initiation and its regulation. We show that oriC encoded instructions allow not only for initiation but also for precise regulation of replication initiation and coordination of chromosomal replication with the cell cycle (also in response to environmental signals). We focus on Escherichia coli, and then expand our discussion to include several other microorganisms in which additional regulatory proteins have been recently shown to be involved in coordinating replication initiation to other cellular processes (e.g., Bacillus, Caulobacter, Helicobacter, Mycobacterium, and Streptomyces). We discuss diversity of bacterial oriC regions with the main focus on roles of individual DNA recognition sequences at oriC in binding the initiator and regulatory proteins as well as the overall impact of these proteins on the formation of initiation complex.
Collapse
Affiliation(s)
- Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland ; Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
44
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
45
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. J Bacteriol 2014; 196:2901-11. [PMID: 24914187 PMCID: PMC4135643 DOI: 10.1128/jb.01706-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
47
|
Jameson KH, Rostami N, Fogg MJ, Turkenburg JP, Grahl A, Murray H, Wilkinson AJ. Structure and interactions of the Bacillus subtilis sporulation inhibitor of DNA replication, SirA, with domain I of DnaA. Mol Microbiol 2014; 93:975-91. [PMID: 25041308 PMCID: PMC4285326 DOI: 10.1111/mmi.12713] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
Chromosome copy number in cells is controlled so that the frequency of initiation of DNA replication matches that of cell division. In bacteria, this is achieved through regulation of the interaction between the initiator protein DnaA and specific DNA elements arrayed at the origin of replication. DnaA assembles at the origin and promotes DNA unwinding and the assembly of a replication initiation complex. SirA is a DnaA-interacting protein that inhibits initiation of replication in diploid Bacillus subtilis cells committed to the developmental pathway leading to formation of a dormant spore. Here we present the crystal structure of SirA in complex with the N-terminal domain of DnaA revealing a heterodimeric complex. The interacting surfaces of both proteins are α-helical with predominantly apolar side-chains packing in a hydrophobic interface. Site-directed mutagenesis experiments confirm the importance of this interface for the interaction of the two proteins in vitro and in vivo. Localization of GFP-SirA indicates that the protein accumulates at the replisome in sporulating cells, likely through a direct interaction with DnaA. The SirA interacting surface of DnaA corresponds closely to the HobA-interacting surface of DnaA from Helicobacter pylori even though HobA is an activator of DnaA and SirA is an inhibitor.
Collapse
Affiliation(s)
- Katie H Jameson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Donczew R, Mielke T, Jaworski P, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Assembly of Helicobacter pylori initiation complex is determined by sequence-specific and topology-sensitive DnaA-oriC interactions. J Mol Biol 2014; 426:2769-82. [PMID: 24862285 DOI: 10.1016/j.jmb.2014.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2-DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator-origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
| | - Paweł Jaworski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland; University of Wrocław, Faculty of Biotechnology, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
49
|
Propionate represses the dnaA gene via the methylcitrate pathway-regulating transcription factor, PrpR, in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek 2014; 105:951-9. [PMID: 24705740 PMCID: PMC3982210 DOI: 10.1007/s10482-014-0153-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/10/2014] [Indexed: 11/22/2022]
Abstract
During infection of macrophages, Mycobacterium tuberculosis, the pathogen that causes tuberculosis, utilizes fatty acids as a major carbon source. However, little is known about the coordination of the central carbon metabolism of M. tuberculosis with its chromosomal replication, particularly during infection. A recently characterized transcription factor called PrpR is known to directly regulate the genes involved in fatty acid catabolism by M. tuberculosis. Here, we report for the first time that PrpR also regulates the dnaA gene, which encodes the DnaA initiator protein responsible for initiating chromosomal replication. Using cell-free systems and intact cells, we demonstrated an interaction between PrpR and the dnaA promoter region. Moreover, real-time quantitative reverse-transcription PCR analysis revealed that PrpR acts as a transcriptional repressor of dnaA when propionate (a product of odd-chain-length fatty acid catabolism) was used as the sole carbon source. We hypothesize that PrpR may be an important element of the complex regulatory system(s) required for tubercle bacilli to survive within macrophages, presumably coordinating the catabolism of host-derived fatty acids with chromosomal replication.
Collapse
|
50
|
Abstract
DNA replication plays an essential role in all life forms. Research on archaeal DNA replication began approximately 20 years ago. Progress was hindered, however, by the lack of genetic tools to supplement the biochemical and structural studies. This has changed, however, and genetic approaches are now available for several archaeal species. One of these organisms is the thermophilic euryarchaeon Thermococcus kodakarensis. In the present paper, the recent developments in the biochemical, structural and genetic studies on the replication machinery of T. kodakarensis are summarized.
Collapse
|