1
|
Hakura A, Sui H, Seki Y, Sonoda J, Yoshida Y, Takagi H, Yokose S, Matsuda T, Asakura S, Nohmi T. DNA polymerase κ suppresses inflammation and inflammation-induced mutagenesis and carcinogenic potential in the colon of mice. Genes Environ 2023; 45:15. [PMID: 37087526 PMCID: PMC10122296 DOI: 10.1186/s41021-023-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Chronic inflammation induces DNA damage and promotes cell proliferation, thereby increasing the risk of cancer. DNA polymerase κ (Pol κ), involved in translesion DNA synthesis, counteracts mutagenesis induced by inflammation in the colon of mice. In the present study, we examined whether Pol κ suppressed inflammation-induced colon tumorigenesis by treating inactivated Polk knock-in (Polk-/-) mice with dextran sulfate sodium (DSS), an inducer of colon inflammation. RESULTS Male and female Polk-/- and Polk+/+ mice were administered 2% DSS in drinking water for six consecutive days, succeeded via a recovery period of 16 days, followed by 2% DSS for another two days. DSS treatment strongly induced colitis, and the severity of colitis was higher in Polk-/- mice than in Polk+/+ mice. The mice were sacrificed after 19 weeks from the initiation of the first DSS treatment and subjected to pathological examination and mutation analysis. DSS treatment induced colonic dysplasia, and the multiplicity of dysplasia was higher in Polk-/- mice than in Polk+/+mice. Some of the dysplasias in Polk-/- mice exhibited β-catenin-stained nucleus and/or cytoplasm. Mutation frequencies in the gpt reporter gene were increased by DSS treatment in Polk-/- mice, and were higher than those in Polk+/+ mice. CONCLUSIONS Pol κ suppresses inflammation and inflammation-induced dysplasia as well as inflammation-induced mutagenesis. The possible mechanisms by which Pol κ suppresses colitis- and colitis-induced dysplasia are discussed.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan.
| | - Hajime Sui
- Division of Safety Testing, Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, 257-0025, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
- Present Address: Operations Department, Global Safety HQS, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-Ku, Tokyo, 112-8088, Japan
| | - Yusaku Yoshida
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Hisayoshi Takagi
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
2
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
4
|
Suzuki T, Sassa A, Grúz P, Gupta RC, Johnson F, Adachi N, Nohmi T. Error-prone bypass patch by a low-fidelity variant of DNA polymerase zeta in human cells. DNA Repair (Amst) 2021; 100:103052. [PMID: 33607474 DOI: 10.1016/j.dnarep.2021.103052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022]
Abstract
DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Ramesh C Gupta
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794-3400, NY, United States
| | - Francis Johnson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794-3400, NY, United States
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
5
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
6
|
A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol Mol Biol Rev 2020; 84:84/3/e00002-20. [PMID: 32554755 DOI: 10.1128/mmbr.00002-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding β-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.
Collapse
|
7
|
Nohmi T, Matsumoto K. Effects of DNA polymerase kappa and mismatch repair on dose-responses of chromosome aberrations induced by three oxidative genotoxins in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:193-199. [PMID: 31294882 DOI: 10.1002/em.22315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Genotoxic carcinogens are regulated under the policy that there is no threshold or safe dose. It has been pointed out, however, that self-defense mechanisms, such as detoxification, DNA repair, and error-free translesion synthesis, may protect chromosome DNA from genotoxic insults, thereby constituting practical threshold. In this study, we examined dose responses of chromosome aberrations induced by three oxidative genotoxins, that is, hydrogen peroxide (H2 O2 ), menadione and paraquat, with or without DNA polymerase kappa (Polκ) activities and mismatch repair capacities in human cells. Polκ is involved in translesion synthesis across DNA damage and mismatch repair is responsible for correction of base-base mismatch in DNA. Polκ activity of the cells was inactivated either by point mutations in the catalytically essential amino acids (catalytically dead or CD) or by deletion of the POLK gene (knockout or KO). In the absence of mismatch repair, frequencies of chromosome aberrations induced by H2 O2 and menadione were not significantly different among CD, KO, and the wild type (WT) cells. In the presence of mismatch repair, however, cytotoxicity and clastogenicity were enhanced and Polκ modulated the sensitivity of the cells. No-observed-genotoxic-effect-levels (NOGELs) for H2 O2 and menadione were CD = KO < WT cells. In contrast, the sensitivities of the cells to paraquat were not significantly affected by the status of mismatch repair or Polκ activity. The results suggest that mismatch repair and Polκ coordinately modulate NOGELs for the clastogenicity of H2 O2 and menadione and also that DNA lesion(s) responsible for paraquat-induced chromosome aberrations are different from those induced by H2 O2 and menadione. Environ. Mol. Mutagen. 61:193-199, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| |
Collapse
|
8
|
Shin S, Hyun K, Kim J, Hohng S. ATP Binding to Rad5 Initiates Replication Fork Reversal by Inducing the Unwinding of the Leading Arm and the Formation of the Holliday Junction. Cell Rep 2019; 23:1831-1839. [PMID: 29742437 DOI: 10.1016/j.celrep.2018.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022] Open
Abstract
Replication fork reversal is one of the major pathways for reactivating stalled DNA replication. Many enzymes with replication fork reversal activity have DNA-unwinding activity as well, but none of the fork reversal enzymes in the SWI/SNF family shows a separate DNA-unwinding activity, raising the question of how they initiate the remodeling process. Here, we found ATP binding to Rad5 induces the unwinding of the leading arm of the replication fork and proximally positions the leading and lagging arms. This facilitates the spontaneous remodeling of the replication fork into a four-way junction. Once the four-way junction is formed, Rad5 migrates the four-way junction at a speed of 7.1 ± 0.14 nt/s. The 3' end anchoring of the leading arm by Rad5's HIRAN domain is critical for both branch migration and the recovery of the three-way junction, but not for the structural transition to the four-way junction.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, National Center of Creative Research Initiatives, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Nohmi T. My career development with Ames test: A personal recollection. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503095. [PMID: 31699345 DOI: 10.1016/j.mrgentox.2019.503095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
Abstract
I first became acquainted with the Ames test at the very beginning of my career in 1978, when my task at the National Institute of Health Sciences (Tokyo) was to screen for mutagenicity of food additives used in Japan, using the Ames test. I also used this test to research the metabolic activation mechanisms of chemical carcinogens, in particular, the analgesic drug, phenacetin. This chemical was not mutagenic in Salmonella typhimurium TA100 with standard 9000 × g supernatant of liver homogenates (S9) from rat but was mutagenic with hamster S9. It was revealed that hamster S9 had much higher deacetylation activities than rat S9, which accounts for the species difference. Then, my work was focused on molecular biology. We cloned the genes encoding nitroreductase and acetyltransferase in Salmonella typhimurium TA1538. Plasmids carrying these genes made strain TA98 more sensitive to mutagenic nitroarenes and aromatic amines. Because of their high sensitivity, the resulting strains such as YG1021 and YG1024 are widely used to monitor mutagenic nitroarenes and aromatic amines in complex mixtures. Later, we disrupted the genes encoding DNA polymerases in TA1538 and classified chemical mutagens into four classes depending on their use of different DNA polymerases. I was also involved in the generation of gpt delta transgenic rodent gene mutation assays, which examine the results of the Ames test in vivo. I have unintentionally developed my career under the influence of Dr. Ames and I would like to acknowledge his remarkable achievements in the field of environmental mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
10
|
Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair (Amst) 2019; 85:102745. [PMID: 31715424 DOI: 10.1016/j.dnarep.2019.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Collapse
|
11
|
Blázquez J, Rodríguez-Beltrán J, Matic I. Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented. Annu Rev Microbiol 2019; 72:209-230. [PMID: 30200850 DOI: 10.1146/annurev-micro-090817-062139] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.
Collapse
Affiliation(s)
- Jesús Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain; .,Unidad de Enfermedades Infecciosas, Microbiologia y Medicina Preventiva, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain.,Red Española de Investigacion en Patologia Infecciosa, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ivan Matic
- Faculté de Médecine Paris Descartes, INSERM 1001, CNRS, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France;
| |
Collapse
|
12
|
Hakura A, Sui H, Sonoda J, Matsuda T, Nohmi T. DNA polymerase kappa counteracts inflammation-induced mutagenesis in multiple organs of mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:320-330. [PMID: 30620413 DOI: 10.1002/em.22272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 05/07/2023]
Abstract
In vitro studies indicate that DNA polymerase kappa (Polκ) is able to accurately and efficiently perform DNA synthesis using templates containing various types of DNA damage, including benzo[a]pyrene (BP)-induced N2 -deoxyguanosine adducts. In this study, we examined sensitivity of inactivated Polk knock-in (Polk-/- ) mice to BP carcinogenicity in the colon by administering an oral dose of BP plus dextran sulfate sodium (DSS), an inflammation causing promoter of carcinogenesis. Although colon cancer was successfully induced by BP plus DSS, there was no significant difference in tumor incidence or multiplicity between Polk-/- and Polk+/+ mice. Malignant lymphoma was induced in thymus by the treatment only in Polk-/- mice, but it lacked statistical significance. Mutant frequencies (MFs) in the gpt reporter gene were strongly enhanced in colon; almost to the same extent in both types of mice. Micronucleus formation in bone marrow at the high dose of BP and DNA adducts in colon and lung was not significantly different between two types of mice. Surprisingly, however, Polk-/- mice exhibited significantly higher MFs in colon and lung than did Polk+/+ mice when they were treated with DSS alone. The most prominent mutation induced by DSS treatment was G:C to C:G transversion, whose specific MF in proximal colon was 30 times higher in Polk-/- than in Polk+/+ mice. DSS alone did not enhance MF at all in Polk+/+ mice. The results indicate that Polκ does not suppress BP-induced mutagenesis and carcinogenesis in the colon, but counteracts inflammation-induced mutagenesis in multiple organs. Environ. Mol. Mutagen. 60:320-330, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atsushi Hakura
- Tsukuba Drug Safety, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Hajime Sui
- Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, Japan
| | - Jiro Sonoda
- GLP, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| |
Collapse
|
13
|
Tashjian TF, Danilowicz C, Molza AE, Nguyen BH, Prévost C, Prentiss M, Godoy VG. Residues in the fingers domain of the translesion DNA polymerase DinB enable its unique participation in error-prone double-strand break repair. J Biol Chem 2019; 294:7588-7600. [PMID: 30872406 DOI: 10.1074/jbc.ra118.006233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/28/2019] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Escherichia coli translesion DNA polymerase IV (DinB) is one of three enzymes that can bypass potentially deadly DNA lesions on the template strand during DNA replication. Remarkably, however, DinB is the only known translesion DNA polymerase active in RecA-mediated strand exchange during error-prone double-strand break repair. In this process, a single-stranded DNA (ssDNA)-RecA nucleoprotein filament invades homologous dsDNA, pairing the ssDNA with the complementary strand in the dsDNA. When exchange reaches the 3' end of the ssDNA, a DNA polymerase can add nucleotides onto the end, using one strand of dsDNA as a template and displacing the other. It is unknown what makes DinB uniquely capable of participating in this reaction. To explore this topic, we performed molecular modeling of DinB's interactions with the RecA filament during strand exchange, identifying key contacts made with residues in the DinB fingers domain. These residues are highly conserved in DinB, but not in other translesion DNA polymerases. Using a novel FRET-based assay, we found that DinB variants with mutations in these conserved residues are less effective at stabilizing RecA-mediated strand exchange than native DinB. Furthermore, these variants are specifically deficient in strand displacement in the absence of RecA filament. We propose that the amino acid patch of highly conserved residues in DinB-like proteins provides a mechanistic explanation for DinB's function in strand exchange and improves our understanding of recombination by providing evidence that RecA plays a role in facilitating DinB's activity during strand exchange.
Collapse
Affiliation(s)
- Tommy F Tashjian
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Claudia Danilowicz
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Anne-Elizabeth Molza
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Brian H Nguyen
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Chantal Prévost
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Mara Prentiss
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Veronica G Godoy
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115,
| |
Collapse
|
14
|
Abstract
Oxidation of aromatic compounds can be mutagenic due to the accumulation of reactive oxygen species (ROS) in bacterial cells and thereby facilitate evolution of corresponding catabolic pathways. To examine the effect of the background biochemical network on the evolvability of environmental bacteria hosting a new catabolic pathway, Akkaya and colleagues (mBio 9:e01512-18, 2018, https://doi.org/10.1128/mBio.01512-18) introduced the still-evolving 2,4-dinitrotoluene (2,4-DNT) pathway genes from the original environmental Burkholderia sp. Oxidation of aromatic compounds can be mutagenic due to the accumulation of reactive oxygen species (ROS) in bacterial cells and thereby facilitate evolution of corresponding catabolic pathways. To examine the effect of the background biochemical network on the evolvability of environmental bacteria hosting a new catabolic pathway, Akkaya and colleagues (mBio 9:e01512-18, 2018, https://doi.org/10.1128/mBio.01512-18) introduced the still-evolving 2,4-dinitrotoluene (2,4-DNT) pathway genes from the original environmental Burkholderia sp. isolate into the genome of Pseudomonas putida KT2440. They show that the mutagenic effect of 2,4-DNT oxidation, which is associated with the accumulation of ROS and oxidative damage on DNA, can be avoided by preserving high NADPH levels in P. putida. The observations of this study highlight the impact of the cellular redox status of bacteria on the evolvability of new metabolic pathways.
Collapse
|
15
|
Suzuki T, Matsumoto K, Honma M, Nohmi T. Impact of DNA polymerase ζ mutations on genotoxic thresholds of oxidative mutagens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:10-14. [PMID: 29555059 DOI: 10.1016/j.mrgentox.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
In regulatory genetic toxicology, it is an axiom that there is no threshold for genotoxicity of chemicals, such that genotoxic chemicals may impose carcinogenic risk on humans even at very low doses. This paradigm is counterintuitive, however, because humans possess a number of self-defense mechanisms that may suppress the genotoxicity at these low doses and therefore manifest a practical threshold. DNA polymerase zeta (Pol ζ) is a specialized Pol that plays an important role in DNA synthesis across DNA damage, thereby modulating cell survival and genotoxicity. In this study, we compared the sensitivity of three types of human cells: D2781N, L2618M, and their wild-type (WT) cells, to the low dose effects of genotoxicity of the oxidizing agents, potassium bromate (KBrO3) and sodium dichromate (Na2Cr2O7). D2781N cells express a variant form of Pol ζ, whose activity is weaker than that of the WT enzyme. L2618M cells express another variant form of Pol ζ, whose fidelity of DNA replication is lower than that of the WT enzyme. D2781N exhibited the highest sensitivity for TK gene mutation and micronucleus (MN) formation and displayed the lowest practical threshold for MN induction by KBrO3. In contrast, L2618M exhibited the lowest practical threshold for sister-chromatid exchange (SCE) induction by both chemicals. These results suggest that Pol ζ mutations have significant impacts on practical thresholds of genotoxicity; the factors affecting the practical threshold can differ depending on the endpoint of genotoxicity. Roles of the variant forms of Pol ζ in genotoxicity by the oxidizing agents are discussed.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, 4321 Uchimoriya, Joso-shi, Ibaraki, 303-0043, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
16
|
Masumura K, Toyoda-Hokaiwado N, Niimi N, Grúz P, Wada NA, Takeiri A, Jishage KI, Mishima M, Nohmi T. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:644-653. [PMID: 29076178 DOI: 10.1002/em.22146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/20/2017] [Accepted: 09/20/2017] [Indexed: 05/07/2023]
Abstract
DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Naomi Toyoda-Hokaiwado
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Naoko A Wada
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Akira Takeiri
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kou-Ichi Jishage
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Masayuki Mishima
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
17
|
Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1276-1289. [PMID: 29020531 DOI: 10.1080/15287394.2017.1376727] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/07/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry, consumer products, and medical appliances due to their efficient antimicrobial properties. However, information on environmental toxicity and bacterial impact of these particles is not completely elucidated. Results showed that AgNPs produced growth inhibition and oxidative stress in bacteria Escherichia coli (gram negative) and Staphylococcus aureus (gram positive), with half-maximal inhibitory concentrations (IC50) of 12 and 7 mg/L, respectively. Surprisingly, bacteria pre-exposed to sublethal dose of AgNPs exhibited increased resistance toward antibiotics (ampicillin and Pen-Strep) with IC50 elevated by 3-13-fold. Further, AgNP pre-exposure raised the minimal inhibitory concentration and minimal biocidal concentration by two- to eightfold when cells were challenged with antibiotics with diverse mechanisms of action (penicillin, chloramphenicol, and kanamycin). Interestingly, we found that upon exposure to ampicillin, strains pretreated with AgNPs exhibited lower levels of membrane damage and oxidative stress, together with elevated levels of intracellular ATP relative to untreated cells. Bacterial reverse mutation assay (Ames test) showed that AgNPs are highly mutagenic, consistent with further assays demonstrating abiotic reactive oxygen species (ROS) generation and intrinsic DNA cleavage activity in vitro of AgNPs. Overall, our results suggest that AgNPs enhance bacterial resistance to antibiotics by promoting stress tolerance through induction of intracellular ROS. Our data suggest potential consequences of incidental environmental exposure of bacteria to AgNPs and indicate the need to regulate use and disposal of AgNPs in industry and consumer products.
Collapse
Affiliation(s)
- Chitrada Kaweeteerawat
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Preeyawis Na Ubol
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Sanirat Sangmuang
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Sasitorn Aueviriyavit
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Rawiwan Maniratanachote
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| |
Collapse
|
18
|
Ilmjärv T, Naanuri E, Kivisaar M. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS One 2017; 12:e0182484. [PMID: 28777807 PMCID: PMC5544203 DOI: 10.1371/journal.pone.0182484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source.
Collapse
Affiliation(s)
- Tanel Ilmjärv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eve Naanuri
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
19
|
Ding WY, Li YH, Lian H, Ai XY, Zhao YL, Yang YB, Han Q, Liu X, Chen XY, He Z. Sub-Minimum Inhibitory Concentrations of Rhubarb Water Extracts Inhibit Streptococcus suis Biofilm Formation. Front Pharmacol 2017; 8:425. [PMID: 28736523 PMCID: PMC5500959 DOI: 10.3389/fphar.2017.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus suis is one of the most important swine pathogens, which can cause persistent infection by forming biofilms. In this study, sub-minimum inhibitory concentration (sub-MIC) of rhubarb water extracts were found to inhibit biofilm formation. Two-component signal transduction systems (TCSs), transcriptional regulators, and DNA binding proteins were compared under two conditions: (1) cells treated with sub-MIC rhubarb water extracts and (2) untreated cells. Using an isobaric tags for relative and absolute quantitation (iTRAQ) strategy, we found that TCSs constituent proteins of histidine kinase and response regulator were significantly down-regulated. This down-regulation can affect the transfer of information during biofilm formation. The transcriptional regulators and DNA binding proteins that can interact with TCSs and interrupt gene transcription were also significantly altered. For these reasons, the levels of protein expressions varied in different parts of the treated vs. untreated cells. In summary, rhubarb water extracts might serve as potential inhibitor for the control of S. suis biofilm formation. The change in TCSs, transcriptional regulators, and DNA binding proteins may be important factors in S. suis biofilm inhibition.
Collapse
Affiliation(s)
- Wen-Ya Ding
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China.,Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Hua Li
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - He Lian
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China
| | - Xiao-Yu Ai
- School of Pharmacy, Nankai UniversityTianjin, China
| | - Yu-Lin Zhao
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Bei Yang
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Qiang Han
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China.,Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xin Liu
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xue-Ying Chen
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Zhonggui He
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China
| |
Collapse
|
20
|
Sidorenko J, Jatsenko T, Kivisaar M. Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutat Res 2017; 797-799:26-37. [PMID: 28340408 DOI: 10.1016/j.mrfmmm.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Sublines of the major P. aeruginosa reference strain PAO1 are derivatives of the original PAO1 isolate, which are maintained in laboratories worldwide. These sublines display substantial genomic and phenotypic variation due to ongoing microevolution. Here, we examined four sublines, MPAO1, PAO1-L, PAO1-DSM and PAO1-UT, originated from different laboratories, and six DNA polymerase-deficient mutants from the P. aeruginosa MPAO1 transposon library for their employment in elucidation of DNA damage repair and tolerance mechanisms in P. aeruginosa. We found that PAO1 subline PAO1-UT carries a large deletion encompassing the DNA damage inducible imuA-imuB-imuC cassette (PA0669-PA0671), which is implied in mutagenesis in several species. Furthermore, the genetic changes leading to variation in the functionality of the MexEF-OprN efflux system contributed largely to the phenotypic discordance between P. aeruginosa PAO1 sublines. Specifically, we identified multiple mutations in the mexT gene, which encodes a transcriptional regulator of the mexEF-oprN genes, mutations in the mexF, and complete absence of these genes. Of the four tested sublines, MPAO1 was the only subline with the functional MexEF-OprN multidrug efflux system. Active efflux through MexEF-OprN rendered MPAO1 highly resistant to chloramphenicol and ciprofloxacin. Moreover, the functions of specialized DNA polymerase IV and nucleotide excision repair (NER) in 4-NQO-induced DNA damage tolerance appeared to be masked in MPAO1, while were easily detectable in other sublines. Finally, the frequencies of spontaneous and MMS-induced Rifr mutations were also significantly lower in MPAO1 in comparison to the PAO1 sublines with impaired MexEF-OprN efflux system. The MexEF-OprN-attributed differences were also observed between MPAO1 and MPAO1-derived transposon mutants from the two-allele transposon mutant collection. Thus, the accumulating mutations and discordant phenotypes of the PAO1 derivatives challenge the reproducibility and comparability of the results obtained with different PAO1 sublines and also limit the usage of the MPAO1 transposon library in DNA damage tolerance and mutagenesis studies.
Collapse
Affiliation(s)
- Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia.
| | - Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia.
| |
Collapse
|
21
|
Tashjian TF, Lin I, Belt V, Cafarelli TM, Godoy VG. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV. Front Microbiol 2017; 8:288. [PMID: 28298904 PMCID: PMC5331060 DOI: 10.3389/fmicb.2017.00288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.
Collapse
Affiliation(s)
- Tommy F Tashjian
- Godoy Lab, Department of Biology, Northeastern University Boston, MA, USA
| | - Ida Lin
- Godoy Lab, Department of Biology, Northeastern University Boston, MA, USA
| | - Verena Belt
- Godoy Lab, Department of Biology, Northeastern University Boston, MA, USA
| | | | - Veronica G Godoy
- Godoy Lab, Department of Biology, Northeastern University Boston, MA, USA
| |
Collapse
|
22
|
Kanemaru Y, Suzuki T, Sassa A, Matsumoto K, Adachi N, Honma M, Numazawa S, Nohmi T. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis. Genes Environ 2017; 39:6. [PMID: 28077981 PMCID: PMC5219776 DOI: 10.1186/s41021-016-0067-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
Background Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. Results We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. Conclusions These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and also that the established cell lines are useful for evaluating the genotoxicity of chemicals from multiple endpoints in different genetic backgrounds of Pol κ. Electronic supplementary material The online version of this article (doi:10.1186/s41021-016-0067-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-0064 Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Present Addresses: Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 Japan
| | - Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043 Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-0064 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Present Addresses: Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|
23
|
Suzuki T, Grúz P, Honma M, Adachi N, Nohmi T. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells. Mutat Res 2016; 791-792:35-41. [PMID: 27591392 DOI: 10.1016/j.mrfmmm.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD>KO>WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N'-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were more sensitive to the cytotoxicity of 4-nitroquinoline N-oxide, styrene oxide, cisplatin, methyl methanesulfonate, and ethyl methanesulfonate than WT cells. However, the KO cells displayed sensitivity camptothecin, etoposide, bleomycin, hydroxyurea, crotonealdehyde, and methylglyoxal in a manner similar to the WT cells. Our results suggest that Pol ζ plays an important role in the protection of human cells by carrying out TLS across bulky DNA adducts and cross-links, but has no or limited role in the protection against strand-breaks in DNA.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
24
|
Active Control of Repetitive Structural Transitions between Replication Forks and Holliday Junctions by Werner Syndrome Helicase. Structure 2016; 24:1292-1300. [PMID: 27427477 DOI: 10.1016/j.str.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/11/2016] [Accepted: 06/05/2016] [Indexed: 11/20/2022]
Abstract
The reactivation of stalled DNA replication via fork regression invokes Holliday junction formation, branch migration, and the recovery of the replication fork after DNA repair or error-free DNA synthesis. The coordination mechanism for these DNA structural transitions by molecular motors, however, remains unclear. Here we perform single-molecule fluorescence experiments with Werner syndrome protein (WRN) and model replication forks. The Holliday junction is readily formed once the lagging arm is unwound, and migrated unidirectionally with 3.2 ± 0.03 bases/s velocity. The recovery of the replication fork was controlled by branch migration reversal of WRN, resulting in repetitive fork regression. The Holliday junction formation, branch migration, and migration direction reversal are all ATP dependent, revealing that WRN uses the energy of ATP hydrolysis to actively coordinate the structural transitions of DNA.
Collapse
|
25
|
Margara LM, Fernández MM, Malchiodi EL, Argaraña CE, Monti MR. MutS regulates access of the error-prone DNA polymerase Pol IV to replication sites: a novel mechanism for maintaining replication fidelity. Nucleic Acids Res 2016; 44:7700-13. [PMID: 27257069 PMCID: PMC5027486 DOI: 10.1093/nar/gkw494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/20/2016] [Indexed: 12/02/2022] Open
Abstract
Translesion DNA polymerases (Pol) function in the bypass of template lesions to relieve stalled replication forks but also display potentially deleterious mutagenic phenotypes that contribute to antibiotic resistance in bacteria and lead to human disease. Effective activity of these enzymes requires association with ring-shaped processivity factors, which dictate their access to sites of DNA synthesis. Here, we show for the first time that the mismatch repair protein MutS plays a role in regulating access of the conserved Y-family Pol IV to replication sites. Our biochemical data reveals that MutS inhibits the interaction of Pol IV with the β clamp processivity factor by competing for binding to the ring. Moreover, the MutS–β clamp association is critical for controlling Pol IV mutagenic replication under normal growth conditions. Thus, our findings reveal important insights into a non-canonical function of MutS in the regulation of a replication activity.
Collapse
Affiliation(s)
- Lucía M Margara
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Carlos E Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Mariela R Monti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
26
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
27
|
Fonseca JD, Knight GM, McHugh TD. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int J Infect Dis 2016; 32:94-100. [PMID: 25809763 DOI: 10.1016/j.ijid.2015.01.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Multidrug-resistant and extensively drug-resistant tuberculosis (TB) represent a major threat to the control of the disease worldwide. The mechanisms and pathways that result in the emergence and subsequent fixation of resistant strains of Mycobacterium tuberculosis are not fully understood and recent studies suggest that they are much more complex than initially thought. In this review, we highlight the exciting new areas of research within TB resistance that are beginning to fill these gaps in our understanding, whilst also raising new questions and providing future directions.
Collapse
Affiliation(s)
- J D Fonseca
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK.
| | - G M Knight
- TB Modelling Group, TB Centre, Centre for the Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - T D McHugh
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| |
Collapse
|
28
|
Dohrmann PR, Correa R, Frisch RL, Rosenberg SM, McHenry CS. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase. Nucleic Acids Res 2016; 44:1285-97. [PMID: 26786318 PMCID: PMC4756838 DOI: 10.1093/nar/gkv1510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
29
|
A DinB Ortholog Enables Mycobacterial Growth under dTTP-Limiting Conditions Induced by the Expression of a Mycobacteriophage-Derived Ribonucleotide Reductase Gene. J Bacteriol 2015; 198:352-62. [PMID: 26527643 DOI: 10.1128/jb.00669-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Mycobacterium species such as M. smegmatis and M. tuberculosis encode at least two translesion synthesis (TLS) polymerases, DinB1 and DinB2, respectively. Although predicted to be linked to DNA repair, their role in vivo remains enigmatic. M. smegmatis mc(2)155, a strain commonly used to investigate mycobacterial genetics, has two copies of dinB2, the gene that codes for DinB2, by virtue of a 56-kb chromosomal duplication. Expression of a mycobacteriophage D29 gene (gene 50) encoding a class II ribonucleotide reductase in M. smegmatis ΔDRKIN, a strain derived from mc(2)155 in which one copy of the duplication is lost, resulted in DNA replication defects and growth inhibition. The inhibitory effect could be linked to the deficiency of dTTP that resulted under these circumstances. The selective inhibition observed in the ΔDRKIN strain was found to be due solely to a reduced dosage of dinB2 in this strain. Mycobacterium bovis, which is closely related to M. tuberculosis, the tuberculosis pathogen, was found to be highly susceptible to gene 50 overexpression. Incidentally, these slow-growing pathogens harbor one copy of dinB2. The results indicate that the induction of a dTTP-limiting state can lead to growth inhibition in mycobacteria, with the effect being maximum in cells deficient in DinB2. IMPORTANCE Mycobacterium species, such as M. tuberculosis, the tuberculosis pathogen, are known to encode several Y family DNA polymerases, one of which is DinB2, an ortholog of the DNA repair-related protein DinP of Escherichia coli. Although this protein has been biochemically characterized previously and found to be capable of translesion synthesis in vitro, its in vivo function remains unknown. Using a novel method to induce dTTP deficiency in mycobacteria, we demonstrate that DinB2 can aid mycobacterial survival under such conditions. Apart from unraveling a specific role for the mycobacterial Y family DNA polymerase DinB2 for the first time, this study also paves the way for the development of drugs that can kill mycobacteria by inducing a dTTP-deficient state.
Collapse
|
30
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
31
|
Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:650-62. [PMID: 26031400 DOI: 10.1002/em.21961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 05/07/2023]
Abstract
DNA polymerase κ (Pol κ) is a specialized DNA polymerase involved in translesion DNA synthesis. Although its bypass activities across lesions are well characterized in biochemistry, its cellular protective roles against genotoxic insults are still elusive. To better understand the in vivo protective roles, we have established a human cell line deficient in the expression of Pol κ (KO) and another expressing catalytically dead Pol κ (CD), to examine the cytotoxic sensitivity to 11 genotoxins including ultraviolet C light (UV). These cell lines were established in a genetic background of Nalm-6-MSH+, a human lymphoblastic cell line that has high efficiency for gene targeting, and functional p53 and mismatch repair activities. We classified the genotoxins into four groups. Group 1 includes benzo[a]pyrene diolepoxide, mitomycin C, and bleomycin, where the sensitivity was equally higher in KO and CD than in the cell line expressing wild-type Pol κ (WT). Group 2 includes hydrogen peroxide and menadione, where hypersensitivity was observed only in KO. Group 3 includes methyl methanesulfonate and ethyl methanesulfonate, where hypersensitivity was observed only in CD. Group 4 includes UV and three chemicals, where the chemicals exhibited similar cytotoxicity to all three cell lines. The results suggest that Pol κ not only protects cells from genotoxic DNA lesions via DNA polymerase activities, but also contributes to genome integrity by acting as a non-catalytic protein against oxidative damage caused by hydrogen peroxide and menadione. The non-catalytic roles of Pol κ in protection against oxidative damage by hydrogen peroxide are discussed.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
- Division of Toxicology, Department of Pharmacology Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-Ku, Tokyo, 142-0064, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, Joso-Shi, Ibaraki, 303-0043, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
32
|
Maisnier-Patin S, Roth JR. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation). Cold Spring Harb Perspect Biol 2015; 7:a018176. [PMID: 26134316 PMCID: PMC4484973 DOI: 10.1101/cshperspect.a018176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac(+)) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F'lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F'lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac(+) triggers exponential cell growth leading to a stable Lac(+) revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac(+) colony. Cells with multiple copies of the F'lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac(+) revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns-Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| | - John R Roth
- Department of Microbiology and Molecular Genetic, University of California, Davis, California 95616
| |
Collapse
|
33
|
Díaz-Magaña A, Alva-Murillo N, Chávez-Moctezuma MP, López-Meza JE, Ramírez-Díaz MI, Cervantes C. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes. MICROBIOLOGY-SGM 2015; 161:1516-23. [PMID: 25918254 DOI: 10.1099/mic.0.000103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA- mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA- mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA- mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.
Collapse
Affiliation(s)
- Amada Díaz-Magaña
- 1Instituto de Investigaciones Químico-Biológicas, Morelia, Michoacán, Mexico
| | - Nayeli Alva-Murillo
- 2Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana, Morelia, Michoacán, Mexico
| | | | - Joel E López-Meza
- 2Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana, Morelia, Michoacán, Mexico
| | | | - Carlos Cervantes
- 1Instituto de Investigaciones Químico-Biológicas, Morelia, Michoacán, Mexico
| |
Collapse
|
34
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
35
|
Sidorenko J, Ukkivi K, Kivisaar M. NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida. DNA Repair (Amst) 2015; 25:15-26. [DOI: 10.1016/j.dnarep.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
|
36
|
Kottur J, Sharma A, Gore KR, Narayanan N, Samanta B, Pradeepkumar PI, Nair DT. Unique structural features in DNA polymerase IV enable efficient bypass of the N2 adduct induced by the nitrofurazone antibiotic. Structure 2014; 23:56-67. [PMID: 25497730 DOI: 10.1016/j.str.2014.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 11/17/2022]
Abstract
The reduction in the efficacy of therapeutic antibiotics represents a global problem of increasing intensity and concern. Nitrofuran antibiotics act primarily through the formation of covalent adducts at the N(2) atom of the deoxyguanosine nucleotide in genomic DNA. These adducts inhibit replicative DNA polymerases (dPols), leading to the death of the prokaryote. N(2)-furfuryl-deoxyguanosine (fdG) represents a stable structural analog of the nitrofuran-induced adducts. Unlike other known dPols, DNA polymerase IV (PolIV) from E. coli can bypass the fdG adduct accurately with high catalytic efficiency. This property of PolIV is central to its role in reducing the sensitivity of E. coli toward nitrofuran antibiotics such as nitrofurazone (NFZ). We present the mechanism used by PolIV to bypass NFZ-induced adducts and thus improve viability of E. coli in the presence of NFZ. Our results can be used to develop specific inhibitors of PolIV that may potentiate the activity of nitrofuran antibiotics.
Collapse
Affiliation(s)
- Jithesh Kottur
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal University, Manipal.edu, Madhav Nagar, Manipal 576104, India
| | - Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Naveen Narayanan
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal University, Manipal.edu, Madhav Nagar, Manipal 576104, India
| | - Biswajit Samanta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Deepak T Nair
- Regional Centre for Biotechnology, 180, Udyog Vihar, Phase 1, Gurgaon 122016, India; National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
37
|
Takeiri A, Wada NA, Motoyama S, Matsuzaki K, Tateishi H, Matsumoto K, Niimi N, Sassa A, Grúz P, Masumura K, Yamada M, Mishima M, Jishage KI, Nohmi T. In vivo evidence that DNA polymerase kappa is responsible for error-free bypass across DNA cross-links induced by mitomycin C. DNA Repair (Amst) 2014; 24:113-121. [DOI: 10.1016/j.dnarep.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/04/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
38
|
Sholder G, Loechler EL. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh. DNA Repair (Amst) 2014; 25:97-103. [PMID: 25497330 DOI: 10.1016/j.dnarep.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/27/2022]
Abstract
Quantitating relative (32)P-band intensity in gels is desired, e.g., to study primer-extension kinetics of DNA polymerases (DNAPs). Following imaging, multiple (32)P-bands are often present in lanes. Though individual bands appear by eye to be simple and well-resolved, scanning reveals they are actually skewed-Gaussian in shape and neighboring bands are overlapping, which complicates quantitation, because slower migrating bands often have considerable contributions from the trailing edges of faster migrating bands. A method is described to accurately quantitate adjacent (32)P-bands, which relies on having a standard: a simple skewed-Gaussian curve from an analogous pure, single-component band (e.g., primer alone). This single-component scan/curve is superimposed on its corresponding band in an experimentally determined scan/curve containing multiple bands (e.g., generated in a primer-extension reaction); intensity exceeding the single-component scan/curve is attributed to other components (e.g., insertion products). Relative areas/intensities are determined via pixel analysis, from which relative molarity of components is computed. Common software is used. Commonly used alternative methods (e.g., drawing boxes around bands) are shown to be less accurate. Our method was used to study kinetics of dNTP primer-extension opposite a benzo[a]pyrene-N(2)-dG-adduct with four DNAPs, including Sulfolobus solfataricus Dpo4 and Sulfolobus acidocaldarius Dbh. Vmax/Km is similar for correct dCTP insertion with Dpo4 and Dbh. Compared to Dpo4, Dbh misinsertion is slower for dATP (∼20-fold), dGTP (∼110-fold) and dTTP (∼6-fold), due to decreases in Vmax. These findings provide support that Dbh is in the same Y-Family DNAP class as eukaryotic DNAP κ and bacterial DNAP IV, which accurately bypass N(2)-dG adducts, as well as establish the scan-method described herein as an accurate method to quantitate relative intensity of overlapping bands in a single lane, whether generated from (32)P-signals or by other means (e.g., staining).
Collapse
Affiliation(s)
- Gabriel Sholder
- Biology Department, Boston University, Boston, MA 02215, United States
| | - Edward L Loechler
- Biology Department, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
39
|
Manjari SR, Pata JD, Banavali NK. Cytosine unstacking and strand slippage at an insertion-deletion mutation sequence in an overhang-containing DNA duplex. Biochemistry 2014; 53:3807-16. [PMID: 24854722 PMCID: PMC4063443 DOI: 10.1021/bi500189g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Base unstacking in template strands,
when accompanied by strand
slippage, can result in deletion mutations during strand extension
by nucleic acid polymerases. In a GCCC mutation hot-spot sequence,
which was previously identified to have a 50% probability of causing
such mutations during DNA replication by a Y-family polymerase, a
single-base deletion mutation could result from such unstacking of
any one of its three template cytosines. In this study, the intrinsic
energetic differences in unstacking among these three cytosines in
a solvated DNA duplex overhang model were examined using umbrella
sampling molecular dynamics simulations. The free energy profiles
obtained show that cytosine unstacking grows progressively more unfavorable
as one moves inside the duplex from the 5′-end of the overhang
template strand. Spontaneous strand slippage occurs in response to
such base unstacking in the direction of both the major and minor
grooves for all three cytosines. Unrestrained simulations run from
three distinct strand-slipped states and one non-strand-slipped state
suggest that a more duplexlike environment can help stabilize strand
slippage. The possible underlying reasons and biological implications
of these observations are discussed in the context of nucleic acid
replication active site dynamics.
Collapse
Affiliation(s)
- Swati R Manjari
- Laboratory of Computational and Structural Biology, Division of Genetics, Biggs Laboratory, Wadsworth Center, New York State Department of Health , Empire State Plaza, PO Box 509 , Albany, New York 12201-0509, United States
| | | | | |
Collapse
|
40
|
Selection of dinB alleles suppressing survival loss upon dinB overexpression in Escherichia coli. J Bacteriol 2014; 196:3023-35. [PMID: 24914188 DOI: 10.1128/jb.01782-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles. We hypothesized that dnaE915 cells would respond to DinB overproduction differently from dnaE(+) cells because the dnaE915 allele is known to have an altered genetic interaction with dinB(+) compared to its interaction with dnaE(+). Notably, we observe a loss-of-survival phenotype in dnaE915 strains with either a chromosomal catalytically inactive dinB(D103N) allele or a low-copy-number plasmid-borne dinB(+) upon DNA damage treatment. Furthermore, we find that the loss-of-survival phenotype occurs independently of DNA damage treatment in a dnaE915 strain expressing the catalytically inactive dinB(D103N) allele from a low-copy-number plasmid. The selective pressure imposed resulted in suppressor mutations that eliminated growth defects. The dinB intragenic mutations examined were either base pair substitutions or those that we inferred to be loss of function (i.e., deletions and insertions). Further analyses of selected novel dinB alleles, generated by single-base-pair substitutions in the dnaE915 strain, indicated that these no longer effect loss of survival upon overproduction in dnaE(+) strains. These mutations are mapped to specific areas of DinB; this permits us to gain insights into the mechanisms underlying the DinB-mediated overproduction loss-of-survival phenotype.
Collapse
|
41
|
Sassa A, Suzuki T, Kanemaru Y, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Honma M, Adachi N, Nohmi T. In vivo evidence that phenylalanine 171 acts as a molecular brake for translesion DNA synthesis across benzo[a]pyrene DNA adducts by human DNA polymerase κ. DNA Repair (Amst) 2014; 15:21-8. [PMID: 24461735 DOI: 10.1016/j.dnarep.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Humans possess multiple specialized DNA polymerases that continue DNA replication beyond a variety of DNA lesions. DNA polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. In the previous work, we changed the amino acids close to the adducts in the active site and examined the bypass efficiency. The substitution of alanine for phenylalanine 171 (F171A) enhanced by 18-fold in vitro, the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG. In the present study, we established human cell lines that express wild-type Pol κ (POLK+/-), F171A (POLK F171A/-) or lack expression of Pol κ (POLK-/-) to examine the in vivo significance. These cell lines were generated with Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, which has high efficiency for gene targeting. Mutations were analyzed with shuttle vectors having (-)- or (+)-trans-anti-BPDE-N(2)-dG in the supF gene. The frequencies of mutations were in the order of POLK-/->POLK+/->POLK F171A/- both in (-)- and (+)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 may function as a molecular brake for bypass across BPDE-N(2)-dG by Pol κ and raise the possibility that the cognate substrates for Pol κ are not BP adducts in DNA but may be lesions in DNA induced by endogenous mutagens.
Collapse
Affiliation(s)
- Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hirofumi Fujimoto
- Division of Radiological Protection and Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Atsushi Katafuchi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ramesh C Gupta
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Francis Johnson
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Toshihiro Ohta
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
42
|
Nohmi T. Past, Present, and Future Challenges of the International Association of Environmental Mutagenesis and Genomics Societies (IAEMGS). Genes Environ 2014. [DOI: 10.3123/jemsge.2014.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Gutierrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A, Blázquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, Matic I. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013; 4:1610. [PMID: 23511474 PMCID: PMC3615471 DOI: 10.1038/ncomms2607] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
Abstract
Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies. Sub-lethal concentrations of antibiotics are known to promote mutagenesis of bacterial DNA. Here the authors show that β-lactam antibiotics trigger mutagenesis by upregulating the stress-response protein RpoS, which downregulates mismatch-repair activity.
Collapse
Affiliation(s)
- A Gutierrez
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lamont EA, Xu WW, Sreevatsan S. Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013; 14:694. [PMID: 24112552 PMCID: PMC3832399 DOI: 10.1186/1471-2164-14-694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The initial interaction between host cell and pathogen sets the stage for the ensuing infection and ultimately determine the course of disease. However, there is limited knowledge of the transcripts utilized by host and pathogen and how they may impact one another during this critical step. The purpose of this study was to create a host-Mycobacterium avium subsp. paratuberculosis (MAP) interactome for early infection in an epithelium-macrophage co-culture system using RNA-seq. RESULTS Establishment of the host-MAP interactome revealed a novel iron assimilation system for carboxymycobactin. Iron assimilation is linked to nitric oxide synthase-2 production by the host and subsequent nitric oxide buildup. Iron limitation as well as nitric oxide is a prompt for MAP to enter into an iron sequestration program. This new iron sequestration program provides an explanation for mycobactin independence in some MAP strains grown in vitro as well as during infection within the host cell. Utilization of such a pathway is likely to aid MAP establishment and long-term survival within the host. CONCLUSIONS The host-MAP interactome identified a number of metabolic, DNA repair and virulence genes worthy for consideration as novel drug targets as well as future pathogenesis studies. Reported interactome data may also be utilized to conduct focused, hypothesis-driven research. Co-culture of uninfected bovine epithelial cells (MAC-T) and primary bovine macrophages creates a tolerant genotype as demonstrated by downregulation of inflammatory pathways. This co-culture system may serve as a model to investigate other bovine enteric pathogens.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- Department of Veterinary Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
45
|
Ikeda M, Shinozaki Y, Uchida K, Ohshika Y, Furukohri A, Maki H, Akiyama MT. Quick replication fork stop by overproduction of Escherichia coli DinB produces non-proliferative cells with an aberrant chromosome. Genes Genet Syst 2013; 87:221-31. [PMID: 23229309 DOI: 10.1266/ggs.87.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli dinB encodes the translesion DNA polymerase DinB, which can inhibit progression of replication forks in a dose-dependent manner, independent of exogenous DNA damage. We reported previously that overproduction of DinB from a multicopy dinB plasmid immediately abolished ongoing replication fork progression, and the cells rapidly and drastically lost colony-forming ability, although the mechanisms underlying this lethality by severe replication fork stress remained unclear. Here, we show that the reduced colony-forming ability in the dinB-overexpressing cells is independent of the specific toxin genes that trigger programmed bacterial cell death when replication is blocked by depletion of the dNTP pool. After DinB abolished replication fork progression and colony-forming ability, most of the cells were still viable, as judged by fluorescent dye staining, but contained irregularly shaped nucleoids in which chromosomal DNA was preferentially lost in the replication terminus region relative to the replication origin region. Flow cytometric analysis of the cells revealed chromosomal damage and the eventual appearance of cell populations with less than single-chromosome DNA content, reminiscent of sub-G1 cells with lethal DNA content produced during eukaryotic apoptosis. This reduced DNA content was not observed after replication fork progression was quickly stopped in temperature-sensitive dnaB helicase mutant cells at a non-permissive temperature. Thus, the quick replication stop provoked by excess DinB uniquely generates temporarily viable but non-reproductive cells possessing a fatally depleted chromosomal content, which may represent one of the possible fates of an E. coli cell whose replication is overwhelmingly compromised.
Collapse
Affiliation(s)
- Mio Ikeda
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama,Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics 2013; 194:409-20. [PMID: 23589461 DOI: 10.1534/genetics.113.151837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.
Collapse
|
47
|
Sharma A, Kottur J, Narayanan N, Nair DT. A strategically located serine residue is critical for the mutator activity of DNA polymerase IV from Escherichia coli. Nucleic Acids Res 2013; 41:5104-14. [PMID: 23525461 PMCID: PMC3643571 DOI: 10.1093/nar/gkt146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Y-family DNA polymerase IV or PolIV (Escherichia coli) is the founding member of the DinB family and is known to play an important role in stress-induced mutagenesis. We have determined four crystal structures of this enzyme in its pre-catalytic state in complex with substrate DNA presenting the four possible template nucleotides that are paired with the corresponding incoming nucleotide triphosphates. In all four structures, the Ser42 residue in the active site forms interactions with the base moieties of the incipient Watson–Crick base pair. This residue is located close to the centre of the nascent base pair towards the minor groove. In vitro and in vivo assays show that the fidelity of the PolIV enzyme increases drastically when this Ser residue was mutated to Ala. In addition, the structure of PolIV with the mismatch A:C in the active site shows that the Ser42 residue plays an important role in stabilizing dCTP in a conformation compatible with catalysis. Overall, the structural, biochemical and functional data presented here show that the Ser42 residue is present at a strategic location to stabilize mismatches in the PolIV active site, and thus facilitate the appearance of transition and transversion mutations.
Collapse
Affiliation(s)
- Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
48
|
Antibiotic resistance acquired through a DNA damage-inducible response in Acinetobacter baumannii. J Bacteriol 2013; 195:1335-45. [PMID: 23316046 DOI: 10.1128/jb.02176-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen that survives desiccation and quickly acquires resistance to multiple antibiotics. Escherichia coli gains antibiotic resistances by expressing genes involved in a global response to DNA damage. Therefore, we asked whether A. baumannii does the same through a yet undetermined DNA damage response akin to the E. coli paradigm. We found that recA and all of the multiple error-prone DNA polymerase V (Pol V) genes, those organized as umuDC operons and unlinked, are induced upon DNA damage in a RecA-mediated fashion. Consequently, we found that the frequency of rifampin-resistant (Rif(r)) mutants is dramatically increased upon UV treatment, alkylation damage, and desiccation, also in a RecA-mediated manner. However, in the recA insertion knockout strain, in which we could measure the recA transcript, we found that recA was induced by DNA damage, while uvrA and one of the unlinked umuC genes were somewhat derepressed in the absence of DNA damage. Thus, the mechanism regulating the A. baumannii DNA damage response is likely different from that in E. coli. Notably, it appears that the number of DNA Pol V genes may directly contribute to desiccation-induced mutagenesis. Sequences of the rpoB gene from desiccation-induced Rif(r) mutants showed a signature that was consistent with E. coli DNA polymerase V-generated base-pair substitutions and that matched that of sequenced A. baumannii clinical Rif(r) isolates. These data strongly support an A. baumannii DNA damage-inducible response that directly contributes to antibiotic resistance acquisition, particularly in hospitals where A. baumannii desiccates and tenaciously survives on equipment and surfaces.
Collapse
|
49
|
Mori T, Nakamura T, Okazaki N, Furukohri A, Maki H, Akiyama MT. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response. Genes Genet Syst 2012; 87:75-87. [PMID: 22820381 DOI: 10.1266/ggs.87.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.
Collapse
Affiliation(s)
- Tetsuya Mori
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Chandani S, Loechler EL. Structural model of the Y-Family DNA polymerase V/RecA mutasome. J Mol Graph Model 2012; 39:133-44. [PMID: 23266508 DOI: 10.1016/j.jmgm.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/19/2012] [Accepted: 09/29/2012] [Indexed: 11/18/2022]
Abstract
To synthesize past DNA damaged by chemicals or radiation, cells have lesion bypass DNA polymerases (DNAPs), most of which are in the Y-Family. One class of Y-Family DNAPs includes DNAP η in eukaryotes and DNAP V in bacteria, which have low fidelity when replicating undamaged DNA. In Escherchia coli, DNAP V is carefully regulated to insure it is active for lesion bypass only, and one mode of regulation involves interaction of the polymerase subunit (UmuC) and two regulatory subunits (UmuD') with a RecA-filament bound to ss-DNA. Taking a docking approach, ∼150,000 unique orientations involving UmuC, UmuD' and RecA were evaluated to generate models, one of which was judged best able to rationalize the following published findings. (1) In the UmuD'(2)C/RecA-filament model, R64-UmuC interacts with S117-RecA, which is known to be at the UmuC/RecA interface. (2) At the model's UmuC/RecA interface, UmuC has three basic amino acids (K59/R63/R64) that anchor it to RecA. No other Y-Family DNAP has three basic amino acids clustered in this region, making it a plausible site for UmuC to form its unique interaction with RecA. (3) In the model, residues N32/N33/D34 of UmuC form a second interface with RecA, which is consistent with published findings. (4) Active UmuD' is generated when 24 amino acids in the N-terminal tail of UmuD are proteolyzed, which occurs when UmuD(2)C binds the RecA-filament. When UmuD is included in an UmuD(2)C/RecA-filament model, plausible UmuD/RecA contacts guide the UmuD cleavage site (C24/G25) into the UmuD proteolysis active site (S60/K97). One contact involves E11-UmuD interacting with R243-RecA, where the latter is known to be important for UmuD cleavage. (5) The UmuD(2)C/RecA-filament model rationalizes published findings that at least some UmuD-to-UmuD' cleavage occurs intermolecularly. (6) Active DNAP V is known to be the heterotetramer UmuD'(2)C/RecA, a model of which can be generated by a simple rearrangement of the RecA monomer at the 3'-end of the RecA-filament. The rearranged UmuD'(2)C/RecA model rationalizes published findings about UmuD' residues in proximity to RecA. In summary, docking and molecular simulations are used to develop an UmuD'(2)C/RecA model, whose structure rationalizes much of the known properties of the active form of DNA polymerase V.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, United States
| | | |
Collapse
|