1
|
Silva Neto JB, Mota LFM, Londoño-Gil M, Schmidt PI, Rodrigues GRD, Ligori VA, Arikawa LM, Magnabosco CU, Brito LF, Baldi F. Genotype-by-environment interactions in beef and dairy cattle populations: A review of methodologies and perspectives on research and applications. Anim Genet 2024; 55:871-892. [PMID: 39377556 DOI: 10.1111/age.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Modern livestock production systems are characterized by a greater focus on intensification, involving managing larger numbers of animals to achieve higher productive efficiency and animal health and welfare within herds. Therefore, animal breeding programs need to be strategically designed to select animals that can effectively enhance production performance and animal welfare across a range of environmental conditions. Thus, this review summarizes the main methodologies used for assessing the levels of genotype-by-environment interaction (G × E) in cattle populations. In addition, we explored the importance of integrating genomic and phenotypic information to quantify and account for G × E in breeding programs. An overview of the structure of cattle breeding programs is provided to give insights into the potential outcomes and challenges faced when considering G × E to optimize genetic gains in breeding programs. The role of nutrigenomics and its impact on gene expression related to metabolism in cattle are also discussed, along with an examination of current research findings and their potential implications for future research and practical applications. Out of the 116 studies examined, 60 and 56 focused on beef and dairy cattle, respectively. A total of 83.62% of these studies reported genetic correlations across environmental gradients below 0.80, indicating the presence of G × E. For beef cattle, 69.33%, 24%, 2.67%, 2.67%, and 1.33% of the studies evaluated growth, reproduction, carcass and meat quality, survival, and feed efficiency traits, respectively. By contrast, G × E research in dairy cattle populations predominantly focused on milk yield and milk composition (79.36% of the studies), followed by reproduction and fertility (19.05%), and survival (1.59%) traits. The importance of G × E becomes particularly evident when considering complex traits such as heat tolerance, disease resistance, reproductive performance, and feed efficiency, as highlighted in this review. Genomic models provide a valuable avenue for studying these traits in greater depth, allowing for the identification of candidate genes and metabolic pathways associated with animal fitness, adaptation, and environmental efficiency. Nutrigenetics and nutrigenomics are emerging fields that require extensive investigation to maximize our understanding of gene-nutrient interactions. By studying various transcription factors, we can potentially improve animal metabolism, improving performance, health, and quality of products such as meat and milk.
Collapse
Affiliation(s)
- João B Silva Neto
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Marisol Londoño-Gil
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Patrícia I Schmidt
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Gustavo R D Rodrigues
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Brazil
| | - Viviane A Ligori
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
2
|
Santos-Junior OHD, Manhães de Castro R, Silva-Araujo ERD, Toscano AE. Letter to the editor: "The effects of exposure to and timing of a choline-deficient diet during pregnancy and early postnatal life on the skeletal muscle transcriptome of the offspring". Clin Nutr 2024; 43:2325-2326. [PMID: 39232260 DOI: 10.1016/j.clnu.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Osmar Henrique Dos Santos-Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-420, Brazil.
| | - Raul Manhães de Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-420, Brazil; Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-420, Brazil
| | - Eulália Rebeca da Silva-Araujo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-420, Brazil
| | - Ana Elisa Toscano
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-420, Brazil; Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão-Pernambuco, 55608-680, Brazil
| |
Collapse
|
3
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
4
|
Seneda MM, Costa CB, Zangirolamo AF, dos Anjos MM, de Paula GR, Morotti F. From the laboratory to the field: how to mitigate pregnancy losses in embryo transfer programs? Anim Reprod 2024; 21:e20240032. [PMID: 39175993 PMCID: PMC11340798 DOI: 10.1590/1984-3143-ar2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 08/24/2024] Open
Abstract
Pregnancy losses negatively affect the cattle industry, impacting economic indices and consequently the entire production chain. Early embryonic failure has been an important challenge in the embryo industry because proper identification of embryo death at the beginning of gestation is difficult. This review aimed to provide a better understanding on reproductive failure and the relationship between early embryonic loss and different reproductive biotechniques. This review also considers insights and possible strategies for reducing early embryonic loss. The strategies addressed are as follows: i) great impact of rigorous embryo evaluation on reducing embryo losses; ii) selection of recipients at the time of transfer, taking into account health and nutritional status, and classification of the corpus luteum using ultrasound, either in area or vascularization; and iii) paternal effect as one of the factors that contribute to pregnancy losses, with a focus on embryo transfer.
Collapse
Affiliation(s)
- Marcelo Marcondes Seneda
- Universidade Estadual de Londrina, Laboratório de Reprodução Animal, Londrina, PR, Brasil
- Instituto Nacional de Ciência e Tecnologia do Leite – INCT Leite, Londrina, PR, Brasil
| | | | | | | | | | - Fábio Morotti
- Universidade Estadual de Londrina, Laboratório de Reprodução Animal, Londrina, PR, Brasil
| |
Collapse
|
5
|
Méndez N, Corvalan F, Halabi D, Ehrenfeld P, Maldonado R, Vergara K, Seron-Ferre M, Torres-Farfan C. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin. J Pineal Res 2023; 75:e12908. [PMID: 37650128 DOI: 10.1111/jpi.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
During gestation, the developing fetus relies on precise maternal circadian signals for optimal growth and preparation for extrauterine life. These signals regulate the daily delivery of oxygen, nutrients, hormones, and other biophysical factors while synchronizing fetal rhythms with the external photoperiod. However, modern lifestyle factors such as light pollution and shift work can induce gestational chronodisruption, leading to the desynchronization of maternal and fetal circadian rhythms. Such disruptions have been associated with adverse effects on cardiovascular, neurodevelopmental, metabolic, and endocrine functions in the fetus, increasing the susceptibility to noncommunicable diseases (NCDs) in adult life. This aligns with the Developmental Origins of Health and Disease theory, suggesting that early-life exposures can significantly influence health outcomes later in life. The consequences of gestational chronodisruption also extend into adulthood. Environmental factors like diet and stress can exacerbate the adverse effects of these disruptions, underscoring the importance of maintaining a healthy circadian rhythm across the lifespan to prevent NCDs and mitigate the impact of gestational chronodisruption on aging. Research efforts are currently aimed at identifying potential interventions to prevent or mitigate the effects of gestational chronodisruption. Melatonin supplementation during pregnancy emerges as a promising intervention, although further investigation is required to fully understand the precise mechanisms involved and to develop effective strategies for promoting health and preventing NCDs in individuals affected by gestational chronodisruption.
Collapse
Affiliation(s)
- Natalia Méndez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Maldonado
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago de Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Gusso D, Prauchner GRK, Rieder AS, Wyse ATS. Biological Pathways Associated with Vitamins in Autism Spectrum Disorder. Neurotox Res 2023; 41:730-740. [PMID: 37864660 DOI: 10.1007/s12640-023-00674-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by early-appearing social communication deficits, with genetic and environmental factors potentially playing a role in its etiology, which remains largely unknown. During pregnancy, certain deficiencies in critical nutrients are mainly associated with central nervous system impairment. The vitamin B9 (folate) is primarily related to one-carbon and methionine metabolism, participating in methyl donor generation. In addition, supplementation with folic acid (FA) is recommended by the World Health Organization (WHO) in the first three gestational months to prevent neural tube defects. Vitamin B12 is related to folate regeneration, converting it into an active form. Deficiencies in this vitamin have a negative impact on cognitive function and brain development since it is involved in myelin synthesis. Vitamin D is intimately associated with Ca2+ levels, acting in bone development and calcium-dependent signaling. This vitamin is associated with ASD at several levels since it has a relation with ASD genes and oxidative stress environment. This review carries the recent literature about the role of folate, vitamin B12, and vitamin D in ASD. In addition, we discuss the possible impact of nutrient deficiency or hypersupplementation during fetal development. On the other hand, we explore the biases of vitamin supplementation studies such as the loss of participants in retrospective studies, as well as multiple variants that are not considered in the conclusion, like dietary intake or auto-medication during pregnancy. In this regard, we aim to contribute to the discussion about the role of vitamins in ASD currency, but also in pregnancy and fetal development as well. Furthermore, stress during pregnancy can be an ASD predisposition, with cortisol as a regulator. In this view, we propose that cortisol is the bridge of susceptibility between vitamin disorders and ASD prevalence.
Collapse
Affiliation(s)
- Darlan Gusso
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil.
| | - Gustavo Ricardo Krupp Prauchner
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil
| | - Alessandra Schmitt Rieder
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Silva-Ochoa AD, Velasteguí E, Falconí IB, García-Solorzano VI, Rendón-Riofrio A, Sanguña-Soliz GA, Vanden Berghe W, Orellana-Manzano A. Metabolic syndrome: Nutri-epigenetic cause or consequence? Heliyon 2023; 9:e21106. [PMID: 37954272 PMCID: PMC10637881 DOI: 10.1016/j.heliyon.2023.e21106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions that results from the interplay of genetic and environmental factors, which increase the comorbidity risk of obesity, hyperglycemia, dyslipidemia, arterial hypertension, stroke, and cardiovascular disease. In this article, we review various high-impact studies which link epigenetics with metabolic syndrome by comparing each study population, methylation effects, and strengths and weaknesses of each research. We also discuss world statistical data on metabolic syndrome incidence in developing countries where the metabolic syndrome is common condition that has significant public health implications.
Collapse
Affiliation(s)
- Alfonso D. Silva-Ochoa
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Licenciatura en Nutrición y Dietética, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Erick Velasteguí
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Isaac B. Falconí
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Valeria I. García-Solorzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Angie Rendón-Riofrio
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Gabriela A. Sanguña-Soliz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Agua y Desarrollo Sustentable, CADS, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Wim Vanden Berghe
- Epigenetic signaling PPES lab, Department Biomedical Sciences, University Antwerp, Antwerp, Belgium
| | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
8
|
Denicol AC, Siqueira LGB. Maternal contributions to pregnancy success: from gamete quality to uterine environment. Anim Reprod 2023; 20:e20230085. [PMID: 37720724 PMCID: PMC10503891 DOI: 10.1590/1984-3143-ar2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
The establishment and maintenance of a pregnancy that goes to term is sine qua non for the long-term sustainability of dairy and beef cattle operations. The oocyte plays a critical role in providing the factors necessary for preimplantation embryonic development. Furthermore, the female, or maternal, environment where oocytes and embryos develop is crucial for the establishment and maintenance of a pregnancy to term. During folliculogenesis, the oocyte must sequentially acquire meiotic and developmental competence, which are the results of a series of molecular events preparing the highly specialized gamete to return to totipotency after fertilization. Given that folliculogenesis is a lengthy process in the cow, the occurrence of disease, metabolic imbalances, heat stress, or other adverse events can make it challenging to maintain oocyte quality. Following fertilization, the newly formed embryo must execute a tightly planned program that includes global DNA remodeling, activation of the embryonic genome, and cell fate decisions to form a blastocyst within a few days and cell divisions. The increasing use of assisted reproductive technologies creates an additional layer of complexity to ensure the highest oocyte and embryo quality given that in vitro systems do not faithfully recreate the physiological maternal environment. In this review, we discuss cellular and molecular factors and events known to be crucial for proper oocyte development and maturation, as well as adverse events that may negatively affect the oocyte; and the importance of the uterine environment, including signaling proteins in the maternal-embryonic interactions that ensure proper embryo development. We also discuss the impact of assisted reproductive technologies in oocyte and embryo quality and developmental potential, and considerations when looking into the prospects for developing systems that allow for in vitro gametogenesis as a tool for assisted reproduction in cattle.
Collapse
Affiliation(s)
- Anna Carolina Denicol
- Department of Animal Science, University of California, Davis, CA, United States of America
| | | |
Collapse
|
9
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Raia T, Armeli F, Cavallaro RA, Ferraguti G, Businaro R, Lucarelli M, Fuso A. Perinatal S-Adenosylmethionine Supplementation Represses PSEN1 Expression by the Cellular Epigenetic Memory of CpG and Non-CpG Methylation in Adult TgCRD8 Mice. Int J Mol Sci 2023; 24:11675. [PMID: 37511434 PMCID: PMC10380323 DOI: 10.3390/ijms241411675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.
Collapse
Affiliation(s)
- Tiziana Raia
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | | | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Rochedy A, Valette M, Tauber M, Poulain JP. Food socialization of children with Prader-Willi syndrome: an interdisciplinary problematization. Front Nutr 2023; 10:1177348. [PMID: 37346908 PMCID: PMC10280295 DOI: 10.3389/fnut.2023.1177348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 06/23/2023] Open
Abstract
Eating "disorders" of people with Prader-Willi syndrome are frequently reported in the biomedical literature. The eating behaviors are presented as a syndrome-specific trajectory over the course of a lifetime. Infants initially show anorexic behavior, which then develops into hyperphagia that lasts from childhood to adulthood and is characterized by strong cravings for food and relentless thinking about it. However, the sociocultural determinants of these food practices are not fully understood. In the first section of this article, we carry out a literature review of medical articles published on disordered eating in children with PWS. The second section draws on a social science perspective and offers an interdisciplinary problematization using the concept of food socialization. To conclude, the third section explores the challenges facing research and new questions that emerge from the alternative problematization that is the PWS Food Social Norms Internalization (FSNI) theory.
Collapse
Affiliation(s)
- Amandine Rochedy
- Université Toulouse—Jean Jaurès, Toulouse, France
- UMR5044 Centre d'Etude et de Recherche Travail, Organisation, Pouvoir (CERTOP), Toulouse, Midi-Pyrénées, France
| | - Marion Valette
- Reference Center of Prader-Willi Syndrome and Other Syndromes with Eating Disorders PRADORT, Children’s Hospital, Toulouse, France
- UMR1295, Centre for Epidemiology and Research in Population Health (CERPOP), Toulouse, France
| | - Maithé Tauber
- Reference Center of Prader-Willi Syndrome and Other Syndromes with Eating Disorders PRADORT, Children’s Hospital, Toulouse, France
- INSERM UMR1291 Institut Toulousain des Maladies Infectieuses et Inflammatoires, Toulouse, France
| | - Jean Pierre Poulain
- Université Toulouse—Jean Jaurès, Toulouse, France
- UMR5044 Centre d'Etude et de Recherche Travail, Organisation, Pouvoir (CERTOP), Toulouse, Midi-Pyrénées, France
- Chair of “Food Studies: Food, Cultures and Health”, Taylor’s Toulouse University Center, Taylor’s University, Kuala Lumpur, Malaysia
- Faculty of Social Sciences and Leisure Management and Centre for Asian Modernisation Studies, Taylor’s University, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Hellwege JN, Stallings SC, Piekos JA, Jasper EA, Aronoff DM, Edwards TL, Velez Edwards DR. Association of genetically-predicted placental gene expression with adult blood pressure traits. J Hypertens 2023; 41:1024-1032. [PMID: 37016918 PMCID: PMC10287061 DOI: 10.1097/hjh.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Blood pressure is a complex, polygenic trait, and the need to identify prehypertensive risks and new gene targets for blood pressure control therapies or prevention continues. We hypothesize a developmental origins model of blood pressure traits through the life course where the placenta is a conduit mediating genomic and nongenomic transmission of disease risk. Genetic control of placental gene expression has recently been described through expression quantitative trait loci (eQTL) studies which have identified associations with childhood phenotypes. METHODS We conducted a transcriptome-wide gene expression analysis estimating the predicted gene expression of placental tissue in adult individuals with genome-wide association study (GWAS) blood pressure summary statistics. We constructed predicted expression models of 15 154 genes from reference placenta eQTL data and investigated whether genetically-predicted gene expression in placental tissue is associated with blood pressure traits using published GWAS summary statistics. Functional annotation of significant genes was generated using FUMA. RESULTS We identified 18, 9, and 21 genes where predicted expression in placenta was significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP), respectively. There were 14 gene-tissue associations (13 unique genes) significant only in placenta. CONCLUSIONS In this meta-analysis using S-PrediXcan and GWAS summary statistics, the predicted expression in placenta of 48 genes was statistically significantly associated with blood pressure traits. Notable findings included the association of FGFR1 expression with increased SBP and PP. This evidence of gene expression variation in placenta preceding the onset of adult blood pressure phenotypes is an example of extreme preclinical biological changes which may benefit from intervention.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Department of Medicine, Division of Genetic Medicine
- Vanderbilt Genetics Institute
| | - Sarah C Stallings
- Department of Medicine, Division of Genetic Medicine
- Vanderbilt Genetics Institute
| | - Jacqueline A Piekos
- Vanderbilt Genetics Institute
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
| | - Elizabeth A Jasper
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Todd L Edwards
- Vanderbilt Genetics Institute
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Placental Metabolomics of Fetal Growth Restriction. Metabolites 2023; 13:metabo13020235. [PMID: 36837853 PMCID: PMC9959525 DOI: 10.3390/metabo13020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Fetal growth restriction is an obstetrical pathological condition that causes high neonatal mortality and morbidity. The mechanisms of its onset are not completely understood. Metabolites were extracted from 493 placentas from non-complicated pregnancies in Hamilton Country, TN (USA), and analyzed by gas chromatography-mass spectrometry (GC-MS). Newborns were classified according to raw fetal weight (low birth weight (LBW; <2500 g) and non-low birth weight (Non-LBW; >2500 g)), and according to the calculated birth weight centile as it relates to gestational age (small for gestational age (SGA), large for gestational age (LGA), and adequate for gestational age (AGA)). Mothers of LBW infants had a lower pre-pregnancy weight (66.2 ± 17.9 kg vs. 73.4 ± 21.3 kg, p < 0.0001), a lower body mass index (BMI) (25.27 ± 6.58 vs. 27.73 ± 7.83, p < 0.001), and a shorter gestation age (246.4 ± 24.0 days vs. 267.2 ± 19.4 days p < 0.001) compared with non-LBW. Marital status, tobacco use, and fetus sex affected birth weight centile classification according to gestational age. Multivariate statistical comparisons of the extracted metabolomes revealed that asparagine, aspartic acid, deoxyribose, erythritol, glycerophosphocholine, tyrosine, isoleucine, serine, and lactic acid were higher in both SGA and LBW placentas, while taurine, ethanolamine, β-hydroxybutyrate, and glycine were lower in both SGA and LBW. Several metabolic pathways are implicated in fetal growth restriction, including those related to the hypoxia response and amino-acid uptake and metabolism. Inflammatory pathways are also involved, suggesting that fetal growth restriction might share some mechanisms with preeclampsia.
Collapse
|
14
|
Urlacher SS, Kim EY, Luan T, Young LJ, Adjetey B. Minimally invasive biomarkers in human and non-human primate evolutionary biology: Tools for understanding variation and adaptation. Am J Hum Biol 2022; 34:e23811. [PMID: 36205445 PMCID: PMC9787651 DOI: 10.1002/ajhb.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The use of minimally invasive biomarkers (MIBs - physiological biomarkers obtained from minimally invasive sample types) has expanded rapidly in science and medicine over the past several decades. The MIB approach is a methodological strength in the field of human and non-human primate evolutionary biology (HEB). Among humans and our closest relatives, MIBs provide unique opportunities to document phenotypic variation and to operationalize evolutionary hypotheses. AIMS This paper overviews the use of MIBs in HEB. Our objectives are to (1) highlight key research topics which successfully implement MIBs, (2) identify promising yet under-investigated areas of MIB application, and (3) discuss current challenges in MIB research, with suggestions for advancing the field. DISCUSSION AND CONCLUSIONS A range of MIBs are used to investigate focal topics in HEB, including energetics and life history variation/evolution, developmental plasticity, and social status and dominance relationships. Nonetheless, we identify gaps in existing MIB research on traits such as physical growth and gut function that are central to the field. Several challenges remain for HEB research using MIBs, including the need for additional biomarkers and methods of assessment, robust validations, and approaches that are standardized across labs and research groups. Importantly, researchers must provide better support for adaptation and fitness effects in hypothesis testing (e.g., by obtaining complementary measures of energy expenditure, demonstrating redundancy of function, and performing lifetime/longitudinal analyses). We point to continued progress in the use of MIBs in HEB to better understand the past, present, and future of humans and our closest primate relatives.
Collapse
Affiliation(s)
- Samuel S. Urlacher
- Department of AnthropologyBaylor UniversityWacoTexasUSA
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Child and Brain Development ProgramCIFARTorontoOntarioCanada
| | - Elizabeth Y. Kim
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Department of BiologyBaylor UniversityWacoTexasUSA
| | - Tiffany Luan
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Lauren J. Young
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Brian Adjetey
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| |
Collapse
|
15
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
16
|
Nazem MN, Aghamiri SM, Kheirandish R, Hakimy Z. The effects of methionine administration during the beginning postnatal days on the ovarian structures in adult rats. Vet Med Sci 2022; 8:1174-1179. [PMID: 35133706 PMCID: PMC9122406 DOI: 10.1002/vms3.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Methionine is known as an essential amino acid in mammals. Consuming excessive amounts of methionine has toxic effects. This study aimed at evaluating the histomorphometric and histopathologic changes of ovaries after methionine administration during follicle formation. MATERIAL AND METHODS A total of 60 newborn female rats born under similar conditions were selected and randomly assigned into three groups including control, recipients of 50 and 200 mg/kg body weight of methionine for 5 days. On day 120, all 60 female rats were euthanized and the whole left ovary of each animal was taken in order to count the number of primordial, primary, secondary, antral, atretic follicles, as well as corpora lutea and also to conduct histopathologic study. RESULTS According to the results, the 50 mg/kg methionine did not significantly change the number of primordial follicles compared to the control group but the 200 mg/kg dose significantly decreased the number of primordial follicles. There were no significant differences between the groups in the number of other types of follicles and also in the number of corpora lutea. There was no histopathological lesion in the groups. CONCLUSIONS It seems that the high dose of methionine could exacerbate apoptosis of the primordial ovarian follicle during the follicle assembly process. However, the remaining were enough to form later stages of follicles after puberty.
Collapse
Affiliation(s)
- Mohamad Naser Nazem
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Morteza Aghamiri
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zeinab Hakimy
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
17
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
18
|
Moya-Alvarez V, Sansonetti PJ. Understanding the pathways leading to gut dysbiosis and enteric environmental dysfunction in infants: the influence of maternal dysbiosis and other microbiota determinants during early life. FEMS Microbiol Rev 2022; 46:6516326. [PMID: 35088084 DOI: 10.1093/femsre/fuac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal environmental enteric dysfunction (EED) encompasses undernutrition with an inflammatory gut profile, a variable degree of dysbiosis and increased translocation of pathogens in the gut mucosa. Even though recent research findings have shed light on the pathological pathways underlying the establishment of the infant gut dysbiosis, evidence on how maternal EED influences the development of gut dysbiosis and EED in the offspring remains elusive. This review summarizes the current knowledge on the effect of maternal dysbiosis and EED on infant health, and explores recent progress in unraveling the mechanisms of acquisition of a dysbiotic gut microbiota in the offspring. In Western communities, maternal inoculum, delivery mode, perinatal antibiotics, feeding practices, and infections are the major drivers of the infant gut microbiota during the first two years of life. In other latitudes, the infectious burden and maternal malnutrition might introduce further risk factors for infant gut dysbiosis. Novel tools, such as transcriptomics and metabolomics, have become indispensable to analyze the metabolic environment of the infant in utero and post-partum. Human-milk oligosaccharides have essential prebiotic, antimicrobial, and anti-biofilm properties that might offer additional therapeutic opportunities.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Epidemiology of Emergent Diseases Unit, Global Health Department, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France
| | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France.,The Center for Microbes, Development and Health, Institut Pasteur de Shanghai, China
| |
Collapse
|
19
|
Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic Regulation in Pathology of Atherosclerosis: A Novel Perspective. Front Genet 2022; 12:810689. [PMID: 34976029 PMCID: PMC8714670 DOI: 10.3389/fgene.2021.810689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological process that involves different cell types and can be seen as a chronic inflammatory disease. In the advanced stage, the ruptured atherosclerotic plaque can induce deadly accidents including ischemic stroke and myocardial infarction. Epigenetics regulation, including DNA methylation, histone modification, and non-coding RNA modification. maintains cellular identity via affecting the cellular transcriptome. The epigenetic modification process, mediating by epigenetic enzymes, is dynamic under various stimuli, which can be reversely altered. Recently, numerous studies have evidenced the close relationship between atherosclerosis and epigenetic regulations in atherosclerosis, providing us with a novel perspective in researching mechanisms and finding novel therapeutic targets of this serious disease. Here, we critically review the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Zhangwei Zeng
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Chenghao Shang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
21
|
Wang M, Xu W, Zou J, Li S, Song Z, Zheng F, Ji W, Xu Z, Wang Q. The Programming of Antioxidant Capacity, Immunity, and Lipid Metabolism in Dojo Loach ( Misgurnus anguillicaudatus) Larvae Linked to Sodium Chloride and Hydrogen Peroxide Pre-treatment During Egg Hatching. Front Physiol 2021; 12:768907. [PMID: 34777025 PMCID: PMC8581469 DOI: 10.3389/fphys.2021.768907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Non-nutritional stress during early life period has been reported to promote the metabolic programming in fish induced by nutritional stimulus. Sodium chloride (NaCl) and hydrogen peroxide (H2O2) have been widely applied during fish egg hatching, but the influences on health and metabolism of fish in their later life remain unknown. In the present study, H2O2 treatment at 400mg/L but not 200mg/L significantly increased the loach hatchability and decreased the egg mortality, while NaCl treatment at 1,000 and 3,000mg/L showed no significant influences on the loach hatchability nor egg mortality. Further studies indicated that 400mg/L H2O2 pre-treatment significantly enhanced the antioxidant capacity and the mRNA expression of genes involved in immune response of loach larvae, accompanied by the increased expression of genes involved in fish early development. However, the expression of most genes involved in lipid metabolism, including catabolism and anabolism of loach larvae, was significantly upregulated after 200mg/L H2O2 pre-treatment. NaCl pre-treatment also increased the expression of antioxidant enzymes; however, only the expression of C1q within the detected immune-related genes was upregulated in loach larvae. One thousand milligram per liter NaCl pre-treatment significantly increased the expression of LPL and genes involved in fish early development. Thus, our results suggested the programming roles of 400mg/L H2O2 pre-treatment during egg hatching in enhancing antioxidant capacity and immune response of fish larvae via promoting fish early development.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenyu Xu
- Ocean University of China, Qingdao, China
| | - Jiahong Zou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Shuaitong Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zixi Song
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei Ji
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Liu L, Amorín R, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Maternal methionine supplementation during gestation alters alternative splicing and DNA methylation in bovine skeletal muscle. BMC Genomics 2021; 22:780. [PMID: 34717556 PMCID: PMC8557564 DOI: 10.1186/s12864-021-08065-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Background The evaluation of alternative splicing, including differential isoform expression and differential exon usage, can provide some insights on the transcriptional changes that occur in response to environmental perturbations. Maternal nutrition is considered a major intrauterine regulator of fetal developmental programming. The objective of this study was to assess potential changes in splicing events in the longissimus dorsi muscle of beef calves gestated under control or methionine-rich diets. RNA sequencing and whole-genome bisulfite sequencing were used to evaluate muscle transcriptome and methylome, respectively. Results Alternative splicing patterns were significantly altered by maternal methionine supplementation. Most of the altered genes were directly implicated in muscle development, muscle physiology, ATP activities, RNA splicing and DNA methylation, among other functions. Interestingly, there was a significant association between DNA methylation and differential exon usage. Indeed, among the set of genes that showed differential exon usage, significant differences in methylation level were detected between significant and non-significant exons, and between contiguous and non-contiguous introns to significant exons. Conclusions Overall, our findings provide evidence that a prenatal diet rich in methyl donors can significantly alter the offspring transcriptome, including changes in isoform expression and exon usage, and some of these changes are mediated by changes in DNA methylation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08065-4.
Collapse
Affiliation(s)
- Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr, Madison, WI, 53706, USA
| | - Rocío Amorín
- University of Florida Genetics Institute, University of Florida, 32611, Gainesville, FL, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, 33865, Ona, FL, USA
| | - Nicolás DiLorenzo
- North Florida Research and Education Center, University of Florida, 32351, Marianna, FL, USA
| | - Phillip A Lancaster
- Department of Clinical Sciences, Kansas State University, 66506, Manhattan, KS, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr, Madison, WI, 53706, USA.
| |
Collapse
|
23
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
24
|
Rinkevich B. Augmenting coral adaptation to climate change via coral gardening (the nursery phase). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112727. [PMID: 33957417 DOI: 10.1016/j.jenvman.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Unceasing climate change and anthropogenic impacts on coral reefs worldwide lead the needs for augmenting adaptive potential of corals. Currently, the most successful approach for restoring degraded reefs is 'coral gardening', where corals are farmed in underwater nurseries, then outplanted to damaged reefs. Dealing with enhanced coral adaptation, the 'coral gardening' approach is conceptually structured here within a hierarchical list of five encircling tiers that include all restoration activities, focusing on the nursery phase. Each tier encompasses all the activities performed in the levels below it hierarchically. The first is the 'coral mariculture' tier, followed by the 'ecological engineering' tier. The third is the adaptation-based reef restoration (ABRR) tier, preceding the fourth ('ecosystem seascape') and the fifth ('ecosystem services') tiers. The ABRR tier is further conceptualized and its constituent five classes (phenotypic plasticity, assisted migration, epigenetics, coral chimerism, holobiont modification) are detailed. It is concluded that the nursery phase of the 'gardening' tenet may further serve as a platform to enhance the adaptation capacities of corals to climate change through the five ABBR classes. Employing the 'gardening' tiers in reef restoration without considering ABRR will scarcely be able to meet global targets for healthy reef ecosystems in the future.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel Shikmona, PO Box 9753, Haifa, 3109701, Israel.
| |
Collapse
|
25
|
Tatar M, Varedi M, Naghibalhossaini F. Epigenetic Effects of Blackberry Extract on Human Colorectal Cancer Cells. Nutr Cancer 2021; 74:1446-1456. [PMID: 34282673 DOI: 10.1080/01635581.2021.1952454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fruit-derived polyphenolic compounds have been shown to exert anticancer effects via epigenetic mechanisms. In this study, we investigated the effect of blackberry extract on the expression of DNMTs (Dnmt1, Dnmt3a, and Dnmt3b) and HDACs (HDAC1-4 and SIRT1) and its influence on the cellular differentiation and promoter DNA methylation of tumor-related genes using a panel of six human CRC cell lines. Treatment with IC20 and IC50 concentrations of blackberry extract for 72 h significantly reduced Dnmt1 and Dnmt3b transcript levels in HCT116, SW480, HT29/219, SW742, and LS180 cells in a dose-dependent manner. Blackberry also induced promoter DNA demethylation of SFRP2 and p16 genes in four tested CRC cell lines. Berry treatment, however, upregulated Dnmt3a genes in SW480, SW742, and HT29/219 cell lines. A dose-dependent and cell-type-specific reduction of HDAC1, HDAC2, and HDAC4 expressions were observed in CRC-treated cells. Treatment with berry extract induced the expression of SIRT1 gene in HCT116 and HT29/219 cells and increased the expression of two colonic epithelial cell differentiation markers, carcinoembryonic antigen (CEA) and alkaline phosphatase in LS180 cells in a time-dependent manner. This study is the first to report the epigenetic effects of blackberry in cancer cells.
Collapse
Affiliation(s)
- Mohsen Tatar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Varedi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Autoimmune Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Paternal exposure to excessive methionine altered behavior and neurochemical activities in zebrafish offspring. Amino Acids 2021; 53:1153-1167. [PMID: 34156542 DOI: 10.1007/s00726-021-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
An increase in plasma L-methionine (Met) levels, even if transitory, can cause important toxicological alterations in the affected individuals. Met is essential in the regulation of epigenetic mechanisms and its influence on the subsequent generation has been investigated. However, few studies have explored the influence of a temporary increase in Met levels in parents on their offspring. This study evaluated the behavioral and neurochemical effects of parental exposure to high Met concentration (3 mM) in zebrafish offspring. Adult zebrafish were exposed to Met for 7 days, maintained for additional 7 days in tanks that contained only water, and then used for breeding. The offspring obtained from these fish (F1) were tested in this study. During the early stages of offspring development, morphology, heart rate, survival, locomotion, and anxiety-like behavior were assessed. When these animals reached the adult stage, locomotion, anxiety, aggression, social interaction, memory, oxidative stress, and levels of amino acids and neurotransmitters were analyzed. F1 larvae Met group presented an increase in the distance and mean speed when compared to the control group. F1 adult Met group showed decreased anxiety-like behavior and locomotion. An increase in reactive oxygen species was also observed in the F1 adult Met group whereas lipid peroxidation and antioxidant enzymes did not change when compared to the control group. Dopamine, serotonin, glutamate, and glutathione levels were increased in the F1 adult Met group. Taken together, our data show that even a transient increase in Met in parents can cause behavioral and neurochemical changes in the offspring, promoting transgenerational effects.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Cantatore C, George JS, Depalo R, D'Amato G, Moravek M, Smith GD. Mouse oocyte vitrification with and without dimethyl sulfoxide: influence on cryo-survival, development, and maternal imprinted gene expression. J Assist Reprod Genet 2021; 38:2129-2138. [PMID: 34021463 DOI: 10.1007/s10815-021-02221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Oocytes and embryos can be vitrified with and without dimethyl sulfoxide (DMSO). Objectives were to compare no vitrification (No-Vitr), vitrification with DMSO (Vitr + DMSO), and vitrification without DMSO (Vitr - DMSO) on fresh/warmed oocyte survival, induced parthenogenetic activation, parthenogenetic embryo development, and embryonic maternal imprinted gene expression. METHODS In this prospective controlled laboratory study, mature B6C3F1 female mouse metaphase II oocytes were treated as: i) No-Vitr, ii) Vitr + DMSO/warmed, and iii) Vitr - DMSO/warmed with subsequent parthenogenetic activation and culture to the blastocyst stage. Oocyte cryo-survival, parthenogenetic activation and embryo development, parthenogenetic embryo maternal imprinted gene expression were outcome measures. RESULTS Oocyte cryo-survival was significantly improved in Vitr + DMSO versus Vitr - DMSO at initial warming and 2 h after warming. Induced parthenogenetic activation was similar between all three intervention groups. While early preimplantation parthenogenetic embryo development was similar between control, Vitr + DMSO, Vitr - DMSO oocytes, the development to blastocysts was significantly inferior in the Vitr - DMSO oocytes group compared to the control and Vitr + DMSO oocyte groups. Finally, maternal imprinted gene expression was similar between intervention groups at both the 2-cell and blastocyst parthenogenetic embryo stage. CONCLUSION(S) Inclusion of DMSO in oocyte vitrification solutions improved cryo-survival and developmental potential of parthenogenetic embryos to the blastocyst stage without significantly altering maternal imprinted gene expression.
Collapse
Affiliation(s)
- Clementina Cantatore
- Department of Maternal and Child Health, Reproductive and IVF Unit, Asl Bari, Conversano (BA), Italy
| | - Jenny S George
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA
| | - Raffaella Depalo
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giuseppe D'Amato
- Department of Maternal and Child Health, Reproductive and IVF Unit, Asl Bari, Conversano (BA), Italy
| | - Molly Moravek
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA
| | - Gary D Smith
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA. .,Departments of Physiology and Urology and Reproductive Sciences Program, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Lamana GL, Ferrari ALL, Gontijo JAR, Boer PA. Gestational and Breastfeeding Low-Protein Intake on Blood Pressure, Kidney Structure, and Renal Function in Male Rat Offspring in Adulthood. Front Physiol 2021; 12:658431. [PMID: 33967827 PMCID: PMC8100335 DOI: 10.3389/fphys.2021.658431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Our previous studies demonstrated that maternal protein-restricted (low-protein, LP) 16-week-old offspring had pronounced nephron number reduction and arterial hypertension associated with an unchanged glomerular filtration rate (GFR). An enhanced gomerular area may be related to increased glomerular filtration and overflow, which accounts for glomerular filtration barrier breakdown and early glomerulosclerosis. The effect of protein restriction during gestational and breastfeeding periods is unknown. Method: The functional e-structural kidney evaluation was obtained using lithium and creatinine clearance, kidney morphometry, immunoblotting, and immunostaining analysis in 16 and 24-week-old LP offspring compared to age-matched NP progeny. Results: Low protein rats' progeny had significantly reduced birth weight, without previous catch-up growth phenomena, in parallel with a decreased adiposity index. Transforming growth factor-beta 1 (TGF-β1) glomerular expression was significantly enhanced in the LP group. Also, the LP offspring had a 38% lower nephron number and an increased glomerular volume. They also presented with a higher cardiac index and arterial blood pressure compared with age-matched NP offspring. The LP rats exhibited augmented Na+/K+-ATPase in the proximal segments, and NOS1 immunoreactivity in whole renal tissue was associated with sodium retention in the proximal nephron segments. We also found significantly enhanced collagen content associated with increased TGFβ1 and ZEB1/2 renal immunoreactivity in LP offspring compared with NP offspring. Increased hypertrophy markers in LP podocytes were associated with an amplified IL-6/STAT3 pathway activity. Conclusion: To our knowledge, these are the first data demonstrating renal functional and structural changes in protein restriction during gestation and lactation model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced fibrosis stage, without a change in the GFR. These findings suggest that the glomerular enhanced TGF-β1 action may induce ZEB1/2 expression that may cause glomeruli epithelial-to-mesenchymal transition. Besides, decreased nephron number in the LP offspring with preserved glomerular function may be related to protective or even attenuate the activated IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, Brazil
| | - Ana Leticia Luchiari Ferrari
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, Brazil
| |
Collapse
|
29
|
Zarantoniello M, Randazzo B, Cardinaletti G, Truzzi C, Chemello G, Riolo P, Olivotto I. Possible Dietary Effects of Insect-Based Diets across Zebrafish ( Danio rerio) Generations: A Multidisciplinary Study on the Larval Phase. Animals (Basel) 2021; 11:ani11030751. [PMID: 33803315 PMCID: PMC8000180 DOI: 10.3390/ani11030751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Insects represent a valuable and sustainable alternative ingredient for aquafeed formulation. However, insect-based diets have often highlighted controversial results in different fish species, especially when high inclusion levels were used. Several studies have demonstrated that nutritional programming through parental feeding may allow the production of fish better adapted to use sub-optimal aquafeed ingredients. To date, this approach has never been explored on insect-based diets. In the present study, five experimental diets characterized by increasing fish meal substitution levels with full-fat Black Soldier Fly (Hermetia illucens; BSF) prepupae meal (0%, 25%, 50%, 75% and 100%) were used to investigate the effects of programming via broodstock nutrition on F1 zebrafish larvae development. The responses of offspring were assayed through biometric, gas chromatographic, histological, and molecular analyses. The results evidenced that the same BSF-based diets provided to adults were able to affect F1 zebrafish larvae fatty acid composition without impairing growth performances, hepatic lipid accumulation and gut health. Groups challenged with higher BSF inclusion with respect to fish meal (50%, 75% and 100%) showed a significant downregulation of stress response markers and a positive modulation of inflammatory cytokines gene expression. The present study evidences that nutritional programming through parental feeding may make it possible to extend the fish meal substitution level with BSF prepupae meal in the diet up to almost 100% without incurring the well-known negative side effects of BSF-based diets.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Gloriana Cardinaletti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali (Di4A), Università di Udine, via Sondrio 2/A, 33100 Udine, Italy;
| | - Cristina Truzzi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Giulia Chemello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy;
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
- Correspondence:
| |
Collapse
|
30
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
31
|
Ghasemi S, Xu S, Nabavi SM, Amirkhani MA, Sureda A, Tejada S, Lorigooini Z. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother Res 2021; 35:3649-3664. [PMID: 33619811 DOI: 10.1002/ptr.7059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations are one of the main factors that disrupt the expression of genes and consequently, they have an important role in the carcinogenicity and the progression of different cancers. Cancer stem cells (CSCs) are accountable for the recurrence, metastasis, and therapeutic failure of cancer. The noticeable and specific pathways in CSCs can be organized by epigenetic mechanisms such as DNA methylation, chromatin remodeling, regulatory RNAs, among others. Since epigenetics modifications can be changed and reversed, it is a possible tool for cancer control and treatment. Epigenetic therapies against CSCs are emerging as a very new strategy with a good future expectation to treat cancer patients. Phenolic compounds are a vast group of substances with anticarcinogenic functions, antiinflammatory, and antioxidative activities. It seems these characteristics are related to neutralizing CSCs development, their microenvironment, and metabolism through epigenetic mechanisms. In the current work, the types of epigenetic changes known in these cells are introduced. In addition, some studies about the use of polyphenols acting through a variety of epigenetic mechanisms to counteract these cells will be reviewed. The reported results seem to indicate that the use of these phenolic compounds may be useful for CSCs defeat.
Collapse
Affiliation(s)
- Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of neurophysiology. Biology Department, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
32
|
Lucock M. Vitamin-related phenotypic adaptation to exposomal factors: The folate-vitamin D-exposome triad. Mol Aspects Med 2021; 87:100944. [PMID: 33551238 DOI: 10.1016/j.mam.2021.100944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The biological role of two key vitamins, folic acid and vitamin D is so fundamental to life processes, it follows that their UV sensitivity, dietary abundance (both key exposomal factors) and variability in dependent genes will modify their functional efficacy, particularly in the context of maintaining the integrity and function of genome and epigenome. This article therefore examines folate and vitamin D-related phenotypic adaptation to environmental factors which vary across the human life cycle as well as over an evolutionary time-scale. Molecular mechanisms, key nutrigenomic factors, phenotypic maladaptation and evolutionary models are discussed.
Collapse
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, PO Box 127, Brush Rd, Ourimbah, NSW, 2258, Australia.
| |
Collapse
|
33
|
Marx W, Lane M, Hockey M, Aslam H, Berk M, Walder K, Borsini A, Firth J, Pariante CM, Berding K, Cryan JF, Clarke G, Craig JM, Su KP, Mischoulon D, Gomez-Pinilla F, Foster JA, Cani PD, Thuret S, Staudacher HM, Sánchez-Villegas A, Arshad H, Akbaraly T, O'Neil A, Segasby T, Jacka FN. Diet and depression: exploring the biological mechanisms of action. Mol Psychiatry 2021; 26:134-150. [PMID: 33144709 DOI: 10.1038/s41380-020-00925-x] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
The field of nutritional psychiatry has generated observational and efficacy data supporting a role for healthy dietary patterns in depression onset and symptom management. To guide future clinical trials and targeted dietary therapies, this review provides an overview of what is currently known regarding underlying mechanisms of action by which diet may influence mental and brain health. The mechanisms of action associating diet with health outcomes are complex, multifaceted, interacting, and not restricted to any one biological pathway. Numerous pathways were identified through which diet could plausibly affect mental health. These include modulation of pathways involved in inflammation, oxidative stress, epigenetics, mitochondrial dysfunction, the gut microbiota, tryptophan-kynurenine metabolism, the HPA axis, neurogenesis and BDNF, epigenetics, and obesity. However, the nascent nature of the nutritional psychiatry field to date means that the existing literature identified in this review is largely comprised of preclinical animal studies. To fully identify and elucidate complex mechanisms of action, intervention studies that assess markers related to these pathways within clinically diagnosed human populations are needed.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia.
| | - Melissa Lane
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Meghan Hockey
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Hajara Aslam
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Metabolic Research Unit, Geelong, VIC, Australia
| | - Alessandra Borsini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joseph Firth
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Jeffrey M Craig
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Geelong, VIC, Australia
| | - Kuan-Pin Su
- Departments of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - David Mischoulon
- Department of Psychiatry, Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Sandrine Thuret
- Basic and Clinical Neuroscience Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Heidi M Staudacher
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Almudena Sánchez-Villegas
- Nutrition Research Group, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
- Biomedical Research Center Network on Obesity and Nutrition (CIBERobn) Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Husnain Arshad
- Université Paris-Saclay, UVSQ, Inserm, CESP, "DevPsy", 94807, Villejuif, France
| | - Tasnime Akbaraly
- Université Paris-Saclay, UVSQ, Inserm, CESP, "DevPsy", 94807, Villejuif, France
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Adrienne O'Neil
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Toby Segasby
- Basic and Clinical Neuroscience Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Felice N Jacka
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| |
Collapse
|
34
|
Rosa F, Osorio JS. Quantitative determination of histone methylation via fluorescence resonance energy transfer (FRET) technology in immortalized bovine mammary alveolar epithelial cells supplemented with methionine. PLoS One 2020; 15:e0244135. [PMID: 33347518 PMCID: PMC7751961 DOI: 10.1371/journal.pone.0244135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Methionine (Met) is an essential precursor of S-adenosylmethionine (SAM), which is the primary methyl donor required for biological processes such as DNA and histone methylation, which alter gene expression. In dairy cows, dietary Met has been observed to exert transcriptional alterations with beneficial effects on milk biosynthesis; however, the extent of these effects via SAM remains unknown. Therefore, we evaluated the effect of Met supply on histone methylation in lysine residues K9 and K27 in the histone tail H3 via a fluorescence resonance energy transfer (FRET) system in immortalized bovine mammary alveolar epithelial cells (MACT) incubated varying concentration of Met. The histone methylation data was complemented with global DNA methylation, cellular protein synthesis, and RT-qPCR analysis of genes related to Met cycle, DNA and histone methylation, AA transporters, and protein synthesis. The histone methylation data was performed on MACT cells seeded at 30,000 cells/well in 96-well plates 24 h prior to transfection. The transfections of FRET gene reporter plasmids H3K9 and H3K27 was performed with 0.3 μL/well of Lipofectamine® 3000 and 50 ng of plasmid DNA per well. At 24 h post-transfection, cells were treated with 0, 125, 250, and 500 μM of Met, and quantification of histone methylation was performed at 0, 12, and 24 h post-treatment as well as cell viability at 24 h using CellProfiler software. An inverted microscope for live imagining (EVOS® FL Auto) equipped with a motorized scanning stage, and an environment-controlled chamber at 37˚C and 5.0% of CO2 was used to take 4 pictures/well at 4x magnification. A more defined response on histone methylation was observed in H3K9 than H3K27 to Met supply, where maximal histone methylation in H3K9 was observed with 125 μM of Met. This greater histone methylation in H3K9 at 125 μM was accompanied by greater cellular protein concentration. The linear increase in Met supply causes a linear decrease in global DNA methylation, while linearly upregulating genes related to the Met cycle (i.e., MAT1A, PEMT, SAHH, and MTR). The histone methylation data suggest that, to some extent, methyl-donors such as Met may affect the methylation sites, H3K9 and H3K27, and consequently causing a different epigenetic alteration. In the context of the dairy cow, further refinement to this FRET assay to study histone methylation could lead to establishing novel potential mechanisms of how dietary methyl donors may control the structural conformation of the bovine genome and, by extension, gene expression.
Collapse
Affiliation(s)
- Fernanda Rosa
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Johan S. Osorio
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
35
|
Jang KB, Kim JH, Purvis JM, Chen J, Ren P, Vazquez-Anon M, Kim SW. Effects of mineral methionine hydroxy analog chelate in sow diets on epigenetic modification and growth of progeny. J Anim Sci 2020; 98:5897043. [PMID: 32841352 PMCID: PMC7507415 DOI: 10.1093/jas/skaa271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-β1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-β, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Jong Hyuk Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | | | - Ping Ren
- Novus International, Inc., St. Charles, MO
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
36
|
Turkmen S, Zamorano MJ, Xu H, Fernández-Palacios H, Robaina L, Kaushik S, Izquierdo M. Parental LC-PUFA biosynthesis capacity and nutritional intervention with alpha-linolenic acid affect performance of Sparus aurata progeny. ACTA ACUST UNITED AC 2020; 223:jeb.214999. [PMID: 33077642 DOI: 10.1242/jeb.214999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Environmental factors such as nutritional interventions during early developmental stages affect and establish long-term metabolic changes in all animals. Diet during the spawning period has a nutritional programming effect in offspring of gilthead seabream and affects long-term metabolism. Studies showed modulation of genes such as fads2, which is considered to be a rate-limiting step in the synthesis of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). However, it is still unknown whether this adaptation is related to the presence of precursors or to limitations in the pre-formed products, n-3 LC-PUFA, contained in the diets used during nutritional programming. This study investigated the combined effects of nutritional programming on Sparus aurata through broodstock diets during the spawning period and in broodfish showing higher or lower fads2 expression levels in the blood after 1 month of feeding with a diet containing high levels of plant protein sources and vegetable oils (VM/VO). Broodfish showing high fads2 expression had a noticeable improvement in spawning quality parameters as well as in the growth of 6 month old offspring when challenged with a high VM/VO diet. Further, nutritional conditioning with 18:3n-3-rich diets had an adverse effect in comparison to progeny obtained from fish fed high fish meal and fish oil (FM/FO) diets, with a reduction in growth of juveniles. Improved growth of progeny from the high fads2 broodstock combined with similar muscle fatty acid profiles is also an excellent option for tailoring and increasing the flesh n-3 LC-PUFA levels to meet the recommended dietary allowances for human consumption.
Collapse
Affiliation(s)
- Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain .,Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria J Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Hipólito Fernández-Palacios
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Lidia Robaina
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| |
Collapse
|
37
|
Karimi SM, Little BB, Mokhtari M. Short-term fetal nutritional stress and long-term health: Child height. Am J Hum Biol 2020; 33:e23531. [PMID: 33155755 DOI: 10.1002/ajhb.23531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study examined the impact of in utero exposure to Ramadan, the Islamic fasting month, by trimester on height at ages 0 to 18 for a sample of children from Tehran, Iran. If exposure to Ramadan is associated with significant nutritional stress to the fetus, the fetus's adaptive responses to nutritional insufficiency could manifest as changes in height during childhood, long before any effects on aging or disease risk at older ages. METHODS Children who were exposed and not exposed to Ramadan in utero were compared to identify any systematic difference between their parents' and households' characteristics (including height, age, education, and indicators of wealth). Also, the seasonal pattern of food consumption in Tehran was analyzed. Finally, the association of child height with prenatal exposure to Ramadan was measured, controlling for seasonality and parent and household. RESULTS Ramadan associated fasting in the second trimester of gestation was associated with 0.091 age-adjusted SDs (ie, 0.60-0.67 cm) decrease in children's height at age 10 years or older. The negative association was largest in male children and was approximately 1 cm at age 12 years or older among male children. CONCLUSION Maternal Ramadan fasting in the second trimester, the critical period for long bone development, was associated with decreased height. Exposure to ritual fasting is important because approximately 75% of all Muslim children are exposed to Ramadan in utero.
Collapse
Affiliation(s)
- Seyed M Karimi
- Department of Health Management and System Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Bert B Little
- Department of Health Management and System Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - MohammadAli Mokhtari
- Department of Economics, Università della Svizzera Italiana (USI), Lugano, CH, Switzerland
| |
Collapse
|
38
|
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020; 4:nzaa166. [PMID: 33294766 PMCID: PMC7703391 DOI: 10.1093/cdn/nzaa166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| | - Subramanian Chellappan
- Department of Anesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, Haryana, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| |
Collapse
|
39
|
Diet and Healthy Lifestyle in the Management of Gestational Diabetes Mellitus. Nutrients 2020; 12:nu12103050. [PMID: 33036170 PMCID: PMC7599681 DOI: 10.3390/nu12103050] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) among pregnant women increases the risk of both short-term and long-term complications, such as birth complications, babies large for gestational age (LGA), and type 2 diabetes in both mother and offspring. Lifestyle changes are essential in the management of GDM. In this review, we seek to provide an overview of the lifestyle changes which can be recommended in the management of GDM. The diet recommended for women with GDM should contain sufficient macronutrients and micronutrients to support the growth of the foetus and, at the same time, limit postprandial glucose excursions and encourage appropriate maternal gestational weight gain. Blood glucose excursions and hyperglycaemic episodes depend on carbohydrate-intake. Therefore, nutritional counselling should focus on the type, amount, and distribution of carbohydrates in the diet. Further, physical activity has beneficial effects on glucose and insulin levels and it can contribute to a better glycaemic control.
Collapse
|
40
|
Liu L, Amorín R, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Differential network analysis of bovine muscle reveals changes in gene coexpression patterns in response to changes in maternal nutrition. BMC Genomics 2020; 21:684. [PMID: 33008289 PMCID: PMC7531131 DOI: 10.1186/s12864-020-07068-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Coexpression network analysis is a powerful tool to reveal transcriptional regulatory mechanisms, identify transcription factors, and discover gene functions. It can also be used to investigate changes in coexpression patterns in response to environmental insults or changes in experimental conditions. Maternal nutrition is considered a major intrauterine regulator of fetal developmental programming. The objective of this study was to investigate structural changes in gene coexpression networks in the muscle of bull beef calves gestated under diets with or without methionine supplementation. Both muscle transcriptome and methylome were evaluated using next generation sequencing. Results Maternal methionine supplementation significantly perturbed coexpression patterns in the offspring’s muscle. Indeed, we found that neither the connection strength nor the connectivity pattern of six modules (subnetworks) detected in the control diet were preserved in the methionine-rich diet. Functional characterization revealed that some of the unpreserved modules are implicated in myogenesis, adipogenesis, fibrogenesis, canonical Wnt/β-catenin pathway, ribosome structure, rRNA binding and processing, mitochondrial activities, ATP synthesis and NAD(P) H oxidoreductases, among other functions. The bisulfite sequencing analysis showed that nearly 2% of all evaluated cytosines were differentially methylated between maternal diets. Interestingly, there were significant differences in the levels of gene body DNA methylation between preserved and unpreserved modules. Conclusions Overall, our findings provide evidence that maternal nutrition can significantly alter gene coexpression patterns in the offspring, and some of these perturbations are mediated by changes in DNA methylation.
Collapse
Affiliation(s)
- Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Rocío Amorín
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL, 33865, USA
| | - Nicolás DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32351, USA
| | - Phillip A Lancaster
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA. .,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
41
|
Gagné-Ouellet V, Breton E, Thibeault K, Fortin CA, Desgagné V, Girard Tremblay É, Cardenas A, Guérin R, Perron P, Hivert MF, Bouchard L. Placental Epigenome-Wide Association Study Identified Loci Associated with Childhood Adiposity at 3 Years of Age. Int J Mol Sci 2020; 21:ijms21197201. [PMID: 33003475 PMCID: PMC7582906 DOI: 10.3390/ijms21197201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to identify placental DNA methylation (DNAm) variations associated with adiposity at 3 years of age. We quantified placental DNAm using the Infinium MethylationEPIC BeadChips. We assessed associations between DNAm at single-CpGs and skinfold thickness using robust linear regression models adjusted for gestational age, child's sex, age at follow-up and cellular heterogeneity. We sought replication of DNAm association with child adiposity in an independent cohort. We quantified placental mRNA levels for annotated gene using qRT-PCR and tested for correlation with DNAm. Lower DNAm at cg22593959 and cg22436429 was associated with higher adiposity (β = -1.18, q = 0.002 and β = -0.82, q = 0.04). The cg22593959 is located in an intergenic region (chr7q31.3), whereas cg22436429 is within the TFAP2E gene (1p34.3). DNAm at cg22593959 and cg22436429 was correlated with mRNA levels at FAM3C (rs = -0.279, p = 0.005) and TFAP2E (rs = 0.216, p = 0.03). In an independent cohort, the association between placental DNAm at cg22593959 and childhood adiposity was of similar strength and direction (β = -3.8 ± 4.1, p = 0.36), yet non-significant. Four genomic regions were also associated with skinfold thickness within FMN1, MAGI2, SKAP2 and BMPR1B genes. We identified placental epigenetic variations associated with adiposity at 3 years of age suggesting that childhood fat accretion patterns might be established during fetal life.
Collapse
Affiliation(s)
- Valérie Gagné-Ouellet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Edith Breton
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Carol-Ann Fortin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean—Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Élise Girard Tremblay
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA;
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean—Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (P.P.); (M.-F.H.)
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (P.P.); (M.-F.H.)
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.G.-O.); (E.B.); (K.T.); (C.-A.F.); (V.D.); (É.G.T.); (R.G.)
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean—Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
- Correspondence:
| |
Collapse
|
42
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
43
|
Siqueira LG, Silva MVG, Panetto JC, Viana JH. Consequences of assisted reproductive technologies for offspring function in cattle. Reprod Fertil Dev 2020; 32:82-97. [PMID: 32188560 DOI: 10.1071/rd19278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormal fetuses, neonates and adult offspring derived by assisted reproductive technologies (ART) have been reported in humans, rodents and domestic animals. The use of ART has also been associated with an increased likelihood of certain adult diseases. These abnormalities may arise as a result of an excess of or missing maternally derived molecules during invitro culture, because the invitro environment is artificial and suboptimal for embryo development. Nonetheless, the success of ART in overcoming infertility or improving livestock genetics is undeniable. Limitations of invitro embryo production (IVEP) in cattle include lower rates of the establishment and maintenance of pregnancy and an increased incidence of neonatal morbidity and mortality. Moreover, recent studies demonstrated long-term effects of IVEP in cattle, including increased postnatal mortality, altered growth and a slight reduction in the performance of adult dairy cows. This review addresses the effects of an altered preimplantation environment on embryo and fetal programming and offspring development. We discuss cellular and molecular responses of the embryo to the maternal environment, how ART may disturb programming, the possible role of epigenetic effects as a mechanism for altered phenotypes and long-term effects of ART that manifest in postnatal life.
Collapse
Affiliation(s)
- Luiz G Siqueira
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330; and Corresponding author.
| | | | - João C Panetto
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330
| | - João H Viana
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil 70770-917
| |
Collapse
|
44
|
Goss KCW, Goss VM, Townsend JP, Koster G, Clark HW, Postle AD. Postnatal adaptations of phosphatidylcholine metabolism in extremely preterm infants: implications for choline and PUFA metabolism. Am J Clin Nutr 2020; 112:1438-1447. [PMID: 32778895 PMCID: PMC7727469 DOI: 10.1093/ajcn/nqaa207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition. OBJECTIVE The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo. METHODS This MS-based lipidomic study quantified the postnatal adaptations to plasma PC molecular composition in 31 preterm infants <28 weeks' gestational age. Activities of the cytidine diphosphocholine (CDP-choline) and phosphatidylethanolamine-N-methyltransferase (PEMT) pathways for PC synthesis were assessed from incorporations of deuterated methyl-D9-choline chloride. RESULTS The concentration of plasma PC in these infants increased postnatally from median values of 481 (IQR: 387-798) µM at enrollment to 1046 (IQR: 616-1220) µM 5 d later (P < 0.001). Direct incorporation of methyl-D9-choline demonstrated that this transition was driven by an active CDP-choline pathway that synthesized PC enriched in species containing oleic and linoleic acids. A second infusion of methyl-D9-choline chloride at day 5 clearly indicated continued activity of this pathway. Oxidation of D9-choline through D9-betaine resulted in the transfer of 1 deuterated methyl group to S-adenosylmethionine. A very low subsequent transfer of this labeled methyl group to D3-PC indicated that liver PEMT activity was essentially inactive in these infants. CONCLUSIONS This study demonstrated that the preterm infant liver soon after birth, and by extension the fetal liver, was metabolically active in lipoprotein metabolism. The low PEMT activity, which is the only pathway for endogenous choline synthesis and is responsible for hormonally regulated export of PUFAs from adult liver, strongly supports increased supplementation of preterm parenteral nutrition with both choline and PUFAs.
Collapse
Affiliation(s)
- Kevin C W Goss
- Child Health, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - Victoria M Goss
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - J Paul Townsend
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - Grielof Koster
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Present address for HWC: UCL EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | | |
Collapse
|
45
|
Abstract
OBJECTIVE To assess the effect of early life exposure to famine, as endured during 1959 to 1961 in China, on reproductive aging in adult women. METHODS Between 2011 and 2012, 2,868 women born around the Chinese famine period (1956-1964) were enrolled in this study from three communities in China. Age at natural menopause was obtained retrospectively from a structured questionnaire. The associations of early life famine exposure with reproductive aging during adulthood were estimated, with adjustment of socioeconomic status, lifestyle factors, and body mass index. RESULTS Women exposed to prenatal famine had a higher risk of early menopause (ie, natural menopause <45 years, odds ratio: 1.59, 95% confidence interval [CI]: 1.07, 2.36), and a nonsignificant trend of higher risk of premature ovarian failure (ie, natural menopause <40 y, odds ratio: 1.94, 95% CI: 0.93, 4.00), compared to unexposed women. Exposure to famine during childhood was not significantly associated with reproductive aging. In a secondary analysis focusing on the fetal exposure, prenatal famine exposure was associated with a higher risk of premature ovarian failure (odds ratio: 2.07, 95% CI: 1.08, 3.87), and a nonsignificant trend of higher risk of early menopause (odds ratio: 1.37, 95% CI: 0.98, 1.91), compared to those unexposed to prenatal famine. CONCLUSIONS Our study showed that fetal exposure to famine was associated with an increased risk of early menopause. Such findings provided evidence in favor of the thrifty phenotype theory in reproductive aging and helped better understand the etiology of early menopause.
Collapse
|
46
|
Giallourou N, Fardus-Reid F, Panic G, Veselkov K, McCormick BJJ, Olortegui MP, Ahmed T, Mduma E, Yori PP, Mahfuz M, Svensen E, Ahmed MMM, Colston JM, Kosek MN, Swann JR. Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growths. SCIENCE ADVANCES 2020; 6:eaay5969. [PMID: 32284996 PMCID: PMC7141821 DOI: 10.1126/sciadv.aay5969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/14/2020] [Indexed: 05/10/2023]
Abstract
Malnutrition continues to affect the growth and development of millions of children worldwide, and chronic undernutrition has proven to be largely refractory to interventions. Improved understanding of metabolic development in infancy and how it differs in growth-constrained children may provide insights to inform more timely, targeted, and effective interventions. Here, the metabolome of healthy infants was compared to that of growth-constrained infants from three continents over the first 2 years of life to identify metabolic signatures of aging. Predictive models demonstrated that growth-constrained children lag in their metabolic maturity relative to their healthier peers and that metabolic maturity can predict growth 6 months into the future. Our results provide a metabolic framework from which future nutritional programs may be more precisely constructed and evaluated.
Collapse
Affiliation(s)
- N. Giallourou
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - F. Fardus-Reid
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - G. Panic
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - K. Veselkov
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | | | - M. P. Olortegui
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
| | - T. Ahmed
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - E. Mduma
- Haydom Global Health Institute, Haydom, Tanzania
| | - P. P. Yori
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - M. Mahfuz
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - E. Svensen
- Haydom Global Health Institute, Haydom, Tanzania
- Haukeland University Hospital, Bergen, Norway
| | - M. M. M. Ahmed
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - J. M. Colston
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - M. N. Kosek
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Corresponding author.
| | - J. R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
47
|
Barra R, Morgan C, Sáez-Briones P, Reyes-Parada M, Burgos H, Morales B, Hernández A. Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutr Rev 2020; 77:65-80. [PMID: 30445479 DOI: 10.1093/nutrit/nuy047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits. This review focuses on the role of epigenetic mechanisms involved in prenatal malnutrition-induced brain disturbances, which are apparent at a later postnatal age, through either a direct effect of fetal programming on brain plasticity or an indirect effect on the brain mediated by the postnatal development of obesity.
Collapse
Affiliation(s)
- Rafael Barra
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Carlos Morgan
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Sáez-Briones
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Miguel Reyes-Parada
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud Universidad Autónoma de Chile, Talca, Chile
| | - Héctor Burgos
- Núcleo Disciplinar Psicología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Center of Innovation on Information Technologies for Social Applications (CITIAPS), University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernández
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
48
|
Jarty J, Fournier T. « Healthy children, healthy nations. »
Discipliner les corps reproducteurs pour la santé de qui ? ENFANCES, FAMILLES, GÉNÉRATIONS 2020. [DOI: 10.7202/1067811ar] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cadre de la recherche: À partir d’un
cadre théorique et conceptuel issu de la sociologie et des études sur le genre,
cet article analyse la promotion d’un récent programme international de santé à
l’intention des femmes et des enfants dont l’argumentaire scientifique
s’enracine dans le domaine de l’épigénétique. Il serait désormais possible, en
intervenant de façon précoce sur l’environnement (nutritionnel) des individus
durant les périodes préconceptionelle et périconceptionnelle (la grossesse et
les deux premières années de vie des enfants), de prévenir l’apparition de
pathologies chroniques à l’âge adulte.
Objectifs: Il s’agit ici de retracer
l’historique de cette biopolitique (Foucault, 2004),
d’en décrire son processus de légitimation, et ce afin d’interroger d’importants
enjeux sociaux qui en découlent notamment sur le plan de nouvelles normes et
injonctions autour de la production d’enfants (sains).
Méthodologie: Pour ce faire, nous
déployons une méthodologie associant revue de littérature scientifique et grise,
ethnographie de l’ONG états-unienne 1,000 Days et
entretiens semi-directifs auprès d’experts internationaux (OMS, USAID, Unicef,
Sun).
Résultats: Nous montrons que ce
programme contribue à l’assise d’une morale profondément inégalitaire qui
s’appuie d’abord sur une promesse médicale, mais s’adosse en parallèle à une
promesse économique : un corps en meilleure santé serait garant tant de la
productivité des enfants, alors pensés comme des adultes en devenir, que des
saines finances des nations, notamment les pays des Nords.
Conclusions: En creux d’un programme
focalisé sur la santé des jeunes enfants et des nations émerge un « dressage »
des corps en gestation, et tout particulièrement des corps des femmes
subalternes : obèses, racisées, malades ou pauvres.
Contribution: Cet article démontre les
apports de la contribution scientifique des sciences sociales et des études sur
le genre, aux recherches médicales sur la santé des enfants ainsi qu’à leur mise
en politique.
Collapse
Affiliation(s)
- Julie Jarty
- Maîtresse de conférences, Université de Toulouse Jean Jaurès, Certop,
| | | |
Collapse
|
49
|
Methionine increases yolk production to offset the negative effect of caloric restriction on reproduction without affecting longevity in C. elegans. Aging (Albany NY) 2020; 12:2680-2697. [PMID: 32028263 PMCID: PMC7041781 DOI: 10.18632/aging.102770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/12/2020] [Indexed: 01/06/2023]
Abstract
Caloric restriction (CR) or Dietary restriction (DR) is known to improve health and in many cases increases lifespan. However, its negative effect on reproduction has not been fully studied. Practicing CR/DR without adequate knowledge on its side effect may risk complications such as infertility, birth defect, or malnutrition. In this study, by using several CR strategies in C. elegans, we examine key functions of reproduction including embryonic development and larvae growth. We find that CR significantly decreases the survival of embryos and slows the growth of the offspring. We further determine that defect in oocyte but not sperm is responsible for the compromised reproduction under CR. Interestingly, adding methionine to the medium reverses the reproduction defects, but does not affect the long lifespan resulted from CR. The beneficial effect of methionine on reproduction requires the yolk protein vitellogenin. CR down-regulates vitellogenin expression, which can be reversed by supplementing methionine in the food. Lacking the yolk protein transport due to rme-2 mutation blocks methionine’s beneficial effects. Our study has revealed a novel, methionine-mediated genetic pathway linking nutrient sensing to reproduction and suggested methionine as a potential food supplement to mitigate the side effect of CR.
Collapse
|
50
|
Thayer ZM, Rutherford J, Kuzawa CW. The Maternal Nutritional Buffering Model: an evolutionary framework for pregnancy nutritional intervention. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:14-27. [PMID: 32015877 PMCID: PMC6990448 DOI: 10.1093/emph/eoz037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Evidence that fetal nutrition influences adult health has heightened interest in nutritional interventions targeting pregnancy. However, as is true for other placental mammals, human females have evolved mechanisms that help buffer the fetus against short-term fluctuations in maternal diet and energy status. In this review, we first discuss the evolution of increasingly elaborate vertebrate strategies of buffering offspring from environmental fluctuations during development, including the important innovation of the eutherian placenta. We then present the Maternal Nutritional Buffering Model, which argues that, in contrast to many micronutrients that must be derived from dietary sources, the effects of short-term changes in maternal macronutrient intake during pregnancy, whether due to a deficit or supplementation, will be minimized by internal buffering mechanisms that work to ensure a stable supply of essential resources. In contrast to the minimal effects of brief macronutrient supplementation, there is growing evidence that sustained improvements in early life and adult pre-pregnancy nutrition could improve birth outcomes in offspring. Building on these and other observations, we propose that strategies to improve fetal macronutrient delivery will be most effective if they modify the pregnancy metabolism of mothers by targeting nutrition prior to conception and even during early development, as a complement to the conventional focus on bolstering macronutrient intake during pregnancy itself. Our model leads to the prediction that birth weight will be more strongly influenced by the mother’s chronic pre-pregnancy nutrition than by pregnancy diet, and highlights the need for policy solutions aimed at optimizing future, intergenerational health outcomes. Lay summary: We propose that strategies to improve fetal macronutrient delivery will be most effective if they modify the pregnancy metabolism of mothers by targeting nutrition prior to conception and even during early development, as a complement to the conventional focus on bolstering macronutrient intake during pregnancy itself.
Collapse
Affiliation(s)
- Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hinman Box 6047, Hanover, NH 03755, USA
| | - Julienne Rutherford
- Department of Women, Children and Family Health Science, University of Illinois Chicago, 845 S. Damen Ave., MC 802, Chicago, IL 60612, USA
| | - Christopher W Kuzawa
- Department of Anthropology and Institute for Policy Research, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208, USA
| |
Collapse
|