1
|
Zhang JX, Lan MF, Shang JZ, Lai XL, Li LS, Duan TT, Xu RH, Chen KL, Duan X. DMT1 Maintains Iron Homeostasis to Regulate Mitochondrial Function in Porcine Oocytes. J Cell Physiol 2024. [PMID: 39639679 DOI: 10.1002/jcp.31494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Iron plays critical roles in many cellular functions, including energy production, metabolism, and cell proliferation. However, the role of iron in maintaining oocyte quality remains unclear. In this study, DMT1 was identified as a key iron transporter during porcine oocyte maturation. The results demonstrated that iron deficiency in porcine oocyte led to aberrant meiotic progression, accompanied by increased gene expression of DMT1. Inhibition of DMT1 resulted in the failure of cumulus cell expansion and oocyte maturation, along by the abnormal actin and microtubule assembly. Furthermore, loss of DMT1 function caused disruption in mitochondrial function and dynamics, resulting in oxidative stress and Ca2+ dyshomeostasis. Additionally, the absence of DMT1 function activated PINK1/Parkin-dependent mitophagy in porcine oocyte. These findings suggested that DMT1 played a crucial role in safeguarding oocyte quality by protecting against iron-deficiency-induced mitochondrial dysfunction and autophagy. This study provided compelling evidence that DMT1 and iron homeostasis were crucial for maintaining the capacity of porcine oocyte maturation. Moreover, the results hinted at the potential of DMT1 as a novel therapeutic target for treating iron deficiency-related female reproductive disorders.
Collapse
Affiliation(s)
- Jin-Xin Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Meng-Fan Lan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jian-Zhou Shang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xin-Le Lai
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li-Shu Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Tong-Tong Duan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ru-Hai Xu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kun-Lin Chen
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xing Duan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
3
|
Živanović M, Selaković M, Pavić A, Selaković Ž, Šolaja B, Santibanez JF, Srdić-Rajić T. Unveiling the 4-aminoquinoline derivatives as potent agents against pancreatic ductal adenocarcinoma (PDAC) cell lines. Chem Biol Interact 2024; 404:111281. [PMID: 39428053 DOI: 10.1016/j.cbi.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Common antimalarials such as artemisinins, chloroquine and their derivatives also possess potent anti-inflamantory, antiviral and anticancer properties. In the search for new therapeutics to combat difficult-to-treat pancreatic carcinomas, we unveiled that 4-aminoquinoline derivatives, with significant antiplasmodial properties and a great safety profile in vivo, have remarkable anticancer activity against pancreatic ductal adenocarcinoma (PDAC) and considerable efficacy in the xenograft model in vivo. The aim of the present study was to further investigate anticancer properties of these compounds in a drug-repurposing manner. The compounds showed profound cytotoxic effects at nanomolar to low micromolar concentration in 2D cultured cells (in vitro) and in the zebrafish PDAC xenograft model (in vivo). A deeper insight into their mechanisms of cytotoxic action showed these compounds induce apoptosis while increasing reactive oxygen species levels along with autophagy inhibition. Additional investigation of the autophagy modulation proved that tested quinoline derivatives cause P62 and LC3-II accumulation in PDAC cells alongside lysosomal alkalinization. Further, in vivo toxicity studies in the zebrafish model showed low toxicity without developmental side effects of the investigated 4-aminoquinolines, while the applied compounds effectively inhibited tumor growth and prevented the metastasis of xenografted pancreatic cells. Taken together, these results highlight the 4-aminoquinolines as privileged structures that ought to be investigated further for potential application in pancreatic carcinoma treatment.
Collapse
Affiliation(s)
- Marija Živanović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia; Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Milica Selaković
- Innovative Centre of the Faculty of Chemistry in Belgrade, ltd., Studentski Trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Života Selaković
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11158, Belgrade, Serbia
| | - Bogdan Šolaja
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158, Belgrade, Serbia
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| |
Collapse
|
4
|
Hua S, Chi J, Zhang N, Yang X, Zhang P, Jiang C, Feng Y, Hong X, Feng Z, Yan Y. WHAMM Inhibits Type II Alveolar Epithelial Cell EMT by Mediating Autophagic Degradation of TGF-β1 in Bronchopulmonary Dysplasia. J Cell Physiol 2024. [PMID: 39564703 DOI: 10.1002/jcp.31486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most prevalent complication in preterm infants, primarily characterized by arrested alveolar growth. The involvement of epithelial-mesenchymal transition (EMT) of AECII cells is proposed to have a crucial role in the pathogenesis of BPD; however, the underlying mechanism remains unclear. The present study reveals a significant reduction of WHAMM (WASP homolog associated with actin, membranes, and microtubules) in hyperoxia-induced BPD mice, highlighting its crucial role in suppressing the progression of BPD through the inhibition of EMT in AECIIs. We demonstrated that hyperoxia-induced downregulation of WHAMM leads to the accumulation of TGF-β1 primarily through its mediation of the autophagic degradation pathway. Mechanistically, WHAMM enhanced the autophagosomal localization of TGF-β1 and concurrently promoted the process of autophagy, thereby comprehensively facilitating the autophagic degradation of TGF-β1. These findings reveal the important role of WHAMM in the development of BPD, and the proposed WHAMM/autophagy/TGF-β1/EMT pathway may represent a potential therapeutic strategy for BPD treatment.
Collapse
Affiliation(s)
- Shaodong Hua
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jinghan Chi
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ning Zhang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiao Yang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Pan Zhang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Chenyang Jiang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yao Feng
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyang Hong
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhichun Feng
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yurou Yan
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2024:10.1007/s12013-024-01492-6. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Sophronea T, Agrawal S, Kumari N, Mishra J, Walecha V, Luthra PM. A 2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD. Neurochem Int 2024; 178:105793. [PMID: 38880232 DOI: 10.1016/j.neuint.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
8
|
Brown RB. Spontaneous Tumor Regression and Reversion: Insights and Associations with Reduced Dietary Phosphate. Cancers (Basel) 2024; 16:2126. [PMID: 38893245 PMCID: PMC11172109 DOI: 10.3390/cancers16112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and an increased transport of phosphate into tumor cells, potentially mediated by phosphate overload from excessive dietary phosphate intake, a significant problem in Western societies. This paper proposes that reduced dietary phosphate overload and reregulated phosphate metabolism may reverse an imbalance of kinases and phosphatases in cell signaling and cellular proliferation, thereby activating autophagy in tumor regression and reversion. Dietary phosphate can also be reduced by sickness-associated anorexia, fasting-mimicking diets, and other diets low in phosphate, all of which have been associated with tumor regression. Tumor reversion has also been demonstrated by transplanting cancer cells into a healthy microenvironment, plausibly associated with normal cellular phosphate concentrations. Evidence also suggests that the sequestration and containment of excessive phosphate within encapsulated tumors is protective in cancer patients, preventing the release of potentially lethal amounts of phosphate into the general circulation. Reducing dietary phosphate overload has the potential to provide a novel, safe, and effective reversion therapy for cancer patients, and further research is warranted.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Pangarkar M, Wagh U, Pathak A. Autophagy indicators in oral squamous cell carcinoma. Pathology 2024; 56:59-64. [PMID: 37981514 DOI: 10.1016/j.pathol.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/25/2023] [Indexed: 11/21/2023]
Abstract
Autophagy plays an important role in maintaining cellular homeostasis. Dysregulation of autophagy has been linked to a number of diseases, including cancer. We retrospectively evaluated immunohistochemical expression of the autophagy markers LC3B and p62 and the autophagy regulator mTOR as an indicator of autophagy in 100 surgically resected primary oral squamous cell carcinoma (OSCC) samples and sought associations with various clinicopathological factors. The expression of all three proteins was significantly higher in malignant squamous cells than in benign squamous cells in the free mucosal margin adjacent to the OSCC. Male sex, higher tumour (T) stage, node (N) stage and tumour, node, metastasis (TNM) stage were significantly associated with high marker expression; age and histological grade showed no significant association. LC3B, p62 and mTOR expression were positively correlated with one another in OSCCs, and the correlation was significant for LC3B and mTOR as well as for LC3B and p62. Disease-free survival showed an inverse correlation with high mTOR expression. Our data suggest that autophagy inhibitors and mTOR inhibitors may have a therapeutic role in the treatment of OSCCs.
Collapse
Affiliation(s)
| | - Uttara Wagh
- National Cancer Institute, Nagpur, Maharashtra, India
| | - Anand Pathak
- National Cancer Institute, Nagpur, Maharashtra, India
| |
Collapse
|
10
|
Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, Cordani M, Moosavi MA. Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm 2024; 649:123622. [PMID: 37989403 DOI: 10.1016/j.ijpharm.2023.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) represents a non-invasive treatment strategy currently utilized in the clinical management of selected cancers and infections. This technique is predicated on the administration of a photosensitizer (PS) and subsequent irradiation with light of specific wavelengths, thereby generating reactive oxygen species (ROS) within targeted cells. The cellular effects of PDT are dependent on both the localization of the PS and the severity of ROS challenge, potentially leading to the stimulation of various cell death modalities. For many years, the concept of regulated cell death (RCD) triggered by photodynamic reactions predominantly encompassed apoptosis, necrosis, and autophagy. However, in recent decades, further explorations have unveiled additional cell death modalities, such as necroptosis, ferroptosis, cuproptosis, pyroptosis, parthanatos, and immunogenic cell death (ICD), which helps to achieve tumor cell elimination. Recently, nanoparticles (NPs) have demonstrated substantial advantages over traditional PSs and become important components of PDT, due to their improved physicochemical properties, such as enhanced solubility and superior specificity for targeted cells. This review aims to summarize recent advancements in the applications of different metal-based NPs as PSs or delivery systems for optimized PDT in cancer treatment. Furthermore, it mechanistically highlights the contribution of RCD pathways during PDT with metal NPs and how these forms of cell death can improve specific PDT regimens in cancer therapy.
Collapse
Affiliation(s)
- Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Saadati
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Marco Cordani
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
11
|
Kumar K, Rawat P, Kaur S, Singh N, Yadav HN, Singh D, Jaggi AS, Sethi D. Unveiling Wide Spectrum Therapeutic Implications and Signaling Mechanisms of Valsartan in Diverse Disorders: A Comprehensive Review. Curr Drug Res Rev 2024; 16:268-288. [PMID: 37461345 DOI: 10.2174/2589977515666230717120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2024]
Abstract
Valsartan is an orally active non-peptide angiotensin receptor antagonist, an effective and well-tolerated anti-hypertensive drug. Besides its antihypertensive action, it has clinical implications in many other disorders, like heart failure (HF), arrhythmia, chronic kidney disease (CKD), diabetic complications (DM), atherosclerosis, etc. Besides angiotensin receptor blocking activity, valsartan reduces circulating levels of biochemical markers, such as hs-CRP, which is responsible for its anti-inflammatory and anti-oxidant activity. Moreover, valsartan also acts by inhibiting or inducing various signalling pathways, such as inducing autophagy via the AKT/mTOR/S6K pathway or inhibiting the TLR/NF-kB pathway. The current review exhaustively discusses the therapeutic implications of valsartan with specific emphasis on the mechanism of action in various disorders. The article provides a detailed spectrum of the therapeutic profile of valsartan and will likely be very useful to researchers working in the relevant research areas.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Pooja Rawat
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Simrat Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Dimple Sethi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
12
|
Liu Y, Wang T, Ma W, Jia Z, Wang Q, Zhang M, Luo Y, Sun H. Metabolic reprogramming in the tumor microenvironment: unleashing T cell stemness for enhanced cancer immunotherapy. Front Pharmacol 2023; 14:1327717. [PMID: 38169800 PMCID: PMC10758489 DOI: 10.3389/fphar.2023.1327717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
T cells play a pivotal role in the immune system by distinguishing between various harmful pathogens and cancerous cells within the human body and initiating an immune response. Within the tumor microenvironment (TME), immune effector T cells encounter both immunosuppressive cells and factors that hinder their functionality. Additionally, they endure robust and persistent antigenic stimulation, often leading to exhaustion and apoptosis. However, the stemness of T cells, characterized by their ability to survive and self-renew over extended periods, represents a primary target in immune checkpoint therapies such as anti-PD-1 therapy. T cell stemness encompasses specific memory T cell subsets and progenitor-exhausted T cells with stem cell-like properties. Therefore, understanding the impact of the TME on T cell stemness, including factors like K+, lactate, and H+, holds significant importance and can facilitate the mitigation of terminal T-cell depletion, the identification of potential resilient biomarkers or therapeutic targets resistant to immune checkpoint therapies, and ultimately lead to sustained anti-tumor effects. Thus, it offers a novel perspective for advancing tumor immunotherapy.
Collapse
Affiliation(s)
- Youhan Liu
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Tao Wang
- Department of Pediatric Surgery, Zibo Central Hospital, Zibo, China
| | - Wen Ma
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Maoling Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Hongmei Sun
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
13
|
He T, Wen C, Yang G, Yang X. Targeted Protein Degradation: Principles, Strategies, and Applications. Adv Biol (Weinh) 2023; 7:e2300083. [PMID: 37518856 DOI: 10.1002/adbi.202300083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
Protein degradation is a general process to maintain cell homeostasis. The intracellular protein quality control system mainly includes the ubiquitin-proteasome system and the lysosome pathway. Inspired by the physiological process, strategies to degrade specific proteins have developed, which emerge as potent and effective tools in biological research and drug discovery. This review focuses on recent advances in targeted protein degradation techniques, summarizing the principles, advantages, and challenges. Moreover, the potential applications and future direction in biological science and clinics are also discussed.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenxi Wen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
14
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
15
|
Safari F, Dadvar F. In vitro evaluation of autophagy and cell death induction in Panc1 pancreatic cancer by secretome of hAMSCs through downregulation of p-AKT/p-mTOR and upregulation of p-AMPK/ULK1 signal transduction pathways. Tissue Cell 2023; 84:102160. [PMID: 37482027 DOI: 10.1016/j.tice.2023.102160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
One of the main causes of cancer mortality in the world is pancreatic cancer. Therapies based on stem cells are currently thought to be a hopeful option in the treatment of cancer. Herein, we intend to evaluate the antitumor effects of secretome of human amniotic mesenchymal stromal cells (hAMSCs) on autophagy and cell death induction in Panc1 pancreatic cancer cells. We adopted a co-culture system using Transwell 6-well plates and after 72 h, hAMSCs-treated Panc1 cancer cells were analyzed using quantitative real time PCR (qRT-PCR), flow cytometry, western blot, MTT assay, and DAPI staining. Based on our results, the microtubule-associated protein 1 light chain 3 (LC3) conversion from LC3-I to LC3-II and the upregulation of autophagy-related proteins expression including Beclin1, Atg7, and Atg12 were detected in hAMSCs-treated Panc1 cells. Furthermore, the level of phosphorylated proteins such as Unc-51-like kinase 1 (ULK1), AMP activated protein kinase (AMPK), AKT, and mTOR changed. Apoptotic cell death was also induced via the elevation of Bax and Caspase 3 expression and inhibition of Bcl-2. Our findings showed that secretome of hAMSCs induces autophagy and cell death in Panc1 cancer cells. However, more experiments will be needed to identify more details about the associated mechanisms.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Faezeh Dadvar
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
16
|
Wang H, Zhou R, Xu F, Yang K, Zheng L, Zhao P, Shi G, Dai L, Xu C, Yu L, Li Z, Wang J, Wang J. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Biomater Res 2023; 27:72. [PMID: 37480049 PMCID: PMC10362593 DOI: 10.1186/s40824-023-00385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/21/2023] [Indexed: 07/23/2023] Open
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.
Collapse
Affiliation(s)
- Huifang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Runhua Zhou
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fushan Xu
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Kongjun Yang
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Liuhai Zheng
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Pan Zhao
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Guangwei Shi
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Le Yu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Zhijie Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jianhong Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| |
Collapse
|
17
|
Amireddy N, Dulam V, Kaul S, Pakkiri R, Kalivendi SV. The mitochondrial uncoupling effects of nitazoxanide enhances cellular autophagy and promotes the clearance of α-synuclein: Potential role of AMPK-JNK pathway. Cell Signal 2023:110769. [PMID: 37315747 DOI: 10.1016/j.cellsig.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Upregulation and aggregation of the pre-synaptic protein, α-synuclein plays a key role in Parkinson's disease (PD) and mitochondrial dysfunction was surmised to be an upstream event in the disease pathogenesis. Emerging reports identified the role of nitazoxanide (NTZ), an anti-helminth drug, in enhancing mitochondrial oxygen consumption rate (OCR) and autophagy. In the present study, we have examined the mitochondrial effects of NTZ in mediating cellular autophagy and subsequent clearance of both endogenous and pre-formed aggregates of α-synuclein in cellular model of PD. Our results demonstrate that the mitochondrial uncoupling effects of NTZ results in the activation of AMPK and JNK, which in-turn leads to the enhancement of cellular autophagy. Also,1-methyl-4-phenylpyridinium (MPP+) mediated decrease in autophagic flux with a concomitant increase in the α-synuclein levels were ameliorated in cells treated with NTZ. However, in cells lacking functional mitochondria (ρ0 cells), NTZ did not mitigate MPP+ mediated alterations in the autophagic clearance of α-synuclein, indicating that the mitochondrial effects of NTZ play a crucial role in the clearance of α-synuclein by autophagy. Also, the ability of AMPK inhibitor, compound C, in abrogating NTZ mediated enhancement in the autophagic flux and α-synuclein clearance highlight the pivotal role of AMPK in NTZ mediated autophagy. Further, NTZ per se enhanced the clearance of preformed α-synuclein aggregates that were exogenously added to the cells. Overall, the results of our present study suggest that NTZ activates macroautophagy in cells due to its uncoupling effects on mitochondrial respiration via activation of AMPK-JNK pathway resulting in the clearance of both endogenous and pre-formed α-synuclein aggregates. As NTZ happens to possess good bioavailability and safety profile, considering this drug for PD based on its mitochondrial uncoupling and autophagy enhancing properties for mitigating mitochondrial reactive oxygen species (ROS) and α-synuclein toxicity appears to be a promising therapeutic option.
Collapse
Affiliation(s)
- Niharika Amireddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandana Dulam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Shweta Kaul
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajeswari Pakkiri
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Shasi V Kalivendi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Tang T, Hasan M, Capelluto DGS. Phafins Are More Than Phosphoinositide-Binding Proteins. Int J Mol Sci 2023; 24:ijms24098096. [PMID: 37175801 PMCID: PMC10178739 DOI: 10.3390/ijms24098096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Phafins are PH (Pleckstrin Homology) and FYVE (Fab1, YOTB, Vac1, and EEA1) domain-containing proteins. The Phafin protein family is classified into two groups based on their sequence homology and functional similarity: Phafin1 and Phafin2. This protein family is unique because both the PH and FYVE domains bind to phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide primarily found in endosomal and lysosomal membranes. Phafin proteins act as PtdIns(3)P effectors in apoptosis, endocytic cargo trafficking, and autophagy. Additionally, Phafin2 is recruited to macropinocytic compartments through coincidence detection of PtdIns(3)P and PtdIns(4)P. Membrane-associated Phafins serve as adaptor proteins that recruit other binding partners. In addition to the phosphoinositide-binding domains, Phafin proteins present a poly aspartic acid motif that regulates membrane binding specificity. In this review, we summarize the involvement of Phafins in several cellular pathways and their potential physiological functions while highlighting the similarities and differences between Phafin1 and Phafin2. Besides, we discuss research perspectives for Phafins.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahmudul Hasan
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
19
|
Liu Y, Qian X, Ran C, Li L, Fu T, Su D, Xie S, Tan W. Aptamer-Based Targeted Protein Degradation. ACS NANO 2023; 17:6150-6164. [PMID: 36942868 DOI: 10.1021/acsnano.2c10379] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The selective removal of misfolded, aggregated, or aberrantly overexpressed protein plays an essential role in maintaining protein-dominated biological processes. In parallel, the precise knockout of abnormal proteins is inseparable from the accurate identification of proteins within complex environments. Guided by these precepts, small molecules, or antibodies, are commonly used as protein recognition tools for developing targeted protein degradation (TPD) technology. Indeed, TPD has shown tremendous prospects in chronic diseases, rare diseases, cancer research, and other fields. Meanwhile, aptamers are short RNA or DNA oligonucleotides that can bind to target proteins with high specificity and strong affinity. Accordingly, aptamers are actively used in designing and constructing TPD technology. In this perspective, we provide a brief introduction to TPD technology in its current progress, and we summarize its application challenges. Recent advances in aptamer-based TPD technology are reviewed, together with corresponding challenges and outlooks.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xu Qian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunyan Ran
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longjie Li
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ting Fu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sitao Xie
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Ning B, Liu Y, Huang T, Wei Y. Autophagy and its role in osteosarcoma. Cancer Med 2023; 12:5676-5687. [PMID: 36789748 PMCID: PMC10028045 DOI: 10.1002/cam4.5407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 02/16/2023] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy and preferably occurs in children and adolescents. Despite significant advances in surgery and chemotherapy for OS over the past few years, overall survival rates of OS have reached a bottleneck. Thus, extensive researches aimed at developing new therapeutic targets for OS are urgently needed. Autophagy, a conserved process which allows cells to recycle altered or unused organelles and cellular components, has been proven to play a critical role in multiple biological processes in OS. In this article, we summarized the association between autophagy and proliferation, metastasis, chemotherapy, radiotherapy, and immunotherapy of OS, revealing that autophagy-related genes and pathways could serve as potential targets for OS therapy.
Collapse
Affiliation(s)
- Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Chen D, Lu H, Ma Y, Huang Y, Zhang T, Fan S, Lin W, Huang Y, Jin H, Ruan Y, Xu JF, Pi J. Trends and recent progresses of selenium nanoparticles as novel autophagy regulators for therapeutic development. Front Nutr 2023; 10:1116051. [PMID: 36819694 PMCID: PMC9931911 DOI: 10.3389/fnut.2023.1116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.
Collapse
Affiliation(s)
- Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Yongdui Ruan,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jun-Fa Xu,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jiang Pi,
| |
Collapse
|
23
|
The mTORC1-G9a-H3K9me2 axis negatively regulates autophagy in fatty acid-induced hepatocellular lipotoxicity. J Biol Chem 2023; 299:102937. [PMID: 36690274 PMCID: PMC9957777 DOI: 10.1016/j.jbc.2023.102937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)-G9a-H3K9me2 axis in fatty acid-induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid-treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid-treated cells. Inhibition of mTORC1 in fatty acid-treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid-treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid-treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1-G9a-H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.
Collapse
|
24
|
Cao L, Yin G, Du J, Jia R, Gao J, Shao N, Li Q, Zhu H, Zheng Y, Nie Z, Ding W, Xu G. Salvianolic Acid B Regulates Oxidative Stress, Autophagy and Apoptosis against Cyclophosphamide-Induced Hepatic Injury in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2023; 13:ani13030341. [PMID: 36766230 PMCID: PMC9913662 DOI: 10.3390/ani13030341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Salvianolic acid B (Sal B), as one of the main water-soluble components of Salvia miltiorrhizae, has significant pharmacological activities, including antioxidant, free radical elimination and biofilm protection actions. However, the protective effect of Sal B on Nile tilapia and the underlying mechanism are rarely reported. Therefore, the aim of this study was to evaluate the effects of Sal B on antioxidant stress, apoptosis and autophagy in Nile tilapia liver. In this experiment, Nile tilapia were fed diets containing sal B (0.25, 0.50 and 0.75 g·kg-1) for 60 days, and then the oxidative hepatic injury of the tilapia was induced via intrapleural injection of 50 g·kg-1 cyclophosphamide (CTX) three times. After the final exposure to CTX, the Nile tilapia were weighed and blood and liver samples were collected for the detection of growth and biochemical indicators, pathological observations and TUNEL detection, as well as the determination of mRNA expression levels. The results showed that after the CTX treatment, the liver was severely damaged, the antioxidant capacity of the Nile tilapia was significantly decreased and the hepatocyte autophagy and apoptosis levels were significantly increased. Meanwhile, dietary Sal B can not only significantly improve the growth performance of tilapia and effectively reduce CTX-induced liver morphological lesions, but can also alleviate CTX-induced hepatocyte autophagy and apoptosis. In addition, Sal B also significantly regulated the expression of genes related to antioxidative stress, autophagy and apoptosis pathways. This suggested that the hepatoprotective effect of Sal B may be achieved through various pathways, including scavenging free radicals and inhibiting hepatocyte apoptosis and autophagy.
Collapse
|
25
|
Al-Huseini I, Sirasanagandla SR, Babu KS, Sofin RGS, Das S. Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Curr Med Chem 2023; 30:1502-1528. [PMID: 35078392 DOI: 10.2174/0929867329666220117114306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Kondaveeti Suresh Babu
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| | | | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
26
|
HyClear: A Novel Tissue Clearing Solution for One-Step Clearing of Microtissues. Cells 2022; 11:cells11233854. [PMID: 36497111 PMCID: PMC9738288 DOI: 10.3390/cells11233854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
3-D cell cultures are being increasingly used as in vitro models are capable of better mimicry of in vivo tissues, particularly in drug screenings where mass transfer limitations can affect the cancer biology and response to drugs. Three-dimensional microscopy techniques, such as confocal and multiphoton microscopy, have been used to elucidate data from 3-D cell cultures and whole organs, but their reach inside the 3-D tissues is restrained by the light scattering of the tissues, limiting their effective reach to 100-200 µm, which is simply not enough. Tissue clearing protocols, developed mostly for larger specimens usually involve multiple steps of viscous liquid submersion, and are not easily adaptable for much smaller spheroids and organoids. In this work, we have developed a novel tissue clearing solution tailored for small spheroids and organoids. Our tissue clearing protocol, called HyClear, uses a mixture of DMSO, HPG and urea to allow for one-step tissue clearing of spheroids and organoids, and is compatible with high-throughput screening studies due to its speed and simplicity. We have shown that our tissue clearing agent is superior to many of the commonly used tissue clearing agents and allows for elucidating better quality data from drug screening experiments.
Collapse
|
27
|
Marcinkowska AB, Biancardi VC, Winklewski PJ. Arginine Vasopressin, Synaptic Plasticity, and Brain Networks. Curr Neuropharmacol 2022; 20:2292-2302. [PMID: 35193483 PMCID: PMC9890292 DOI: 10.2174/1570159x20666220222143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
The arginine vasopressin (AVP), a neurohypophysial hormone, is synthesized within specific sites of the central nervous system and axonally transported to multiple areas, acting as a neurotransmitter/ neuromodulator. In this context, AVP acts primarily through vasopressin receptors A and B and is involved in regulating complex social and cognition behaviors and basic autonomic function. Many earlier studies have shown that AVP as a neuromodulator affects synaptic plasticity. This review updates our current understanding of the underlying molecular mechanisms by which AVP affects synaptic plasticity. Moreover, we discuss AVP modulatory effects on event-related potentials and blood oxygen level-dependent responses in specific brain structures, and AVP effects on the network level oscillatory activity. We aimed at providing an overview of the AVP effects on the brain from the synaptic to the network level.
Collapse
Affiliation(s)
- Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Vinicia C. Biancardi
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, and Center for Neurosciences Initiative, Auburn University, Auburn, USA
| | - Pawel J. Winklewski
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
- Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
28
|
Jiang C, Jiang Z, Zhang X. Circular RNA circMRPS35 regulates progression and autophagy in osteosarcoma cells by recruiting KAT6B to govern FOXO3. Anticancer Drugs 2022; 33:607-613. [PMID: 35503036 DOI: 10.1097/cad.0000000000001276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteosarcoma serves as frequently occurred bone malignancy that displays low survival rate and high incidence of metastasis. Circular RNAs (circRNAs) have been reported as the crucial molecules in osteosarcoma development. However, the effect of circRNA circMRPS35 on osteosarcoma remains unclear. Here, we aimed to explore the function of circMRPS35 in the regulation of autophagy and progression of osteosarcoma. The colony formation numbers and Edu-positive osteosarcoma cells were repressed by the overexpression of circMRPS35. Meanwhile, the overexpression of circMRPS35 increased the apoptosis rate of osteosarcoma cells. The expression levels of autophagy markers, including LC3 and Beclin1, were enhanced by the overexpression of circMRPS35 in osteosarcoma cells. Mechanically, the depletion of circMRPS35 reduced the enrichment of histone H3 lysine 23 acetylation (H3K23ac) on forkhead box O3 (FOXO3) promoter in osteosarcoma cells. The interaction of circMRPS35 and KAT6B was identified. The knockdown of KAT6B reduced the enrichment of H3K23ac on FOXO3 promoter in osteosarcoma cells. The depletion of circMRPS35 repressed the expression of FOXO3 in the MG63 and MNNG/HOS cells, whereas the overexpression of KAT6B reversed the effect. Significantly, KAT6B promotes apoptosis and autophagy of osteosarcoma cells. The overexpression of circMRPS35 induced the apoptosis and autophagy of osteosarcoma cells, in which the depletion of KAT6B or FOXO3 reversed the effect. The overexpression of circMRPS35 inhibited the tumor growth in vivo , whereas the depletion of KAT6B could reverse the effect in the mice. Therefore, we concluded that circRNA circMRPS35 repressed progression and induced autophagy of osteosarcoma cells.
Collapse
Affiliation(s)
- Chunshan Jiang
- Department of Immunology, College of Medicine, Yanbian University, Yanji
| | - Zhe Jiang
- Department of Spine Surgery, Jilin Central Hospital, Jilin City
| | - Xuewu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
29
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Li H, Wang L, Zhang X, Xia W, Zhou X, Sui H, Fu X. Pulsatilla chinensis (Bge.) Regel: A Systematic Review on Anticancer of Its Pharmacological Properties, Clinical Researches and Pharmacokinetic Studies. Front Oncol 2022; 12:888075. [PMID: 35814470 PMCID: PMC9259996 DOI: 10.3389/fonc.2022.888075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsatilla chinensis (Bge.) Regel (PC) is one of the most commonly used Chinese medicines and has a history of thousands of years. This article reviews the research results of anti-cancer activity and its mechanism of action obtained from experimental, clinical, pharmacokinetic and bioinformatic studies in recent years. A large number of studies have shown that PC exerts had anti-cancer effects on different types of tumor cells by inhibiting cell proliferation, inducing apoptosis, inhibiting cell cycle and energy metabolism, inducing autophagy, and inhibiting angiogenesis. The literature has shown that PC can trigger the expression of autophagy-related molecules, activate the mitochondrial apoptotic pathway, inhibit the phosphorylation of PI3K downstream factors, down-regulate the expression of glycolysis-related proteins, and regulate a series of cancer-related signal pathways and proteins. The molecular mechanisms involved in PC include signal pathways such as Notch, PI3K/AKT/m TOR, AKT/mTOR, and MEK/ERK. The article also discusses the derivatives of the active ingredients in PC, which greatly improved the anti-cancer effect. In conclusion, this review provides a comprehensive overview of the biological effects and mechanisms of PC against cancer. The analysis of the literature shows that PC can be used as a potential drug candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Hang Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| | - Lilan Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojing Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| | - Xirong Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, China
| |
Collapse
|
31
|
Luo H, Wu L, He Y, Qin C, Tang X. Major Advances in Emerging Degrader Technologies. Front Cell Dev Biol 2022; 10:921958. [PMID: 35813205 PMCID: PMC9257139 DOI: 10.3389/fcell.2022.921958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, degrader technologies have attracted increasing interest in the academic field and the pharmaceuticals industry. As one of the degrader technologies, proteolysis-targeting chimeras (PROTACs) have emerged as an attractive pharmaceutical development approach due to their catalytic ability to degrade numerous undruggable disease-causing proteins. Despite the remarkable progress, many aspects of traditional PROTACs still remain elusive. Its expansion could lead to PROTACs with new paradigm. Currently, many reviews focused on the design and optimization strategies through summarizing classical PROTACs, application in diseases and prospect of PROTACs. In this review, we categorize various emerging PROTACs ranging from simply modified classical PROTACs to atypical PROTACs such as nucleic acid-based PROTACs, and we put more emphasis on molecular design of PROTACs with different strategies. Furthermore, we summarize alternatives of PROTACs as lysosome-targeting chimeras (LYTACs) and macroautophagy degradation targeting chimeras (MADTACs) based on different degradation mechanism despite of lysosomal pathway. Beyond these protein degraders, targeting RNA degradation with the potential for cancer and virus therapeutics has been discussed. In doing so, we provide our perspective on the potential development or concerns of each degrader technology. Overall, we hope this review will offer a better mechanistic understanding of emerging degraders and prove as useful guide for the development of the coming degrader technologies.
Collapse
Affiliation(s)
- Hang Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chong Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
The Role of Mitochondrial Dynamin in Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2504798. [PMID: 35571256 PMCID: PMC9106451 DOI: 10.1155/2022/2504798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.
Collapse
|
33
|
Huang H, Pan R, Zhao Y, Li H, Zhu H, Wang S, Khan AA, Wang J, Liu X. L3MBTL2-mediated CGA transcriptional suppression promotes pancreatic cancer progression through modulating autophagy. iScience 2022; 25:104249. [PMID: 35521536 PMCID: PMC9061862 DOI: 10.1016/j.isci.2022.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/08/2021] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
L3MBTL2 is a crucial component of ncPRC1.6 and has been implicated in transcriptional repression and chromatin compaction. However, the repression mechanism of L3MBTL2 and its biological functions are largely undefined. Here, we found that L3MBTL2 plays a distinct oncogenic role in tumor development. We demonstrated that L3MBTL2 repressed downstream CGA through an H2AK119ub1-dependent mechanism. Importantly, the binding of the MGA/MAX heterodimer to the E-box on the CGA promoter enhanced the specific selective repression of CGA by L3MBTL2. CGA encodes the alpha subunit of glycoprotein hormones; however, we showed that CGA plays an individual tumor suppressor role in PDAC. Moreover, CGA-transcript1 (T1) was identified as the major transcript, and the tumor suppression function of CGA-T1 depends on its own glycosylation. Furthermore, glycosylated CGA-T1 inhibited PDAC, partly by repression of autophagy through multiple pathways, including PI3K/Akt/mTOR and TP53INP2 pathways. These findings reveal the important roles of L3MBTL2 and CGA in tumor development. L3MBTL2 plays a distinct oncogenic role in tumor development L3MBTL2 represses CGA transcription mainly by mediating ubiquitination of H2A CGA plays an individual tumor suppressor role in pancreatic cancer Glycosylated CGA inhibited PDAC partly through repression of autophagy
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Corresponding author
| | - Ruining Pan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yue Zhao
- Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Huan Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Huiyu Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aamir Ali Khan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Juan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Corresponding author
| |
Collapse
|
34
|
Zorca CE, Fallahi A, Luo S, Eldeeb MA. Multifaceted targeted protein degradation systems for different cellular compartments. Bioessays 2022; 44:e2200008. [PMID: 35417040 DOI: 10.1002/bies.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (DEPTACs). Similar effects can also be achieved through the lysosomal system with autophagy-targeting chimeras (AUTACs), autophagosome tethering compounds (ATTECs), and lysosome targeting chimeras (LYTACs). Other methods act upstream to degrade RNAs (ribonuclease targeting chimeras; RIBOTACs) or transcription factors (transcription factor targeting chimeras; TRAFTACs), offering control throughout the gene expression process. We highlight the evolution and function of these methods and discuss their clinical implications in diverse disease contexts.
Collapse
Affiliation(s)
- Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Armaan Fallahi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sophie Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Li YC, Cai SW, Shu YB, Chen MW, Shi Z. USP15 in Cancer and Other Diseases: From Diverse Functionsto Therapeutic Targets. Biomedicines 2022; 10:474. [PMID: 35203682 PMCID: PMC8962386 DOI: 10.3390/biomedicines10020474] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/10/2022] Open
Abstract
The process of protein ubiquitination and deubiquitination plays an important role in maintaining protein stability and regulating signal pathways, and protein homeostasis perturbations may induce a variety of diseases. The deubiquitination process removes ubiquitin molecules from the protein, which requires the participation of deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 15 (USP15) is a DUB that participates in many biological cell processes and regulates tumorigenesis. A dislocation catalytic triplet was observed in the USP15 structure, a conformation not observed in other USPs, except USP7, which makes USP15 appear to be unique. USP15 has been reported to be involved in the regulation of various cancers and diseases, and the reported substrate functions of USP15 are conflicting, suggesting that USP15 may act as both an oncogene and a tumor suppressor in different contexts. The importance and complexity of USP15 in the pathological processes remains unclear. Therefore, we reviewed the diverse biological functions of USP15 in cancers and other diseases, suggesting the potential of USP15 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Song-Wang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Yu-Bin Shu
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 519000, China;
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| |
Collapse
|
36
|
Abstract
Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
37
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
38
|
He J, Zhang W, Zhou X, Yan W, Wang Z. Aloin induced apoptosis by enhancing autophagic flux through the PI3K/AKT axis in osteosarcoma. Chin Med 2021; 16:123. [PMID: 34819120 PMCID: PMC8611986 DOI: 10.1186/s13020-021-00520-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma is a malignant tumor of bone and soft tissue in adolescents. Due to its tumor biological behavior pattern, osteosarcoma usually generates poor prognosis. Autophagy is an important self-defense mechanism in osteosarcoma. Methods Cell viability in IC50 testing and reverse assays was examined by the MTT assay. Cell apoptosis conditions were examined by flow cytometry, Hoechst 33,342 staining and apoptosis-related protein immunoblotting. Autophagy conditions were tested by autophagy-related protein immunoblotting, transmission electron microscopic observation and dual fluorescence autophagy flux detection. The possible targets of aloin were screened out by network pharmacology and bioinformatic methods. Osteosarcoma xenografts in nude BALB/c mice were the model for in vivo research on tumor suppression, autophagy induction, pathway signaling and toxicity tests. In vivo bioluminescence imaging systems, immunohistochemical assays, and gross tumor volume comparisons were applied as the main research methods in vivo. Results Aloin induced osteosarcoma apoptosis in a dose-dependent manner. Its possible effects on the PI3K/AKT pathway were screened out by network pharmacology methods. Aloin increased autophagic flux in osteosarcoma by downregulating the PI3K/AKT pathway. Aloin promoted autophagic flux in the osteosarcoma cell lines HOS and MG63 in a dose-dependent manner by promoting autophagosome formation. Chloroquine reversed the apoptosis-promoting and autophagy-enhancing effects of aloin. Autophagy induced by starvation and rapamycin significantly enhanced the autophagic flux and apoptosis induced by aloin, which verified the role of the PI3K/AKT axis in the pharmacological action of aloin. Therapeutic effects, autophagy enhancement and regulatory effects on the PI3K/AKT/mTOR pathway were demonstrated in a nude mouse xenogeneic osteosarcoma transplantation model. Conclusions Aloin inhibited the proliferation of osteosarcoma by inhibiting the PI3K/AKT/mTOR pathway, increasing autophagic flux and promoting the apoptosis of osteosarcoma cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00520-4.
Collapse
Affiliation(s)
- Jiaming He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xiaozhong Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
39
|
Xie X, Cai X, Tang Y, Jiang C, Zhou F, Yang L, Liu Z, Wang L, Zhao H, Zhao C, Huang X. Flubendazole Elicits Antitumor Effects by Inhibiting STAT3 and Activating Autophagy in Non-small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:680600. [PMID: 34513827 PMCID: PMC8427440 DOI: 10.3389/fcell.2021.680600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a major neoplastic disease with a high mortality worldwide; however, effective treatment of this disease remains a challenge. Flubendazole, a traditional anthelmintic drug, possesses potent antitumor properties; however, the detailed molecular mechanism of flubendazole activity in NSCLC needs to be further explored. In the present study, flubendazole was found to exhibit valid antitumor activity in vitro as well as in vivo. Flubendazole blocked phosphorylation of STAT3 in a dose- and time-dependent manner and regulated the transcription of STAT3 target genes encoding apoptotic proteins. Further, flubendazole inhibited STAT3 activation by inhibiting its phosphorylation and nuclear localization induced by interleukin-6 (IL-6). Notably, the autophagic flux of NSCLC cell lines was increased after flubendazole treatment. Furthermore, flubendazole downregulated the expression of BCL2, P62, and phosphorylated-mTOR, but it upregulated LC3-I/II and Beclin-1 expression, which are the main genes associated with autophagy. Collectively, these data contribute to elucidating the efficacy of flubendazole as an anticancer drug, demonstrating its potential as a therapeutic agent via its suppression of STAT3 activity and the activation of autophagy in NSCLC.
Collapse
Affiliation(s)
- Xiaona Xie
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueding Cai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yemeng Tang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chunhui Jiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Li H, Dong J, Cai M, Xu Z, Cheng XD, Qin JJ. Protein degradation technology: a strategic paradigm shift in drug discovery. J Hematol Oncol 2021; 14:138. [PMID: 34488823 PMCID: PMC8419833 DOI: 10.1186/s13045-021-01146-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023] Open
Abstract
Targeting pathogenic proteins with small-molecule inhibitors (SMIs) has become a widely used strategy for treating malignant tumors. However, most intracellular proteins have been proven to be undruggable due to a lack of active sites, leading to a significant challenge in the design and development of SMIs. In recent years, the proteolysis-targeting chimeric technology and related emerging degradation technologies have provided additional approaches for targeting these undruggable proteins. These degradation technologies show a tendency of superiority over SMIs, including the rapid and continuous target consumption as well as the stronger pharmacological effects, being a hot topic in current research. This review mainly focuses on summarizing the development of protein degradation technologies in recent years. Their advantages, potential applications, and limitations are also discussed. We hope this review would shed light on the design, discovery, and clinical application of drugs associated with these degradation technologies.
Collapse
Affiliation(s)
- Haobin Li
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Jinyun Dong
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
| | - Maohua Cai
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhiyuan Xu
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
| | - Xiang-Dong Cheng
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
| | - Jiang-Jiang Qin
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
41
|
Wang Y, Hu S, Shen L, Liu S, Wan L, Yang S, Hou M, Tian X, Zhang H, Xu KF. Dynamic Observation of Autophagy and Transcriptome Profiles in a Mouse Model of Bleomycin-Induced Pulmonary Fibrosis. Front Mol Biosci 2021; 8:664913. [PMID: 34395518 PMCID: PMC8358296 DOI: 10.3389/fmolb.2021.664913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a group of progressive, fibrotic, and fatal lung diseases, and the role of autophagy in pulmonary fibrosis is controversial. In the current research, we dynamically observed a bleomycin-induced pulmonary fibrosis mouse model after 3, 7, 14, 21, and 28 days and investigated the expression of autophagy markers. We found that autophagy markers were not significantly changed on the indicated days in the mouse lung tissue. Then, RNA-Seq was used to analyze the gene expression and associated functions and pathways in fibrotic lung tissue on different days post-bleomycin. In addition, short time series expression miner (STEM) analysis was performed to explore the temporal post-bleomycin gene expression. Through STEM, continually up- or downregulated profiles did not demonstrate the critical role of autophagy in the development of fibrosis. Furthermore, gene ontology (GO) annotations showed that continually upregulated profiles were mainly related to fibrosis synthesis, extracellular space, and inflammation, while enriched pathways were mainly related to the PI3K-Akt signaling pathway, ECM-receptor interactions, and focal adhesion signaling pathway. For continually downregulated profiles, GO annotations mainly involved sarcomere organization, muscle contraction, and muscle fiber development. The enriched KEGG signaling pathways were the cAMP signaling pathway, cGMP-PKG signaling pathway, calcium signaling pathway, and cardiac muscle contraction. Moreover, we analyzed autophagy-related genes' expression in specific cells from a publicly available database of three human and one animal study of pulmonary fibrosis using single-cell sequencing technology. All results consistently demonstrated no critical role of autophagy in the pathogenesis of pulmonary fibrosis. In summary, autophagy may not critically and consistently change during the development of pulmonary fibrosis at different stages post-bleomycin in a mouse model. These continually up- or downregulated profiles, including gene profiles, and the corresponding functions and pathways may provide mechanistic insights into IPF therapy.
Collapse
Affiliation(s)
- Yani Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqi Hu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Lisha Shen
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Song Liu
- Medical Science Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Linyan Wan
- Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuhui Yang
- Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengjie Hou
- Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Zhang
- Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Chen Y, Wang HH, Chang HH, Huang YH, Wang JR, Changchien CY, Wu ST. Guggulsterone induces apoptosis and inhibits lysosomal-dependent migration in human bladder cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153587. [PMID: 34044254 DOI: 10.1016/j.phymed.2021.153587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The survival rate and therapeutic options for patients with bladder cancer have improved little in recent decades. Guggulsterone (GS), a phytoestrogen, has been investigated as an anticancer drug in various malignancies. PURPOSE The present study aimed to evaluate the anticancer effects of E-isomer and Z-isomer GS in the human bladder cancer cell lines TSGH8301 (low-grade) and T24 (high-grade) and their underlying mechanisms. METHODS The cell survival effect of GS was investigated by the MTT and colony formation assays in bladder cancer cell lines. Flow cytometry was used to analyze the cell cycle and cell death. Migration ability was measured by wound healing and transwell assays. Protein expression was determined by Western blot after GS treatment. The potency of GS on subcutaneous TSGH8301 bladder tumors was evaluated using an in vivo imaging system. RESULTS E-isomer GS reduced the survival rate of both low- and high-grade human bladder cancer cells. GS caused cell cycle arrest, accompanied by the decrease and increase in cyclin A and p21 levels, respectively. Additionally, caspase-dependent apoptosis was observed following GS treatment. Furthermore, GS treatment downregulated mTOR-Akt signaling and induced autophagy with p62 and LC3β-II expression. Moreover, the farnesoid X receptor was involved in GS-inhibited cell growth. In addition, GS reduced the migration ability with a decrease in integrin-focal adhesion kinase and myosin light chain. Interestingly, the suppression of GS-mediated migration was prevented by the lysosomal inhibitor ammonium chloride (NH4Cl). GS also reduced TSGH8301 bladder cancer cell progression by increasing the level of p21, cleaved caspase 3, cleaved poly (ADP-ribose) polymerase (PARP), and LC3β-II in vivo. CONCLUSIONS The current findings suggest that GS treatment may serve as a potential anticancer therapy for different grades of urothelial carcinoma.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsuan Huang
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jeffrey R Wang
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Ying Changchien
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan; Department of Medical Planning, Medical Affairs Bureau Ministry of National Defense Taiwan.
| |
Collapse
|
43
|
Duan J, Chen H, Xu D, Li Y, Li X, Cheng J, Hua R, Zhang Z, Yang L, Li Q. 17β-estradiol improves the developmental ability, inhibits reactive oxygen species levels and apoptosis of porcine oocytes by regulating autophagy events. J Steroid Biochem Mol Biol 2021; 209:105826. [PMID: 33581253 DOI: 10.1016/j.jsbmb.2021.105826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Estrogen plays a critical role in the development and apoptosis of oocytes. Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions including the regulation of reproduction. This study aimed to determine the effect of autophagy regulated by the biologically active form of estrogen (17β-estradiol) in porcine oocyte maturation in vitro. MATERIALS AND METHODS We measured the effects of oocyte developmental competencies and autophagic activity in the porcine oocyte regulated by 17β-estradiol using autophagic inhibitor (Autophinib). In addition, we studied the role of autophagy in reactive oxygen species (ROS) levels, mitochondrial distribution, Ca2+ production, mitochondrial membrane potential (ΔΨm), and early apoptosis by caspase-3, -8 activity in the mature oocytes. RESULTS The results showed that the oocyte meiotic progression and early embryonic development were gradually decreased with Autophinib treatment, which was improved by 17β-estradiol. Immunofluorescence experiments revealed that 17β-estradiol primarily could promote the autophagy in the mature oocytes, and block the reduced-autophagic events by Autophinib. Moreover, 17β-estradiol improved the Autophinib induced high ROS levels, abnormal mitochondrial distribution and low Ca2+ production in mature oocytes. Analyses of early apoptosis and ΔΨm showed that autophagy inhibition was accompanied by increased cellular apoptosis, and 17β-estradiol reduced apoptosis rates of mature oocytes. Importantly, autophagy was downregulated by treatment with Autophinib, an activation of caspase-8 and cleaved caspase-3 increased. Those effects were abolished by 17β-estradiol, which could upregulate autophagy. CONCLUSIONS Our study have showed important implications that 17β-estradiol could promote efficacy of the development of porcine oocytes, enhance the autophagy, reduce ROS levels and apoptosis activity in vitro maturation.
Collapse
Affiliation(s)
- Jiaxin Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Dejun Xu
- College of Animal Science and Technology, Southwestern University, Chongqing, China
| | - Yuan Li
- College of Forestry, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongmao Hua
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
44
|
Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem 2021; 64:3493-3507. [PMID: 33764774 DOI: 10.1021/acs.jmedchem.0c01689] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.
Collapse
Affiliation(s)
- Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
45
|
Mughal MN, Grevelding CG, Haeberlein S. First insights into the autophagy machinery of adult Schistosoma mansoni. Int J Parasitol 2021; 51:571-585. [PMID: 33713647 DOI: 10.1016/j.ijpara.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a disease of global importance caused by parasitic flatworms, schistosomes, which cause pathogenicity through eggs laid by the female worm inside the host's blood vessels. Maintenance of cellular homeostasis is crucial for parasites, as for other organisms, and is quite likely important for schistosome reproduction and vitality. We hypothesize a role for autophagy in these processes, an evolutionarily conserved and essential cellular degradation pathway. Here, for the first known time, we shed light on the autophagy machinery and its involvement in pairing-dependent processes, vitality and reproduction of Schistosoma mansoni. We identified autophagy genes by in silico analyses and determined the influence of in vitro culture on the transcriptional expression in male and female worms using quantitative real-time PCR. Among the identified autophagy genes were Beclin, Ambra1, Vps34, DRAM, DAP1, and LC3B, of which some showed a sex-dependent expression. Specifically, the death-associated protein DAP1 was significantly more highly expressed in females compared with males, while for the damage-regulated autophagy modulator DRAM it was the opposite. Furthermore, in-vitro culture significantly changed the transcript expression level of DAP1 in female worms. Next, worms were treated with an autophagy inducer (rapamycin) or inhibitors (bafilomycin A1, wortmannin and spautin-1) to evaluate effects on autophagy protein expression, worm vitality, and reproduction. The conversion of the key autophagy protein LC3B, a marker for autophagic activity, was increased by rapamycin and blocked by bafilomycin. All inhibitors affected worm fitness, egg production, and negatively affected the morphology of gonads and intestine. In summary, autophagy genes in S. mansoni show an interesting sex-dependent expression pattern and manipulation of autophagy in S. mansoni by inhibitors induced detrimental effects, which encourages subsequent studies to identify antischistosomal targets within the autophagy machinery.
Collapse
Affiliation(s)
- Mudassar N Mughal
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany.
| |
Collapse
|
46
|
Emerging Roles of TRIM8 in Health and Disease. Cells 2021; 10:cells10030561. [PMID: 33807506 PMCID: PMC7998878 DOI: 10.3390/cells10030561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The superfamily of TRIM (TRIpartite Motif-containing) proteins is one of the largest groups of E3 ubiquitin ligases. Among them, interest in TRIM8 has greatly increased in recent years. In this review, we analyze the regulation of TRIM8 gene expression and how it is involved in many cell reactions in response to different stimuli such as genotoxic stress and attacks by viruses or bacteria, playing a central role in the immune response and orchestrating various fundamental biological processes such as cell survival, carcinogenesis, autophagy, apoptosis, differentiation and inflammation. Moreover, we show how TRIM8 functions are not limited to ubiquitination, and contrasting data highlight its role either as an oncogene or as a tumor suppressor gene, acting as a “double-edged weapon”. This is linked to its involvement in the selective regulation of three pivotal cellular signaling pathways: the p53 tumor suppressor, NF-κB and JAK-STAT pathways. Lastly, we describe how TRIM8 dysfunctions are linked to inflammatory processes, autoimmune disorders, rare developmental and cardiovascular diseases, ischemia, intellectual disability and cancer.
Collapse
|
47
|
Wan B, Li C, Wang M, Kong F, Ding Q, Zhang C, Liu H, Qian D, Deng W, Chen J, Tang P, Wang Q, Zhao S, Zhou Z, Xu T, Huang Y, Gu J, Fan J, Yin G. GIT1 protects traumatically injured spinal cord by prompting microvascular endothelial cells to clear myelin debris. Aging (Albany NY) 2021; 13:7067-7083. [PMID: 33621952 PMCID: PMC7993661 DOI: 10.18632/aging.202560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
The clearance of myelin debris is a critical step in the functional recovery following spinal cord injury (SCI). As phagocytes do, microvascular endothelial cells (MECs) participate in myelin debris clearance at the injury site within one week. Our group has verified that G protein-coupled receptor kinase 2 interacting protein-1 (GIT1) is essential in autophagy and angiogenesis, both of which are tightly related to the uptake and degradation of myelin debris by MECs. Here, we analyzed the performance and mechanism of GIT1 in myelin debris clearance after SCI. The SCI contusion model was established and in vitro MECs were treated with myelin debris. Better recovery from traumatic SCI was observed in the GIT1 WT mice than in the GIT1 KO mice. More importantly, we found that GIT1 prompted MECs to clear myelin debris and further enhanced MECs angiogenesis in vivo and in vitro. Mechanistically, GIT1-mediated autophagy contributed to the clearance of myelin debris by MECs. In this study, we demonstrated that GIT1 may prompt MECs to clear myelin debris via autophagy and further stimulate MECs angiogenesis via upregulating VEGF. Our results indicate that GITI may serve as a promising target for accelerating myelin debris clearance and improving SCI recovery.
Collapse
Affiliation(s)
- Bowen Wan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Wang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fanqi Kong
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Qirui Ding
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenliang Zhang
- Department of Orthopedics, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian 223600, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dingfei Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenlin Deng
- Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Gu
- Department of Orthopedics, Xishan People's Hospital, Wuxi 214000, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
48
|
The BAD-BAX-Caspase-3 Cascade Modulates Synaptic Vesicle Pools via Autophagy. J Neurosci 2021; 41:1174-1190. [PMID: 33303681 DOI: 10.1523/jneurosci.0969-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
The BAD-BAX-caspase-3 cascade is a canonical apoptosis pathway. Macroautophagy ("autophagy" hereinafter) is a process by which organelles and aggregated proteins are delivered to lysosomes for degradation. Here, we report a new function of the BAD-BAX-caspase-3 cascade and autophagy in the control of synaptic vesicle pools. We found that, in hippocampal neurons of male mice, the BAD-BAX-caspase-3 pathway regulates autophagy, which in turn limits the size of synaptic vesicle pools and influences the kinetics of activity-induced depletion and recovery of synaptic vesicle pools. Moreover, the caspase-autophagy pathway is engaged by fear conditioning to facilitate associative fear learning and memory. This work identifies a new mechanism for controlling synaptic vesicle pools, and a novel, nonapoptotic, presynaptic function of the BAD-BAX-caspase-3 cascade.SIGNIFICANCE STATEMENT Despite the importance of synaptic vesicles for neurons, little is known about how the size of synaptic vesicle pools is maintained under basal conditions and regulated by neural activity. This study identifies a new mechanism for the control of synaptic vesicle pools, and a new, nonapoptotic function of the BAD-BAX-caspase-3 pathway in presynaptic terminals. Additionally, it indicates that autophagy is not only a homeostatic mechanism to maintain the integrity of cells and tissues, but also a process engaged by neural activity to regulate synaptic vesicle pools for optimal synaptic responses, learning, and memory.
Collapse
|
49
|
Choi SH, Agatisa-Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, Tsimikas S, Miller YI. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:e82-e96. [PMID: 33356389 PMCID: PMC8105271 DOI: 10.1161/atvbaha.120.315485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Ayelet Gonen
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Alisa Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Jungsu Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Elena Alekseeva
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Sotirios Tsimikas
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Yury I. Miller
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
50
|
New approaches for small molecule-induced protein degradation. Future Med Chem 2021; 13:439-441. [PMID: 33438469 DOI: 10.4155/fmc-2020-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|