1
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
2
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024:1-44. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Nischalke HD, Nischalke C, Schmalz F, Möller C, Krämer B, Funken A, Goldspink A, Nattermann J, Strassburg C, Lutz P. Catecholamines and inflammation in advanced liver disease: more closely intertwined than expected? Gut 2024; 73:1219-1222. [PMID: 37468229 DOI: 10.1136/gutjnl-2023-330535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Affiliation(s)
| | | | - Franziska Schmalz
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christine Möller
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexandra Funken
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Adrian Goldspink
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- Partner Site Bonn/Cologne, German Center for Infection Research (DZIF), Bonn, Germany
| | - Christian Strassburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- Partner Site Bonn/Cologne, German Center for Infection Research (DZIF), Bonn, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- Partner Site Bonn/Cologne, German Center for Infection Research (DZIF), Bonn, Germany
| |
Collapse
|
4
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
5
|
Walton M, Wagner JB. Pediatric Beta Blocker Therapy: A Comprehensive Review of Development and Genetic Variation to Guide Precision-Based Therapy in Children, Adolescents, and Young Adults. Genes (Basel) 2024; 15:379. [PMID: 38540438 PMCID: PMC10969836 DOI: 10.3390/genes15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Beta adrenergic receptor antagonists, known as beta blockers, are one of the most prescribed medications in both pediatric and adult cardiology. Unfortunately, most of these agents utilized in the pediatric clinical setting are prescribed off-label. Despite regulatory efforts aimed at increasing pediatric drug labeling, a majority of pediatric cardiovascular drug agents continue to lack pediatric-specific data to inform precision dosing for children, adolescents, and young adults. Adding to this complexity is the contribution of development (ontogeny) and genetic variation towards the variability in drug disposition and response. In the absence of current prospective trials, the purpose of this comprehensive review is to illustrate the current knowledge gaps regarding the key drivers of variability in beta blocker drug disposition and response and the opportunities for investigations that will lead to changes in pediatric drug labeling.
Collapse
Affiliation(s)
- Mollie Walton
- Ward Family Heart Center, Kansas City, MO 64108, USA
| | - Jonathan B. Wagner
- Ward Family Heart Center, Kansas City, MO 64108, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, 2401 Gillham Road, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Fayed MS, Saleh MA, Sabri NA, Elkholy AA. β1-adrenergic receptor polymorphisms: a possible genetic predictor of bisoprolol response in acute coronary syndrome. Future Sci OA 2023; 9:FSO895. [PMID: 37753361 PMCID: PMC10518825 DOI: 10.2144/fsoa-2023-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Aim To investigate the association between beta1-adrenergic receptor (ADRB1) polymorphisms and response to bisoprolol treatment in beta-blocker naive patients with acute coronary syndrome (ACS). Patients & methods Seventy-seven patients received bisoprolol for four weeks. Blood pressure and heart rate were measured at baseline and during treatment. TaqMan allelic discrimination method was utilized for ADRB1 Ser49Gly and Arg389Gly genotyping. Results Arg389Arg carriers showed greater reductions in systolic and diastolic blood pressure (-8.5% ± 7.8% vs -0.76% ± 8.7%, p = 0.000218), and (-9.5% ± 9.7% vs -0.80% ± 11.5%, p = 0.000149), respectively, compared with Gly389 carriers. No statistical difference was found for study's outcomes based on codon 49. Conclusion Arg389Gly polymorphism is a promising bisoprolol response predictor in ACS patients.
Collapse
Affiliation(s)
- Mohamed S Fayed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed Ayman Saleh
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, 1181, Egypt
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Amal A Elkholy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
7
|
Yeon JW, Kim B, Byun J, Jung S, Park J, Han M, Baek SK, Kim TH. Regulation of T Helper Cell Type 2 Immune Response by Controlling Beta-2 Adrenergic Receptor in Dendritic Cells of Patients with Allergic Rhinitis. Int Arch Allergy Immunol 2023; 184:1173-1183. [PMID: 37717570 DOI: 10.1159/000531956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Allergic diseases are mediated by T helper cell type 2 (Th2) cells, which are differentiated by dendritic cells (DCs). Recently, it was reported that cAMP concentration in DCs is important for inducing allergic responses. However, the regulatory function of cAMP in DCs in Th2 immune responses is unclear. It was hypothesized that the regulation of G protein-coupled receptors (GPCRs) to increase cAMP levels in DCs would reduce Th2 immune responses. METHODS Human DCs from patients with allergic rhinitis (AR) and from healthy controls were subjected to next-generation sequencing (NGS) to identify potential GPCR. To investigate the functions of GPCR agonists, the in vitro co-culture experiment that THP-1 cells were differentiated into DCs and cultured with human CD4+ T-cells and an AR animal in vivo model were used. RESULTS Among the GPCRs, the beta-2 adrenergic receptor (ADRB2) of allergic DCs was significantly increased by NGS analysis. The expression of ADRB2 was also increased in Der p 1-treated DCs, which was reduced by treatment with the ADRB2 agonist salbutamol. Salbutamol treatment induced cAMP production in THP-1 derived DCs. In an in vitro co-culture experiment, salbutamol-treated DCs reduced the secretion of Th2 cytokine. In an in vivo AR animal experiment, salbutamol-administered mice showed reduced allergic behavior and Th2 cytokine expression in the nasal mucosa. CONCLUSIONS The regulation of ADRB2 with salbutamol alleviated the allergic response in vitro DC-T cell co-culture and in vivo AR animal models, suggesting that ADRB2 is a therapeutic target for AR and that ADRB2 agonists may be a promising medication for AR.
Collapse
Affiliation(s)
- Ji Woo Yeon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea,
- Neuroscience Research Institute, Korea University, College of Medicine, Seoul, Republic of Korea,
| | - Junhyoung Byun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Semyoung Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Munsoo Han
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
- Mucosal Immunology Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Seung-Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
- Mucosal Immunology Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
- Mucosal Immunology Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Matera MG, Rogliani P, Novelli G, Cazzola M. The impact of genomic variants on patient response to inhaled bronchodilators: a comprehensive update. Expert Opin Drug Metab Toxicol 2023. [PMID: 37269324 DOI: 10.1080/17425255.2023.2221848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The bronchodilator response (BDR) depends on many factors, including genetic ones. Numerous single nucleotide polymorphisms (SNPs) influencing BDR have been identified. However, despite several studies in this field, genetic variations are not currently being utilized to support the use of bronchodilators. AREAS COVERED In this narrative review, the possible impact of genetic variants on BDR is discussed. EXPERT OPINION Pharmacogenetic studies of β2-agonists have mainly focused on ADRB2 gene. Three SNPs, A46G, C79G, and C491T, have functional significance. However, other uncommon variants may contribute to individual variability in salbutamol response. SNPs haplotypes in ADRB2 may have a role. Many variants in genes coding for muscarinic ACh receptor (mAChR) have been reported, particularly in the M2 and, to a lesser degree, M3 mAChRs, but no consistent evidence for a pharmacological relevance of these SNPs has been reported. Moreover, there is a link between SNPs and ethnic and/or age profiles regarding BDR. Nevertheless, replication of pharmacogenetic results is limited and often, BDR is dissociated from what is expected based on SNP identification. Pharmacogenetic studies on bronchodilators must continue. However, they must integrate data derived from a multi-omics approach with epigenetic factors that may modify BDR.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
9
|
Lakkiss B, Refaat MM. β 1 and α 2C-Adrenergic Receptor Polymorphisms Are Associated With Lower Incident Ventricular Fibrillation in Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc 2023; 12:e029102. [PMID: 36927047 PMCID: PMC10111538 DOI: 10.1161/jaha.123.029102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Bachir Lakkiss
- Division of Cardiology, Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Marwan M Refaat
- Division of Cardiology, Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
10
|
Morgan RW, Berg RA, Reeder RW, Carpenter TC, Franzon D, Frazier AH, Graham K, Meert KL, Nadkarni VM, Naim MY, Tilford B, Wolfe HA, Yates AR, Sutton RM. The physiologic response to epinephrine and pediatric cardiopulmonary resuscitation outcomes. Crit Care 2023; 27:105. [PMID: 36915182 PMCID: PMC10012560 DOI: 10.1186/s13054-023-04399-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Epinephrine is provided during cardiopulmonary resuscitation (CPR) to increase systemic vascular resistance and generate higher diastolic blood pressure (DBP) to improve coronary perfusion and attain return of spontaneous circulation (ROSC). The DBP response to epinephrine during pediatric CPR and its association with outcomes have not been well described. Thus, the objective of this study was to measure the association between change in DBP after epinephrine administration during CPR and ROSC. METHODS This was a prospective multicenter study of children receiving ≥ 1 min of CPR with ≥ 1 dose of epinephrine and evaluable invasive arterial BP data in the 18 ICUs of the ICU-RESUS trial (NCT02837497). Blood pressure waveforms underwent compression-by-compression quantitative analysis. The mean DBP before first epinephrine dose was compared to mean DBP two minutes post-epinephrine. Patients with ≥ 5 mmHg increase in DBP were characterized as "responders." RESULTS Among 147 patients meeting inclusion criteria, 66 (45%) were characterized as responders and 81 (55%) were non-responders. The mean increase in DBP with epinephrine was 4.4 [- 1.9, 11.5] mmHg (responders: 13.6 [7.5, 29.3] mmHg versus non-responders: - 1.5 [- 5.0, 1.5] mmHg; p < 0.001). After controlling for a priori selected covariates, epinephrine response was associated with ROSC (aRR 1.60 [1.21, 2.12]; p = 0.001). Sensitivity analyses identified similar associations between DBP response thresholds of ≥ 10, 15, and 20 mmHg and ROSC; DBP responses of ≥ 10 and ≥ 15 mmHg were associated with higher aRR of survival to hospital discharge and survival with favorable neurologic outcome (Pediatric Cerebral Performance Category score of 1-3 or no worsening from baseline). CONCLUSIONS The change in DBP following epinephrine administration during pediatric in-hospital CPR was associated with return of spontaneous circulation.
Collapse
Affiliation(s)
- Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA.
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Aisha H Frazier
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Bradley Tilford
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
11
|
Stereoselectivity in the Membrane Transport of Phenylethylamine Derivatives by Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Biomolecules 2022; 12:biom12101507. [PMID: 36291716 PMCID: PMC9599461 DOI: 10.3390/biom12101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Stereoselectivity is well known and very pronounced in drug metabolism and receptor binding. However, much less is known about stereoselectivity in drug membrane transport. Here, we characterized the stereoselective cell uptake of chiral phenylethylamine derivatives by human monoamine transporters (NET, DAT, and SERT) and organic cation transporters (OCT1, OCT2, and OCT3). Stereoselectivity differed extensively between closely related transporters. High-affinity monoamine transporters (MATs) showed up to 2.4-fold stereoselective uptake of norepinephrine and epinephrine as well as of numerous analogs. While NET and DAT preferentially transported (S)-norepinephrine, SERT preferred the (R)-enantiomer. In contrast, NET and DAT showed higher transport for (R)-epinephrine and SERT for (S)-epinephrine. Generally, MAT stereoselectivity was lower than expected from their high affinity to several catecholamines and from the high stereoselectivity of some inhibitors used as antidepressants. Additionally, the OCTs differed strongly in their stereoselectivity. While OCT1 showed almost no stereoselective uptake, OCT2 was characterized by a roughly 2-fold preference for most (R)-enantiomers of the phenylethylamines. In contrast, OCT3 transported norphenylephrine and phenylephrine with 3.9-fold and 3.3-fold preference for their (R)-enantiomers, respectively, while the para-hydroxylated octopamine and synephrine showed no stereoselective OCT3 transport. Altogether, our data demonstrate that stereoselectivity is highly transporter-to-substrate specific and highly diverse even between homologous transporters.
Collapse
|
12
|
Hallik M, Soeorg H, Kahre T, Murumets Ü, Ilmoja ML, Kipper K, Metsvaht T. Pharmacogenetics may explain part of the interindividual variability of dobutamine pharmacodynamics in neonates. Br J Clin Pharmacol 2022; 88:4155-4162. [PMID: 35437830 DOI: 10.1111/bcp.15357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
AIM To determine whether the known single nucleotide polymorphisms in adrenoreceptor associated genes affect the hemodynamic response to dobutamine in critically ill neonates. METHODS Alleles in the known genetic single nucleotide polymorphisms in β1 and β2 adrenoceptor (AR) genes and Gs protein α-subunit gene (GNAS) possibly affecting inotropic effect were identified in patients of neonatal dobutamine pharmacokinetic-pharmacodynamic study. Linear mixed-effect models were used to describe the effect of genetic polymorphisms to heart rate (HR), left ventricular output (LVO) and right ventricular output (RVO) during dobutamine treatment. RESULTS 26 neonates (5 term, 21 preterm) were studied. Dobutamine plasma concentration and exposure time respective HR (adjusted to gestational age) is dependent on β1-AR Arg389Gly polymorphism so that in G/G (Gly) homozygotes and G/C heterozygotes dobutamine increases HR more than in C/C (Arg) homozygotes, with parameter estimate (95% CI) of 38.3 (15.8 - 60.7) bpm per AUC of 100 μg L-1 h, p=0.0008. LVO (adjusted to antenatal glucocorticoid administration and illness severity) and RVO (adjusted to gestational age and illness severity) is dependent on GNAS c.393C>T polymorphism so that in T/T homozygotes and C/T heterozygotes but not in C/C homozygotes LVO and RVO increase with dobutamine treatment, 24.5 (6.2 - 42.9) mL kg-1 min-1 per AUC of 100 μg L-1 h, p=0.0095 and 33.2 (12.1 - 54.3) mL kg-1 min-1 per AUC of 100 μg L-1 h, p=0.0025, respectively. CONCLUSION In critically ill neonates, β1-AR Arg389Gly and GNAS c.393C>T polymorphisms may play a role in the haemodynamic response to dobutamine during the first hours and days of life.
Collapse
Affiliation(s)
- Maarja Hallik
- Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ülle Murumets
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Mari-Liis Ilmoja
- Department of Anaesthesiology and Intensive Care, Tallinn Children's Hospital, Tallinn, Estonia
| | - Karin Kipper
- Institute of Chemistry, University of Tartu, Tartu, Estonia.,Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom.,Department of Clinical and Experimental Epilepsy, Faculty of Brain Sciences, University College London, United Kingdom
| | - Tuuli Metsvaht
- Department of Paediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, Funabashi M, Ramer-Tait AE, Naga Prasad SV, Fiehn O, Rey FE, Tang WHW, Fischbach MA, DiDonato JA, Hazen SL. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020; 180:862-877.e22. [PMID: 32142679 DOI: 10.1016/j.cell.2020.02.016] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and β2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Prasenjit Prasad Saha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nilaksh Gupta
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Weifei Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kymberleigh A Romano
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sarah M Skye
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Maradumane L Mohan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, OH 44115, USA
| | - Masanori Funabashi
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA; Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA; Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Van Driest SL, Sleeper LA, Gelb BD, Morris SA, Dietz HC, Forbus GA, Goldmuntz E, Hoskoppal A, James J, Lee TM, Levine JC, Li JS, Loeys BL, Markham LW, Meester JAN, Mital S, Mosley JD, Olson AK, Renard M, Shaffer CM, Sharkey A, Young L, Lacro RV, Roden DM. Variants in ADRB1 and CYP2C9: Association with Response to Atenolol and Losartan in Marfan Syndrome. J Pediatr 2020; 222:213-220.e5. [PMID: 32586526 PMCID: PMC7323908 DOI: 10.1016/j.jpeds.2020.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To test whether variants in ADRB1 and CYP2C9 genes identify subgroups of individuals with differential response to treatment for Marfan syndrome through analysis of data from a large, randomized trial. STUDY DESIGN In a subset of 250 white, non-Hispanic participants with Marfan syndrome in a prior randomized trial of atenolol vs losartan, the common variants rs1801252 and rs1801253 in ADRB1 and rs1799853 and rs1057910 in CYP2C9 were analyzed. The primary outcome was baseline-adjusted annual rate of change in the maximum aortic root diameter z-score over 3 years, assessed using mixed effects models. RESULTS Among 122 atenolol-assigned participants, the 70 with rs1801253 CC genotype had greater rate of improvement in aortic root z-score compared with 52 participants with CG or GG genotypes (Time × Genotype interaction P = .005, mean annual z-score change ± SE -0.20 ± 0.03 vs -0.09 ± 0.03). Among participants with the CC genotype in both treatment arms, those assigned to atenolol had greater rate of improvement compared with the 71 of the 121 assigned to losartan (interaction P = .002; -0.20 ± 0.02 vs -0.07 ± 0.02; P < .001). There were no differences in atenolol response by rs1801252 genotype or in losartan response by CYP2C9 metabolizer status. CONCLUSIONS In this exploratory study, ADRB1-rs1801253 was associated with atenolol response in children and young adults with Marfan syndrome. If these findings are confirmed in future studies, ADRB1 genotyping has the potential to guide therapy by identifying those who are likely to have greater therapeutic response to atenolol than losartan.
Collapse
Affiliation(s)
- Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynn A. Sleeper
- Department of Cardiology, Boston Children’s Hospital; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shaine A. Morris
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Harry C. Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Geoffrey A. Forbus
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Department of Pediatrics University of Pennsylvania Perlman School of Medicine, Philadelphia, PA, USA
| | - Arvind Hoskoppal
- Departments of Pediatrics and Internal Medicine, University of Utah and Intermountain Healthcare, Salt Lake City, UT, USA
| | - Jeanne James
- Department of Pediatrics, Section of Cardiology, Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI, USA
| | - Teresa M. Lee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jami C. Levine
- Department of Cardiology, Boston Children’s Hospital; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jennifer S. Li
- Department of Pediatrics, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Bart L. Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Larry W. Markham
- Department of Pediatrics, Division of Pediatric Cardiology, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Josephina A. N. Meester
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Seema Mital
- Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron K. Olson
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, USA
| | - Marjolijn Renard
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian M. Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela Sharkey
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Luciana Young
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Ronald V. Lacro
- Department of Cardiology, Boston Children’s Hospital; and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Departments of Pharmacology and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Evaluation of genetic risk related to catechol-O-methyltransferase (COMT) and β2-adrenergic receptor (ADRB2) activity in different diagnostic subgroups of temporomandibular disorder in Brazilian patients. Int J Oral Maxillofac Surg 2020; 49:237-243. [DOI: 10.1016/j.ijom.2019.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/11/2019] [Accepted: 06/21/2019] [Indexed: 01/04/2023]
|
16
|
Porter MR, Xiao H, Wang J, Smith SB, Topczewski JJ. 3-Amino-chromanes and Tetrahydroquinolines as Selective 5-HT 2B, 5-HT 7, or σ 1 Receptor Ligands. ACS Med Chem Lett 2019; 10:1436-1442. [PMID: 31620230 DOI: 10.1021/acsmedchemlett.9b00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
The phenethylamine backbone is a privileged substructure found in a wide variety of G protein-coupled receptor (GPCR) ligands. This includes both endogenous neurotransmitters and active pharmaceutical agents. More than 20 structurally unique heterocyclic phenethylamine derivatives were broadly evaluated for GPCR affinity. Selective ligands for the 5-HT2B, 5-HT7, and σ1 receptors were identified, each with low nanomolar binding affinities. The σ1 receptor affinity was supported in a cellular assay that provided evidence for increased cell survival under oxidative stress.
Collapse
Affiliation(s)
- Matthew R. Porter
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, United States
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia 30912, United States
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, United States
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia 30912, United States
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, United States
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia 30912, United States
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, United States
| | - Joseph J. Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Bonato LL, Quinelato V, de Felipe Cordeiro PC, Vieira AR, Granjeiro JM, Tesch R, Casado PL. Polymorphisms in COMT, ADRB2 and HTR1A genes are associated with temporomandibular disorders in individuals with other arthralgias. Cranio 2019; 39:351-361. [PMID: 31264537 DOI: 10.1080/08869634.2019.1632406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: To evaluate the association between polymorphisms in genes and comorbid presence of arthralgias and TMD.Methods: This is a case-control study. The groups formed were individuals with chronic arthralgia and 1) myofascial pain (n = 42); 2) articular (n = 16); 3) multiple diagnoses (n = 69); 4) with TMD and without some other arthralgia (n = 16); 5) without TMD but with pain in other joints (n = 82); and 6) a control group (n = 72). SNPs in COMT, ADRB2, and HTR1A genes were investigated.Results: The CT genotype for the COMT (rs9332377) gene was associated with the absence of myofascial pain (p = .05). In the ADRB2 (rs1042713) gene, the AA genotype was associated with the absence of myofascial pain (p = .03).Discussion: This study supports the hypothesis that alterations in the COMT, ADRB2, and HTR1A genes influence the presence of chronic pain and TMD.
Collapse
Affiliation(s)
| | | | | | - Alexandre Rezende Vieira
- Departments of Oral Biology and Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - José Mauro Granjeiro
- Federal University, Niterói, RJ, Brazil.,National Institute of Metrology, Quality and Technology, Rio de Janeiro, RJ, Brazil.,Cell Therapy Center, Clinical Research Unit and Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Tesch
- Temporomandibular Disorders and Orofacial Pain Clinic, School of Medicine of Petrópolis, Petrópolis, Rio de Janeiro, Brazil
| | - Priscila Ladeira Casado
- Department of Periodontics, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Jhun EH, Sadhu N, Hu X, Yao Y, He Y, Wilkie DJ, Molokie RE, Wang ZJ. Beta2-Adrenergic Receptor Polymorphisms and Haplotypes Associate With Chronic Pain in Sickle Cell Disease. Front Pharmacol 2019; 10:84. [PMID: 30837870 PMCID: PMC6390066 DOI: 10.3389/fphar.2019.00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
Pain in sickle cell disease (SCD) is severe, variable, and inadequately comprehended. The β2-adrenergic receptor (ADRB2) is critical in mediating neurotransmitter response in the sympathetic nervous system. In this association study, we examined 16 single nucleotide polymorphisms (SNPs) covering 5'-UTR and coding regions of ADRB2 for pain variability in SCD. Subjects recorded their non-crisis, baseline pain experience on a computerized tool from which we obtained chronic pain measurement score- composite pain index (CPI). Regression models yielded significant associations between chronic pain and seven SNPs. Non-synonymous SNP rs1042713 A allele (Arg16) caused a 5.73-fold decrease in CPI (p = 0.002). Allele A of rs12654778 and T of rs17778257 reduced CPI by a fold of 4.52 (p = 0.019), and 4.39 (p = 0.032), respectively. Whereas, in the 5' UTR, allele C of rs1042711, G of rs11168070, C of rs11959427, and C of rs1801704 increased CPI by a fold of 10.86 (p = 0.00049), 5.99 (p = 0.016), 5.69 (p = 0.023), and 5.26 (p = 0.031), respectively. Together, these SNPs accounted for 2-15% of CPI variance after adjusting for covariates. Moreover, these SNPs were in high linkage disequilibrium (LD) showing three LD blocks in our cohort. A 10-marker haplotype increased CPI by 11.5-fold (p = 0.000407). Thus, ADRB2 polymorphisms might contribute to chronic pain severity and heterogeneity in SCD.
Collapse
Affiliation(s)
- Ellie H. Jhun
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Nilanjana Sadhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Xiaoyu Hu
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Yingwei Yao
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL, United States
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, United States
| | - Ying He
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Diana J. Wilkie
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL, United States
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, United States
| | - Robert E. Molokie
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veteran’s Administration Medical Center, Chicago, IL, United States
- Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
De T, Park CS, Perera MA. Cardiovascular Pharmacogenomics: Does It Matter If You're Black or White? Annu Rev Pharmacol Toxicol 2018; 59:577-603. [PMID: 30296897 DOI: 10.1146/annurev-pharmtox-010818-021154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Race and ancestry have long been associated with differential risk and outcomes to disease as well as responses to medications. These differences in drug response are multifactorial with some portion associated with genomic variation. The field of pharmacogenomics aims to predict drug response in patients prior to medication administration and to uncover the biological underpinnings of drug response. The field of human genetics has long recognized that genetic variation differs in frequency between ancestral populations, with some single nucleotide polymorphisms found solely in one population. Thus far, most pharmacogenomic studies have focused on individuals of European and East Asian ancestry, resulting in a substantial disparity in the clinical utility of genetic prediction for drug response in US minority populations. In this review, we discuss the genetic factors that underlie variability to drug response and known pharmacogenomic associations and how these differ between populations, with an emphasis on the current knowledge in cardiovascular pharmacogenomics.
Collapse
Affiliation(s)
- Tanima De
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| | - C Sehwan Park
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| | - Minoli A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| |
Collapse
|
20
|
Liggett SB. Genetic Vulnerability of GPCRs: A Call to Action. Trends Biochem Sci 2018; 43:227-229. [PMID: 29605062 DOI: 10.1016/j.tibs.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the targets for many drugs, but the response shows interindividual variability. The 'one-drug-fits-all' approach has been challenged by evidence showing multiple human genetic variants of GPCRs. Identification and characterization of GPCR variants must be undertaken for rational, personalized, and economically sound prescribing practices.
Collapse
Affiliation(s)
- Stephen B Liggett
- Departments of Molecular Pharmacology and Physiology, and Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
21
|
Roca R, Esteban P, Zapater P, Inda MDM, Conte AL, Gómez-Escolar L, Martínez H, Horga JF, Palazon JM, Peiró AM. β2‑adrenergic receptor functionality and genotype in two different models of chronic inflammatory disease: Liver cirrhosis and osteoarthritis. Mol Med Rep 2018; 17:7987-7995. [PMID: 29620176 DOI: 10.3892/mmr.2018.8820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the functional status of β2 adrenoceptors (β2AR) in two models of chronic inflammatory disease: liver cirrhosis (LC) and osteoarthritis (OA). The β2AR gene contains three single nucleotide polymorphisms at amino acid positions 16, 27 and 164. The aim of the present study was to investigate the potential influence of lymphocyte β2AR receptor functionality and genotype in LC and OA patients. Blood samples from cirrhotic patients (n=52, hepatic venous pressure gradient 13±4 mmHg, CHILD 7±2 and MELD 11±4 scores), OA patients (n=30, 84% Kellgren‑Lawrence severity 4 grade, 14% knee replacement joint) and healthy volunteers as control group (n=26) were analyzed. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood and basal and isoproterenol induced adenylate cyclase activity (isoproterenol stimulus from 10‑9 to 10‑4 mM), and β2AR allelic variants (rs1042713, rs1042714, rs1800888) were determined. β2AR functionality was decreased in the two different models of chronic inflammatory disease studied, OA (50% vs. control) and LC (85% vs. control). In these patients, the strength of the β2AR response to adrenergic stimulation was very limited. Adrenergic modulation of PBMC function through the β2AR stimulus is decreased in chronic inflammatory processes including LC and OA, suggesting that the adrenergic system may be important in the development of these processes.
Collapse
Affiliation(s)
- Reyes Roca
- Occupational Observatory, Miguel Hernández University (UMH) of Elche, 03202 Elche, Spain
| | - Pablo Esteban
- Occupational Observatory, Miguel Hernández University (UMH) of Elche, 03202 Elche, Spain
| | - Pedro Zapater
- CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain
| | - María-Del-Mar Inda
- Neuropharmacology on Pain (NED) Research Group, ISABIAL‑FISABIO, General Hospital of Alicante, 03010 Alicante, Spain
| | - Anna Lucia Conte
- Occupational Observatory, Miguel Hernández University (UMH) of Elche, 03202 Elche, Spain
| | | | | | - José F Horga
- Clinical Pharmacology, General Hospital of Alicante, 03010 Alicante, Spain
| | - José M Palazon
- Liver Unit, General Hospital of Alicante, 03010 Alicante, Spain
| | - Ana M Peiró
- Clinical Pharmacology, General Hospital of Alicante, 03010 Alicante, Spain
| |
Collapse
|
22
|
Abstract
Although debate on the concept of fibromyalgia (FM) has been vigorous ever since the classification criteria were first published, FM is now better understood and has become recognized as a disorder. Recently, FM has come to be considered a major health problem, affecting 1% to 5% of the general population. As familial aggregations have been observed among some FM patients, genetic research on FM is logical. In fact, genome-wide association studies and linkage analysis, and studies on candidate genes, have uncovered associations between certain genetic factors and FM. Genetic susceptibility is now considered to influence the etiology of FM. At the same time, novel genetic techniques, such as microRNA analysis, have been used in attempts to improve our understanding of the genetic predisposition to FM. In this article, we review recent advances in, and continuing challenges to, the identification of genes contributing to the development of, and symptom severity in, FM.
Collapse
Affiliation(s)
- Dong-Jin Park
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Korea
| | - Shin-Seok Lee
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Korea
- Correspondence to Shin-Seok Lee, M.D. Department of Rheumatology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6591 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
23
|
Bandaru S, Alvala M, Nayarisseri A, Sharda S, Goud H, Mundluru HP, Singh SK. Molecular dynamic simulations reveal suboptimal binding of salbutamol in T164I variant of β2 adrenergic receptor. PLoS One 2017; 12:e0186666. [PMID: 29053759 PMCID: PMC5650161 DOI: 10.1371/journal.pone.0186666] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
The natural variant C491T (rs1800088) in ADRB2 gene substitutes Threonine to Isoleucine at 164th position in β2AR and results in receptor sequestration and altered binding of agonists. Present investigation pursues to identify the effect of T164I variation on function and structure of β2AR through systematic computational approaches. The study, in addition, addresses altered binding of salbutamol in T164I variant through molecular dynamic simulations. Methods involving changes in free energy, solvent accessibility surface area, root mean square deviations and analysis of binding cavity revealed structural perturbations in receptor to incur upon T164I substitution. For comprehensive understanding of receptor upon substitution, OPLS force field aided molecular dynamic simulations were performed for 10 ns. Simulations revealed massive structural departure for T164I β2AR variant from the native state along with considerably higher root mean square fluctuations of residues near the cavity. Affinity prediction by molecular docking showed two folds reduced affinity of salbutamol in T164I variant. To validate the credibility docking results, simulations for ligand-receptor complex were performed which demonstrated unstable salbutamol-T164I β2AR complex formation. Further, analysis of interactions in course of simulations revealed reduced ligand-receptor interactions of salbutamol in T164I variant. Taken together, studies herein provide structural rationales for suboptimal binding of salbutamol in T164I variant through integrated molecular modeling approaches.
Collapse
Affiliation(s)
- Srinivas Bandaru
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
- Molecular Modeling Lab, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mallika Alvala
- Molecular Modeling Lab, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Private Limited, Indore, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Saphy Sharda
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Himshikha Goud
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Hema Prasad Mundluru
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
24
|
Cunningham MR, Aungraheeta R, Mundell SJ. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y 12 receptor. Mol Cell Endocrinol 2017; 449:74-81. [PMID: 28212842 DOI: 10.1016/j.mce.2017.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
Abstract
Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y1 and P2Y12), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems.
Collapse
Affiliation(s)
- Margaret R Cunningham
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Riyaad Aungraheeta
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
25
|
Heart Failure and MEF2 Transcriptome Dynamics in Response to β-Blockers. Sci Rep 2017; 7:4476. [PMID: 28667250 PMCID: PMC5493616 DOI: 10.1038/s41598-017-04762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023] Open
Abstract
Myocyte Enhancer Factor 2 (MEF2) mediates cardiac remodelling in heart failure (HF) and is also a target of β-adrenergic signalling, a front-line treatment for HF. We identified global gene transcription networks involved in HF with and without β-blocker treatment. Experimental HF by transverse aortic constriction (TAC) in a MEF2 “sensor” mouse model (6 weeks) was followed by four weeks of β-blockade with Atenolol (AT) or Solvent (Sol) treatment. Transcriptome analysis (RNA-seq) from left ventricular RNA samples and MEF2A depleted cardiomyocytes was performed. AT treatment resulted in an overall improvement in cardiac function of TAC mice and repression of MEF2 activity. RNA-seq identified 65 differentially expressed genes (DEGs) due to TAC treatment with enriched GO clusters including the inflammatory system, cell migration and apoptosis. These genes were mapped against DEGs in cardiomyocytes in which MEF2A expression was suppressed. Of the 65 TAC mediated DEGs, AT reversed the expression of 28 mRNAs. Rarres2 was identified as a novel MEF2 target gene that is upregulated with TAC in vivo and isoproterenol treatment in vitro which may have implications in cardiomyocyte apoptosis and hypertrophy. These studies identify a cohort of genes with vast potential for disease diagnosis and therapeutic intervention in heart failure.
Collapse
|
26
|
Nielsen AO, Jensen CS, Arredouani MS, Dahl R, Dahl M. Variants of the ADRB2 Gene in COPD: Systematic Review and Meta-Analyses of Disease Risk and Treatment Response. COPD 2017; 14:451-460. [DOI: 10.1080/15412555.2017.1320370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Camilla Steen Jensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mohamed Simo Arredouani
- Department of Surgery, Beth Israel Deaconess Medical Center, Medical Harvard School, Boston, USA
| | - Ronald Dahl
- Department of Respiratory Medicine, Odense University Hospital, Denmark
| | - Morten Dahl
- Department of Clinical Biochemistry, Zealand University Hospital, Denmark
| |
Collapse
|
27
|
Hussein MH, Sobhy KE, Sabry IM, El Serafi AT, Toraih EA. Beta 2-adrenergic receptor gene haplotypes and bronchodilator response in Egyptian patients with chronic obstructive pulmonary disease. Adv Med Sci 2017; 62:193-201. [PMID: 28327457 DOI: 10.1016/j.advms.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 10/19/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a multi-factorial disorder caused by environmental determinants and genetic risk factors. Understanding the genetic predisposition of COPD is essential to develop personalized treatment regimens. Beta2-adrenergic receptor (ADRB2) gene polymorphisms have been implicated in the pathogenesis of obstructive pulmonary diseases. This study was conducted to assess the genetic association between Arg16Gly and Gln27Glu polymorphisms and COPD in the Egyptian patients, and to analyze their impact on the clinical outcome and therapeutic response. PATIENTS/METHODS The study population included 115 participants (61 COPD patients and 54 healthy controls) were genotyped for the Arg16Gly (rs1042713) and Gln27Glu (rs1042714) polymorphisms. Pulmonary function test was done and repeated in patients after salbutamol inhalation. RESULTS The Gly16 and Gln27 alleles represented 57% and 70% of the whole study population, and only 3 haplotypes were detected; Arg16/Gln27, Gly16/Gln27, and Gly16/Glu27. Genotypes and haplotypes homozygous for Arg16 and Gln27 were more likely to develop COPD (p<0.05). However, individuals carrying Glu27 allele conferred protection against COPD development (p=0.002). Furthermore, Arg16 genotypes and haplotypes were significantly associated with higher grades of dyspnea, more COPD symptoms and frequent exacerbations. In contrast, patients carrying Glu27 allele had better bronchial airway responsiveness to β2-agonists. CONCLUSIONS Our findings suggested that the ADRB2 gene polymorphisms may have vital role in COPD risk, severity, and bronchodilator response among Egyptian population. Larger epidemiological studies are needed for results validation.
Collapse
|
28
|
Hu X, Jhun EH, Yao Y, He Y, Molokie RE, Wilkie DJ, Wang ZJ. IL1A rs1800587 associates with chronic noncrisis pain in sickle cell disease. Pharmacogenomics 2016; 17:1999-2006. [PMID: 27883292 DOI: 10.2217/pgs-2016-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Pain is prevalent in sickle cell disease (SCD) patients who display great heterogeneity in pain severity and frequency. Hypothesizing that inflammatory factors are involved in the pathogenesis of SCD pain, we focused on the IL1A C/T polymorphism rs1800587 that is an SNP located in a cis-transcriptional regulatory region. METHODS We genotyped IL1A rs1800587 and performed association studies with phenotype data obtained by a multidimensional pain assessment tool using the PAINReportIt® Questionnaire. RESULTS Each T allele was associated with a 3.9 increase in composite pain index score (p = 0.04) as determined by multiple linear regression. CONCLUSION IL1A rs1800587 may influence chronic pain in SCD.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Ellie H Jhun
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Yingwei Yao
- Department of Biobehavioral Health Science, University of Illinois at Chicago College of Nursing, Chicago, IL, USA.,Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| | - Ying He
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA
| | - Robert E Molokie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.,Division of Hematology/Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Diana J Wilkie
- Department of Biobehavioral Health Science, University of Illinois at Chicago College of Nursing, Chicago, IL, USA.,Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA
| | - Zaijie J Wang
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA
| |
Collapse
|
29
|
Bandaru S, Tarigopula P, Akka J, Marri VK, Kattamuri RK, Nayarisseri A, Mangalarapu M, Vinukonda S, Mundluru HP, Sagurthi SR. Association of Beta 2 adrenergic receptor (Thr164Ile) polymorphism with Salbutamol refractoriness in severe asthmatics from Indian population. Gene 2016; 592:15-22. [PMID: 27450915 DOI: 10.1016/j.gene.2016.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Thr164Ile polymorphism in the ADRB2 gene encoding β2 adrenergic receptor (β2AR) has its functional consequence in declining ligand-receptor interactions and depressed coupling of β2AR to adenylcyclase. In the present study, we sought to evaluate the possible association of Thr164Ile polymorphism with asthma susceptibility, pharmacogenetic response to Salbutamol and varying degrees of severity. METHODS Three hundred and ninety eight clinically diagnosed patients and four hundred and fifty six healthy controls were enrolled in the study. Patients were classified into severity classes according to the Global Initiative for Asthma (GINA) guidelines. To assess bronchodilator response, spirometry was performed before and 15min after Salbutamol (200μg) delivery. Responders to Salbutamol were categorized if percentage reversibility was greater than or equal to 12% in them, while those showing reversibility <12% were classified as non-responders. Further, responding phenotypes were stratified into severity groups. Genotyping was carried out by ARMS-PCR technique. Statistical methods were applied to test the significance of the results. RESULTS In the present study, polymorphism was not associated with disease susceptibility however; there was significant association with non-responding asthmatics. In case of severity subsets, the polymorphism was not associated with milder subtypes; although, notable association was observed with moderate and severe asthma subtypes. In addition, the polymorphism was significantly associated with non-responding patients with severe asthma. CONCLUSIONS In south Indian population, the ADRB2 Thr164Ile polymorphism may not form susceptible variant to develop asthma, however, it can form a predictive maker for bronchodilator (Salbutamol) response in severe asthmatics.
Collapse
Affiliation(s)
- Srinivas Bandaru
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad 500 016, India; National Institute of Pharmaceutical Education and Research, Hyderabad 500 037, India
| | - Pramod Tarigopula
- Government General and Chest Hospital, Gandhi Medical College and Osmania Medical College, Hyderabad 500 038, India
| | - Jyothy Akka
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad 500 016, India
| | - Vijaya Kumar Marri
- Government General and Chest Hospital, Gandhi Medical College and Osmania Medical College, Hyderabad 500 038, India
| | - Ramesh Kumar Kattamuri
- Government General and Chest Hospital, Gandhi Medical College and Osmania Medical College, Hyderabad 500 038, India
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore 452 010, India
| | - Madhavi Mangalarapu
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500 007, India
| | - Swetha Vinukonda
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500 007, India
| | - Hema Prasad Mundluru
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad 500 016, India
| | - Someswar Rao Sagurthi
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
30
|
Treinys R, Bogdelis A, Rimkutė L, Jurevičius J, Skeberdis VA. Differences in the control of basal L-type Ca(2+) current by the cyclic AMP signaling cascade in frog, rat, and human cardiac myocytes. J Physiol Sci 2016; 66:327-36. [PMID: 26676115 PMCID: PMC10716949 DOI: 10.1007/s12576-015-0430-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
β-adrenergic receptors (β-ARs) mediate the positive inotropic effects of catecholamines by cAMP-dependent phosphorylation of the L-type Ca(2+) channels (LTCCs), which provide Ca(2+) for the initiation and regulation of cell contraction. The overall effect of cAMP-modulating agents on cardiac calcium current (I Ca,L) and contraction depends on the basal activity of LTCCs which, in turn, depends on the basal activities of key enzymes involved in the cAMP signaling cascade. Our current work is a comparative study demonstrating the differences in the basal activities of β-ARs, adenylyl cyclase, phosphodiesterases, phosphatases, and LTCCs in the frog and rat ventricular and human atrial myocytes. The main conclusion is that the basal I Ca,L, and consequently the contractile function of the heart, is secured from unnecessary elevation of its activity and energy consumption at the several "checking-points" of cAMP-dependent signaling cascade and the loading of these "checking-points" may vary in different species and tissues.
Collapse
Affiliation(s)
- Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Andrius Bogdelis
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania.
| |
Collapse
|
31
|
Lee HY, Chung WJ, Jeon HK, Seo HS, Choi DJ, Jeon ES, Kim JJ, Shin JH, Kang SM, Lim SC, Baek SH. Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study. Korean J Intern Med 2016; 31:277-87. [PMID: 26879662 PMCID: PMC4773723 DOI: 10.3904/kjim.2015.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/17/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS We evaluated the association between coding region variants of adrenergic receptor genes and therapeutic effect in patients with congestive heart failure (CHF). METHODS One hundred patients with stable CHF (left ventricular ejection fraction [LVEF] < 45%) were enrolled. Enrolled patients started 1.25 mg bisoprolol treatment once daily, then up-titrated to the maximally tolerable dose, at which they were treated for 1 year. RESULTS Genotypic analysis was carried out, but the results were blinded to the investigators throughout the study period. At position 389 of the β-1 adrenergic receptor gene (ADRB1), the observed minor Gly allele frequency (Gly389Arg + Gly389Gly) was 0.21, and no deviation from Hardy-Weinberg equilibrium was observed in the genotypic distribution of Arg389Gly (p = 0.75). Heart rate was reduced from 80.8 ± 14.3 to 70.0 ± 15.0 beats per minute (p < 0.0001). There was no significant difference in final heart rate across genotypes. However, the Arg389Arg genotype group required significantly more bisoprolol compared to the Gly389X (Gly389Arg + Gly389Gly) group (5.26 ± 2.62 mg vs. 3.96 ± 2.05 mg, p = 0.022). There were no significant differences in LVEF changes or remodeling between two groups. Also, changes in exercise capacity and brain natriuretic peptide level were not significant. However, interestingly, there was a two-fold higher rate of readmission (21.2% vs. 10.0%, p = 0.162) and one CHF-related death in the Arg389Arg group. CONCLUSIONS The ADRB1 Gly389X genotype showed greater response to bisoprolol than the Arg389Arg genotype, suggesting the potential of individually tailoring β-blocker therapy according to genotype.
Collapse
Affiliation(s)
- Hae-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Wook-Jin Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Hui-Kyung Jeon
- Department of Internal Medicine, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Hong-Seog Seo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dong-Ju Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun-Seok Jeon
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Joong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon Han Shin
- Department of Internal Medicine, Ajou University Hospital, Suwon, Korea
| | - Seok-Min Kang
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Cil Lim
- Department of Clinical Pharmacy, College of Pharmacy, The Catholic University of Korea, Seoul, Korea
| | - Sang-Hong Baek
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sang Hong Baek, M.D.Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6030 Fax: +82-2-591-1506 E-mail:
| |
Collapse
|
32
|
Fonseka TM, Wen XY, Foster JA, Kennedy SH. Zebrafish models of major depressive disorders. J Neurosci Res 2015; 94:3-14. [PMID: 26452974 DOI: 10.1002/jnr.23639] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/23/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
The zebrafish (Danio rerio) has emerged as a model species for translational research in various neuroscience areas, including depressive disorders. Because of their physiological (neuroanatomical, neuroendocrine, neurochemical) and genetic homology to mammals, robust phenotypes, and value in high-throughput genetic and chemical genetic screens, zebrafish are ideal for developing valid experimental models of major depression and discovering novel therapeutics. Behavioral testing approaches, such as approach-avoidance, cognitive, and social paradigms, are available in zebrafish and have utility in identifying depression-like indices in zebrafish in response to physiological, genetic, environmental, and/or psychopharmacological alterations. In addition, the high sensitivity of zebrafish to commonly prescribed psychotropic drugs supports the use of this model as an invaluable tool for pharmacological research and drug screening. This Review outlines the benefits of using the zebrafish model for depression studies and summarizes the current research in this field.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xiao-Yan Wen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jane A Foster
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Park DJ, Kang JH, Yim YR, Kim JE, Lee JW, Lee KE, Wen L, Kim TJ, Park YW, Lee SS. Exploring Genetic Susceptibility to Fibromyalgia. Chonnam Med J 2015; 51:58-65. [PMID: 26306300 PMCID: PMC4543151 DOI: 10.4068/cmj.2015.51.2.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
Fibromyalgia (FM) affects 1% to 5% of the population, and approximately 90% of the affected individuals are women. FM patients experience impaired quality of life and the disorder places a considerable economic burden on the medical care system. With the recognition of FM as a major health problem, many recent studies have evaluated the pathophysiology of FM. Although the etiology of FM remains unknown, it is thought to involve some combination of genetic susceptibility and environmental exposure that triggers further alterations in gene expression. Because FM shows marked familial aggregation, most previous research has focused on genetic predisposition to FM and has revealed associations between genetic factors and the development of FM, including specific gene polymorphisms involved in the serotonergic, dopaminergic, and catecholaminergic pathways. The aim of this review was to discuss the current evidence regarding genetic factors that may play a role in the development and symptom severity of FM.
Collapse
Affiliation(s)
- Dong-Jin Park
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Ji-Hyoun Kang
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yi-Rang Yim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Ji-Eun Kim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jeong-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Kyung-Eun Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Lihui Wen
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Tae-Jong Kim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong-Wook Park
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| |
Collapse
|
34
|
Kourikou A, Karamanolis GP, Dimitriadis GD, Triantafyllou K. Gene polymorphisms associated with functional dyspepsia. World J Gastroenterol 2015; 21:7672-7682. [PMID: 26167069 PMCID: PMC4491956 DOI: 10.3748/wjg.v21.i25.7672] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Functional dyspepsia (FD) is a constellation of functional upper abdominal complaints with poorly elucidated pathophysiology. However, there is increasing evidence that susceptibility to FD is influenced by hereditary factors. Genetic association studies in FD have examined genotypes related to gastrointestinal motility or sensation, as well as those related to inflammation or immune response. G-protein b3 subunit gene polymorphisms were first reported as being associated with FD. Thereafter, several gene polymorphisms including serotonin transporter promoter, interlukin-17F, migration inhibitory factor, cholecystocynine-1 intron 1, cyclooxygenase-1, catechol-o-methyltransferase, transient receptor potential vanilloid 1 receptor, regulated upon activation normal T cell expressed and secreted, p22PHOX, Toll like receptor 2, SCN10A, CD14 and adrenoreceptors have been investigated in relation to FD; however, the results are contradictory. Several limitations underscore the value of current studies. Among others, inconsistencies in the definitions of FD and controls, subject composition differences regarding FD subtypes, inadequate samples, geographical and ethnical differences, as well as unadjusted environmental factors. Further well-designed studies are necessary to determine how targeted genes polymorphisms, influence the clinical manifestations and potentially the therapeutic response in FD.
Collapse
|
35
|
Veldhuis-Vlug AG, Oei L, Souverein PC, Tanck MWT, Rivadeneira F, Zillikens MC, Kamphuisen PW, Maitland - van der Zee A, de Groot MCH, Hofman A, Uitterlinden AG, Fliers E, de Boer A, Bisschop PH. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int 2015; 26:2019-27. [PMID: 25910744 PMCID: PMC4483183 DOI: 10.1007/s00198-015-3087-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Signaling through the beta-2 adrenergic receptor (B2AR) on the osteoblast influences bone remodeling in rodents. In the B2AR gene, three polymorphisms influence receptor function. We show that these polymorphisms are not associated with fracture risk or bone mineral density in the UCP, Rotterdam Study, and GEFOS cohorts. INTRODUCTION Signaling through the beta-2 adrenergic receptor (B2AR) on the osteoblast influences bone remodeling in rodents. In the B2AR gene, three polymorphisms are known to influence receptor function in vitro and in vivo (rs1042713, rs1042714, and rs1800888). We examined the role of these polymorphisms in the B2AR gene on human bone metabolism. METHODS We performed nested case-control studies to determine the association of these polymorphisms with fracture risk in the Utrecht Cardiovascular Pharmacogenetics (UCP) cohort and in three cohorts of the Rotterdam Study. We also determined the association of these polymorphisms with bone mineral density (BMD) in the GEFOS Consortium. UCP contains drug-dispensing histories from community pharmacies linked to national registrations of hospital discharges in the Netherlands. The Rotterdam Study is a prospective cohort study investigating demographics and risk factors of chronic diseases. GEFOS is a large international collaboration studying the genetics of osteoporosis. Fractures were defined by ICD-9 codes 800-829 in the UCP cohort (158 cases and 2617 unmatched controls) and by regular X-ray examinations, general practitioner, and hospital records in the Rotterdam Study (2209 cases and 8559 unmatched controls). BMD was measured at the femoral neck and lumbar spine using dual-energy X-ray absorptiometry in GEFOS (N = 32,961). RESULTS Meta-analysis of the two nested case-control studies showed pooled odds ratios of 0.98 (0.91-1.05, p = 0.52), 1.04 (0.97-1.12, p = 0.28), and 1.16 (0.83-1.62, p = 0.38) for the associations between rs1042713, rs1042714, and rs1800888 per minor allele and fractures, respectively. There were no significant associations of the polymorphisms and BMD in GEFOS. CONCLUSION In conclusion, polymorphisms in the beta-2 adrenergic receptor gene are not associated with fracture risk or BMD.
Collapse
Affiliation(s)
- A. G. Veldhuis-Vlug
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - L. Oei
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium of Healthy Aging (NCHA), Leiden, The Netherlands
| | - P. C. Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - M. W. T. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - F. Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium of Healthy Aging (NCHA), Leiden, The Netherlands
| | - M. C. Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium of Healthy Aging (NCHA), Leiden, The Netherlands
| | - P. W. Kamphuisen
- Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A.H. Maitland - van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - M. C. H. de Groot
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - A. Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium of Healthy Aging (NCHA), Leiden, The Netherlands
| | - A. G. Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium of Healthy Aging (NCHA), Leiden, The Netherlands
| | - E. Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - A. de Boer
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - P. H. Bisschop
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
36
|
Association of common polymorphisms in β1-adrenergic receptor with antihypertensive response to carvedilol. J Cardiovasc Pharmacol 2015; 64:306-9. [PMID: 25291495 DOI: 10.1097/fjc.0000000000000119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Marked interpatient variability exists in the blood pressure response to carvedilol, a nonselective β-blocker. Here we evaluated the influence of 4 common polymorphisms in genes of the β-adrenergic receptor on the antihypertensive efficacy of carvedilol in patients in a double-blinded monotherapy study. METHODS Eighty-seven subjects with uncomplicated essential hypertensive (49% men; age = 52.2 ± 11.1 years) from Jilin province of China were enrolled in the study, and 5 of them discontinued the treatment due to adverse effects. Both systolic and diastolic blood pressures (DBPs) were measured before and after 7 days of treatment with carvedilol (10 mg/d). Genotypes of the β1-adrenergic receptor (ADRB1 Ser49Gly and Arg389Gly) and β2-adrenergic receptor (ADRB2 Gly16Arg and Glu27Gln) were determined by polymerase chain reaction with restriction fragment length polymorphism. RESULTS Patients homozygous for ADRB1 Arg389 had an approximately 4-fold greater reduction in DBPs than those homozygous for ADRB1 Gly389 (10.61 vs. 2.62 mm Hg, P = 0.013). The ADRB1 haplotype was also a significant predictor of response, as patients with the Gly49Arg389/Ser49Arg389 haplotype pair had a 5.7-fold greater reduction in DBPs than those homozygous for the Ser49Gly389 haplotype (16.11 vs. 2.83 mm Hg, P = 0.0055). An association was not found between ADRB2 polymorphism and carvedilol responsiveness in antihypertensive therapy. CONCLUSIONS This study provides the first evidence to support that ADRB1 polymorphisms play an important role in the DBPs response to carvedilol treatment in patients with essential hypertension.
Collapse
|
37
|
Adrenergic receptor genotype influences heart failure severity and β-blocker response in children with dilated cardiomyopathy. Pediatr Res 2015; 77:363-9. [PMID: 25406899 PMCID: PMC4298011 DOI: 10.1038/pr.2014.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/15/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Adrenergic receptor (ADR) genotypes are associated with heart failure (HF) and β-blocker response in adults. We assessed the influence of ADR genotypes in children with dilated cardiomyopathy (DCM). METHODS Ninety-one children with advanced DCM and 44 with stable DCM were genotyped for three ADR genotypes associated with HF risk in adults: α2cdel322-325, β1Arg389, and β2Arg16. Data were analyzed by genotype and β-blocker use. Mean age at enrollment was 8.5 y. RESULTS One-year event-free survival was 51% in advanced and 80% in stable DCM. High-risk genotypes were associated with higher left ventricular (LV) filling pressures, higher systemic and pulmonary vascular resistance, greater decline in LV ejection fraction (P < 0.05), and a higher frequency of mechanical circulatory support while awaiting transplant (P = 0.05). While β-blockers did not reduce HF severity in the overall cohort, in the subset with multiple high-risk genotypes, those receiving β-blockers showed better preservation of cardiac function and hemodynamics compared with those not receiving β-blockers (interaction P < 0.05). CONCLUSION Our study identifies genetic risk markers that may help in the identification of patients at risk for developing decompensated HF and who may benefit from early institution of β-blocker therapy before progression to decompensated HF.
Collapse
|
38
|
Filipeanu CM. Temperature-Sensitive Intracellular Traffic of α2C-Adrenergic Receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:245-65. [DOI: 10.1016/bs.pmbts.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Merriman JD, Aouizerat BE, Cataldo JK, Dunn LB, Kober K, Langford DJ, West C, Cooper BA, Paul SM, Miaskowski C. Associations between catecholaminergic, GABAergic, and serotonergic genes and self-reported attentional function in oncology patients and their family caregivers. Eur J Oncol Nurs 2014; 19:251-9. [PMID: 25524657 DOI: 10.1016/j.ejon.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE RESEARCH Evaluate for associations between variations in genes involved in catecholaminergic, gamma-aminobutyric acid (GABA)-ergic, and serotonergic mechanisms of neurotransmission and attentional function latent classes. PATIENTS AND METHODS This descriptive, longitudinal study was conducted at two radiation therapy departments. The sample included three latent classes of individuals with distinct trajectories of self-reported attentional function during radiation therapy, who were previously identified using growth mixture modeling among 167 oncology patients and 85 of their family caregivers. Multivariable models were used to evaluate for genotypic associations of neurotransmission genes with attentional function latent class membership, after controlling for covariates. RESULTS Variations in catecholaminergic (i.e., ADRA1D rs4815675, SLC6A3 rs37022), GABAergic (i.e., SLC6A1 rs2697138), and serotonergic (i.e., HTR2A rs2296972, rs9534496) neurotransmission genes were significant predictors of latent class membership in multivariable models. CONCLUSIONS Findings suggest that variations in genes that encode for three distinct but related neurotransmission systems are involved in alterations in attentional function. Knowledge of both phenotypic and genetic markers associated with alterations in attentional function can be used by clinicians to identify patients and family caregivers who are at higher risk for this symptom. Increased understanding of the genetic markers associated with alterations in attentional function may provide insights into the underlying mechanisms for this significant clinical problem.
Collapse
Affiliation(s)
- John D Merriman
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Bradley E Aouizerat
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA; Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, Box 0794, San Francisco, CA 94143-0794, USA.
| | - Janine K Cataldo
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Laura B Dunn
- School of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0410, San Francisco, CA 94143-0410, USA.
| | - Kord Kober
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Dale J Langford
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Claudia West
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| |
Collapse
|
40
|
Beta2-Adrenergic Receptor Gene Polymorphisms in Egyptian Patients with Acute Myocardial Infarction. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background. Beta2-adrenergic receptor (ADRB2) gene polymorphisms, Arg16Gly and Gln27Glu, have been implicated in the pathogenesis of cardiovascular diseases. The aim of this study was to determine the association of these two polymorphisms with the risk of myocardial infarction (MI) in the Egyptian population. Methods. Blood samples were collected from 68 MI patients and 75 healthy controls. They were assessed for the presence of cardiovascular risk factors and genotyped for the Arg16Gly (rs1042713) and Gln27Glu (rs1042714) polymorphisms using allelic-discrimination polymerase chain reaction. Results. There is no significant difference in genotype and allele frequencies at codon 16 between MI patients and controls (P=0.919). However, at codon 27, MI risk was higher in Gln27 homozygous participants than in Glu27 carriers (P=0.045). The haplotype frequency distribution showed significant difference among cases and controls (P=0.002); homozygotes for Gly16/Gln27 haplotype were more susceptible to MI than Gly16/Glu27 carriers. Patients with Arg16/Gln27 haplotype had higher serum total cholesterol levels (P<0.05) and lower frequency of diabetes in MI patients (P<0.01). However, both Glu27 genotypes and haplotype showed lower frequency of hypertension (P<0.001). Conclusions. Our findings suggested that the ADRB2 gene polymorphisms may play an important role in susceptibility of MI among Egyptian population.
Collapse
|
41
|
Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M. Ecological effects of pharmaceuticals in aquatic systems--impacts through behavioural alterations. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130580. [PMID: 25405968 PMCID: PMC4213591 DOI: 10.1098/rstb.2013.0580] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study of animal behaviour is important for both ecology and ecotoxicology, yet research in these two fields is currently developing independently. Here, we synthesize the available knowledge on drug-induced behavioural alterations in fish, discuss potential ecological consequences and report results from an experiment in which we quantify both uptake and behavioural impact of a psychiatric drug on a predatory fish (Perca fluviatilis) and its invertebrate prey (Coenagrion hastulatum). We show that perch became more active while damselfly behaviour was unaffected, illustrating that behavioural effects of pharmaceuticals can differ between species. Furthermore, we demonstrate that prey consumption can be an important exposure route as on average 46% of the pharmaceutical in ingested prey accumulated in the predator. This suggests that investigations of exposure through bioconcentration, where trophic interactions and subsequent bioaccumulation of exposed individuals are ignored, underestimate exposure. Wildlife may therefore be exposed to higher levels of behaviourally altering pharmaceuticals than predictions based on commonly used exposure assays and pharmaceutical concentrations found in environmental monitoring programmes.
Collapse
Affiliation(s)
- Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Susanna Piovano
- School of Biological and Chemical Sciences, The University of the South Pacific, Fiji Department of Life Sciences and Systems Biology, University of Torino, 10124 Turin, Italy
| | - Jerker Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Martina Heynen
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Micael Jonsson
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
42
|
Abstract
OBJECTIVE The objective of this study was to compare vasopressor requirements between African American (AA) patients and white patients in septic shock. METHODS This was a retrospective cohort review conducted over a 2-year period measuring total and mean dosage of various vasopressors used between two racial groups during the treatment of patients admitted with septic shock. The study included patients admitted to the intensive care unit with septic shock at an 805-bed tertiary, academic center. All septic shock patients were managed with vasopressors. Vasopressor selection, dosage, and duration were at the discretion of the treating physician. Total, mean, and duration of vasopressor dosing requirements were obtained for study participants. Comorbidities, prehospitalization antihypertensive medication requirements, intravenous fluids given during the septic shock phase, and source of infection were analyzed. RESULTS One hundred fifty-nine patients with septic shock were analyzed, of which 96 (60.4%) were AAs (P < 0.059). African Americans had higher rates of end-stage renal disease and hypertension compared with whites, 85.7% vs. 14.3% (P < 0.011; odds ratio [OR], 15.684) and 68.3% vs. 31.7% (P < 0.007; OR, 3.357), respectively. Norepinephrine (NE) was administered to 150 patients, 57.2% of which were AAs (P < 0.509). Thirteen patients received dopamine (5% AAs, P < 0.588), 40 patients received phenylephrine (15.7% AAs, P < 0.451), and five patients received epinephrine (1.9% AAs, P < 0.660). Comparing vasopressors between races, only NE showed statistical significance via logistic regression modeling for the AA race in terms of total dosage (AAs 736.8 [SD, 897.3] μg vs. whites 370 [SD, 554.2] μg, P < 0.003), duration of vasopressor used (AAs 38.38 [SD, 34.75] h vs. whites 29.09 [SD, 27.11] h, P < 0.037), and mean dosage (AAs 21.08 [SD, 22.23] μg/h vs. whites 12.37 [SD, 13.86] μg/h, P < 0.01). Mortality between groups was not significant. Logistic regression identified discrepancy of the mean dose NE in AAs compared with whites, with OR of 1.043 (P = 0.01). CONCLUSIONS African American patients with septic shock were treated with higher doses of NE and required longer duration of NE administration compared with white patients.
Collapse
|
43
|
Liberzon I, King AP, Ressler KJ, Almli LM, Zhang P, Ma ST, Cohen GH, Tamburrino MB, Calabrese JR, Galea S. Interaction of the ADRB2 gene polymorphism with childhood trauma in predicting adult symptoms of posttraumatic stress disorder. JAMA Psychiatry 2014; 71:1174-82. [PMID: 25162199 PMCID: PMC4597911 DOI: 10.1001/jamapsychiatry.2014.999] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Posttraumatic stress disorder (PTSD), while highly prevalent (7.6% over a lifetime), develops only in a subset of trauma-exposed individuals. Genetic risk factors in interaction with trauma exposure have been implicated in PTSD vulnerability. OBJECTIVE To examine the association of 3755 candidate gene single-nucleotide polymorphisms with PTSD development in interaction with a history of childhood trauma. DESIGN, SETTING, AND PARTICIPANTS Genetic association study in an Ohio National Guard longitudinal cohort (n = 810) of predominantly male soldiers of European ancestry, with replication in an independent Grady Trauma Project (Atlanta, Georgia) cohort (n = 2083) of predominantly female African American civilians. MAIN OUTCOMES AND MEASURES Continuous measures of PTSD severity, with a modified (interview) PTSD checklist in the discovery cohort and the PTSD Symptom Scale in the replication cohort. RESULTS Controlling for the level of lifetime adult trauma exposure, we identified the novel association of a single-nucleotide polymorphism within the promoter region of the ADRB2 (Online Mendelian Inheritance in Man 109690) gene with PTSD symptoms in interaction with childhood trauma (rs2400707, P = 1.02 × 10-5, significant after correction for multiple comparisons). The rs2400707 A allele was associated with relative resilience to childhood adversity. An rs2400707 × childhood trauma interaction predicting adult PTSD symptoms was replicated in the independent predominantly female African American cohort. CONCLUSIONS AND RELEVANCE Altered adrenergic and noradrenergic function has been long believed to have a key etiologic role in PTSD development; however, direct evidence of this link has been missing. The rs2400707 polymorphism has been linked to function of the adrenergic system, but, to our knowledge, this is the first study to date linking the ADRB2 gene to PTSD or any psychiatric disorders. These findings have important implications for PTSD etiology, chronic pain, and stress-related comorbidity, as well as for both primary prevention and treatment strategies.
Collapse
Affiliation(s)
- Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor2Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan
| | - Anthony P. King
- Department of Psychiatry, University of Michigan, Ann Arbor2Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan
| | | | | | - Peng Zhang
- The Johns Hopkins University, Baltimore, Maryland
| | - Sean T. Ma
- Department of Psychiatry, University of Michigan, Ann Arbor
| | | | | | | | | |
Collapse
|
44
|
Femminella GD, Barrese V, Ferrara N, Rengo G. Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:267-73. [PMID: 25276090 PMCID: PMC4175026 DOI: 10.2147/pgpm.s49799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure is one of the leading causes of mortality in Western countries, and β-blockers are a cornerstone of its treatment. However, the response to these drugs is variable among individuals, which might be explained, at least in part, by genetic differences. Pharmacogenomics is the study of genetic contributions to drug response variability in order to provide evidence for a tailored therapy in an individual patient. Several studies have investigated the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of β-blockers in treating heart failure. In this review, we will focus on the most significant polymorphisms described in the literature involving adrenergic receptors and adrenergic receptor-related proteins, as well as genetic variations influencing β-blocker metabolism.
Collapse
Affiliation(s)
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy ; Division of Biomedical Sciences, St George's University of London, London, UK
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University, Naples, Italy ; "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Rengo
- "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| |
Collapse
|
45
|
Carmo LS, Baima DC, Blefari V, Zonta V, Troncon LE, Rossi MA. Involvement of the microvasculature in the pathogenesis of terlipressin-related myocardial infarction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2014; 5:505-511. [PMID: 24855284 DOI: 10.1177/2048872614534921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/18/2014] [Indexed: 11/16/2022]
Abstract
We report an autopsy case of a 24-year-old man with diagnoses of advanced alcoholic liver cirrhosis, portal hypertension, and esophageal variceal bleeding that presented extensive myocardial infarction after treatment with terlipressin. On postmortem examination the cut surface of the heart presented myocardial infarction implicating the left ventricle free wall, apex of the heart and ventricular septum. Light microscopic examination revealed that the extensive area of cardiac infarction was the result of the sum of diffuse foci of microinfarction of various ages interspersed with small clusters of preserved myocytes. Moreover, the epicardial vessels were patent while the small intramyocardial vessels presented thickened wall, apparent reduction in lumen diameter and disruption of endothelial cells indicative of spasm. The observations in this case allow clear insight into the involvement of the microcirculation in the pathogenesis of myocardial infarction with the use of terlipressin.
Collapse
Affiliation(s)
- Lucas S Carmo
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Diego C Baima
- Department of Medicine, Division of Gastroenterology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Valdecir Blefari
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Vaniela Zonta
- Department of Medicine, Division of Gastroenterology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Luiz Ea Troncon
- Department of Medicine, Division of Gastroenterology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Marcos A Rossi
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Brazil.,Marcos A Rossi passed away on 9 May 2013
| |
Collapse
|
46
|
Żelazowska M, Lelonek M, Fendler W, Pietrucha T. Arg389Gly β1-adrenergic receptor polymorphism and susceptibility to syncope during tilt test. Arch Med Sci 2014; 10:240-5. [PMID: 24904655 PMCID: PMC4042044 DOI: 10.5114/aoms.2014.42576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/10/2011] [Accepted: 01/02/2012] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Numerous hormones, neurotransmitters, and other stimuli exert their biological effect on cellular functioning through heptahelical receptors coupled to G proteins (GPCR - G protein-coupled receptors). Adrenergic receptors that belong to this superfamily of receptors are components of the sympathetic nervous system. They play a pivotal role in blood pressure regulation and myocardial contractility. Alterations of the adrenergic receptor pathway have been suggested to be involved in the pathophysiology of vasovagal syncope (VVS). The aim of the present study was to evaluate the distribution of Arg389Gly polymorphism within the ADRB1 gene among patients with recurrent syncope. MATERIAL AND METHODS Arg389Gly single nucleotide polymorphism was analyzed in 205 patients with recurrent syncope. Ninety-five patients (46%) had a positive head-up tilt test (HUT) result. The control group comprised 143 non-fainting subjects. Genotyping was performed by restriction fragment length polymorphism (RFLP) with BstNI enzyme. RESULTS Both analyzed groups had similar distribution of the 389Gly allele. Sixty percent of polymorphic 389Gly carriers belong to the group of syncopal patients, while 40% belong to the control group of healthy subjects. CONCLUSIONS An association between syncopal incidence and Arg389Gly polymorphism within the ADRB1 gene was not found. The analyzed polymorphism affecting sympathetic activity does not influence vasovagal syncope in Polish patients.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Medical Biotechnology, Medical University of Lodz, Poland
| | | | - Wojciech Fendler
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Poland
| |
Collapse
|
47
|
Kamal FA, Mickelsen DM, Wegman KM, Travers JG, Moalem J, Hammes SR, Smrcka AV, Blaxall BC. Simultaneous adrenal and cardiac g-protein-coupled receptor-gβγ inhibition halts heart failure progression. J Am Coll Cardiol 2014; 63:2549-2557. [PMID: 24703913 DOI: 10.1016/j.jacc.2014.02.587] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The authors propose simultaneous inhibition of Gβγ signaling in the heart and the adrenal gland as a novel therapeutic approach for heart failure (HF). BACKGROUND Elevated sympathetic nervous system activity is a salient characteristic of HF progression. It causes pathologic desensitization of β-adrenergic receptors (β-AR), facilitated predominantly through Gβγ-mediated signaling. The adrenal glands are key contributors to the chronically elevated plasma catecholamine levels observed in HF, where adrenal α2-AR feedback inhibitory function is impaired also through Gβγ-mediated signaling. METHODS We investigated the efficacy of a small molecule Gβγ inhibitor, gallein, in a clinically relevant, pressure-overload model of HF. RESULTS Daily gallein treatment (10 mg/kg/day), initiated 4 weeks after transverse aortic constriction, improved survival and cardiac function and attenuated cardiac remodeling. Mechanistically, gallein restored β-AR membrane density in cardiomyocytes, attenuated Gβγ-mediated G-protein-coupled receptor kinase 2-phosphoinositide 3-kinase γ membrane recruitment, and reduced Akt (protein kinase B) and glycogen synthase kinase 3β phosphorylation. Gallein also reduced circulating plasma catecholamine levels and catecholamine production in isolated mouse adrenal glands by restoring adrenal α2-AR feedback inhibition. In human adrenal endocrine tumors (pheochromocytoma), gallein attenuated catecholamine secretion, as well as G-protein-coupled receptor kinase 2 expression and membrane translocation. CONCLUSIONS These data suggest small molecule Gβγ inhibition as a systemic pharmacologic therapy for HF by simultaneously normalizing pathologic adrenergic/Gβγ signaling in both the heart and the adrenal gland. Our data also suggest important endocrine/cardiovascular interactions and a possible role for small molecule Gβγ inhibition in treating endocrine tumors such as pheochromocytoma, in addition to HF.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Katherine M Wegman
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joshua G Travers
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob Moalem
- Department of Surgery, University of Rochester Medical Center, Rochester, New York; Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Stephen R Hammes
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Burns C Blaxall
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
48
|
Tilley DG, Rockman HA. Role of β-adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment. Expert Rev Cardiovasc Ther 2014; 4:417-32. [PMID: 16716102 DOI: 10.1586/14779072.4.3.417] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of beta-blockers to antagonize beta-adrenergic receptor signaling in the heart has become a standard method of treatment for heart failure, resulting in positive clinical outcomes alone and in conjunction with other modulators of cardiomyocyte contractility. However, an entire explanation for improved cardiac function in patients using beta-blockers is unknown, and in fact may be quite complicated, considering the numerous intracellular signaling pathways associated with beta-adrenergic receptors. Stimulation of beta-adrenergic receptors during both normal conditions and during heart failure activate several distinct signaling cascades, which influence cardiomyocyte contraction, hypertrophy and apoptosis. This review explores the signaling cascades induced by beta-adrenergic receptor activation in normal and desensitized states to provide new insight into the effective treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Medicine Duke University Medical Center Durham, NC 27710, USA.
| | | |
Collapse
|
49
|
Thompson MD, Cole DEC, Capra V, Siminovitch KA, Rovati GE, Burnham WM, Rana BK. Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol 2014; 1175:189-242. [PMID: 25150871 DOI: 10.1007/978-1-4939-0956-8_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | | | | | |
Collapse
|
50
|
Baker JG, Proudman RGW, Hill SJ. Impact of polymorphic variants on the molecular pharmacology of the two-agonist conformations of the human β1-adrenoceptor. PLoS One 2013; 8:e77582. [PMID: 24250787 PMCID: PMC3826719 DOI: 10.1371/journal.pone.0077582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
β-blockers are widely used to improve symptoms and prolong life in heart disease primarily by inhibiting the actions of endogenous catecholamines at the β1-adrenoceptor. There are two common naturally occurring polymorphisms within the human β1-adrenoceptor sequence: Ser or Gly at position 49 in the N-terminus and Gly or Arg at position 389 in the C-terminus and some clinical studies have suggested that expression of certain variants may be associated with disease and affect response to treatment with β-blockers. The β1-adrenoceptor also exists in two agonist conformations - a high affinity catecholamine conformation and a low affinity secondary agonist conformation. Receptor-effector coupling and intracellular signalling from the different conformations may be affected by the polymorphic variants. Here, we examine in detail the molecular pharmacology of the β1-adrenoceptor polymorphic variants with respect to ligand affinity, efficacy, activation of the different agonist conformations and signal transduction and determine whether the polymorphic variants do indeed affect this secondary conformation. Stable cell lines expressing the wildtype and polymorphic variants were constructed and receptor pharmacology examined using whole cell binding and intracellular secondary messenger techniques. There was no difference in affinity for agonists and antagonists at the human wildtype β1-adrenoceptor (Ser49/Gly389) and the polymorphic variants Gly49/Gly389 and Ser49/Arg389. Furthermore, the polymorphic variant receptors both have two active agonist conformations with pharmacological properties similar to the wildtype receptor. Although the polymorphism at position 389 is thought to occur in an intracellular domain important for Gs-coupling, the two agonist conformations of the polymorphic variants stimulate intracellular signalling pathways, including Gs-cAMP intracellular signalling, in a manner very similar to that of the wildtype receptor.
Collapse
Affiliation(s)
- Jillian G. Baker
- Cell Signalling, School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Richard G. W. Proudman
- Cell Signalling, School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Stephen J. Hill
- Cell Signalling, School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| |
Collapse
|