1
|
Farhat M, Cox H, Ghanem M, Denkinger CM, Rodrigues C, Abd El Aziz MS, Enkh-Amgalan H, Vambe D, Ugarte-Gil C, Furin J, Pai M. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 2024; 22:617-635. [PMID: 38519618 DOI: 10.1038/s41579-024-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Drug-resistant tuberculosis (TB) is estimated to cause 13% of all antimicrobial resistance-attributable deaths worldwide and is driven by both ongoing resistance acquisition and person-to-person transmission. Poor outcomes are exacerbated by late diagnosis and inadequate access to effective treatment. Advances in rapid molecular testing have recently improved the diagnosis of TB and drug resistance. Next-generation sequencing of Mycobacterium tuberculosis has increased our understanding of genetic resistance mechanisms and can now detect mutations associated with resistance phenotypes. All-oral, shorter drug regimens that can achieve high cure rates of drug-resistant TB within 6-9 months are now available and recommended but have yet to be scaled to global clinical use. Promising regimens for the prevention of drug-resistant TB among high-risk contacts are supported by early clinical trial data but final results are pending. A person-centred approach is crucial in managing drug-resistant TB to reduce the risk of poor treatment outcomes, side effects, stigma and mental health burden associated with the diagnosis. In this Review, we describe current surveillance of drug-resistant TB and the causes, risk factors and determinants of drug resistance as well as the stigma and mental health considerations associated with it. We discuss recent advances in diagnostics and drug-susceptibility testing and outline the progress in developing better treatment and preventive therapies.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Cox
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Marwan Ghanem
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mirna S Abd El Aziz
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Debrah Vambe
- National TB Control Programme, Manzini, Eswatini
| | - Cesar Ugarte-Gil
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Meshcheva D, Krekhova F, Shishov A, Bulatov A. Natural deep eutectic solvent for the simultaneous derivatization and microextraction of isoniazid from human plasma. Anal Chim Acta 2024; 1320:343007. [PMID: 39142784 DOI: 10.1016/j.aca.2024.343007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Personalized medicine is a rapidly revolving field that offers new opportunities for tailoring disease treatment to individual patients. The main idea behind this approach is to carefully select safe and effective medications and treatment plant based on each patient's unique pharmacokinetic profile. Isoniazid is a first-line anti-tuberculosis drug that has interindividual variability in its metabolic processing, leading to significant differences in plasma concentrations among patients receiving equivalent doses. This variability necessitates the creation of individualized treatment regimens as part of personalized medicine to achieve more effective therapy. RESULTS In this work, a deep eutectic solvent-based liquid-liquid microextraction approach for the separation and determination of isoniazid in human plasma by high-performance liquid chromatography with UV-Vis detection was developed for the first time. A new natural deep eutectic solvent based on thymol as a hydrogen bond donor and 4-methoxybenzaldehyde as a hydrogen bond acceptor was proposed as the extraction solvent. The developed microextraction procedure assumed two simultaneous processes during the mixing of the sample and extraction solvent: the derivatization of the polar analyte in the presence of 4-methoxybenzaldehyde (component of the natural deep eutectic solvent) with the formation of a hydrophobic Schiff base (1); mass transfer of the Schiff base from the sample phase to the extraction solvent phase (2). Under optimal conditions, the limits of detection and quantification were 20 and 60 μg L-1, respectively. The RSD value was <10 %, the extraction recovery was 95 %. SIGNIFICANCE In this work, the possibility of isoniazid derivatization in the natural deep eutectic solvent phase with the formation of the Schiff base was presented for the first time. The approach provided the separation and preconcentration of polar isoniazid without the use of expensive derivatization agents and solid-phase extraction cartridges. The formation of the Schiff base was confirmed by mass spectrometry.
Collapse
Affiliation(s)
- Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
3
|
Khola S, Kumar S, Bhanwala N, Khatik GL. Polyketide Synthase 13 (Pks13) Inhibition: A Potential Target for New Class of Anti-tubercular Agents. Curr Top Med Chem 2024; 24:2362-2376. [PMID: 39297467 DOI: 10.2174/0115680266322983240906055750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
Tuberculosis is one of the deadly infectious diseases that has resurfaced in multiple/ extensively resistant variants (MDR/XDR), threatening humankind. Today's world has a higher prevalence of tuberculosis (TB) than it has ever had throughout human history. Due to severe adverse effects, the marketed medications are not entirely effective in these forms. So, developing new drugs with a promising target is an immense necessity. Pks13 has emerged as a promising target for the mycobacterium. The concluding step of mycolic acid production involved Pks13, a crucial enzyme that helps form the precursor of mycolic acid via the Claisen-condensation reaction. It has five domains at the active site for targeting the enzyme and is used to test chemical entities for their antitubercular activity. Benzofurans, thiophenes, coumestans, N-phenyl indoles, and β lactones are the ligands that inhibit the Pks13 enzyme, showing potential antitubercular properties.
Collapse
Affiliation(s)
- Sonia Khola
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Sachin Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Neeru Bhanwala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
4
|
Asif M, Qusty NF, Alghamdi S. An Overview of Various Rifampicin Analogs against Mycobacterium tuberculosis and their Drug Interactions. Med Chem 2024; 20:268-292. [PMID: 37855280 DOI: 10.2174/0115734064260853230926080134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023]
Abstract
The success of the TB control program is hampered by the major issue of drug-resistant tuberculosis (DR-TB). The situation has undoubtedly been made more difficult by the widespread and multidrug-resistant (XDR) strains of TB. The modification of existing anti-TB medications to produce derivatives that can function on resistant TB bacilli is one of the potential techniques to overcome drug resistance affordably and straightforwardly. In comparison to novel pharmaceuticals for drug research and progress, these may have a better half-life and greater bioavailability, be more efficient, and serve as inexpensive alternatives. Mycobacterium tuberculosis, which is drugsusceptible or drug-resistant, is effectively treated by several already prescribed medications and their derivatives. Due to this, the current review attempts to give a brief overview of the rifampicin derivatives that can overcome the parent drug's resistance and could, hence, act as useful substitutes. It has been found that one-third of the global population is affected by M. tuberculosis. The most common cause of infection-related death can range from latent TB to TB illness. Antibiotics in the rifamycin class, including rifampicin or rifampin (RIF), rifapentine (RPT), and others, have a special sterilizing effect on M. tuberculosis. We examine research focused on evaluating the safety, effectiveness, pharmacokinetics, pharmacodynamics, risk of medication interactions, and other characteristics of RIF analogs. Drug interactions are especially difficult with RIF because it must be taken every day for four months to treat latent TB infection. RIF continues to be the gold standard of treatment for drug-sensitive TB illness. RIF's safety profile is well known, and the two medicines' adverse reactions have varying degrees of frequency. The authorized once-weekly RPT regimen is insufficient, but greater dosages of either medication may reduce the amount of time needed to treat TB effectively.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Naeem F Qusty
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al‒Qura University, Makkah, 21955, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al‒Qura University, Makkah, 21955, Saudi Arabia
| |
Collapse
|
5
|
Alruwaili Y, Jacobs MB, Hasenkampf NR, Tardo AC, McDaniel CE, Embers ME. Superior efficacy of combination antibiotic therapy versus monotherapy in a mouse model of Lyme disease. Front Microbiol 2023; 14:1293300. [PMID: 38075920 PMCID: PMC10703379 DOI: 10.3389/fmicb.2023.1293300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lyme disease (LD) results from the most prevalent tick-borne infection in North America, with over 476,000 estimated cases annually. The disease is caused by Borrelia burgdorferi (Bb) sensu lato which transmits through the bite of Ixodid ticks. Most cases treated soon after infection are resolved by a short course of oral antibiotics. However, 10-20% of patients experience chronic symptoms because of delayed or incomplete treatment, a condition called Post-Treatment Lyme Disease (PTLD). Some Bb persists in PTLD patients after the initial course of antibiotics and an effective treatment to eradicate the persistent Bb is needed. Other organisms that cause persistent infections, such as M. tuberculosis, are cleared using a combination of therapies rather than monotherapy. A group of Food and Drug Administration (FDA)-approved drugs previously shown to be efficacious against Bb in vitro were used in monotherapy or in combination in mice infected with Bb. Different methods of detection were used to assess the efficacy of the treatments in the infected mice including culture, xenodiagnosis, and molecular techniques. None of the monotherapies eradicated persistent Bb. However, 4 dual combinations (doxycycline + ceftriaxone, dapsone + rifampicin, dapsone + clofazimine, doxycycline + cefotaxime) and 3 triple combinations (doxycycline + ceftriaxone+ carbomycin, doxycycline + cefotaxime+ loratadine, dapsone+ rifampicin+ clofazimine) eradicated persistent Bb infections. These results suggest that combination therapy should be investigated in preclinical studies for treating human Lyme disease.
Collapse
Affiliation(s)
- Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Mary B. Jacobs
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Nicole R. Hasenkampf
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Amanda C. Tardo
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Celine E. McDaniel
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Sulyman AO, Fulcher J, Crossley S, Fatokun AA, Olorunniji FJ. Shikonin and Juglone Inhibit Mycobacterium tuberculosis Low-Molecular-Weight Protein Tyrosine Phosphatase a (Mt-PTPa). BIOTECH 2023; 12:59. [PMID: 37754203 PMCID: PMC10526854 DOI: 10.3390/biotech12030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) are involved in promoting the intracellular survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis. These PTPs directly alter host signalling pathways to evade the hostile environment of macrophages and avoid host clearance. Among these, protein tyrosine phosphatase A (Mt-PTPa) is implicated in phagosome acidification failure, thereby inhibiting phagosome maturation to promote Mycobacterium tuberculosis (Mtb) survival. In this study, we explored Mt-PTPa as a potential drug target for treating Mtb. We started by screening a library of 502 pure natural compounds against the activities of Mt-PTPa in vitro, with a threshold of 50% inhibition of activity via a <500 µM concentration of the candidate drugs. The initial screen identified epigallocatechin, myricetin, rosmarinic acid, and shikonin as hits. Among these, the naphthoquinone, shikonin (5, 8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone), showed the strongest inhibition (IC50 33 µM). Further tests showed that juglone (5-hydroxy-1,4-naphthalenedione), another naphthoquinone, displayed similar potent inhibition of Mt-PTPa to shikonin. Kinetic analysis of the inhibition patterns suggests a non-competitive inhibition mechanism for both compounds, with inhibitor constants (Ki) of 8.5 µM and 12.5 µM for shikonin and juglone, respectively. Our findings are consistent with earlier studies suggesting that Mt-PTPa is susceptible to specific allosteric modulation via a non-competitive or mixed inhibition mechanism.
Collapse
Affiliation(s)
- Abdulhakeem O. Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jessie Fulcher
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Samuel Crossley
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
7
|
Du X, Sonawane V, Zhang B, Wang C, de Ruijter B, Dömling ASS, Reiling N, Groves MR. Inhibitors of Aspartate Transcarbamoylase Inhibit Mycobacterium tuberculosis Growth. ChemMedChem 2023; 18:e202300279. [PMID: 37294060 DOI: 10.1002/cmdc.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Aspartate transcarbamoylase (ATCase) plays a key role in the second step of de novo pyrimidine biosynthesis in eukaryotes and has been proposed to be a target to suppress cell proliferation in E. coli, human cells and the malarial parasite. We hypothesized that a library of ATCase inhibitors developed for malarial ATCase (PfATCase) may also contain inhibitors of the tubercular ATCase and provide a similar inhibition of cellular proliferation. Of the 70 compounds screened, 10 showed single-digit micromolar inhibition in an in vitro activity assay and were tested for their effect on M. tuberculosis cell growth in culture. The most promising compound demonstrated a MIC90 of 4 μM. A model of MtbATCase was generated using the experimental coordinates of PfATCase. In silico docking experiments showed this compound can occupy a similar allosteric pocket on MtbATCase to that seen on PfATCase, explaining the observed species selectivity seen for this compound series.
Collapse
Affiliation(s)
- Xiaochen Du
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands
| | - Vidhisha Sonawane
- CATRIN, Department of Innovative Chemistry, PalackȳUniversity, 779 00, Olomouc - Holice, Czech Republic
| | - Bidong Zhang
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands
| | - Chao Wang
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands
| | - Bram de Ruijter
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands
| | - Alexander S S Dömling
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands
- CATRIN, Department of Innovative Chemistry, PalackȳUniversity, 779 00, Olomouc - Holice, Czech Republic
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel Leibniz Lung Center, Parkallee 1-40, Borstel, 23845, Sülfeld, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems Borstel, 23845, Greifswald, Germany
| | - Matthew R Groves
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands
| |
Collapse
|
8
|
Velema WA. Exploring antibiotic resistance with chemical tools. Chem Commun (Camb) 2023; 59:6148-6158. [PMID: 37039397 PMCID: PMC10194278 DOI: 10.1039/d3cc00759f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Antibiotic resistance is an enormous problem that is accountable for over a million deaths annually, with numbers expected to significantly increase over the coming decades. Although some of the underlying causes leading up to antibiotic resistance are well understood, many of the molecular processes involved remain elusive. To better appreciate at a molecular level how resistance emerges, customized chemical biology tools can offer a solution. This Feature Article attempts to provide an overview of the wide variety of tools that have been developed over the last decade, by highlighting some of the more illustrative examples. These include the use of fluorescent, photoaffinity and activatable antibiotics and bacterial components to start to unravel the molecular mechanisms involved in resistance. The antibiotic crisis is an eminent global threat and requires the continuous development of creative chemical tools to dissect and ultimately counteract resistance.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Bi K, Cao D, Ding C, Lu S, Lu H, Zhang G, Zhang W, Li L, Xu K, Li L, Zhang Y. The past, present and future of tuberculosis treatment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:657-668. [PMID: 36915970 PMCID: PMC10262004 DOI: 10.3724/zdxbyxb-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023]
Abstract
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Collapse
Affiliation(s)
- Kefan Bi
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Dan Cao
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Cheng Ding
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
| | - Shuihua Lu
- 3. Department for Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen 518000, Guangdong Province, China
| | - Hongzhou Lu
- 3. Department for Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen 518000, Guangdong Province, China
| | - Guangyu Zhang
- 4. Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wenhong Zhang
- 5. Department of Infectious Diseases, Huashan Hospital, Fudan University, National Medical Center for Infectious Diseases, Shanghai 200040, China
| | - Liang Li
- 6. Beijing Chest Hospital, Capital Medical University, Beijing 101199, China
| | - Kaijin Xu
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
| | - Lanjuan Li
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Ying Zhang
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
10
|
Santos JM, Fachi MM, Beraldi-Magalhães F, Böger B, Junker AM, Domingos EL, Imazu P, Fernandez-Llimos F, Tonin FS, Pontarolo R. Systematic review with network meta-analysis on the treatments for latent tuberculosis infection in children and adolescents. J Infect Chemother 2022; 28:1645-1653. [PMID: 36075488 DOI: 10.1016/j.jiac.2022.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND We aimed to synthesize the evidence on the efficacy and safety of different treatment regimens for latent tuberculosis infection (LTBI) in children and adolescents. METHODS A systematic review with network meta-analysis was performed (CRD142933). Searches were conducted in Pubmed and Scopus (Nov-2021). Randomized controlled trials comparing treatments for LTBI (patients up to 15 years), and reporting data on the incidence of the disease, death or adverse events were included. Networks using the Bayesian framework were built for each outcome of interest. Results were reported as odds ratio (OR) with 95% credibility intervals (CrI). Rank probabilities were calculated via the surface under the cumulative ranking analysis (SUCRA) (Addis-v.1.16.8). GRADE approach was used to rate evidence's certainty. RESULTS Seven trials (n = 8696 patients) were included. Placebo was significantly associated with a higher incidence of tuberculosis compared to all active therapies. Combinations of isoniazid (15-25 mg/kg/week) plus rifapentine (300-900 mg/week), followed by isoniazid plus rifampicin (10 mg/kg/day) were ranked as best approaches with lower probabilities of disease incidence (10% and 19.5%, respectively in SUCRA) and death (20%). Higher doses of isoniazid monotherapy were significantly associated to more deaths (OR 18.28, 95% ICr [1.02, 48.60] of 4-6 mg/kg/day vs. 10 mg/kg/3x per week). CONCLUSIONS Combined therapies of isoniazid plus rifapentine or rifampicin for short-term periods should be used as the first-line approach for treating LTBI in children and adolescents. The use of long-term isoniazid as monotherapy and at higher doses should be avoided for this population.
Collapse
Affiliation(s)
- Josiane M Santos
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil.
| | - Mariana M Fachi
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil.
| | | | - Beatriz Böger
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil.
| | - Allan M Junker
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil.
| | - Eric L Domingos
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil.
| | - Priscila Imazu
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil.
| | - Fernando Fernandez-Llimos
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Fernanda S Tonin
- Pharmaceutical Sciences Postgraduate Research Program, Federal University of Paraná, Curitiba, Brazil; H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - Roberto Pontarolo
- Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
11
|
MDN-6, a Possible Therapeutic Candidate for Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-129482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The rise of antibiotic-resistant Mycobacterium tuberculosis strains has accelerated the hunt for novel drugs for tuberculosis (TB). Objectives: This study identified a novel compound with strong anti-TB efficacy against several resistant M. tuberculosis strains from a chemical library of naphthoquinone derivatives. Methods: The identified chemical was designated as MDN-6 (methyl-1,4-bis(2-(diethylamino)ethoxy)-2-naphthoate). Results: It significantly inhibited all the tested Mycobacterium strains, including 24 clinically isolated resistant strains. The minimum inhibitory concentrations of MDN-6 were between 0.02 and 25 g/mL. It also had partially synergistic activity against extensively drug-resistant M. tuberculosis when coupled with rifampicin and streptomycin. Additionally, MDN-6 demonstrated a superior post-antibiotic effect over isoniazid and exhibited comparable inhibitory efficacy against Mycobacterium marinum and Mycobacterium kansasii. Besides the antimicrobial effect, MDN-6 had a 50% lethal dosage (LD50) of 279.1 mg/kg in female BALB/c mice. Conclusions: MDN-6 is a promising anti-TB therapeutic candidate against drug-resistant M. tuberculosis. However, further investigation is necessary to elucidate the action mechanism and assess the drug’s in vivo therapeutic potential.
Collapse
|
12
|
Benzoic Acid Derivatives as Prodrugs for the Treatment of Tuberculosis. Pharmaceuticals (Basel) 2022; 15:ph15091118. [PMID: 36145340 PMCID: PMC9502840 DOI: 10.3390/ph15091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
One interesting approach to fight tuberculosis is the use of prodrugs that often have shown improved biological activities over drugs with poor absorption or difficulty to cross membranes. Previous studies demonstrate that weak acids such as benzoic acid, present antimycobacterial activity. Moreover, esters of those acids revealed to be a viable alternative since they may diffuse more easily through the cell membranes. Previously we showed that mycobacteria can easily activate benzoic acid esters by conversion to the corresponding acid. Since Zhang postulated that the activity of the acids can be dependent on their pKa, we set up to synthesize a library of benzoates with different electron withdrawing groups (4-chloro, 2,6-dichloro, 3,5-dichloro, 4-nitro, and 3,5 dinitro), to modulate pKa of the liberated acid and different alkoxy substituents (propyl, hexyl, and phenyl) to modulate their lipophilicity, and tested the activity of the esters and the corresponding free acids against mycobacteria. We also studied the activation of the esters by mycobacterial enzymes and the stability of the compounds in buffer and plasma. We concluded that all the benzoates in our study can be activated by mycobacterial enzymes and that the phenyl and hexyl esters presented higher activity than the corresponding free acids, with the nitrobenzoates, and especially the dinitrobenzoates, showing very interesting antitubercular activity that deserve further exploration. Our results did not show a correlation between the activity and the pKa of the acids.
Collapse
|
13
|
Promising Antimycobacterial Activities of Flavonoids against Mycobacterium sp. Drug Targets: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165335. [PMID: 36014572 PMCID: PMC9415813 DOI: 10.3390/molecules27165335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains a threat to mankind, with over a billion of deaths in the last two centuries. Recent advancements in science have contributed to an understanding of Mtb pathogenesis and developed effective control tools, including effective drugs to control the global pandemic. However, the emergence of drug resistant Mtb strains has seriously affected the TB eradication program around the world. There is, therefore, an urgent need to develop new drugs for TB treatment, which has grown researchers’ interest in small molecule-based drug designing and development. The small molecules-based treatments hold significant potential to overcome drug resistance and even provide opportunities for multimodal therapy. In this context, various natural and synthetic flavonoids were reported for the effective treatment of TB. In this review, we have summarized the recent advancement in the understanding of Mtb pathogenesis and the importance of both natural and synthetic flavonoids against Mtb infection studied using in vitro and in silico methods. We have also included flavonoids that are able to inhibit the growth of non-tubercular mycobacterial organisms. Hence, understanding the therapeutic properties of flavonoids can be useful for the future treatment of TB.
Collapse
|
14
|
van der Kolk MR, Janssen MACH, Rutjes FPJT, Blanco‐Ania D. Cyclobutanes in Small-Molecule Drug Candidates. ChemMedChem 2022; 17:e202200020. [PMID: 35263505 PMCID: PMC9314592 DOI: 10.1002/cmdc.202200020] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Indexed: 11/13/2022]
Abstract
Cyclobutanes are increasingly used in medicinal chemistry in the search for relevant biological properties. Important characteristics of the cyclobutane ring include its unique puckered structure, longer C-C bond lengths, increased C-C π-character and relative chemical inertness for a highly strained carbocycle. This review will focus on contributions of cyclobutane rings in drug candidates to arrive at favorable properties. Cyclobutanes have been employed for improving multiple factors such as preventing cis/trans-isomerization by replacing alkenes, replacing larger cyclic systems, increasing metabolic stability, directing key pharmacophore groups, inducing conformational restriction, reducing planarity, as aryl isostere and filling hydrophobic pockets.
Collapse
Affiliation(s)
- Marnix R. van der Kolk
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Mathilde A. C. H. Janssen
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Daniel Blanco‐Ania
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| |
Collapse
|
15
|
Selvakumari S, Venkataraju C, Muthu S, Irfan A, Shanthi D. Donor acceptor groups effect, polar protic solvents influence on electronic properties and reactivity of 2-Chloropyridine-4-carboxylic acid. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
WhiB4 Is Required for the Reactivation of Persistent Infection of Mycobacterium marinum in Zebrafish. Microbiol Spectr 2022; 10:e0044321. [PMID: 35266819 PMCID: PMC9045381 DOI: 10.1128/spectrum.00443-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Granulomas are the pathological hallmark of tuberculosis (TB). In individuals with latent TB infection, Mycobacterium tuberculosis cells reside within granulomas in a nonreplicating dormant state, and a portion of them will develop active TB. Little is known on the bacterial mechanisms/factors involved in this process. In this study, we found that WhiB4, an oxygen sensor and a transcription factor, plays a critical role in disease progression and reactivation of Mycobacterium marinum (M. marinum) infection in zebrafish. We show that the whiB4::Tn mutant of M. marinum caused persistent infection in adult zebrafish, which is characterized by the lower but stable bacterial loads, constant number of nonnecrotized granulomas in fewer organs, and reduced inflammation compared to those of zebrafish infected with the wild-type bacteria or the complemented strain. The mutant bacteria in zebrafish were also less responsive to antibiotic treatments. Moreover, the whiB4::Tn mutant was defective in resuscitation from hypoxia-induced dormancy and the DosR regulon was dysregulated in the mutant. Taken together, our results suggest that WhiB4 is a major driver of reactivation from persistent infection. IMPORTANCE About one-quarter of the world’s population has latent TB infection, and 5 to 10% of those individuals will fall ill with TB. Our finding suggests that WhiB4 is an attractive target for the development of novel therapeutics, which may help to prevent the reactivation of latent infection, thereby reducing the incidences of active TB.
Collapse
|
17
|
Lane TR, Urbina F, Rank L, Gerlach J, Riabova O, Lepioshkin A, Kazakova E, Vocat A, Tkachenko V, Cole S, Makarov V, Ekins S. Machine Learning Models for Mycobacterium tuberculosisIn Vitro Activity: Prediction and Target Visualization. Mol Pharm 2022; 19:674-689. [PMID: 34964633 PMCID: PMC9121329 DOI: 10.1021/acs.molpharmaceut.1c00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a major global health challenge, with approximately 1.4 million deaths per year. There is still a need to develop novel treatments for patients infected with Mycobacterium tuberculosis (Mtb). There have been many large-scale phenotypic screens that have led to the identification of thousands of new compounds. Yet, there is very limited investment in TB drug discovery which points to the need for new methods to increase the efficiency of drug discovery against Mtb. We have used machine learning approaches to learn from the public Mtb data, resulting in many data sets and models with robust enrichment and hit rates leading to the discovery of new active compounds. Recently, we have curated predominantly small-molecule Mtb data and developed new machine learning classification models with 18 886 molecules at different activity cutoffs. We now describe the further validation of these Bayesian models using a library of over 1000 molecules synthesized as part of EU-funded New Medicines for TB and More Medicines for TB programs. We highlight molecular features which are enriched in these active compounds. In addition, we provide new regression and classification models that can be used for scoring compound libraries or used to design new molecules. We have also visualized these molecules in the context of known molecular targets and identified clusters in chemical property space, which may aid in future target identification efforts. Finally, we are also making these data sets publicly available, representing a significant increase to the available Mtb inhibition data in the public domain.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Laura Rank
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | | | - Elena Kazakova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Valery Tkachenko
- Science Data Experts, 14909 Forest Landing Cir, Rockville, MD 20850
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
18
|
Analysis of the Research Hotspot of Drug Treatment of Tuberculosis: A Bibliometric Based on the Top 50 Cited Literatures. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9542756. [PMID: 35071602 PMCID: PMC8769855 DOI: 10.1155/2022/9542756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/23/2021] [Accepted: 12/18/2021] [Indexed: 02/05/2023]
Abstract
Objective The objective of the current study was to analyze the research hotspot of drug treatment for tuberculosis via top literatures. Materials and Methods A retrospective analysis was performed on June 7th, 2021. Literatures were searched on the Web of Science Core Collection to identify the top 50 cited literatures related to drug treatment of tuberculosis. The characteristics of the literatures were identified. The outcomes included authorship, journal, study type, year of publication, and institution. Cooccurrence network analysis and visualization were conducted using the VOS viewer (Version 1.6.16; Leiden University, Leiden, The Netherlands). Results The top 50 cited literatures were cited 308 to 2689 times and were published between 1982 and 2014. The most studied drugs were the first-line drugs such as isoniazid and rifampicin (n = 22), and drug-resistant tuberculosis was most frequently reported (n = 16). They were published in 18 journals, and the New England Journal of Medicine published the most literatures (n = 18), followed by the American Journal of Respiratory and Critical Care Medicine (n = 7), and the Lancet (n = 6). The authors were from 13 countries, and the authors from the USA published most of the literatures (n = 30), while authors from other countries published less than five literatures. The CDC in the USA (n = 4), the World Health Organization (WHO) (n = 3), and the American Philosophical Society (n = 3) were the leading institutions, and only two authors published at least two top-cited literatures as first authors. Conclusions This study provides insights into the development and most important literatures on drug therapy for tuberculosis and evidence for future research on tuberculosis treatment.
Collapse
|
19
|
Synthesis and cytotoxicity of novel 1-arylindolizines and 1-arylpyrrolo[2,1-a]isoquinolines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Grosu-Creangă IA, Trofor AC, Crișan-Dabija RA, Robu-Popa D, Ghiciuc CM, Lupușoru EC. Adverse effects induced by second-line antituberculosis drugs: an update based on last WHO treatment recommendations for drug-resistant tuberculosis. PNEUMOLOGIA 2021; 70:117-126. [DOI: 10.2478/pneum-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Abstract
Introduction: Tuberculosis (TB), a common condition worldwide, is still among the main infectious diseases with high mortality rates, both in adults and infants. Drug-resistant tuberculosis (DR-TB) drugs, revised by the World Health Organization (WHO) in 2018, are a prolonged and complex therapy associated with many adverse drug effects (ADEs).
Aim: To systematically review the ADEs of second-line anti-TB drugs reported in multicentric studies published after the latest WHO guidelines, compared with those from clinical trials published before 2018.
Material and methods: A PubMed search, using keywords (TB OR DR-TB) AND (adverse effects) AND “second-line anti-TB drugs”, resulted in 56 studies. Only two studies, published after the last update of WHO guidelines in 2018, reported ADEs.
Results: A total of 223 participants were included in the two selected studies. The use of multidrug regimens has been associated with an increased incidence of ADEs: 42 ADEs were recorded in 30 patients (26.3%) in the first study, while all patients had at least one ADE that occurred or worsened during treatment; and 19 (17%) had severe ADEs in the second study. However, both studies had a good favourable outcome rate (90% and 79.8%, respectively). Gastrointestinal disturbances, hepatotoxicity, headache and dizziness are the most common ADEs induced by a majority of second-line DR-TB treatments. A special attention should be given in the case of association of drugs determining QT interval (QT) prolongation on electrocardiogram, or psychiatric disorders.
Conclusions: Proper strategies about ADE management have to be planned for timely detection of the possible ADEs that can be induced by second-line anti-TB therapy.
Collapse
Affiliation(s)
- Ionela-Alina Grosu-Creangă
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Antigona Carmen Trofor
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Radu Adrian Crișan-Dabija
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Daniela Robu-Popa
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Cristina Mihaela Ghiciuc
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Department of Morpho-Functional Sciences II – Pharmacology and Clinical Pharmacology at “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
| | - Elena Cătălina Lupușoru
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Department of Morpho-Functional Sciences II – Pharmacology and Clinical Pharmacology at “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
| |
Collapse
|
21
|
Tsutsumi T, Matsumoto M, Iwasaki H, Tomisawa K, Komine K, Fukuda H, Eustache J, Jansen R, Hatakeyama S, Ishihara J. Total Synthesis of Thuggacin cmc-A and Its Structure Determination. Org Lett 2021; 23:5208-5212. [PMID: 34128685 DOI: 10.1021/acs.orglett.1c01743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of thuggacin cmc-A and the determination of the absolute structure are described. The thuggacin family of antibiotics is of great interest due to the antibiotic activity against Mycobacterium tuberculosis. Based on the assumption that seven stereogenic centers in thuggacin cmc-A would share the same stereochemistry as thuggacin-A, all stereogenic centers of thuggacin cmc-A were strictly constructed in a stereocontrolled manner. The total synthesis allowed its stereostructure to be fully confirmed.
Collapse
Affiliation(s)
- Tomohiro Tsutsumi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Moe Matsumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hitomi Iwasaki
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Kei Tomisawa
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Keita Komine
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jacques Eustache
- École Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 3 rue A. Werner, 68093 Mulhouse Cedex, France
| | - Rolf Jansen
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Susumi Hatakeyama
- Medical Innovation Center, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jun Ishihara
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| |
Collapse
|
22
|
Rossi I, Bettini R, Buttini F. Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products. Curr Pharm Des 2021; 27:1436-1452. [PMID: 33480336 DOI: 10.2174/1381612827666210122143214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
23
|
Kingdon ADH, Alderwick LJ. Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:3708-3719. [PMID: 34285773 PMCID: PMC8258792 DOI: 10.1016/j.csbj.2021.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of TB and was estimated to cause 1.4 million death in 2019, alongside 10 million new infections. Drug resistance is a growing issue, with multi-drug resistant infections representing 3.3% of all new infections, hence novel antimycobacterial drugs are urgently required to combat this growing health emergency. Alongside this, increased knowledge of gene essentiality in the pathogenic organism and larger compound databases can aid in the discovery of new drug compounds. The number of protein structures, X-ray based and modelled, is increasing and now accounts for greater than > 80% of all predicted M. tuberculosis proteins; allowing novel targets to be investigated. This review will focus on structure-based in silico approaches for drug discovery, covering a range of complexities and computational demands, with associated antimycobacterial examples. This includes molecular docking, molecular dynamic simulations, ensemble docking and free energy calculations. Applications of machine learning onto each of these approaches will be discussed. The need for experimental validation of computational hits is an essential component, which is unfortunately missing from many current studies. The future outlooks of these approaches will also be discussed.
Collapse
Key Words
- CV, collective variable
- Docking
- Drug discovery
- In silico
- LIE, Linear Interaction Energy
- MD, Molecular Dynamic
- MDR, multi-drug resistant
- MMPB(GB)SA, Molecular Mechanics with Poisson Boltzmann (or generalised Born) and Surface Area solvation
- Machine learning
- Mt, Mycobacterium tuberculosis
- Mycobacterium tuberculosis
- PTC, peptidyl transferase centre
- RMSD, root-mean square-deviation
- Tuberculosis, TB
- cMD, Classical Molecular Dynamic
- cryo-EM, cryogenic electron microscopy
- ns, nanosecond
Collapse
Affiliation(s)
- Alexander D H Kingdon
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
24
|
Sheikh BA, Bhat BA, Mehraj U, Mir W, Hamadani S, Mir MA. Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis. Curr Pharm Biotechnol 2021; 22:480-500. [PMID: 32600226 DOI: 10.2174/1389201021666200628021702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat A Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Wajahat Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Suhail Hamadani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
25
|
Antimicrobial activity of IDD-B40 against drug-resistant Mycobacterium tuberculosis. Sci Rep 2021; 11:740. [PMID: 33436895 PMCID: PMC7804135 DOI: 10.1038/s41598-020-80227-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
The emergence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis creates the urgency for new anti-tuberculosis drugs to improve the efficiency of current tuberculosis treatment. In the search for a new potential tuberculosis drug, we synthesized an isoindole based chemical library and screened a potential candidate with significant anti-tuberculosis activity. The compound named 2-hydroxy-4-(4-nitro-1,3-dioxoisoindolin-2-yl) benzoic acid (IDD-B40) showed strong activity against all the tested drug-susceptible and drug-resistant strains of M. tuberculosis, with the 50% minimum inhibitory concentrations (MIC50) of 0.39 μg/ml both in culture broth and inside Raw 264.7 cells. Also, IDD-B40, in combination with rifampicin, exhibited a direct synergistic effect against both XDR and H37Rv M. tuberculosis. Besides, IDD-B40 showed a better post-antibiotic effect (PAE) than did some first-line drugs and showed no significant cytotoxicity to any cell line tested, with a selectivity index of ≥ 128. Although IDD-B40 showed a result similar to isoniazid in the preliminary mycolic acid inhibition assay, it did not exhibit any effect against other mycolic acid-producing nontuberculous mycobacterial strains (NTM), and different non-mycobacterial pathogenic strains, so further studies are required to confirm the mode of action of IDD-B40. Considering its results against M. tuberculosis, IDD-B40 is a potential anti-tuberculosis drug candidate. However, further studies are required to evaluate its potential in vivo effect and therapeutic potential.
Collapse
|
26
|
Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis. Microorganisms 2020; 9:microorganisms9010014. [PMID: 33374544 PMCID: PMC7822160 DOI: 10.3390/microorganisms9010014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization, an estimated 10 million people developed TB in 2018. The occurrence of drug-resistant TB demands therapeutic agents with novel mechanisms of action. Antivirulence is an alternative strategy that targets bacterial virulence factors instead of central growth pathways to treat disease. Mycobacterium protein tyrosine phosphatases, mPTPA and mPTPB, are secreted by Mtb into the cytoplasm of macrophages and are required for survival and growth of infection within the host. Here we present recent advances in understanding the roles of mPTPA and mPTPB in the pathogenesis of TB. We also focus on potent, selective, and well-characterized small molecule inhibitors reported in the last decade for mPTPA and mPTPB.
Collapse
|
27
|
Pandey AK, Kumar R, Shafiq N, Kondel R, Garg S, Negi H, Arora SK, Varma N, Malhotra S. In vitro and in vivo evaluation of clastogenicity of second-line antitubercular drug loaded PLGA nanoparticles. Hum Exp Toxicol 2020; 40:1064-1073. [PMID: 33345607 DOI: 10.1177/0960327120979345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sustained release nanoformulations of second line antitubercular drugs levofloxacin and ethionamide had shown promise in pharmacokinetics and acute and sub-acute toxicity studies. The present study evaluated the clastogenicity potential of the nanoformulations of these antitubercular agents. Clastogenicity was evaluated by (a) in vitro micronucleus assay (b) in vivo micronucleus assay in Swiss albino mice and (c) sister chromatid exchange (SCE) in CHO cell lines. Ethionamide and levofloxacin loaded nanoparticles were 312 ± 64 nm and 245 ± 24 nm in size respectively and drug encapsulation was 35.2 ± 3.1% w/w and 45.6 ± 9.4% w/w, respectively. The frequency of MN-NCE/1000 NCE and MN-PCE/1000 PCE were significantly reduced in mice treated with ethionamide nanoparticle (3.5 ± 0.9, 13.8 ± 16.68) and levofloxacin nanoparticles (5.6 ± 2.7, 16.7 ± 12.7) compared to the mice treated with free ethionamide (11.5 ± 4.1, p = 0.23 and 45.19 ± 19.21, p = 0.38) and free levofloxacin (14.7 ± 1.88, p < 0.0001 and 54.6 ± 18.1, p = 0.0017), respectively. For in vitro, micronucleus assay frequencies of micronuclei per thousand bi-nucleated cells (MN-BN/1000 BN) was 188.3 ± 20.20 and 148 ± 20.42 for ethionamide and levofloxacin nanoparticles as compared to 232.6 ± 16.04 (p = 0.52) and 175 ± 5.56 (p = 0.45) for free ethionamide and levofloxacin, respectively. The average number of SCE per cell for nanoformulation of ethionamide were not different from that of free drug (4.9 ± 0.51 vs 4.1 ± 0.55, p = 0.86). The SCE per cells were not significant difference for nanoformulation of levofloxacin (2.33 ± 1.36 vs 5.46 ± 0.25, p = 0.88). In vitro and in vivo assays have shown relatively less clastogenic potential of equivalent dose of ethionamide nanoparticles as compared to the conventional formulation.
Collapse
Affiliation(s)
- Avaneesh Kumar Pandey
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nusrat Shafiq
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritika Kondel
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shanky Garg
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Harish Negi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Kumar Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Haematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Samir Malhotra
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
KB S, Kumari A, Shetty D, Fernandes E, DV C, Jays J, Murahari M. Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis. J Mol Graph Model 2020; 101:107718. [DOI: 10.1016/j.jmgm.2020.107718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/05/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
|
29
|
Kroth R, Cristiano Monteiro M, Conte J, Fretes Argenta D, Amaral BR, Szpoganicz B, Caon T. Transbuccal delivery of metal complexes of isoniazid as an alternative to overcome antimicrobial resistance problems. Int J Pharm 2020; 590:119924. [PMID: 33053418 DOI: 10.1016/j.ijpharm.2020.119924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 11/15/2022]
Abstract
In isolated isoniazid (INH)-resistant strains, deletion or mutations in thekatGgene have been identified, which result in loss of catalase-peroxidase activity. This enzyme plays a key role in the activation of this prodrug. As an alternative, the coordination of the INH to metal complexes has been purposed to activate it regardless of enzyme functionality. Although pentacyanido(isoniazid)ferrate(II) complexes have shown to be effective against resistant strains of Mycobacterium tuberculosis, low oral bioavailability was found. In this context, buccal mucosa was selected as an alternative route to the metal complex delivery. Moreover, oral manifestations of tuberculosis(TB) have been observed in some patients, particularly when resistant strains are present, and no therapeutic options are currently available on the market. Pentacyanidoferrate (PCF-INH) and Prussian-blue (PB-INH) complexes were initially prepared and characterized, followed by buccal permeability studies in Franz-type diffusion cells. The electrochemical potential of the complexes demonstrated their ability to self-activate. Job's method suggested the presence of structural defects in PB-INH complexes, which was correlated with permeability results. In fact, PB-INH showed a higher dissociation rate in salt-rich aqueous medium and thus a high transport rate of INH through the buccal mucosa. Its passage through the tissue would not be possible due to the high molecular size. PCF-INH, in turn, presented a lower dissociation rate in the salt-rich aqueous medium, justifying its slower transport rate through the tissue. Taken together, these results suggest that INH-based metal complexes may be efficiently administered through the buccal route, impacting on both oral bioavailability and microbial resistance.
Collapse
Affiliation(s)
- Roselene Kroth
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Marcio Cristiano Monteiro
- Programa de Pós-Graduação em Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Julia Conte
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Debora Fretes Argenta
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Beatriz Ribeiro Amaral
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Programa de Pós-Graduação em Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Thiago Caon
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
30
|
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis 2020; 74:101574. [PMID: 33249329 DOI: 10.1016/j.cimid.2020.101574] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) was announced as a global emergency in 1993. There was an alarming counter attack of TB worldwide. However, when it was known that TB can be cured completely, the general public became ignorant towards the infection. The pathogenic organism Mycobacterium tuberculosis continuously evolved to resist the antagonist drugs. This has led to the outbreak of resistant strain that gave rise to "Multi Drug Resistant-Tuberculosis" and "Extensively Drug Resistant Tuberculosis" that can still be cured with a lower success rate. While the mechanism of resistance proceeds further, it ultimately causes unmanageable totally drug resistant TB (TDR-TB). Studying the molecular mechanisms underlying the resistance to drugs would help us grasp the genetics and pathophysiology of the disease. In this review, we present the molecular mechanisms behind Mycobacterium tolerance to drugs and their approach towards the development of multi-drug resistant, extremely drug resistant and totally drug resistant TB.
Collapse
Affiliation(s)
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
31
|
Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N. Combining structure and genomics to understand antimicrobial resistance. Comput Struct Biotechnol J 2020; 18:3377-3394. [PMID: 33294134 PMCID: PMC7683289 DOI: 10.1016/j.csbj.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resistance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic studies using high-throughput sequencing data have provided powerful new ways to rapidly detect and respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein function and evolution. Subsequent insights can then inform experimental studies, and direct existing or new computational methods. Here we review a range of sequence and structure-based computational tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the biophysical effects of mutations can help reveal the molecular basis and consequences of resistance development. Furthermore, we summarise how the application of such a mechanistic understanding of drug resistance can be applied to limit the impact of AMR.
Collapse
Affiliation(s)
- Tanushree Tunstall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David B. Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
32
|
Ruddraraju KV, Aggarwal D, Niu C, Baker EA, Zhang RY, Wu L, Zhang ZY. Highly Potent and Selective N-Aryl Oxamic Acid-Based Inhibitors for Mycobacterium tuberculosis Protein Tyrosine Phosphatase B. J Med Chem 2020; 63:9212-9227. [PMID: 32787087 DOI: 10.1021/acs.jmedchem.0c00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Mtb protein tyrosine phosphatase B (mPTPB) is a virulence factor required for Mtb survival in host macrophages. Consequently, mPTPB represents an exciting target for tuberculosis treatment. Here, we identified N-phenyl oxamic acid as a highly potent and selective monoacid-based phosphotyrosine mimetic for mPTPB inhibition. SAR studies on the initial hit, compound 4 (IC50 = 257 nM), resulted in several highly potent inhibitors with IC50 values lower than 20 nM for mPTPB. Among them, compound 4t showed a Ki of 2.7 nM for mPTPB with over 4500-fold preference over 25 mammalian PTPs. Kinetic, molecular docking, and site-directed mutagenesis analyses confirmed these compounds as active site-directed reversible inhibitors of mPTPB. These inhibitors can reverse the altered host cell immune responses induced by the bacterial phosphatase. Furthermore, the inhibitors possess molecular weights <400 Da, log D7.4 < 2.5, topological polar surface area < 75, ligand efficiency > 0.43, and good aqueous solubility and metabolic stability, thus offering excellent starting points for further therapeutic development.
Collapse
Affiliation(s)
- Kasi Viswanatharaju Ruddraraju
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| | - Devesh Aggarwal
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| | - Congwei Niu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| | - Erica Anne Baker
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 4790, United States
| |
Collapse
|
33
|
Swarnkar S, Ansari MY, Kumar A. Tuning the Chemoselectivity of Dehydroacetic Acid Derived Enones by Isoniazid and Phenylhydrazines: An Efficient Access to 3-Styryl Pyrano[2,3- c
]pyrazolones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sumedha Swarnkar
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Sector 10, Jankipuram extension; Sitapur Road, P.O. Box 173 226031 Lucknow India
| | - Mohd Yeshab Ansari
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Sector 10, Jankipuram extension; Sitapur Road, P.O. Box 173 226031 Lucknow India
| | - Atul Kumar
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Sector 10, Jankipuram extension; Sitapur Road, P.O. Box 173 226031 Lucknow India
- Academy of Scientific and Innovative Research; 110001 New Delhi India
| |
Collapse
|
34
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
35
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
36
|
Crocus sativus L. Extract Containing Polyphenols Modulates Oxidative Stress and Inflammatory Response against Anti-Tuberculosis Drugs-Induced Liver Injury. PLANTS 2020; 9:plants9020167. [PMID: 32019201 PMCID: PMC7076685 DOI: 10.3390/plants9020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to analyze the polyphenolic rich extract of Crocus sativus L. petals (CSP) in modulating liver oxidative stress and inflammatory response status against rifampicin isoniazid (INH-RIF) drug-induced liver injury. The INH-RIF was administered for 14 days with varying doses in Wistar rats, while silymarin was administered as standard dose. We report the defensive impacts of CSP against INH-RIF induced liver oxidative stress and proinflammatory cytokine. The CSP treatment at both doses significantly controlled all modulating biochemical hepatic injury indicators and resulted in the attenuation of arbitral INH-RIF damage. The components present in CSP identified by LC–ESI-Q-TOF–MS were found to be flavonoids and fatty acids. It can be inferred that CSP possesses a hepatoprotective capacity against INH-RIF-mediated hepatic injury, which may prove to be a medically beneficial natural product for the management of drug-induced liver injury.
Collapse
|
37
|
Combrink M, Loots DT, du Preez I. Metabolomics describes previously unknown toxicity mechanisms of isoniazid and rifampicin. Toxicol Lett 2020; 322:104-110. [PMID: 31981687 DOI: 10.1016/j.toxlet.2020.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/06/2023]
Abstract
Isoniazid and rifampicin are well-known anti-mycobacterial agents and are widely used to treat pulmonary tuberculosis (TB) as part of the combined therapy approach, recommended by the World Health Organization. The ingestion of these first-line TB drugs are, however, not free of side effects, and are toxic to the liver, kidney, and central nervous system. These side effects are associated with poor treatment compliance, resulting in TB treatment failure, relapse and drug resistant TB. This occurrence has subsequently led to the recent application of novel research technologies, towards a better understanding of the underlying toxicity mechanisms of TB drugs in humans, mostly focussing on the 2 most important TB drugs: isoniazid and rifampicin. In this review, we discuss the contribution that one such an approach, termed metabolomics has made toward this field, and also highlight the impact that this might have towards the development of improved TB treatment regimens.
Collapse
Affiliation(s)
- Monique Combrink
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - Ilse du Preez
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
38
|
Naor N, Gadot O, Meir M, Barkan D. Peptide Deformylase (def) is essential in Mycobacterium smegmatis, but the essentiality is compensated by inactivation of methionine formylation. BMC Microbiol 2019; 19:232. [PMID: 31655553 PMCID: PMC6815462 DOI: 10.1186/s12866-019-1611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background Co-translational processes in bacteria are attractive drug targets, but while some processes are essential, others are not. The essentiality of Peptide Deformylase (PDF, def) for vitality of mycobacteria was speculated, but never unequivocally proven. Results Here we show by targeted deletion experiments that def can only be deleted from M. smegmatis when an additional copy is present; that prior deletion of tRNAfMet-Formyl Transferase (FMT, encoded by fmt) renders def completely dispensable; and that re-introduction of fmt into a Δdef mutant is not possible – constituting a definitive proof for the essentiality of def in mycobacteria. Conclusions Peptide deformylase is essential in M. smegmatis, but the fact that inactivation of fmt renders the gene completely dispensable, and thus any inhibitor of def useless, casts doubt on the usefulness of PDF as a drug-target in mycobacteria.
Collapse
Affiliation(s)
| | | | - Michal Meir
- The Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Campus, Rehovot, Israel.
| |
Collapse
|
39
|
Sabina EP, Peter S J, S P, Geetha A. A comparison of hepatoprotective activity of Bacoside to Silymarin treatment against a combined Isoniazid and Rifampin-induced hepatotoxicity in female Wistar rats. J Histotechnol 2019; 42:128-136. [PMID: 31379302 DOI: 10.1080/01478885.2019.1638535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The liver is an important organ that plays a vital role in homeostasis maintenance and regulation. Any liver damage or injury caused by drugs or chemicals is called hepatotoxicity. Isoniazid and rifampin are drugs used separately to treat tuberculosis but have unique side effects and potential hepatotoxicity. The metabolism of isoniazid (INH) and rifampin (RIF) takes place in liver hence hepatotoxicity is the main cause of their continuous use. Bacoside was obtained from the plant Bacopa monnieri, a dammarene type triterpenoid saponin, found distributed throughout India. Bacoside has been used as a nerve tonic, a free radical scavenger, and antioxidant. It is known that the combined INH-RIF induced hepatotoxicity can be antagonized by maintaining hepatocyte membrane integrity in rats. Silymarin, an herbal drug, and its component silybin were reported to work as lipid peroxidation inhibitors and antioxidants which scavenge free radicals. Due to minimal toxicity and no adverse drug interactions, Silymarin is used to treat various medically confirmed hepatic disorders. The aim of this study was to evaluate the beneficial effect of Bacoside against INH- and RIF-induced toxicity in livers of Wistar albino rats. Four experimental groups of rats were used to study four parameters; bodyweight, liver enzyme markers, liver antioxidant, and liver histopathology. INH- and RIF-treated rats showed abnormalities in liver markers which were normalized by Bacoside and that seems similar to the normal control and Silymarin-treated groups. Thus, the current study demonstrated the hepatoprotective effect of Bacoside against INH- and RIF-induced toxicity in Wistar albino rats.
Collapse
Affiliation(s)
- Evan Prince Sabina
- Departmet of Biomedical Sciences, School of Biosciences and Technology, VIT , Vellore , Tamilnadu , India.,Department of Biochemistry, Bharathi Women's College , Chennai , Tamil Nadu , India
| | - Jerine Peter S
- Departmet of Biomedical Sciences, School of Biosciences and Technology, VIT , Vellore , Tamilnadu , India
| | - Prathap S
- Departmet of Biomedical Sciences, School of Biosciences and Technology, VIT , Vellore , Tamilnadu , India
| | - A Geetha
- Department of Biochemistry, Bharathi Women's College , Chennai , Tamil Nadu , India.,Department of Clinical Biochemistry, Dr. Ambedkar Government Arts College (Autonomous) , Chennai , Tamilnadu , India
| |
Collapse
|
40
|
Hernandez LW, Sarlah D. Empowering Synthesis of Complex Natural Products. Chemistry 2019; 25:13248-13270. [DOI: 10.1002/chem.201901808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Lucas W. Hernandez
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue 270 RAL, Box 107-5 Urbana IL 61801 USA
| | - David Sarlah
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue 270 RAL, Box 107-5 Urbana IL 61801 USA
| |
Collapse
|
41
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
42
|
Gunjal DB, Gore AH, Bhosale AR, Naik VM, Anbhule PV, Shejwal RV, Kolekar GB. Waste derived sustainable carbon nanodots as a new approach for sensitive quantification of ethionamide and cell imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Haufroid M, Wouters J. Targeting the Serine Pathway: A Promising Approach against Tuberculosis? Pharmaceuticals (Basel) 2019; 12:E66. [PMID: 31052291 PMCID: PMC6630544 DOI: 10.3390/ph12020066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis is still the leading cause of death by a single infectious agent. Effective chemotherapy has been used and improved since the 1950s, but strains resistant to this therapy and most antibacterial drugs on the market are emerging. Only 10 new drugs are in clinical trials, and two of them have already demonstrated resistance. This paper gives an overview of current treatment options against tuberculosis and points out a promising approach of discovering new effective drugs. The serine production pathway is composed of three enzymes (SerA1, SerC and SerB2), which are considered essential for bacterial growth, and all of them are considered as a therapeutic drug target. Their crystal structure are described and essential regulatory domains pointed out. Sequence alignment with similar enzymes in other host would help to identify key residues to target in order to achieve selective inhibition. Currently, only inhibitors of SerB2 are described in the literature. However, inhibitors of human enzymes are discussed, and could be used as a good starting point for a drug discovery program. The aim of this paper is to give some guidance for the design of new hits for every enzyme in this pathway.
Collapse
Affiliation(s)
- Marie Haufroid
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Medicine and Drug Innovation Center (Namedic), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium.
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Medicine and Drug Innovation Center (Namedic), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium.
| |
Collapse
|
44
|
Vanunu M, Schall P, Reingewertz TH, Chakraborti PK, Grimm B, Barkan D. MapB Protein is the Essential Methionine Aminopeptidase in Mycobacterium tuberculosis. Cells 2019; 8:cells8050393. [PMID: 31035386 PMCID: PMC6562599 DOI: 10.3390/cells8050393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
M. tuberculosis (Mtb), which causes tuberculosis disease, continues to be a major global health threat. Correct identification of valid drug targets is important for the development of novel therapeutics that would shorten the current 6-9 month treatment regimen and target resistant bacteria. Methionine aminopeptidases (MetAP), which remove the N-terminal methionine from newly synthesized proteins, are essential in all life forms (eukaryotes and prokaryotes). The MetAPs contribute to the cotranslational control of proteins as they determine their half life (N-terminal end rule) and facilitate further modifications such as acetylation and others. Mtb (and M. bovis) possess two MetAP isoforms, MetAP1a and MetAP1c, encoded by the mapA and mapB genes, respectively. Conflicting evidence was reported in the literature on which of the two variants is essential. To resolve this question, we performed a targeted genetic deletion of each of these two genes. We show that a deletion mutant of mapA is viable with only a weak growth defect. In contrast, we provide two lines of genetic evidence that mapB is indispensable. Furthermore, construction of double-deletion mutants as well as the introduction of point mutations into mapB resulting in proteins with partial activity showed partial, but not full, redundancy between mapB and mapA. We propose that it is MetAP1c (mapB) that is essentially required for mycobacteria and discuss potential reasons for its vitality.
Collapse
Affiliation(s)
- Miriam Vanunu
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Nutrition and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Patrick Schall
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, 10115 Berlin, Germany.
| | - Tali-Haviv Reingewertz
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Nutrition and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Pradip K Chakraborti
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdar Nagar, New Delhi 110062, India.
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, 10115 Berlin, Germany.
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Nutrition and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
45
|
Sun X, Zhang L, Jiang J, Ng M, Cui Z, Mai J, Ahn SK, Liu J, Zhang J, Liu J, Li Y. Transcription factors Rv0081 and Rv3334 connect the early and the enduring hypoxic response of Mycobacterium tuberculosis. Virulence 2019; 9:1468-1482. [PMID: 30165798 PMCID: PMC6177252 DOI: 10.1080/21505594.2018.1514237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (M. tb) to survive and persist in the host for decades in an asymptomatic state is an important aspect of tuberculosis pathogenesis. Although adaptation to hypoxia is thought to play a prominent role underlying M. tb persistence, how the bacteria achieve this goal is largely unknown. Rv0081, a member of the DosR regulon, is induced at the early stage of hypoxia while Rv3334 is one of the enduring hypoxic response genes. In this study, we uncovered genetic interactions between these two transcription factors. RNA-seq analysis of ΔRv0081 and ΔRv3334 revealed that the gene expression profiles of these two mutants were highly similar. We also found that under hypoxia, Rv0081 positively regulated the expression of Rv3334 while Rv3334 repressed transcription of Rv0081. In addition, we demonstrated that Rv0081 formed dimer and bound to the promoter region of Rv3334. Taken together, these data suggest that Rv0081 and Rv3334 work in the same regulatory pathway and that Rv3334 functions immediately downstream of Rv0081. We also found that Rv3334 is a bona fide regulator of the enduring hypoxic response genes. Our study has uncovered a regulatory pathway that connects the early and the enduring hypoxic response, revealing a transcriptional cascade that coordinates the temporal response of M. tb to hypoxia.
Collapse
Affiliation(s)
- Xian Sun
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Lu Zhang
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Jun Jiang
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Mark Ng
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Zhenling Cui
- c Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Medical School , Tongji University , Shanghai , China
| | - Juntao Mai
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Sang Kyun Ahn
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Jingqian Liu
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Jinyu Zhang
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Jun Liu
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China.,b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Yao Li
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| |
Collapse
|
46
|
Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nat Chem Biol 2019; 15:221-231. [PMID: 30664686 DOI: 10.1038/s41589-018-0206-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Members of the Corynebacterineae, including Corynebacterium and Mycobacterium, have an atypical cell envelope characterized by an additional mycomembrane outside of the peptidoglycan layer. How this multilayered cell envelope is assembled remains unclear. Here, we tracked the assembly dynamics of different envelope layers in Corynebacterium glutamicum and Mycobacterium smegmatis by using metabolic labeling and found that the septal cell envelope is assembled sequentially in both species. Additionally, we demonstrate that in C. glutamicum, the peripheral peptidoglycan layer at the septal junction remains contiguous throughout septation, forming a diffusion barrier for the fluid mycomembrane. This diffusion barrier is resolved through perforations in the peripheral peptidoglycan, thus leading to the confluency of the mycomembrane before daughter cell separation (V snapping). Furthermore, the same junctional peptidoglycan also serves as a mechanical link holding the daughter cells together and undergoes mechanical fracture during V snapping. Finally, we show that normal V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.
Collapse
|
47
|
Caleffi-Ferracioli KR, Cardoso RF, de Souza JV, Murase LS, Canezin PH, Scodro RB, Ld Siqueira V, Pavan FR. Modulatory effects of verapamil in rifampicin activity against Mycobacterium tuberculosis. Future Microbiol 2019; 14:185-194. [PMID: 30648892 DOI: 10.2217/fmb-2018-0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate modulatory effect of verapamil (VP) in rifampicin (RIF) activity and its effect in efflux pumps (EPs) transcript levels in Mycobacterium tuberculosis. MATERIALS & METHODS RIF and VP minimal inhibitory concentration, combinatory effect and detection of mutations were determined in 16 isolates. EPs transcript levels were determined in four isolates by real-time PCR after exposure to drugs. RESULTS VP showed good combinatory effect among RIF-resistant isolates. This effect was also observed in the relative transcript levels of EPs, mainly after 72 h of exposure, depending on the EP gene, genotype and the resistance profile of the isolate. CONCLUSION Additional regulatory mechanisms in the EP activities, as well as, interactions with other drug-specific resistance mechanisms need further investigation in M. tuberculosis.
Collapse
Affiliation(s)
- Katiany R Caleffi-Ferracioli
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Rosilene F Cardoso
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - João Vp de Souza
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Letícia S Murase
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Pedro H Canezin
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Paulista State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
48
|
Du Preez I, Loots DT. Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab Rev 2019; 50:466-481. [PMID: 30558443 DOI: 10.1080/03602532.2018.1559184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ilse Du Preez
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| |
Collapse
|
49
|
Nyinoh IW. Spontaneous mutations conferring antibiotic resistance to antitubercular drugs at a range of concentrations in Mycobacterium smegmatis. Drug Dev Res 2018; 80:147-154. [PMID: 30511362 DOI: 10.1002/ddr.21497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/06/2022]
Abstract
Mycobacteria populations can undergo mutations in their DNA sequence during replication, which if not repaired would be transferred to future generations. Earlier studies have tackled the estimation of mutation rate in mycobacteria at fixed concentrations. However, in this study, in vitro spontaneous mutations in Mycobacterium smegmatis (Msm) mc2 155 (Msm) that confers resistance to some of the most important antitubercular drugs; isoniazid (INHr ), rifampicin (RIFr ), kanamycin (KANr ) and streptomycin (STRr ) were first determined at several highly lethal concentrations, a few of which have not been previously investigated, in a fluctuation assay. Thereafter, mutation rate was estimated using the most commonly adopted Po method, and estimates were then compared concurrently with the Lea-Coulson method of the median and Ma-Sandri-Sarkar Maximum Likelihood Estimator method available on the Fluctuation AnaLysis CalculatOR (FALCOR). The mutation rates of RIFr ranged from 9.24 × 10-8 to 2.18 × 10-10 , INHr 1.2 × 10-7 -1.20 × 10-9 , STRr 2.77 × 10-8 -5.31 × 10-8 and KANr 1.7 × 10-8 mutations per cell division. Data obtained in this study provide mutation rate estimates to key antitubercular drugs at a range of concentrations while also validating a number of the frequent approaches for estimating mutation rates.
Collapse
Affiliation(s)
- Iveren Winifred Nyinoh
- Department of Biological Sciences, Benue State University, Makurdi, Benue State, Nigeria
| |
Collapse
|
50
|
Salina EG, Ekins S, Makarov VA. A rapid method for estimation of the efficacy of potential antimicrobials in humans and animals by agar diffusion assay. Chem Biol Drug Des 2018; 93:1021-1025. [PMID: 30468306 DOI: 10.1111/cbdd.13427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
Drug resistance continues to challenge traditional antimicrobial drugs and limit their clinical utility. This requires us to continue our search for new drug candidates with novel mechanisms of action against infectious diseases. We now describe a simple agar diffusion assay, which can be used as a general method for the rapid detection of antimicrobial activity of drug candidates in animal or human blood plasma for the ultimate prediction of the efficacy of potential drugs prior to clinical trials. We present an example for a clinical candidate against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Elena G Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina
| | - Vadim A Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|