1
|
Begam K, Aksu H, Dunietz BD. Antioxidative Triplet Excitation Energy Transfer in Bacterial Reaction Center Using a Screened Range Separated Hybrid Functional. J Phys Chem B 2024. [PMID: 38687467 DOI: 10.1021/acs.jpcb.3c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Excess energy absorbed by photosystems (PSs) can result in photoinduced oxidative damage. Transfer of such energy within the core pigments of the reaction center in the form of triplet excitation is important in regulating and preserving the functionality of PSs. In the bacterial reaction center (BRC), the special pair (P) is understood to act as the electron donor in a photoinduced charge transfer process, triggering the charge separation process through the photoactive branch A pigments that experience a higher polarizing environment. At this work, triplet excitation energy transfer (TEET) in BRC is studied using a computational perspective to gain insights into the roles of the dielectric environment and interpigment orientations. We find in agreement with experimental observations that TEET proceeds through branch B. The TEET process toward branch B pigment is found to be significantly faster than the hypothetical process proceeding through branch A pigments with ps and ms time scales, respectively. Our calculations find that conformational differences play a major role in this branch asymmetry in TEET, where the dielectric environment asymmetry plays only a secondary role in directing the TEET to proceed through branch B. We also address TEET processes asserting the role of carotenoid as the final triplet energy acceptor and in a mutant form, where the branch pigments adjacent to P are replaced by bacteriopheophytins. The necessary electronic excitation energies and electronic state couplings are calculated by the recently developed polarization-consistent framework combining a screened range-separated hybrid functional and a polarizable continuum mode. The polarization-consistent potential energy surfaces are used to parametrize the quantum mechanical approach, implementing Fermi's golden rule expression of the TEET rate calculations.
Collapse
Affiliation(s)
- Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Huseyin Aksu
- Department of Physics, Faculty of Science at Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
2
|
Mignon C, Ortiz Moreno AR, Shirzad H, Padamati SK, Damle VG, Ong Y, Schirhagl R, Chipaux M. Fast, Broad-Band Magnetic Resonance Spectroscopy with Diamond Widefield Relaxometry. ACS Sens 2023; 8:1667-1675. [PMID: 37043367 PMCID: PMC10152489 DOI: 10.1021/acssensors.2c02809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
We present an alternative to conventional Electron Paramagnetic Resonance (EPR) spectroscopy equipment. Avoiding the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected their cross-relaxation with a compound of interest. In addition, the EPR spectra are encoded through a localized magnetic field gradient. While recording previous data took 12 min per data point with individual NV centers, we were able to reconstruct a full spectrum at once in 3 s, over a range from 3 to 11 G. In terms of sensitivity, only 0.5 μL of a 1 μM hexaaquacopper(II) ion solution was necessary.
Collapse
Affiliation(s)
- Charles Mignon
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R. Ortiz Moreno
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Hoda Shirzad
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandeep K. Padamati
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Viraj G. Damle
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yori Ong
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Mayeul Chipaux
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Casto J, Bogetti X, Hunter HR, Hasanbasri Z, Saxena S. "Store-bought is fine": Sensitivity considerations using shaped pulses for DEER measurements on Cu(II) labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107413. [PMID: 36867974 DOI: 10.1016/j.jmr.2023.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The narrow excitation bandwidth of monochromic pulses is a sensitivity limitation for pulsed dipolar spectroscopy on Cu(II)-based measurements. In response, frequency-swept pulses with large excitation bandwidths have been adopted to probe a greater range of the EPR spectrum. However, much of the work utilizing frequency-swept pulses in Cu(II) distance measurements has been carried out on home-built spectrometers and equipment. Herein, we carry out systematic Cu(II) based distance measurements to demonstrate the capability of chirp pulses on commercial instrumentation. More importantly we delineate sensitivity considerations under acquisition schemes that are necessary for robust distance measurements using Cu(II) labels for proteins. We show that a 200 MHz sweeping bandwidth chirp pulse can improve the sensitivity of long-range distance measurements by factors of three to four. The sensitivity of short-range distances only increases slightly due to special considerations for the chirp pulse duration relative to the period length of the modulated dipolar signal. Enhancements in sensitivity also dramatically reduce measurement collection times enabling rapid collection of orientationally averaged Cu(II) distance measurements in under two hours.
Collapse
Affiliation(s)
- Joshua Casto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
4
|
Tibble RW, Gross JD. A call to order: Examining structured domains in biomolecular condensates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107318. [PMID: 36657879 PMCID: PMC10878105 DOI: 10.1016/j.jmr.2022.107318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.
Collapse
Affiliation(s)
- Ryan W Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States.
| |
Collapse
|
5
|
Eschenbach P, Artiukhin DG, Neugebauer J. Reliable Isotropic Electron-Paramagnetic-Resonance Hyperfine Coupling Constants from the Frozen-Density Embedding Quasi-Diabatization Approach. J Phys Chem A 2022; 126:8358-8368. [DOI: 10.1021/acs.jpca.2c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Denis G. Artiukhin
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
6
|
Tang X, Suddarth S, Kantesaria S, Garwood M. A frequency-swept, longitudinal detection EPR system for measuring short electron spin relaxation times at ultra-low fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107279. [PMID: 35952409 DOI: 10.1016/j.jmr.2022.107279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A frequency-swept longitudinal detection (LOD) EPR system is described for ultra-low field spectroscopy and relaxometry. With the capability of performing simultaneous transmit and receive with -80 dB isolation, this LOD-EPR can capture signals with decay constants in the nanosecond range and in theory even sub-nanosecond range, at fields close to the earth's magnetic field. The theoretical principles underlying this LOD-EPR are based on a fictitious field that accounts for the Z-axis magnetization polarized by a radiofrequency field alone. The electron spin relaxation time is obtained directly from a previously derived equation that describes the relationship between the relaxation time and the spectral peak position. Herein, the first frequency-swept LOD-EPR system is described in detail, along with experimental measurements of the short relaxation time (∼30 ns) of the free radical, 2,2-diphenyl-1-picrylhydrazyl, at zero to low field.
Collapse
Affiliation(s)
- Xueyan Tang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Steven Suddarth
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Saurin Kantesaria
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6(th) Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Hyperfine Decoupling of ESR Spectra Using Wavelet Transform. MAGNETOCHEMISTRY 2022. [PMID: 37475982 PMCID: PMC10357921 DOI: 10.3390/magnetochemistry8030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of spectral analysis is to resolve and extract relevant features from experimental data in an optimal fashion. In continuous-wave (cw) electron spin resonance (ESR) spectroscopy, both g values of a paramagnetic center and hyperfine splitting (A) caused by its interaction with neighboring magnetic nuclei in a molecule provide important structural and electronic information. However, in the presence of g- and/or A-anisotropy and/or large number of resonance lines, spectral analysis becomes highly challenging. Either high-resolution experimental techniques are employed to resolve the spectra in those cases or a range of suitable ESR frequencies are used in combination with simulations to identify the corresponding g and A values. In this work, we present a wavelet transform technique in resolving both simulated and experimental cw-ESR spectra by separating the hyperfine and super-hyperfine components. We exploit the multiresolution property of wavelet transforms that allow the separation of distinct features of a spectrum based on simultaneous analysis of spectrum and its varying frequency. We retain the wavelet components that stored the hyperfine and/or super-hyperfine features, while eliminating the wavelet components representing the remaining spectrum. We tested the method on simulated cases of metal–ligand adducts at L-, S-, and X-band frequencies, and showed that extracted g values, hyperfine and super-hyperfine coupling constants from simulated spectra, were in excellent agreement with the values of those parameters used in the simulations. For the experimental case of a copper(II) complex with distorted octahedral geometry, the method was able to extract g and hyperfine coupling constant values, and revealed features that were buried in the overlapped spectra.
Collapse
|
8
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
9
|
Stingel AM, Petersen PB. Full spectrum 2D IR spectroscopy reveals below-gap absorption and phonon dynamics in the mid-IR bandgap semiconductor InAs. J Chem Phys 2021; 155:104202. [PMID: 34525815 DOI: 10.1063/5.0056217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the mid-infrared spectral region spans more than 3000 cm-1, ultrafast mid-IR spectroscopies are normally limited to the spectral bandwidth that can be generated in optical parametric amplifiers-typically a few hundred cm-1. As such, the spectral coverage in conventional two dimensional infrared (2D IR) spectroscopy captures only about 1% of the full potential 2D mid-IR spectrum. Here, we present 2D IR spectra using a continuum source as both the excitation and probe pulses, thus capturing close to the full 2D IR spectrum. While the continuum pulses span the entire mid-IR range, they are currently too weak to efficiently excite molecular vibrational modes but strong enough to induce electronic responses and excite phonons in semiconductors. We demonstrate the full spectrum 2D IR spectroscopy of the mid-IR bandgap semiconductor indium arsenide with a bandgap at 2855 cm-1. The measured response extends far below the bandgap and is due to field-induced band-shifting, causing probe absorption below the bandgap. While the band-shifting induces an instantaneous response that exists only during pulse overlap, the 2D IR spectra reveal additional off-diagonal features that decay on longer timescales. These longer-lived off-diagonal features result from coherent phonons excited via a Raman-like process at specific excitation frequencies. This study illustrates that the full spectrum 2D IR spectroscopy of electronic states in the mid-IR is possible with current continuum pulse technology and is effective in characterizing semiconductor properties.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Kim J, Choe YJ, Kim SH, Choi IS, Jeong K. Deciphering Evolution Pathway of Supported NO 3 • Enabled via Radical Transfer from •OH to Surface NO 3 - Functionality for Oxidative Degradation of Aqueous Contaminants. JACS AU 2021; 1:1158-1177. [PMID: 34467355 PMCID: PMC8397361 DOI: 10.1021/jacsau.1c00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 06/13/2023]
Abstract
NO3 • can compete with omnipotent •OH/SO4 •- in decomposing aqueous pollutants because of its lengthy lifespan and significant tolerance to background scavengers present in H2O matrices, albeit with moderate oxidizing power. The generation of NO3 •, however, is of grand demand due to the need of NO2 •/O3, radioactive element, or NaNO3/HNO3 in the presence of highly energized electron/light. This study has pioneered a singular pathway used to radicalize surface NO3 - functionalities anchored on polymorphic α-/γ-MnO2 surfaces (α-/γ-MnO2-N), in which Lewis acidic Mn2+/3+ and NO3 - served to form •OH via H2O2 dissection and NO3 • via radical transfer from •OH to NO3 - (•OH → NO3 •), respectively. The elementary steps proposed for the •OH → NO3 • route could be energetically favorable and marginal except for two stages such as endothermic •OH desorption and exothermic •OH-mediated NO3 - radicalization, as verified by EPR spectroscopy experiments and DFT calculations. The Lewis acidic strength of the Mn2+/3+ species innate to α-MnO2-N was the smallest among those inherent to α-/β-/γ-MnO2 and α-/γ-MnO2-N. Hence, α-MnO2-N prompted the rate-determining stage of the •OH → NO3 • route (•OH desorption) in the most efficient manner, as also evidenced by the analysis on the energy barrier required to proceed with the •OH → NO3 • route. Meanwhile, XANES and in situ DRIFT spectroscopy experiments corroborated that α-MnO2-N provided a larger concentration of surface NO3 - species with bi-dentate binding arrays than γ-MnO2-N. Hence, α-MnO2-N could outperform γ-MnO2-N in improving the collision frequency between •OH and NO3 - species and in facilitating the exothermic transition of NO3 - functionalities to surface NO3 • analogues per unit time. These were corroborated by a greater efficiency of α-MnO2-N in decomposing phenol, in addition to scavenging/filtration control runs and DFT calculations. Importantly, supported NO3 • species provided 5-7-fold greater efficiency in degrading textile wastewater than conventional •OH and supported SO4 •- analogues we discovered previously.
Collapse
Affiliation(s)
- Jongsik Kim
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, South
Korea
| | - Yun Jeong Choe
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, South
Korea
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, South Korea
| | - Sang Hoon Kim
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, South
Korea
- Division
of Nano and Information Technology, Korea Institute of Science and
Technology School, University of Science
and Technology, Daejeon 34113, South Korea
| | - In-Suk Choi
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, South Korea
| | - Keunhong Jeong
- Department
of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
11
|
Gorka M, Gruszecki E, Charles P, Kalendra V, Lakshmi KV, Golbeck JH. Two-dimensional HYSCORE spectroscopy reveals a histidine imidazole as the axial ligand to Chl 3A in the M688H PsaA genetic variant of Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148424. [PMID: 33785317 DOI: 10.1016/j.bbabio.2021.148424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Recent studies on Photosystem I (PS I) have shown that the six core chlorophyll a molecules are highly coupled, allowing for efficient creation and stabilization of the charge-separated state. One area of particular interest is the identity and function of the primary acceptor, A0, as the factors that influence its ultrafast processes and redox properties are not yet fully elucidated. It was recently shown that A0 exists as a dimer of the closely-spaced Chl2/Chl3 molecules wherein the reduced A0- state has an asymmetric distribution of electron spin density that favors Chl3. Previous experimental work in which this ligand was changed to a hard base (histidine, M688HPsaA) revealed severely impacted electron transfer processes at both the A0 and A1 acceptors; molecular dynamics simulations further suggested two distinct conformations of PS I in which the His residue coordinates and forms a hydrogen bond to the A0 and A1 cofactors, respectively. In this study, we have applied 2D HYSCORE spectroscopy in conjunction with molecular dynamics simulations and density functional theory calculations to the study of the M688HPsaA variant. Analysis of the hyperfine parameters demonstrates that the His imidazole serves as the axial ligand to the central Mg2+ ion in Chl3A in the M688HPsaA variant. Although the change in ligand identity does not alter delocalization of electron density over the Chl2/Chl3 dimer, a small shift in the asymmetry of delocalization, coupled with the electron withdrawing properties of the ligand, most likely accounts for the inhibition of forward electron transfer in the His-ligated conformation.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
12
|
Gauto D, Dakhlaoui O, Marin-Montesinos I, Hediger S, De Paëpe G. Targeted DNP for biomolecular solid-state NMR. Chem Sci 2021; 12:6223-6237. [PMID: 34084422 PMCID: PMC8115112 DOI: 10.1039/d0sc06959k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.
Collapse
Affiliation(s)
- Diego Gauto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble France
| | - Ildefonso Marin-Montesinos
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- University of Aveiro, CICECO Chem. Dept. Aveiro Portugal
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| |
Collapse
|
13
|
Determining the Electronic Structure of Paramagnetic Intermediates in membrane proteins: A high-resolution 2D 1H hyperfine sublevel correlation study of the redox-active tyrosines of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183422. [DOI: 10.1016/j.bbamem.2020.183422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023]
|
14
|
Bloom BP, Lu Y, Metzger T, Yochelis S, Paltiel Y, Fontanesi C, Mishra S, Tassinari F, Naaman R, Waldeck DH. Asymmetric reactions induced by electron spin polarization. Phys Chem Chem Phys 2020; 22:21570-21582. [PMID: 32697241 DOI: 10.1039/d0cp03129a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Essential aspects of the chiral induced spin selectivity (CISS) effect and their implications for spin-controlled chemistry and asymmetric electrochemical reactions are described. The generation of oxygen through electrolysis is discussed as an example in which chirality-based spin-filtering and spin selection rules can be used to improve the reaction's efficiency and selectivity. Next the discussion shifts to illustrate how the spin selectivity of chiral molecules (CISS properties) allows one to use the electron spin as a chiral bias for inducing asymmetric reactions and promoting enantiospecific processes. Two enantioselective electrochemical reactions that have used polarized electron spins as a chiral reagent are described; enantioselective electroreduction to resolve an enantiomer from a racemic mixture and an oxidative electropolymerization to generate a chiral polymer from achiral monomers. A complementary approach that has used spin-polarized, but otherwise achiral, molecular films to enantiospecifically associate with one enantiomer from a racemic mixture is also discussed. Each of these reaction types use magnetized films to generate the spin polarized electrons and the enantiospecificity can be selected by choice of the magnetization direction, North pole versus South pole. Possible paths for future research in this area and its compatibility with existing methods based on chiral electrodes are discussed.
Collapse
Affiliation(s)
- B P Bloom
- Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Y Lu
- Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Tzuriel Metzger
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Shira Yochelis
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Yossi Paltiel
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Claudio Fontanesi
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Suryakant Mishra
- Dept. of Chemical and Biological Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - Francesco Tassinari
- Dept. of Chemical and Biological Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - Ron Naaman
- Dept. of Chemical and Biological Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - D H Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
Weichselbaumer S, Zens M, Zollitsch CW, Brandt MS, Rotter S, Gross R, Huebl H. Echo Trains in Pulsed Electron Spin Resonance of a Strongly Coupled Spin Ensemble. PHYSICAL REVIEW LETTERS 2020; 125:137701. [PMID: 33034465 DOI: 10.1103/physrevlett.125.137701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
We report on a novel dynamical phenomenon in electron spin resonance experiments of phosphorus donors. When strongly coupling the paramagnetic ensemble to a superconducting lumped element resonator, the coherent exchange between these two subsystems leads to a train of periodic, self-stimulated echoes after a conventional Hahn echo pulse sequence. The presence of these multiecho signatures is explained using a simple model based on spins rotating on the Bloch sphere, backed up by numerical calculations using the inhomogeneous Tavis-Cummings Hamiltonian.
Collapse
Affiliation(s)
- Stefan Weichselbaumer
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
| | - Matthias Zens
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
| | - Christoph W Zollitsch
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
| | - Martin S Brandt
- Physik-Department, Technische Universität München, 85748 Garching, Germany
- Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Stefan Rotter
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Rudolf Gross
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Hans Huebl
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| |
Collapse
|
16
|
Méndez-Hernández DD, Baldansuren A, Kalendra V, Charles P, Mark B, Marshall W, Molnar B, Moore TA, Lakshmi KV, Moore AL. HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. iScience 2020; 23:101366. [PMID: 32738611 PMCID: PMC7394912 DOI: 10.1016/j.isci.2020.101366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 11/24/2022] Open
Abstract
The photosynthetic water-oxidation reaction is catalyzed by the oxygen-evolving complex in photosystem II (PSII) that comprises the Mn4CaO5 cluster, with participation of the redox-active tyrosine residue (YZ) and a hydrogen-bonded network of amino acids and water molecules. It has been proposed that the strong hydrogen bond between YZ and D1-His190 likely renders YZ kinetically and thermodynamically competent leading to highly efficient water oxidation. However, a detailed understanding of the proton-coupled electron transfer (PCET) at YZ remains elusive owing to the transient nature of its intermediate states involving YZ⋅. Herein, we employ a combination of high-resolution two-dimensional 14N hyperfine sublevel correlation spectroscopy and density functional theory methods to investigate a bioinspired artificial photosynthetic reaction center that mimics the PCET process involving the YZ residue of PSII. Our results underscore the importance of proximal water molecules and charge delocalization on the electronic structure of the artificial reaction center. Structural factors are critical in the design of artificial photosynthetic systems Correlation between hyperfine couplings of the N atoms and electron spin density Spin density distribution affected by charge delocalization and explicit waters Spin density modulation by electronic coupling as observed with P680 and YZ in PSII
Collapse
Affiliation(s)
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian Mark
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - William Marshall
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian Molnar
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
17
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
18
|
Charles P, Kalendra V, He Z, Khatami MH, Golbeck JH, van der Est A, Lakshmi KV, Bryant DA. Two-dimensional 67Zn HYSCORE spectroscopy reveals that a Zn-bacteriochlorophyll aP′ dimer is the primary donor (P840) in the type-1 reaction centers of Chloracidobacterium thermophilum. Phys Chem Chem Phys 2020; 22:6457-6467. [DOI: 10.1039/c9cp06556c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using pulsed EPR spectroscopy and isotopic labeling we demonstrate that reaction centers of Chloracidobacterium thermophilum have an unusual primary donor that is a dimer of Zn-bacteriochlorophyll aP′ molecules.
Collapse
Affiliation(s)
- Philip Charles
- Departments of Chemistry and Physics and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Vidmantas Kalendra
- Departments of Chemistry and Physics and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Zhihui He
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- State College
- USA
| | | | - John H. Golbeck
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- State College
- USA
- Department of Chemistry
| | | | - K. V. Lakshmi
- Departments of Chemistry and Physics and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- State College
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
19
|
Keller K, Ritsch I, Hintz H, Hülsmann M, Qi M, Breitgoff FD, Klose D, Polyhach Y, Yulikov M, Godt A, Jeschke G. Accessing distributions of exchange and dipolar couplings in stiff molecular rulers with Cu(ii) centres. Phys Chem Chem Phys 2020; 22:21707-21730. [DOI: 10.1039/d0cp03105d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel approaches to quantitatively analyse distributed exchange couplings are described and tested on experimental data sets for stiff synthetic molecules.
Collapse
|
20
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
21
|
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets. Nat Commun 2019; 10:4619. [PMID: 31601809 PMCID: PMC6787021 DOI: 10.1038/s41467-019-12591-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2019] [Indexed: 11/08/2022] Open
Abstract
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity.
Collapse
|
22
|
Nohr D, Weber S, Schleicher E. EPR spectroscopy on flavin radicals in flavoproteins. Methods Enzymol 2019; 620:251-275. [PMID: 31072489 DOI: 10.1016/bs.mie.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavin semiquinone redox states are important intermediates in a broad variety of reactions catalyzed by flavoproteins. As paramagnetic states they can be favorably probed by EPR spectroscopy in all its flavors. This review summarizes recent results in the characterization of flavin radicals. On the one hand, flavin radical states, e.g., trapped as reaction intermediates, can be characterized using modern pulsed EPR methods to unravel their electronic structure and to gain information about the surrounding environment and its changes on protein action. On the other hand, short-lived intermediate flavin radical states generated, e.g., photochemically, can be followed by time-resolved EPR, which allows a direct tracking of flavin-dependent reactions with a temporal resolution reaching nanoseconds.
Collapse
Affiliation(s)
- Daniel Nohr
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Lampp L, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Bowman MK, Devasahayam N, Krishna MC, Mäder K, Imming P. A radical containing injectable in-situ-oleogel and emulgel for prolonged in-vivo oxygen measurements with CW EPR. Free Radic Biol Med 2019; 130:120-127. [PMID: 30416100 PMCID: PMC8195441 DOI: 10.1016/j.freeradbiomed.2018.10.442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
Molecular oxygen, reactive oxygen species and free radicals derived from oxygen play important roles in a broad spectrum of physiological and pathological processes. The quantitative measurement of molecular oxygen in tissues by electron paramagnetic resonance (EPR) has great potential for understanding and diagnosing a number of diseases, and for developing and guiding therapies. This requires improvements in the free radical probe systems that sense and report molecular oxygen levels in vivo. We report on the encapsulation of existing free radical probes in lipophilic gel implants: an in-situ-oleogel and an emulgel, based only on well-known, safe excipients for the incorporation of lipophilic and hydrophilic radicals, respectively. The EPR signals of encapsulated radicals were not altered compared to dissolved radicals. The high solubility of oxygen in lipophilic solvents enhanced oxygen sensitivity. The gels extended the lifetime of the radicals in tissues from tens of minutes to many days, simplifying studies with extended series of measurements. The encapsulated radicals showed a good in vivo response to changes in oxygen supply and seem to circumvent concerns from toxicity of the radical probes. These gels simplify the development of new oxygen-sensitive free radical probes for EPR oximetry by making their in vivo stability, persistence and toxicity a function of the encapsulating gel and not a set of additional requirements for the free radical probe.
Collapse
Affiliation(s)
- Lisa Lampp
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany; Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, NIH, Bethesda, MD 20892-1002, USA
| | - Olga Yu Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentjev Ave, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry V Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentjev Ave, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentjev Ave, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Michael K Bowman
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| | - Nllathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, NIH, Bethesda, MD 20892-1002, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, NIH, Bethesda, MD 20892-1002, USA
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Peter Imming
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
24
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
25
|
Biophysical methods: Complementary tools to study the influence of human steroid hormones on the liposome membrane properties. Biochimie 2018; 153:13-25. [DOI: 10.1016/j.biochi.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 11/21/2022]
|
26
|
Studying structure and function of membrane proteins with PELDOR/DEER spectroscopy – The crystallographers’ perspective. Methods 2018; 147:163-175. [DOI: 10.1016/j.ymeth.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
|
27
|
Breitgoff FD, Soetbeer J, Doll A, Jeschke G, Polyhach YO. Artefact suppression in 5-pulse double electron electron resonance for distance distribution measurements. Phys Chem Chem Phys 2018; 19:15766-15779. [PMID: 28590496 DOI: 10.1039/c7cp01488k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 5-pulse version of the Double Electron Electron Resonance (DEER) experiment with Carr-Purcell delays and an additional pump pulse has been shown to significantly extend the experimentally accessible distance range in cases where nuclear spin diffusion dominates electron spin phase memory loss [Borbat et al., J. Phys. Chem. Lett., 2013, 4, 170]. We show that the sequence also prolongs coherence decay for spin labels in or near lipid bilayers, where this decay is mono-exponential. Compared to 4-pulse DEER, 5-pulse DEER suffers from additional artefacts that stem from pulse imperfection and excitation band overlap. Only some of these artefacts can be suppressed by phase cycling and the remaining ones have hindered widespread utilization of the method. Here, we report previously unknown additional artefact contributions stemming from overlap between the excitation bands of the microwave pulses that introduce additional dipolar evolution pathways. Experimental conditions are analyzed in detail that suppress these as well as the already known artefacts. Such suppression results in data that contain at most the partial excitation artefact, which can be deliberately shifted in time by a change in pulse timing without affecting the wanted contribution.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Pliotas C. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR. Methods Enzymol 2017; 594:203-242. [PMID: 28779841 DOI: 10.1016/bs.mie.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail.
Collapse
|
29
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
30
|
Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules 2017; 22:molecules22010181. [PMID: 28117726 PMCID: PMC6155876 DOI: 10.3390/molecules22010181] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
During the last decade there has been growing interest in physical-chemical oxidation processes and the behavior of free radicals in living systems. Radicals are known as intermediate species in a variety of biochemical reactions. Numerous techniques, assays and biomarkers have been used to measure reactive oxygen and nitrogen species (ROS and RNS), and to examine oxidative stress. However, many of these assays are not entirely satisfactory or are used inappropriately. The purpose of this chapter is to review current EPR (Electron Paramagnetic Resonance) spectroscopy methods for measuring ROS, RNS, and their secondary products, and to discuss the strengths and limitations of specific methodological approaches.
Collapse
|
31
|
Feng G, Wallman JJ, Buonacorsi B, Cho FH, Park DK, Xin T, Lu D, Baugh J, Laflamme R. Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit. PHYSICAL REVIEW LETTERS 2016; 117:260501. [PMID: 28059528 DOI: 10.1103/physrevlett.117.260501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 06/06/2023]
Abstract
To exploit a given physical system for quantum information processing, it is critical to understand the different types of noise affecting quantum control. Distinguishing coherent and incoherent errors is extremely useful as they can be reduced in different ways. Coherent errors are generally easier to reduce at the hardware level, e.g., by improving calibration, whereas some sources of incoherent errors, e.g., T_{2}^{*} processes, can be reduced by engineering robust pulses. In this work, we illustrate how purity benchmarking and randomized benchmarking can be used together to distinguish between coherent and incoherent errors and to quantify the reduction in both of them due to using optimal control pulses and accounting for the transfer function in an electron spin resonance system. We also prove that purity benchmarking provides bounds on the optimal fidelity and diamond norm that can be achieved by correcting the coherent errors through improving calibration.
Collapse
Affiliation(s)
- Guanru Feng
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Joel J Wallman
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brandon Buonacorsi
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Franklin H Cho
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel K Park
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology, Daejon 34141, South Korea
| | - Tao Xin
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Dawei Lu
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jonathan Baugh
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Raymond Laflamme
- Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
32
|
Investigating the dynamic nature of the ABC transporters: ABCB1 and MsbA as examples for the potential synergies of MD theory and EPR applications. Biochem Soc Trans 2016; 43:1023-32. [PMID: 26517918 DOI: 10.1042/bst20150138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented.
Collapse
|
33
|
Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics. Biochem Soc Trans 2016; 44:905-15. [DOI: 10.1042/bst20160024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/19/2022]
Abstract
During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated.
Collapse
|
34
|
|
35
|
Erlenbach N, Endeward B, Schöps P, Gophane DB, Sigurdsson ST, Prisner TF. Flexibilities of isoindoline-derived spin labels for nucleic acids by orientation selective PELDOR. Phys Chem Chem Phys 2016; 18:16196-201. [DOI: 10.1039/c6cp02475k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The conformational flexibility of new isoindoline-derived spin labels for nucleic acid have been analyzed by multi-frequency/multi-field PELDOR spectroscopy.
Collapse
Affiliation(s)
- N. Erlenbach
- Institute of Physical and Theoretical Chemistry
- Center of Biomolecular Magnetic Resonance
- Goethe University
- D-60438 Frankfurt am Main
- Germany
| | - B. Endeward
- Institute of Physical and Theoretical Chemistry
- Center of Biomolecular Magnetic Resonance
- Goethe University
- D-60438 Frankfurt am Main
- Germany
| | - P. Schöps
- Institute of Physical and Theoretical Chemistry
- Center of Biomolecular Magnetic Resonance
- Goethe University
- D-60438 Frankfurt am Main
- Germany
| | - D. B. Gophane
- Department of Chemistry
- Science Institute University of Iceland
- 107 Reykjavik
- Iceland
| | - S. Th. Sigurdsson
- Department of Chemistry
- Science Institute University of Iceland
- 107 Reykjavik
- Iceland
| | - T. F. Prisner
- Institute of Physical and Theoretical Chemistry
- Center of Biomolecular Magnetic Resonance
- Goethe University
- D-60438 Frankfurt am Main
- Germany
| |
Collapse
|
36
|
Rizzi AC, Neuman NI, González PJ, Brondino CD. EPR as a Tool for Study of Isolated and Coupled Paramagnetic Centers in Coordination Compounds and Macromolecules of Biological Interest. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Ishara Silva K, Jagannathan B, Golbeck JH, Lakshmi KV. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:548-556. [PMID: 26334844 DOI: 10.1016/j.bbabio.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bharat Jagannathan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
| |
Collapse
|
38
|
Nohr D, Rodriguez R, Weber S, Schleicher E. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors? Front Mol Biosci 2015; 2:49. [PMID: 26389123 PMCID: PMC4555020 DOI: 10.3389/fmolb.2015.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.
Collapse
Affiliation(s)
- Daniel Nohr
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Ryan Rodriguez
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Stefan Weber
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Erik Schleicher
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| |
Collapse
|
39
|
Shelke SA, Sandholt GB, Sigurdsson ST. Nitroxide-labeled pyrimidines for non-covalent spin-labeling of abasic sites in DNA and RNA duplexes. Org Biomol Chem 2015; 12:7366-74. [PMID: 25119508 DOI: 10.1039/c4ob01095g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-covalent and site-directed spin labeling gives easy access to spin-labeled nucleic acids for the study of their structure and dynamics by electron paramagnetic resonance (EPR) spectroscopy. In a search for improved spin labels for non-covalent binding to abasic sites in duplex DNA and RNA, ten pyrimidine-derived spin labels were prepared in good yields and their binding was evaluated by continuous wave (CW)-EPR spectroscopy. Most of the spin labels showed lower binding affinity than the previously reported label ç towards abasic sites in DNA and RNA. The most promising labels were triazole-linked spin labels and a pyrrolocytosine label. In particular, the N1-ethylamino derivative of a triazole-linked uracil spin label binds fully to both DNA and RNA containing an abasic site. This is the first example of a spin label that binds fully through non-covalent interactions with an abasic site in RNA.
Collapse
Affiliation(s)
- Sandip A Shelke
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | | |
Collapse
|
40
|
Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W. X-ray crystallography over the past decade for novel drug discovery - where are we heading next? Expert Opin Drug Discov 2015; 10:975-89. [PMID: 26177814 DOI: 10.1517/17460441.2015.1061991] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. AREAS COVERED This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. EXPERT OPINION X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.
Collapse
Affiliation(s)
- Heping Zheng
- University of Virginia, Department of Molecular Physiology and Biological Physics , 1340 Jefferson Park Avenue, Charlottesville, VA 22908 , USA +1 434 243 6865 ; +1 434 243 2981 ;
| | | | | | | | | | | |
Collapse
|
41
|
Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements. Methods Enzymol 2015; 558:333-362. [PMID: 26068746 DOI: 10.1016/bs.mie.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Lisa R Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Cameron D Mackereth
- Institut Européen de Chimie et Biologie, IECB, Univ. Bordeaux, Pessac, France; Inserm, U869, ARNA Laboratory, Bordeaux, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
42
|
Illarionov B, Zhu F, Eisenreich W, Bacher A, Weber S, Fischer M. Preparation of Flavocoenzyme Isotopologues by Biotransformation of Purines. J Org Chem 2015; 80:2539-44. [DOI: 10.1021/jo502480w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Boris Illarionov
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Feng Zhu
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Wolfgang Eisenreich
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 München, Germany
| | - Adelbert Bacher
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 München, Germany
| | - Stefan Weber
- Institut
für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße
21, 79104 Freiburg, Germany
| | - Markus Fischer
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
43
|
Gophane DB, Sigurdsson ST. TEMPO-derived spin labels linked to the nucleobases adenine and cytosine for probing local structural perturbations in DNA by EPR spectroscopy. Beilstein J Org Chem 2015; 11:219-27. [PMID: 25815073 PMCID: PMC4362019 DOI: 10.3762/bjoc.11.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/15/2015] [Indexed: 02/04/2023] Open
Abstract
Three 2´-deoxynucleosides containing semi-flexible spin labels, namely (T)A, (U)A and (U)C, were prepared and incorporated into deoxyoligonucleotides using the phosphoramidite method. All three nucleosides contain 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) connected to the exocyclic amino group; (T)A directly and (U)A as well as (U)C through a urea linkage. (T)A and (U)C showed a minor destabilization of a DNA duplex, as registered by a small decrease in the melting temperature, while (U)A destabilized the duplex by more than 10 °C. Circular dichroism (CD) measurements indicated that all three labels were accommodated in B-DNA duplex. The mobility of the spin label (T)A varied with different base-pairing partners in duplex DNA, with the (T)A•T pair being the least mobile. Furthermore, (T)A showed decreased mobility under acidic conditions for the sequences (T)A•C and (T)A•G, to the extent that the EPR spectrum of the latter became nearly superimposable to that of (T)A•T. The reduced mobility of the (T)A•C and (T)A•G mismatches at pH 5 is consistent with the formation of (T)AH(+)•C and (T)AH(+)•G, in which protonation of N1 of A allows the formation of an additional hydrogen bond to N3 of C and N7 of G, respectively, with G in a syn-conformation. The urea-based spin labels (U)A and (U)C were more mobile than (T)A, but still showed a minor variation in their EPR spectra when paired with A, G, C or T in a DNA duplex. (U)A and (U)C had similar mobility order for the different base pairs, with the lowest mobility when paired with C and the highest when paired with T.
Collapse
Affiliation(s)
- Dnyaneshwar B Gophane
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
44
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
45
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
46
|
Bobko AA, Dhimitruka I, Zweier JL, Khramtsov VV. Fourier transform EPR spectroscopy of trityl radicals for multifunctional assessment of chemical microenvironment. Angew Chem Int Ed Engl 2014; 53:2735-8. [PMID: 24488710 PMCID: PMC3985337 DOI: 10.1002/anie.201310841] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 12/29/2022]
Abstract
Pulse techniques in electron paramagnetic resonance (EPR) allow for a reduction in measurement times and increase in sensitivity but require the synthesis of paramagnetic probes with long relaxation times. Here it is shown that the recently synthesized phosphonated trityl radical possesses long relaxation times that are sensitive to probe the microenvironment, such as oxygenation and acidity of an aqueous solution. In principle, application of Fourier transform EPR (FT-EPR) spectroscopy makes it possible to acquire the entire EPR spectrum of the trityl probe and assess these microenvironmental parameters within a few microseconds. The performed analysis of the FT-EPR spectra takes into consideration oxygen-, proton-, buffer-, and concentration-induced contributions to the spectral shape, therefore enabling quantitative and discriminative assessment of pH, pO2, and concentrations of the probe and inorganic phosphate.
Collapse
Affiliation(s)
- Andrey A. Bobko
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, 201 HLRI, 473 W 12th Ave, Columbus, OH 43210 (USA)
| | - Ilirian Dhimitruka
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, 201 HLRI, 473 W 12th Ave, Columbus, OH 43210 (USA)
| | - Jay L. Zweier
- Dorothy M. Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Ohio (USA)
| | - Valery V. Khramtsov
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, 201 HLRI, 473 W 12th Ave, Columbus, OH 43210 (USA)
| |
Collapse
|
47
|
Bobko AA, Dhimitruka I, Zweier JL, Khramtsov VV. Fourier Transform EPR Spectroscopy of Trityl Radicals for Multifunctional Assessment of Chemical Microenvironment. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Bourrez M, Orio M, Molton F, Vezin H, Duboc C, Deronzier A, Chardon-Noblat S. Pulsed-EPR evidence of a manganese(II) hydroxycarbonyl intermediate in the electrocatalytic reduction of carbon dioxide by a manganese bipyridyl derivative. Angew Chem Int Ed Engl 2013; 53:240-3. [PMID: 24259443 DOI: 10.1002/anie.201306750] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/11/2013] [Indexed: 11/07/2022]
Abstract
A key intermediate in the electroconversion of carbon dioxide to carbon monoxide, catalyzed by a manganese tris(carbonyl) complex, is characterized. Different catalytic pathways and their potential reaction mechanisms are investigated using a large range of experimental and computational techniques. Sophisticated spectroscopic methods including UV/Vis absorption and pulsed-EPR techniques (2P-ESEEM and HYSCORE) were combined together with DFT calculations to successfully identify a key intermediate in the catalytic cycle of CO2 reduction. The results directly show the formation of a metal-carboxylic acid-CO2 adduct after oxidative addition of CO2 and H(+) to a Mn(0) carbonyl dimer, an unexpected intermediate.
Collapse
Affiliation(s)
- Marc Bourrez
- Université Joseph Fourier-Grenoble1/CNRS, Département de Chimie Moléculaire UMR5250, Laboratoire de Chimie Inorganique Redox, Institut de Chimie Moléculaire de Grenoble FR-CNRS-2607, BP53, 38041 Grenoble cedex 09 (France)
| | | | | | | | | | | | | |
Collapse
|
49
|
Bourrez M, Orio M, Molton F, Vezin H, Duboc C, Deronzier A, Chardon-Noblat S. Pulsed-EPR Evidence of a Manganese(II) Hydroxycarbonyl Intermediate in the Electrocatalytic Reduction of Carbon Dioxide by a Manganese Bipyridyl Derivative. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
de Vera IMS, Blackburn ME, Galiano L, Fanucci GE. Pulsed EPR distance measurements in soluble proteins by site-directed spin labeling (SDSL). ACTA ACUST UNITED AC 2013; 74:17.17.1-17.17.29. [PMID: 24510645 DOI: 10.1002/0471140864.ps1717s74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The resurgence of pulsed electron paramagnetic resonance (EPR) in structural biology centers on recent improvements in distance measurements using the double electron-electron resonance (DEER) technique. This unit focuses on EPR-based distance measurements by site-directed spin labeling (SDSL) of engineered cysteine residues in soluble proteins, with HIV-1 protease used as a model. To elucidate conformational changes in proteins, experimental protocols were optimized and existing data analysis programs were employed to derive distance-distribution profiles. Experimental considerations, sample preparation, and error analysis for artifact suppression are also outlined herein.
Collapse
Affiliation(s)
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Luis Galiano
- Department of Chemistry, University of Florida, Gainesville, Florida.,Syngenta Crop Protection, Minnetonka, Minnesota
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, Florida
| |
Collapse
|