1
|
Kim MH, Jang SY, Choi JS, Kim S, Lee Y, Park S, Kwon SJ, Seo JK. HSP90 interacts with VP37 to facilitate the cell-to-cell movement of broad bean wilt virus 2. mBio 2025:e0250024. [PMID: 39969167 DOI: 10.1128/mbio.02500-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
The systemic spread of viruses in plants requires successful viral cell-to-cell movement through plasmodesmata (PD). Viral movement proteins (MPs) interact with cellular proteins to modify and utilize host transport routes. Broad bean wilt virus 2 (BBWV2) moves from cell to cell as a virion through the PD gated by VP37, the MP of BBWV2. However, the host proteins that function in the cell-to-cell movement of BBWV2 remain unclear. In this study, we identified cellular heat shock protein 90 (HSP90) as an interacting partner of VP37. The interaction between HSP90 and VP37 was assessed using the yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation. Tobacco rattle virus-based virus-induced gene silencing analysis revealed that HSP90 silencing significantly inhibited the systemic spread of BBWV2 in Nicotiana benthamiana plants. Furthermore, in planta treatment with geldanamycin (GDA), an inhibitor of the chaperone function of HSP90, demonstrated the necessity of HSP90 in successful cell-to-cell movement and systemic infection of BBWV2. Interestingly, GDA treatment inhibited the HSP90-VP37 interaction at the PD, resulting in the inhibition of VP37-derived tubule formation through the PD. Our results suggest that the HSP90-VP37 interaction regulates VP37-derived tubule formation through the PD, thereby facilitating the cell-to-cell movement of BBWV2.IMPORTANCEThis study highlights the regulatory role of heat shock protein 90 (HSP90) in facilitating the cell-to-cell movement of broad bean wilt virus 2 (BBWV2). HSP90 interacted with VP37, the movement protein of BBWV2, specifically at plasmodesmata (PD). This study demonstrated that the HSP90-VP37 interaction is crucial for viral cell-to-cell movement and the formation of VP37-derived tubules, which are essential structures for virus transport through the PD. The ATP-dependent chaperone activity of HSP90 is integral to this interaction, as demonstrated by the inhibition of virus movement upon treatment with geldanamycin, which disrupts the function of HSP90. These findings elucidate the molecular mechanisms underlying the cell-to-cell movement of plant viruses and highlight the role of HSP90 in viral infection. This study suggests that the chaperone activity of HSP90 may function in changing the conformational structure of VP37, thereby facilitating the assembly and function of virus-induced structures required for viral cell-to-cell movement.
Collapse
Affiliation(s)
- Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seok-Yeong Jang
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Ji-Soo Choi
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sora Kim
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Yubin Lee
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Suejin Park
- Department of Horticulture, Jeonbuk National University, Jeonju, South Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
2
|
Ren Q, Zhang Z, Zhang Y, Zhang Y, Gao Y, Zhang H, Wang X, Wang G, Hong N. Protein P5 of pear chlorotic leaf spot-associated virus is a pathogenic factor that suppresses RNA silencing and enhances virus movement. MOLECULAR PLANT PATHOLOGY 2024; 25:e70015. [PMID: 39412447 PMCID: PMC11481690 DOI: 10.1111/mpp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Pear chlorotic leaf spot-associated virus (PCLSaV) is a newly described emaravirus that infects pear trees. The virus genome consists of at least five single-stranded, negative-sense RNAs. The P5 encoded by RNA5 is unique to PCLSaV. In this study, the RNA silencing suppression (RSS) activity of P5 and its subcellular localization were determined in Nicotiana benthamiana plants by Agrobacterium tumefaciens-mediated expression assays and green fluorescent protein RNA silencing induction. Protein P5 partially suppressed local RNA silencing, strongly suppressed systemic RNA silencing and triggered reactive oxygen species accumulation. The P5 self-interacted and showed subcellular locations in plasmodesmata, endoplasmic reticulum and nucleus. Furthermore, P5 rescued the cell-to-cell movement of a movement defective mutant PVXΔP25 of potato virus X (PVX) and enhanced the pathogenicity of PVX. The N-terminal 1-89 amino acids of the P5 were responsible for the self-interaction ability and RSS activity, for which the signal peptide at positions 1-19 was indispensable. This study demonstrated the function of an emaravirus protein as a pathogenic factor suppressing plant RNA silencing to enhance virus infection and as an enhancer of virus movement.
Collapse
Affiliation(s)
- Qiuting Ren
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zhe Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yongle Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yue Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yujie Gao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Hongyi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Xianhong Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Chen Y, Liang Q, Wei L, Zhou X. Alfalfa Mosaic Virus and White Clover Mosaic Virus Combined Infection Leads to Chloroplast Destruction and Alterations in Photosynthetic Characteristics of Nicotiana benthamiana. Viruses 2024; 16:1255. [PMID: 39205229 PMCID: PMC11359596 DOI: 10.3390/v16081255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alfalfa mosaic virus (AMV) is one of the most widely distributed viruses; it often exhibits combined infection with white clover mosaic virus (WCMV). Even so, little is known about the effects of co-infection with AMV and WCMV on plants. To determine whether there is a synergistic effect of AMV and WCMV co-infection, virus co-infection was studied by electron microscopy, the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and real-time fluorescence quantitative PCR (RT-qPCR) of AMV and WCMV co-infection in Nicotiana benthamiana. Meanwhile, measurements were carried out on the photosynthetic pigments, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters. The results showed that the most severe disease development was induced by AMV and WCMV co-infection, and the disease grade was scale 7. N. benthamiana leaves induced mottled yellow-green alternating patterns, leaf wrinkling, and chlorosis, and chloroplasts were observed to be on the verge of disintegration. The relative accumulation of AMV CP and WCMV CP was significantly increased by 15.44-fold and 10.04-fold upon co-infection compared to that with AMV and WCMV single infection at 21 dpi. In addition, chlorophyll a, chlorophyll b, total chlorophyll, the net photosynthetic rate, the water use efficiency, the apparent electron transport rate, the PSII maximum photochemical efficiency, the actual photochemical quantum yield, and photochemical quenching were significantly reduced in leaves co-infected with AMV and WCMV compared to AMV- or WCMV-infected leaves and CK. On the contrary, the carotenoid content, transpiration rate, stomatal conductance, intercellular CO2 concentration, minimal fluorescence value, and non-photochemical quenching were significantly increased. These findings suggest that there was a synergistic effect between AMV and WCMV, and AMV and WCMV co-infection severely impacted the normal function of photosynthesis in N. benthamiana.
Collapse
Affiliation(s)
| | - Qiaolan Liang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | | | | |
Collapse
|
4
|
Wu HY, Li WH, Weng SH, Tsai WS, Tsai CW. Differential Effects of Two Tomato Begomoviruses on the Life History and Feeding Preference of Bemisia tabaci. INSECTS 2023; 14:870. [PMID: 37999069 PMCID: PMC10671868 DOI: 10.3390/insects14110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Tomato yellow leaf curl disease, caused by a group of closely related tomato yellow leaf curl viruses, is a major threat to tomato cultivation worldwide. These viruses are primarily transmitted by the sweet potato whitefly (Bemisia tabaci) in a persistent-circulative manner, wherein the virus circulates in the body of B. tabaci and infects its tissues. The complex relationship between viruses and whiteflies significantly influences virus transmission, with studies showing varying effects of the former on the life history and feeding preference of the latter. Whether these effects are direct or indirect, and whether they are negative, neutral, or positive, appears to depend on the specific interactions between virus and whitefly species. The tomato yellow leaf curl Thailand virus (TYLCTHV) and the tomato leaf curl Taiwan virus (ToLCTV) are two prevalent begomoviruses in fields in Taiwan. This study examined the direct and indirect effects of TYLCTHV and ToLCTV on the life history traits (longevity, fecundity, nymph survival, and nymph developmental time) and feeding preference of B. tabaci Middle East-Asia Minor 1 (MEAM1). The results revealed that TYLCTHV had no effects on these life history traits or the feeding preference of MEAM1 whiteflies. Although ToLCTV did not directly affect the longevity and fecundity of MEAM1 whiteflies, their fecundity and the nymph developmental time were negatively affected by feeding on ToLCTV-infected plants. In addition, ToLCTV infection also altered the feeding preference of MEAM1 whiteflies. The different effects of virus infection may contribute to the lower prevalence of ToLCTV compared to TYLCTHV in fields in Taiwan.
Collapse
Affiliation(s)
- Hsin-Yu Wu
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Wei-Hua Li
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Sung-Hsia Weng
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi 600335, Taiwan;
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| |
Collapse
|
5
|
Tatineni S, Alexander J, Nunna H. 6K1, NIa-VPg, NIa-Pro, and CP of Wheat Streak Mosaic Virus Are Collective Determinants of Wheat Streak Mosaic Disease in Wheat. PHYTOPATHOLOGY 2023; 113:1115-1127. [PMID: 36537846 DOI: 10.1094/phyto-10-22-0401-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is the causal agent of the most economically important wheat streak mosaic disease of wheat (Triticum aestivum) in the Great Plains region of the United States. WSMV determinants responsible for wheat streak mosaic disease in wheat are unknown. Triticum mosaic virus (TriMV), a wheat-infecting virus, was used as an expression vector for the transient expression of each of the WSMV-encoded cistrons in wheat. WSMV-encoded 6K1, NIa-VPg, NIa-Pro, and CP cistrons in TriMV elicited symptoms specific to different stages of wheat streak mosaic disease without significantly affecting the genomic RNA accumulation. WSMV 6K1 produced early wheat streak mosaic disease-like symptoms of severe chlorotic streaks and patches. NIa-VPg and CP caused severe chlorotic streaks, followed by moderate stunting (only with NIa-VPg) of wheat, mimicking early- and mid-stage symptoms of wheat streak mosaic disease. WSMV NIa-Pro caused mild chlorotic streaks, followed by dark green leaves with severe stunting, representing the late symptoms of wheat streak mosaic disease. Collectively, these data suggest that cumulative effects of WSMV-encoded 6K1, NIa-VPg, NIa-Pro, and CP are responsible for different stages of wheat streak mosaic disease symptoms in wheat. Furthermore, deletion analysis of wheat streak mosaic disease determinants revealed that complete 6K1 and NIa-Pro, amino acids 3 to 60 and 121 to 197 of NIa-VPg, and amino acids 101 to 294 of CP are responsible for wheat streak mosaic disease-like symptoms in wheat. This study suggests that management strategies for wheat streak mosaic disease in wheat should target WSMV determinants of the disease phenotype.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503
| | - Jeffrey Alexander
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Haritha Nunna
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503
| |
Collapse
|
6
|
Jiang T, Du K, Xie J, Sun G, Wang P, Chen X, Cao Z, Wang B, Chao Q, Li X, Fan Z, Zhou T. Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms. Cell Rep 2023; 42:112333. [PMID: 37018076 DOI: 10.1016/j.celrep.2023.112333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Mosaic symptoms are commonly observed in virus-infected plants. However, the underlying mechanism by which viruses cause mosaic symptoms as well as the key regulator(s) involved in this process remain unclear. Here, we investigate maize dwarf mosaic disease caused by sugarcane mosaic virus (SCMV). We find that the manifestation of mosaic symptoms in SCMV-infected maize plants requires light illumination and is correlated with mitochondrial reactive oxidative species (mROS) accumulation. The transcriptomic and metabolomic analyses results together with the genetic and cytopathological evidence indicate that malate and malate circulation pathways play essential roles in promoting mosaic symptom development. Specifically, at the pre-symptomatic infection stage or infection front, SCMV infection elevates the enzymatic activity of pyruvate orthophosphate dikinase by decreasing the phosphorylation of threonine527 under light, resulting in malate overproduction and subsequent mROS accumulation. Our findings indicate that activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms via mROS.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Kaitong Du
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jipeng Xie
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Geng Sun
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pei Wang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Baichen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zaifeng Fan
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Commun Biol 2023; 6:28. [PMID: 36631662 PMCID: PMC9834402 DOI: 10.1038/s42003-023-04427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
Collapse
|
8
|
More P, Agarwal P, Agarwal PK. The Jatropha leaf curl Gujarat virus on infection in Jatropha regulates the sugar and tricarboxylic acid cycle metabolic pathways. 3 Biotech 2022; 12:275. [PMID: 36110567 PMCID: PMC9468196 DOI: 10.1007/s13205-022-03306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Jatropha, a popular biodiesel crop, suffers severe losses due to Jatropha leaf curl Gujarat virus (JLCuGV) infection in Gujarat (India). Metabolite profiling can help to understand the plant's innate immune response to geminivirus infection. Our study aims to compare metabolic profiles of an infected and healthy plant to unravel the changes in biochemical pathways on geminivirus infection in Jatropha. Gas chromatography-mass spectrometry (GC-MS) analysis was performed in healthy and infected tissue of Jatropha field plants which were identified to be infected with geminivirus. GC-MS analysis revealed that the metabolites like sugars, polyols, carboxylic acids, fatty acids, polyphenols, and amino acids were regulated on JLCuGV infection. The sugars (glucose, sucrose, and fructose) increased, while carboxylic acids (malic acid, citric acid and quinic acid) and polyols (galactinol, butanetriol, triethylene glycol, myo-inositol, erythritol) decreased remarkably in infected Jatropha tissue. All these metabolic variations indicated that sugar metabolism and tricarboxylic acid (TCA) cycle pathways are regulated as a defense response and a disease development response to geminivirus infection in Jatropha.
Collapse
Affiliation(s)
- Prashant More
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
9
|
Momo J, Kumar A, Islam K, Ahmad I, Rawoof A, Ramchiary N. A comprehensive update on Capsicum proteomics: Advances and future prospects. J Proteomics 2022; 261:104578. [DOI: 10.1016/j.jprot.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
10
|
Tseliou E, Chondrogiannis C, Kalachanis D, Goudoudaki S, Manoussopoulos Y, Grammatikopoulos G. Integration of biophysical photosynthetic parameters into one photochemical index for early detection of Tobacco Mosaic Virus infection in pepper plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153542. [PMID: 34638005 DOI: 10.1016/j.jplph.2021.153542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Photosynthesis in host plants is significantly reduced by many virus families. The early detection of viral infection before the onset of visual symptoms in both directly and systemically infected leaves is critical in crop protection. Viral pathogens cause a variety of symptoms through modifications of chloroplast structure and function and the response of the photochemistry process is immediate. Therefore, chlorophyll fluorescence monitoring has been extensively investigated the last two decades as a tool for timely assessment of pathogenic threats. Alternatively, the analysis of Chla fluorescence transients offers several interlinked parameters which describe the fate of excitation energy round and through the photosystems. Additionally, OJIP fluorescence transients and leaf reflectance spectra methodologies serve for rapid screening of large number of samples. The objective of the present study was to achieve early detection of viral infection, integrating the multiparametric information of the Chla fluorescence transients and of the leaf reflectance spectra into one photochemical performance index. Infection decreased the maximum quantum yield of PSII (FV/FM), the effective quantum yield of PSII (ΦPSII), the CO2 assimilation rate (A) and the stomatal conductance (gs) in the studied TMV-pepper plant pathosystem, while non-photochemical quenching (NPQ) increased. Some parameters from the OJIP transients and the leaf reflectance spectra were significantly affected 24 h after infection, while others modified three to five days later. Similar results were obtained from systemically infected leaves but with one to three days hysteresis compared to inoculated leaves. Differences between healthy and infected leaves were marginal during the first 24 h post infection. The Integrated Biomarker Response tool was used to create a photochemical infection index (PINFI) which integrates the partial effects of infection on each fluorescence and reflectance index. The PINFI, which to the best of our knowledge is the first photochemical infection index created by the IBR method, discriminated reliably between the infected and healthy leaves of pepper plants from the first 24 h after infection with the TMV.
Collapse
Affiliation(s)
- Eva Tseliou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, 26504, Greece
| | - Christos Chondrogiannis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, 26504, Greece
| | - Dimitrios Kalachanis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, 26504, Greece
| | - Stavroula Goudoudaki
- ELGO-Demeter, Plant Protection Division of Patras, NEO and Amerikis, Patras, 26444, Greece
| | - Yiannis Manoussopoulos
- ELGO-Demeter, Plant Protection Division of Patras, NEO and Amerikis, Patras, 26444, Greece
| | - George Grammatikopoulos
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, 26504, Greece.
| |
Collapse
|
11
|
Martin IR, Vigne E, Velt A, Hily JM, Garcia S, Baltenweck R, Komar V, Rustenholz C, Hugueney P, Lemaire O, Schmitt-Keichinger C. Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop. Viruses 2021; 13:2138. [PMID: 34834945 PMCID: PMC8625034 DOI: 10.3390/v13112138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus-host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Corinne Schmitt-Keichinger
- Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, 68000 Colmar, France; (E.V.); (A.V.); (J.-M.H.); (S.G.); (R.B.); (V.K.); (C.R.); (P.H.); (O.L.)
| |
Collapse
|
12
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
13
|
López-González S, Gómez-Mena C, Sánchez F, Schuetz M, Samuels AL, Ponz F. The Effects of Turnip Mosaic Virus Infections on the Deposition of Secondary Cell Walls and Developmental Defects in Arabidopsis Plants Are Virus-Strain Specific. FRONTIERS IN PLANT SCIENCE 2021; 12:741050. [PMID: 34691118 PMCID: PMC8531753 DOI: 10.3389/fpls.2021.741050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Two isolates of Turnip mosaic virus (UK 1 and JPN 1), representative of two different viral strains, induced differential alterations on secondary cell wall (SCW) development in Arabidopsis thaliana, suggesting cell-type specific effects of these viral infections. These potential effects were analyzed in inflorescence stems and flowers of infected plants, together with other possible cellular effects of the infections. Results obtained from macroscopic and histochemical analyses showed that infection with either virus significantly narrowed stem area, but defects in SCW were only found in JPN 1 infections. In flowers, reduced endothecium lignification was also found for JPN 1, while UK 1 infections induced severe floral cell and organ development alterations. A transcriptomic analysis focused on genes controlling and regulating SCW formation also showed notable differences between both viral isolates. UK 1 infections induced a general transcriptional decrease of most regulatory genes, whereas a more complex pattern of alterations was found in JPN 1 infections. The role of the previously identified viral determinant of most developmental alterations, the P3 protein, was also studied through the use of viral chimeras. No SCW alterations or creeping habit growth were found in infections by the chimeras, indicating that if the P3 viral protein is involved in the determination of these symptoms, it is not the only determinant. Finally, considerations as to the possibility of a taxonomical reappraisal of these TuMV viral strains are provided.
Collapse
Affiliation(s)
- Silvia López-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - A. Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| |
Collapse
|
14
|
Ramesh SV, Yogindran S, Gnanasekaran P, Chakraborty S, Winter S, Pappu HR. Virus and Viroid-Derived Small RNAs as Modulators of Host Gene Expression: Molecular Insights Into Pathogenesis. Front Microbiol 2021; 11:614231. [PMID: 33584579 PMCID: PMC7874048 DOI: 10.3389/fmicb.2020.614231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
Virus-derived siRNAs (vsiRNAs) generated by the host RNA silencing mechanism are effectors of plant’s defense response and act by targeting the viral RNA and DNA in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) pathways, respectively. Contrarily, viral suppressors of RNA silencing (VSRs) compromise the host RNA silencing pathways and also cause disease-associated symptoms. In this backdrop, reports describing the modulation of plant gene(s) expression by vsiRNAs via sequence complementarity between viral small RNAs (sRNAs) and host mRNAs have emerged. In some cases, silencing of host mRNAs by vsiRNAs has been implicated to cause characteristic symptoms of the viral diseases. Similarly, viroid infection results in generation of sRNAs, originating from viroid genomic RNAs, that potentially target host mRNAs causing typical disease-associated symptoms. Pathogen-derived sRNAs have been demonstrated to have the propensity to target wide range of genes including host defense-related genes, genes involved in flowering and reproductive pathways. Recent evidence indicates that vsiRNAs inhibit host RNA silencing to promote viral infection by acting as decoy sRNAs. Nevertheless, it remains unclear if the silencing of host transcripts by viral genome-derived sRNAs are inadvertent effects due to fortuitous pairing between vsiRNA and host mRNA or the result of genuine counter-defense strategy employed by viruses to enhance its survival inside the plant cell. In this review, we analyze the instances of such cross reaction between pathogen-derived vsiRNAs and host mRNAs and discuss the molecular insights regarding the process of pathogenesis.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | - Sneha Yogindran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | - Stephan Winter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
16
|
Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020; 10:547. [PMID: 33269181 DOI: 10.1007/s13205-020-02541-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Plants have evolved according to their environmental conditions and continuously interact with different biological entities. These interactions induce many positive and negative effects on plant metabolism. Many viruses also associate with various plant species and alter their metabolism. Further, virus-plant interaction also alters the expression of many plant hormones. To overcome the biotic stress imposed by the virus's infestation, plants produce different kinds of secondary metabolites that play a significant role in plant defense against the viral infection. In this review, we briefly highlight the mechanism of virus infection, their influence on the plant secondary metabolites and phytohormone biosynthesis in response to the virus-plant interactions.
Collapse
|
17
|
Marwal A, Gaur RK. Host Plant Strategies to Combat Against Viruses Effector Proteins. Curr Genomics 2020; 21:401-410. [PMID: 33093803 PMCID: PMC7536791 DOI: 10.2174/1389202921999200712135131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/02/2023] Open
Abstract
Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant's immunity (pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant-virus interactions. Furthermore, we have discussed regarding ribosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.
Collapse
Affiliation(s)
- Avinash Marwal
- 1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India
| | - Rajarshi Kumar Gaur
- 1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India
| |
Collapse
|
18
|
Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia 2020; 194:429-440. [PMID: 32996004 DOI: 10.1007/s00442-020-04763-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
A growing number of studies suggest that plant viruses manipulate host plant phenotypes to increase transmission-conducive behaviors by vectors. Studies on this phenomenon frequently omit examination of interactions that occur after vectors acquire virions, which provides an incomplete understanding of the ecology of plant virus manipulation. Here, by taking a full factorial approach that considered both the infection status of the host (Montia perfoliata) and viruliferous status of the aphid (Myzus persicae), we explored the effects of a circulative, non-propagative virus (Turnip yellows virus [TuYV]) on a suite of behavior and performance metrics that are relevant for virus transmission. Our results demonstrate that viruliferous aphids exhibited an increased velocity of movement and increased activity levels in locomotor and dispersal-retention assays. They also had increased fecundity and showed a capacity to more efficiently exploit resources by taking less time to reach the phloem and ingesting more sap, regardless of plant infection status. In contrast, non-viruliferous aphids only exhibited enhanced fecundity and biomass on TuYV-infected hosts, and had overall reduced dispersal and locomotor activity relative to viruliferous aphids. In this pathosystem, post-acquisition effects were stronger and more conducive to virus transmission than the purely pre-acquisition effects mediated by virus effects on the host plant. Our study provides additional support for the hypothesis that virus manipulation of vector behavior includes both pre- and post-acquisition effects and demonstrates the importance of considering both components when studying putative virus manipulation strategies.
Collapse
|
19
|
Analysis of host protein interactions in plant viruses: an in silico study using Sesbania mosaic virus. Virus Genes 2020; 56:756-766. [PMID: 32951135 DOI: 10.1007/s11262-020-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
The dynamics of interactions of viral proteins with their host are pivotal in establishing a successful infection and ensuring systemic spread. To uncover these, an in silico analysis of the interactions between the coat protein (CP) of Sesbania mosaic virus (SeMV), a group IV virus with single-stranded positive-sense RNA genome was carried out with the known crystal structures of proteins belonging to the Fabaceae family, which is its natural host. SeMV is an isometric plant virus which infects Sesbania grandiflora, a member of Fabaceae, and causes mosaic symptoms. Earlier results have indicated that the assembly and disassembly events of SeMV favor the formation of CP dimers. Hence, the ability and strength of interactions of CP dimer with the host proteins were assessed using in silico protein-protein docking approaches. A set of 61 unique crystal structures of native proteins belonging to Fabaceae were downloaded from the Protein Data Bank (PDB) and docked with the CP dimer of SeMV. From the docking scores and interaction analysis, the host proteins were ranked according to their strength and significance of interactions with the CP dimers. The leads that were identified present themselves as strong candidates for developing antivirals against not only SeMV but also other related viruses that infect Fabaceae. The study is a prototype to understand host protein interactions in viruses and hosts.
Collapse
|
20
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
21
|
Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, Ferrandino A, Nerva L, Accotto GP, Lanfranco L. Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses 2020; 12:E675. [PMID: 32580438 PMCID: PMC7354615 DOI: 10.3390/v12060675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/30/2023] Open
Abstract
Tomato plants can establish symbiotic interactions with arbuscular mycorrhizal fungi (AMF) able to promote plant nutrition and prime systemic plant defenses against pathogens attack; the mechanism involved is known as mycorrhiza-induced resistance (MIR). However, studies on the effect of AMF on viral infection, still limited and not conclusive, indicate that AMF colonization may have a detrimental effect on plant defenses against viruses, so that the term "mycorrhiza-induced susceptibility" (MIS) has been proposed for these cases. To expand the case studies to a not yet tested viral family, that is, Bromoviridae, we investigated the effect of the colonization by the AMF Funneliformis mosseae on cucumber mosaic virus (CMV) infection in tomato by phenotypic, physiological, biochemical, and transcriptional analyses. Our results showed that the establishment of a functional AM symbiosis is able to limit symptoms development. Physiological and transcriptomic data highlighted that AMF mitigates the drastic downregulation of photosynthesis-related genes and the reduction of photosynthetic CO2 assimilation rate caused by CMV infection. In parallel, an increase of salicylic acid level and a modulation of reactive oxygen species (ROS)-related genes, toward a limitation of ROS accumulation, was specifically observed in CMV-infected mycorrhizal plants. Overall, our data indicate that the AM symbiosis influences the development of CMV infection in tomato plants and exerts a priming effect able to enhance tolerance to viral infection.
Collapse
Affiliation(s)
- Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Unit of Sesto Fiorentino (FI), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy;
| | - Valerio Casarin
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Mara Berti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy;
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
22
|
Mauck KE, Chesnais Q. A synthesis of virus-vector associations reveals important deficiencies in studies on host and vector manipulation by plant viruses. Virus Res 2020; 285:197957. [PMID: 32380208 DOI: 10.1016/j.virusres.2020.197957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Plant viruses face many challenges in agricultural environments. Although crop fields appear to be abundant resources for these pathogens, it may be difficult for viruses to "escape" from crop environments prior to host senescence or harvesting. One way for viruses to increase the odds of persisting outside of agricultural fields across seasons is by evolving traits that increase transmission opportunities between crops and wild plant communities. There is accumulating evidence that some viruses can achieve this by manipulating crop plant phenotypes in ways that enhance transmission by vectors. Putative manipulations occur through alteration of plant cues (color, size, texture, foliar volatiles, in-leaf metabolites, defenses, and leaf cuticles) that mediate vector orientation, feeding, and dispersal behaviors. Virus effects on host phenotypes are not uniform but appear to exhibit convergence depending on virus traits underlying transmission, particularly the duration of probing and feeding required to acquire and inoculate distinct types of plant viruses. This shared congruence in manipulation strategies and mechanisms across divergent virus lineages suggests that such effects may be adaptive. To discern if this is the case, researchers must consider molecular and environmental constraints on virus evolution, including those imposed by insect vectors from organismal to landscape scales. In this review, we synthesize applied research on vector-borne virus transmission in laboratory and field settings to identify the main factors determining transmission opportunities for plant viruses, and thus, selection pressure to evolve manipulative traits. We then examine these outputs in the context of studies reporting putative instances of plant virus manipulation. Our synthesis reveals important disconnects between virus manipulation studies and actual selection pressures imposed by vectors in real-world contexts.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA; Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| |
Collapse
|
23
|
Su Q, Yang F, Yao Q, Peng Z, Tong H, Wang S, Xie W, Wu Q, Zhang Y. A non‐vector herbivore indirectly increases the transmission of a vector‐borne virus by reducing plant chemical defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management College of Agriculture Yangtze University JingzhouHubei China
| | - Fengbo Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management College of Agriculture Yangtze University JingzhouHubei China
| | - Qixi Yao
- Hubei Engineering Technology Center for Pest Forewarning and Management College of Agriculture Yangtze University JingzhouHubei China
| | - Zhengke Peng
- Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Hong Tong
- Hubei Engineering Technology Center for Pest Forewarning and Management College of Agriculture Yangtze University JingzhouHubei China
| | - Shaoli Wang
- Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Qingjun Wu
- Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Youjun Zhang
- Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
24
|
Collum TD, Stone AL, Sherman DJ, Rogers EE, Dardick C, Culver JN. Translatome Profiling of Plum Pox Virus-Infected Leaves in European Plum Reveals Temporal and Spatial Coordination of Defense Responses in Phloem Tissues. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:66-77. [PMID: 31347973 DOI: 10.1094/mpmi-06-19-0152-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus (PPV) is the causative agent of sharka, a devastating disease of stone fruits including peaches, apricots, and plums. PPV infection levels and associated disease symptoms can vary greatly, depending upon the virus strain, host species, or cultivar as well as developmental age of the infected tissues. For example, peaches often exhibit mild symptoms in leaves and fruit while European plums typically display severe chlorotic rings. Systemic virus spread into all host tissues occurs via the phloem, a process that is poorly understood in perennial plant species that undergo a period of dormancy and must annually renew phloem tissues. Currently, little is known about how phloem tissues respond to virus infection. Here, we used translating ribosome affinity purification followed by RNA sequencing to identify phloem- and nonphloem-specific gene responses to PPV infection during leaf development in European plum (Prunus domestica L.). Results showed that, during secondary leaf morphogenesis (4- and 6-week-old leaves), the phloem had a disproportionate response to PPV infection with two- to sixfold more differentially expressed genes (DEGs) in phloem than nonphloem tissues, despite similar levels of viral transcripts. In contrast, in mature 12-week-old leaves, virus transcript levels dropped significantly in phloem tissues but not in nonphloem tissues. This drop in virus transcripts correlated with an 18-fold drop in phloem-specific DEGs. Furthermore, genes associated with defense responses including RNA silencing were spatially coordinated in response to PPV accumulation and were specifically induced in phloem tissues at 4 to 6 weeks. Combined, these findings highlight the temporal and spatial dynamics of leaf tissue responses to virus infection and reveal the importance of phloem responses within a perennial host.
Collapse
Affiliation(s)
- Tamara D Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD, U.S.A
| | - Andrew L Stone
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, U.S.A
| | - Diana J Sherman
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, U.S.A
| | - Elizabeth E Rogers
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, U.S.A
| | - Christopher Dardick
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, U.S.A
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, College Park, MD, U.S.A
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, U.S.A
| |
Collapse
|
25
|
Domingo-Calap ML, Moreno AB, Díaz Pendón JA, Moreno A, Fereres A, López-Moya JJ. Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. PHYTOPATHOLOGY 2020; 110:174-186. [PMID: 31502517 DOI: 10.1094/phyto-04-19-0126-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Antonio Díaz Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Aranzazu Moreno
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Barcelona, Spain
| |
Collapse
|
26
|
Bottom-up regulation of a tritrophic system by Beet yellows virus infection: consequences for aphid-parasitoid foraging behaviour and development. Oecologia 2019; 191:113-125. [PMID: 31342255 DOI: 10.1007/s00442-019-04467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.
Collapse
|
27
|
Pérez-Clemente RM, Montoliu A, Vives-Peris V, Arbona V, Gómez-Cadenas A. Hormonal and metabolic responses of Mexican lime plants to CTV infection. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:40-52. [PMID: 31129470 DOI: 10.1016/j.jplph.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 05/20/2023]
Abstract
Plant viral infections alter gene expression and metabolism in infected host. To study the molecular responses of Mexican lime to CTV infection, an analysis of plant metabolome in response to infection with severe (T318) or mild (T385) isolates of CTV was performed. Healthy plants and those infected with any of the two virus strains showed different metabolite profiles, at different stages of new sprout development. Proline content increased in plants infected with CTV, proportionally to the virulence of the virus strain. Abscisic acid content decreased after virus infection whereas jasmonic and salicylic acid levels increased. CTV infection had an impact on plant secondary metabolism, by stimulating the synthesis of different metabolites such as l-methylhistidine, phenylpropanoid derivatives. These metabolites are common responses of different organisms, including higher mammals, to viral diseases, and its presence in this system points to the existence of universal responses to virus infection among different kingdoms.
Collapse
Affiliation(s)
- Rosa María Pérez-Clemente
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Almudena Montoliu
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
28
|
Osterbaan LJ, Choi J, Kenney J, Flasco M, Vigne E, Schmitt-Keichinger C, Rebelo AR, Heck M, Fuchs M. The Identity of a Single Residue of the RNA-Dependent RNA Polymerase of Grapevine Fanleaf Virus Modulates Vein Clearing in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:790-801. [PMID: 30640575 DOI: 10.1094/mpmi-12-18-0337-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms underlying host plant symptom development upon infection by viruses of the genus Nepovirus in the family Secoviridae, including grapevine fanleaf virus (GFLV), are poorly understood. In the systemic host Nicotiana benthamiana, GFLV strain GHu produces characteristic symptoms of vein clearing in apical leaves, unlike other GFLV strains such as F13, which cause an asymptomatic infection. In this study, we expanded on earlier findings and used reverse genetics to identify residue 802 (lysine, K) of the GFLV-GHu RNA1-encoded RNA-dependent RNA polymerase (1EPol) as a modulator of vein-clearing symptom development in N. benthamiana. Mutations to this site abolished (K to G, A, or Q) or attenuated (K to N or P) symptom expression. Noteworthy, residue 802 is necessary but not sufficient for vein clearing, as GFLV-F13 RNA1 carrying K802 remained asymptomatic in N. benthamiana. No correlation was found between symptom expression and RNA1 accumulation, as shown by reverse transcription-quantitative polymerase chain reaction. Additionally, the involvement of RNA silencing of vein clearing was ruled out by virus-induced gene silencing experiments and structure predictions for protein 1EPol suggested that residue 802 is flanked by strongly predicted stable secondary structures, including a conserved motif of unknown function (805LLKT/AHLK/RT/ALR814). Together, these results reveal the protein nature of the GFLV-GHu symptom determinant in N. benthamiana and provide a solid basis for probing and determining the virus-host proteome network for symptoms of vein clearing.
Collapse
Affiliation(s)
- Larissa J Osterbaan
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Jiyeong Choi
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Jaimie Kenney
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Madison Flasco
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Emmanuelle Vigne
- 2 UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, 68000 Colmar, France
| | | | - Ana Rita Rebelo
- 3 Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, U.S.A
| | - Michelle Heck
- 3 Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, U.S.A
- 4 Boyce Thompson Research Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, U.S.A
- 5 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Marc Fuchs
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| |
Collapse
|
29
|
Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M. Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 2019; 39:587-601. [PMID: 30947560 DOI: 10.1080/07388551.2019.1597830] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Small RNAs (sRNA) are reported to play pivotal roles in the epigenetic and post-transcriptional regulation of gene expression during growth, development, and stress response in plants. Recently, the involvement of two different classes of sRNAs namely, miRNAs (microRNAs), and siRNAs (small interfering RNAs) in biotic stress response has been underlined. Notably, during virus infection, these sRNAs deploy antiviral defense by regulating the gene expression of the modulators of host defense pathways. As a counter defense, viruses have evolved strategic pathways involving the production of suppressors that interfere with the host silencing machinery. This molecular arms race between the sophisticated gene regulatory mechanism of host plants fine-tuned by sRNAs and the defense response exhibited by the virus has gained much attention among the researchers. So far, several reports have been published showing the mechanistic insights on sRNA-regulated defense mechanism in response to virus infection in several crop plants. In this context, our review enumerates the molecular mechanisms underlying host immunity against viruses mediated by sRNAs, the counter defense strategies employed by viruses to surpass this immunogenic response and the advances made in our understanding of plant-virus interactions. Altogether, the report would be insightful for the researchers working to decode the sRNA-mediated defense response in crop plants challenged with virus infection.
Collapse
Affiliation(s)
- Ashish Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| | - Namisha Sharma
- a National Institute of Plant Genome Research , New Delhi , India
| | - Mehanathan Muthamilarasan
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Sumi Rana
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Manoj Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| |
Collapse
|
30
|
de Haro LA, Arellano SM, Novák O, Feil R, Dumón AD, Mattio MF, Tarkowská D, Llauger G, Strnad M, Lunn JE, Pearce S, Figueroa CM, del Vas M. Mal de Río Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BMC PLANT BIOLOGY 2019; 19:112. [PMID: 30902042 PMCID: PMC6431059 DOI: 10.1186/s12870-019-1709-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Mal de Río Cuarto virus (MRCV) infects several monocotyledonous species including maize and wheat. Infected plants show shortened internodes, partial sterility, increased tillering and reduced root length. To better understand the molecular basis of the plant-virus interactions leading to these symptoms, we combined RNA sequencing with metabolite and hormone measurements. RESULTS More than 3000 differentially accumulated transcripts (DATs) were detected in MRCV-infected wheat plants at 21 days post inoculation compared to mock-inoculated plants. Infected plants exhibited decreased levels of TaSWEET13 transcripts, which are involved in sucrose phloem loading. Soluble sugars, starch, trehalose 6-phosphate (Tre6P), and organic and amino acids were all higher in MRCV-infected plants. In addition, several transcripts related to plant hormone metabolism, transport and signalling were increased upon MRCV infection. Transcripts coding for GA20ox, D14, MAX2 and SMAX1-like proteins involved in gibberellin biosynthesis and strigolactone signalling, were reduced. Transcripts involved in jasmonic acid, ethylene and brassinosteroid biosynthesis, perception and signalling and in auxin transport were also altered. Hormone measurements showed that jasmonic acid, brassinosteroids, abscisic acid and indole-3-acetic acid were significantly higher in infected leaves. CONCLUSIONS Our results indicate that MRCV causes a profound hormonal imbalance that, together with alterations in sugar partitioning, could account for the symptoms observed in MRCV-infected plants.
Collapse
Affiliation(s)
| | - Sofía Maité Arellano
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| | - Ondrej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Gabriela Llauger
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO USA
| | | | - Mariana del Vas
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| |
Collapse
|
31
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
32
|
Wang Q, Li J, Dang C, Chang X, Fang Q, Stanley D, Ye G. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior. PLoS One 2018; 13:e0203364. [PMID: 30192810 PMCID: PMC6128522 DOI: 10.1371/journal.pone.0203364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Host plants, pathogens and their herbivore vectors systems have complex relationships via direct and indirect interactions. Although there are substantial gaps in understanding these systems, the dynamics of the relationships may influence the processes of virus transmission and plant disease epidemics. Rice dwarf virus (RDV) is mainly vectored by green rice leafhoppers (GRLHs), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae) in a persistently circulative manner. In this study, host plant selection preferences of non-viruliferous and viruliferous (carrying RDV) GRLHs between RDV-free and RDV-infected plants were tested. Non-viruliferous GRLHs preferred RDV-infected rice plants over RDV-free rice plants, and viruliferous GRLHs preferred RDV-free rice plants over RDV-infected rice plants. In odor selection preference bioassay using a four-field olfactometer, non-viruliferous GRLHs preferred odors of RDV-infected rice plants over healthy rice and viruliferous GRLHs preferred odors of RDV-free rice plants over RDV-infected ones. In 6 h plant penetration behavior bioassay using electrical penetration graphs, non-viruliferous GRLHs spent shorter time in non-penetration and much longer time in xylem feeding on RDV-infected, compared to RDV-free rice plants. Viruliferous GRLHs exhibited more salivation and stylet movement on RDV-free rice plants than on RDV-infected rice plants. We infer from these findings that RDV influences these vector behaviors by altering host plant physiology to promote viral transmission.
Collapse
Affiliation(s)
- Qianjin Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xuefei Chang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia MO, United States of America
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
33
|
Fernández-Crespo E, Navarro JA, Serra-Soriano M, Finiti I, García-Agustín P, Pallás V, González-Bosch C. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation. FRONTIERS IN PLANT SCIENCE 2017; 8:1793. [PMID: 29104580 PMCID: PMC5655017 DOI: 10.3389/fpls.2017.01793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/02/2017] [Indexed: 05/25/2023]
Abstract
Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.
Collapse
Affiliation(s)
- Emma Fernández-Crespo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Universitat Jaume I, Castellon de la Plana, Spain
| | - Jose A. Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Valencia, Spain
| | - Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Valencia, Spain
| | - Iván Finiti
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, Valencia, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Universitat Jaume I, Castellon de la Plana, Spain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Valencia, Spain
| | - Carmen González-Bosch
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, Valencia, Spain
| |
Collapse
|
34
|
Guo S, Wong SM. Deep sequencing analysis reveals a TMV mutant with a poly(A) tract reduces host defense responses in Nicotiana benthamiana. Virus Res 2017; 239:126-135. [PMID: 28082213 DOI: 10.1016/j.virusres.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 12/24/2022]
Abstract
Tobacco mosaic virus (TMV) possesses an upstream pseudoknotted domain (UPD), which is important for replication. After substituting the UPD with an internal poly(A) tract (43 nt), a mutant TMV-43A was constructed. TMV-43A replicated slower than TMV and induced a non-lethal mosaic symptom in Nicotiana benthamiana. In this study, deep sequencing was performed to detect the differences of small RNA profiles between TMV- and TMV-43A-infected N. benthamiana. The results showed that TMV-43A produced lesser amount of virus-derived interfering RNAs (vsiRNAs) than that of TMV. However, the distributions of vsiRNAs generation hotspots between TMV and TMV-43A were similar. Expression of genes related to small RNA biogenesis in TMV-43A-infected N. benthamiana was significantly lower than that of TMV, which leads to generation of lesser vsiRNAs. The expressions of host defense response genes were up-regulated after TMV infection, as compared to TMV-43A-infected plants. Host defense response to TMV-43A infection was lower than that to TMV. The absence of UPD might contribute to the reduced host response to TMV-43A. Our study provides valuable information in the role of the UPD in eliciting host response genes after TMV infection in N. benthamiana. (187 words).
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore; Temasek Life Sciences Laboratory, Singapore, Republic of Singapore; National University of Singapore Research Institute in Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Xiong G, Liu X, Qiu P, Wu X, Du Z, Zhang J, Yang L, Wu Z. Rice grassy stunt virus p5 interacts with two protein components of the plant-specific CBL-CIPK Ca +2 signaling network of rice. Virus Genes 2017; 53:446-453. [PMID: 28213698 DOI: 10.1007/s11262-017-1437-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Rice grassy stunt virus (RGSV) is a tenuivirus posing a threat to rice production in many South, Southeast, and East Asian countries. To date, no host factor interacting with RGSV has been reported. In this study, we screened a rice cDNA library with the GAL4-based yeast two-hybrid system using RGSV p5 as the bait. One of the candidate host factors interacting with RGSV p5 was found to be CBL-interacting protein kinase 25 (OsCIPK25), a member of the plant-specific CBL-CIPK Ca2+ signaling network. The interaction between RGSV p5 and OsCIPK25, as well as OsCIPK5, which is closely related to OsCIPK25, was confirmed by their cellular co-localization and by a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Given the importance of CIPKs in the regulation of ion homeostasis and the resemblance of RGSV symptoms to potassium deficiency in rice, we evaluated potassium content of RGSV-infected rice and found it to be much lower than that in the healthy rice.
Collapse
Affiliation(s)
- Guihong Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaojuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoyong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Liang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
36
|
Baculovirus LEF-11 Hijack Host ATPase ATAD3A to Promote Virus Multiplication in Bombyx mori cells. Sci Rep 2017; 7:46187. [PMID: 28393927 PMCID: PMC5385504 DOI: 10.1038/srep46187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 11/22/2022] Open
Abstract
Research on molecular mechanisms that viruses use to regulate the host apparatus is important in virus infection control and antiviral therapy exploration. Our previous research showed that the Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 localized to dense regions of the cell nucleus and is required for viral DNA replication. Herein, we examined the mechanism of LEF-11 on BmNPV multiplication and demonstrated that baculovirus LEF-11 interacts with Bombyx mori ATAD3A and HSPD1 (HSP60) protein. Furthermore, we showed that LEF-11 has the ability to induce and up-regulate the expression of ATAD3A and HSPD1, phenomena that were both reversed upon knockdown of lef-11. Our findings showed that ATAD3A and HSPD1 were necessary and contributed to BmNPV multiplication in Bombyx mori cells. Moreover, ATAD3A was found to directly interact with HSPD1. Interestingly, ATAD3A was required for the expression of HSPD1, while the knockdown of HSPD1 had no obvious effect on the expression level of ATAD3A. Taken together, the data presented in the current study demonstrated that baculovirus LEF-11 hijacks the host ATPase family members, ATAD3A and HSPD1, efficiently promote the multiplication of the virus. This study furthers our understanding of how baculovirus modulates energy metabolism of the host and provides a new insight into the molecular mechanisms of antiviral research.
Collapse
|
37
|
Bubici G, Carluccio AV, Stavolone L, Cillo F. Prosystemin overexpression induces transcriptional modifications of defense-related and receptor-like kinase genes and reduces the susceptibility to Cucumber mosaic virus and its satellite RNAs in transgenic tomato plants. PLoS One 2017; 12:e0171902. [PMID: 28182745 PMCID: PMC5300215 DOI: 10.1371/journal.pone.0171902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
Systemin is a plant signal peptide hormone involved in the responses to wounding and insect damage in the Solanaceae family. It works in the same signaling pathway of jasmonic acid (JA) and enhances the expression of proteinase inhibitors. With the aim of studying a role for systemin in plant antiviral responses, a tomato (Solanum lycopersicum) transgenic line overexpressing the prosystemin cDNA, i.e. the systemin precursor, was inoculated with Cucumber mosaic virus (CMV) strain Fny supporting either a necrogenic or a non-necrogenic satellite RNA (satRNA) variant. Transgenic plants showed reduced susceptibility to both CMV/satRNA combinations. While symptoms of the non-necrogenic inoculum were completely suppressed, a delayed onset of lethal disease occurred in about half of plants challenged with the necrogenic inoculum. RT-qPCR analysis showed a correlation between the systemin-mediated reduced susceptibility and the JA biosynthetic and signaling pathways (e.g. transcriptional alteration of lipoxygenase D and proteinase inhibitor II). Moreover, transgenically overexpressed systemin modulated the expression of a selected set of receptor-like protein kinase (RLK) genes, including some playing a known role in plant innate immunity. A significant correlation was found between the expression profiles of some RLKs and the systemin-mediated reduced susceptibility to CMV/satRNA. These results show that systemin can increase plant defenses against CMV/satRNA through transcriptional reprogramming of diverse signaling pathways.
Collapse
Affiliation(s)
- Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna Vittoria Carluccio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy.,International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| | - Fabrizio Cillo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
38
|
Blanco-Ulate B, Hopfer H, Figueroa-Balderas R, Ye Z, Rivero RM, Albacete A, Pérez-Alfocea F, Koyama R, Anderson MM, Smith RJ, Ebeler SE, Cantu D. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1225-1238. [PMID: 28338755 PMCID: PMC5444480 DOI: 10.1093/jxb/erw506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Helene Hopfer
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Zirou Ye
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Rosa M Rivero
- CEBAS-CSIC, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | - Renata Koyama
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
- Department of Agronomy, Londrina State University, Celso Garcia Cid Road, Londrina, PR, 86057-970, Brazil
| | - Michael M Anderson
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Rhonda J Smith
- University of California Cooperative Extension, Sonoma County, Santa Rosa, CA 95403, USA
| | - Susan E Ebeler
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
39
|
Aparicio F, Pallás V. The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response. MOLECULAR PLANT PATHOLOGY 2017; 18:173-186. [PMID: 26929142 PMCID: PMC6638206 DOI: 10.1111/mpp.12388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 05/03/2023]
Abstract
During virus infection, specific viral component-host factor interaction elicits the transcriptional reprogramming of diverse cellular pathways. Alfalfa mosaic virus (AMV) can establish a compatible interaction in tobacco and Arabidopsis hosts. We show that the coat protein (CP) of AMV interacts directly with transcription factor (TF) ILR3 of both species. ILR3 is a basic helix-loop-helix (bHLH) family member of TFs, previously proposed to participate in diverse metabolic pathways. ILR3 has been shown to regulate NEET in Arabidopsis, a critical protein in plant development, senescence, iron metabolism and reactive oxygen species (ROS) homeostasis. We show that the AMV CP-ILR3 interaction causes a fraction of this TF to relocate from the nucleus to the nucleolus. ROS, pathogenesis-related protein 1 (PR1) mRNAs, salicylic acid (SA) and jasmonic acid (JA) contents are increased in healthy Arabidopsis loss-of-function ILR3 mutant (ilr3.2) plants, which implicates ILR3 in the regulation of plant defence responses. In AMV-infected wild-type (wt) plants, NEET expression is reduced slightly, but is induced significantly in ilr3.2 mutant plants. Furthermore, the accumulation of SA and JA is induced in Arabidopsis wt-infected plants. AMV infection in ilr3.2 plants increases JA by over 10-fold, and SA is reduced significantly, indicating an antagonist crosstalk effect. The accumulation levels of viral RNAs are decreased significantly in ilr3.2 mutants, but the virus can still systemically invade the plant. The AMV CP-ILR3 interaction may down-regulate a host factor, NEET, leading to the activation of plant hormone responses to obtain a hormonal equilibrium state, where infection remains at a level that does not affect plant viability.
Collapse
Affiliation(s)
- Frederic Aparicio
- Department of Molecular and Evolutionary Plant VirologyInstituto de Biología Molecular y Celular de Plantas (IBMCP) (UPV‐CSIC)Ingeniero Fausto Elio s/n46022ValenciaSpain
| | - Vicente Pallás
- Department of Molecular and Evolutionary Plant VirologyInstituto de Biología Molecular y Celular de Plantas (IBMCP) (UPV‐CSIC)Ingeniero Fausto Elio s/n46022ValenciaSpain
| |
Collapse
|
40
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
41
|
Murphy JF, Morawo T. Comparative Evaluation of Disease Induced by Three Strains of Tobacco etch virus in Capsicum annuum L. PLANT DISEASE 2017; 101:217-223. [PMID: 30682298 DOI: 10.1094/pdis-07-16-1002-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tobacco etch virus (TEV; genus Potyvirus) strains HAT, Mex21, and N were evaluated comparatively for their pathogenicity and effects on growth of Capsicum annuum L. 'Calwonder'. Each TEV strain induced an initial systemic symptom of vein-clearing but subsequent disease symptoms ranged from mild (HAT) to moderate (Mex21) to severe (N). Effects on plant growth parameters closely reflected disease symptoms induced by each TEV strain. HAT-infected Calwonder plants did not differ from the healthy control for plant height, internode lengths, and aboveground fresh weight of shoots. Root dry weight, however, was less for HAT-infected plants than for the healthy control. Mex21 affected plants more severely, with significantly shorter plant height (at 20, 30, and 40 days postinoculation), reduced root dry weight, and shortened internodes compared with HAT and healthy control treatments. Aboveground fresh weight of Mex21-infected plants was significantly less than for the healthy control. N induced significant negative effects relative to each of the other treatments for plant height, aboveground shoot fresh weight, root dry weight, and internode lengths. The effects on Calwonder fruit production mimicked disease severity and effects on plant growth for the respective TEV strains.
Collapse
Affiliation(s)
- John F Murphy
- Department of Entomology & Plant Pathology, Auburn University, AL 36849
| | - Tolulope Morawo
- Department of Entomology & Plant Pathology, Auburn University, AL 36849
| |
Collapse
|
42
|
Conti G, Zavallo D, Venturuzzi AL, Rodriguez MC, Crespi M, Asurmendi S. TMV induces RNA decay pathways to modulate gene silencing and disease symptoms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:73-84. [PMID: 27599263 DOI: 10.1111/tpj.13323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
RNA decay pathways comprise a combination of RNA degradation mechanisms that are implicated in gene expression, development and defense responses in eukaryotes. These mechanisms are known as the RNA Quality Control or RQC pathways. In plants, another important RNA degradation mechanism is the post-transcriptional gene silencing (PTGS) mediated by small RNAs (siRNAs). Notably, the RQC pathway antagonizes PTGS by preventing the entry of dysfunctional mRNAs into the silencing pathway to avoid global degradation of mRNA by siRNAs. Viral transcripts must evade RNA degrading mechanisms, thus viruses encode PTGS suppressor proteins to counteract viral RNA silencing. Here, we demonstrate that tobacco plants infected with TMV and transgenic lines expressing TMV MP and CP (coat protein) proteins (which are not linked to the suppression of silencing) display increased transcriptional levels of RNA decay genes. These plants also showed accumulation of cytoplasmic RNA granules with altered structure, increased rates of RNA decay for transgenes and defective transgene PTGS amplification. Furthermore, knockdown of RRP41 or RRP43 RNA exosome components led to lower levels of TMV accumulation with milder symptoms after infection, several developmental defects and miRNA deregulation. Thus, we propose that TMV proteins induce RNA decay pathways (in particular exosome components) to impair antiviral PTGS and this defensive mechanism would constitute an additional counter-defense strategy that lead to disease symptoms.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
| | - Andrea L Venturuzzi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| | | | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, CNRS, INRA, University Paris-Sud, Orsay, France
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| |
Collapse
|
43
|
Rodrigo G, Daròs JA, Elena SF. Virus-host interactome: Putting the accent on how it changes. J Proteomics 2016; 156:1-4. [PMID: 28007618 DOI: 10.1016/j.jprot.2016.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/26/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022]
Abstract
Viral infections are extremely complex processes that could only be well understood by precisely characterizing the interaction networks between the virus and the host components. In recent years, much effort has gone in this direction with the aim of unveiling the molecular basis of viral pathology. These networks are mostly formed by viral and host proteins, and are expected to be dynamic both with time and space (i.e., with the progression of infection, as well as with the virus and host genotypes; what we call plastodynamic). This largely overlooked spatio-temporal evolution urgently calls for a change both in the conceptual paradigms and experimental techniques used so far to characterize virus-host interactions. More generally, molecular plasticity and temporal dynamics are unavoidable components of the mechanisms that underlie any complex disease; components whose understanding will eventually enhance our ability to modulate those networks with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, 46022, Valencia, Spain; Instituto de Biología Integrativa y de Sistemas, Consejo Superior de Investigaciones Científicas - Universitat de València, 46980 Paterna, Spain.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, 46022, Valencia, Spain.
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, 46022, Valencia, Spain; Instituto de Biología Integrativa y de Sistemas, Consejo Superior de Investigaciones Científicas - Universitat de València, 46980 Paterna, Spain; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
44
|
Bagherian SAA, Hamzehzarghani H, Izadpanah K, Djavaheri M. Effects of potato spindle tuber viroid infection on tomato metabolic profile. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:42-53. [PMID: 27393919 DOI: 10.1016/j.jplph.2016.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Viroids are the smallest plant pathogens consisting of a single stranded circular RNA molecule with a strong secondary structure, lacking a coat protein or any other proteins. The mechanism of viroid pathogenicity has remained unclear. Recent advances in instrumentation and data mining have made it possible to study the effects of various stresses on primary and secondary metabolisms. Here, we have utilized metabolic profiling approach to show how PSTVd infection alters tomato metabolic profile and the related pathways. Three terminal leaflets of third true leaf of 20-day-old tolerant tomato cultivar 'Moneymaker' were mechanically inoculated by PSTVd intermediate variant cDNAs and samples were taken from eighth leaf, 19days post-inoculation. Metabolites were extracted and analyzed by gas chromatography/mass spectrometry (GC/MS) and subjected to statistical data analysis. Affected pathways were identified by Pathway Tools program and were compared with microarray data previously reported. The study showed that 79 metabolites changed significantly and 23 pathways were identified in relation to these metabolites. Fourteen of these pathways were similar to those reported in other works. The altered pathways in PSTVd infected tomato leaves included, eight cutin and wax biosynthesis, seven pathways that produce defense related compounds, two energy generator pathways, three hormone biosynthesis pathways, two signal transduction pathways, and one nucleotide biosynthesis pathway. Our data on up/down-regulation of pathways supported the data produced on their corresponding gene(s) up/down-regulation.
Collapse
Affiliation(s)
| | | | | | - Mohammad Djavaheri
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
45
|
Li Y, Cui H, Cui X, Wang A. The altered photosynthetic machinery during compatible virus infection. Curr Opin Virol 2016; 17:19-24. [DOI: 10.1016/j.coviro.2015.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/22/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
|
46
|
Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol 2016; 17:11-18. [DOI: 10.1016/j.coviro.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
|
47
|
Schoelz JE, Angel CA, Nelson RS, Leisner SM. A model for intracellular movement of Cauliflower mosaic virus: the concept of the mobile virion factory. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2039-48. [PMID: 26687180 DOI: 10.1093/jxb/erv520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genomes of many plant viruses have a coding capacity limited to <10 proteins, yet it is becoming increasingly clear that individual plant virus proteins may interact with several targets in the host for establishment of infection. As new functions are uncovered for individual viral proteins, virologists have realized that the apparent simplicity of the virus genome is an illusion that belies the true impact that plant viruses have on host physiology. In this review, we discuss our evolving understanding of the function of the P6 protein of Cauliflower mosaic virus (CaMV), a process that was initiated nearly 35 years ago when the CaMV P6 protein was first described as the 'major inclusion body protein' (IB) present in infected plants. P6 is now referred to in most articles as the transactivator (TAV)/viroplasmin protein, because the first viral function to be characterized for the Caulimovirus P6 protein beyond its role as an inclusion body protein (the viroplasmin) was its role in translational transactivation (the TAV function). This review will discuss the currently accepted functions for P6 and then present the evidence for an entirely new function for P6 in intracellular movement.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Richard S Nelson
- The Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
48
|
Su Q, Mescher MC, Wang S, Chen G, Xie W, Wu Q, Wang W, Zhang Y. Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. PLANT, CELL & ENVIRONMENT 2016; 39:597-607. [PMID: 26436779 DOI: 10.1111/pce.12650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Plants frequently engage in simultaneous interactions with diverse classes of biotic antagonists. Differential induction of plant defence pathways by these antagonists, and interactions between pathways, can have important ecological implications; however, these effects are currently not well understood. We explored how Tomato yellow leaf curl virus (TYLCV) influenced the performance of its vector (Bemisia tabaci) and a non-vector herbivore (Tetranychus urticae) occurring separately or together on tomato plants (Solanum lycopersicum). TYLCV enhanced the performance of B. tabaci, although this effect was statistically significant only in the absence of T. urticae, which adversely affected B. tabaci performance regardless of infection status. In contrast, the performance of T. urticae was enhanced (only) by the combined presence of TYLCV and B. tabaci. Analyses of phytohormone levels and defence gene expression in wild-type tomatoes and various plant-defence mutants indicate that the enhancement of herbivore performance (for each species) entails the disruption of downstream defences in the jasmonic acid (JA) pathway. For T. urticae, this disruption appears to involve antagonistic effects of salicylic acid (SA), which is cumulatively induced to high levels by B. tabaci and TYLCV. In contrast, TYLCV was found to suppress JA-mediated responses to B. tabaci via mechanisms independent of SA.
Collapse
Affiliation(s)
- Qi Su
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gong Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
49
|
Alabi OJ, Casassa LF, Gutha LR, Larsen RC, Henick-Kling T, Harbertson JF, Naidu RA. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar. PLoS One 2016; 11:e0149666. [PMID: 26919614 PMCID: PMC4769264 DOI: 10.1371/journal.pone.0149666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/17/2016] [Indexed: 12/26/2022] Open
Abstract
Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.
Collapse
Affiliation(s)
- Olufemi J. Alabi
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | - L. Federico Casassa
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Linga R. Gutha
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | - Richard C. Larsen
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Thomas Henick-Kling
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - James F. Harbertson
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Rayapati A. Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
- * E-mail:
| |
Collapse
|
50
|
The battle for survival between viruses and their host plants. Curr Opin Virol 2016; 17:32-38. [PMID: 26800310 DOI: 10.1016/j.coviro.2015.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
Evolution has equipped plants with defense mechanisms to counterattack virus infections. However, some viruses have acquired the capacity to escape these defense barriers. In their combats, plants use mechanisms such as antiviral RNA silencing that viruses fight against using silencing-repressors. Plants could also resist by mutating a host factor required by the virus to complete a particular step of its infectious cycle. Another successful mechanism of resistance is the hypersensitive response, where plants engineer R genes that recognize specifically their assailants. The recognition is followed by the triggering of a broad spectrum resistance. New understanding of such resistance mechanisms will probably helps to propose new means to enhance plant resistance against viruses.
Collapse
|