1
|
Yang H, Wang G, Li Z, Li H, Zheng J, Hu Y, Cao X, Liao C, Ye H, Tian Q. Artificial intelligence for neuro MRI acquisition: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:383-396. [PMID: 38922525 DOI: 10.1007/s10334-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECT To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.
Collapse
Affiliation(s)
- Hongjia Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Haoxiang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Jialan Zheng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Congyu Liao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Huihui Ye
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Ariyasingha NM, Samoilenko A, Birchall JR, Chowdhury MRH, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Zhu DC, Qian C, Bradley M, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing. ACS Sens 2023; 8:3845-3854. [PMID: 37772716 PMCID: PMC10902876 DOI: 10.1021/acssensors.3c01369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Bradley
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202, United States
| | - Juri G Gelovani
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Siriraj Hospital Mahidol University, 10700, Bangkok, Thailand
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
3
|
Maino C, Vernuccio F, Cannella R, Cortese F, Franco PN, Gaetani C, Giannini V, Inchingolo R, Ippolito D, Defeudis A, Pilato G, Tore D, Faletti R, Gatti M. Liver metastases: The role of magnetic resonance imaging. World J Gastroenterol 2023; 29:5180-5197. [PMID: 37901445 PMCID: PMC10600959 DOI: 10.3748/wjg.v29.i36.5180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
The liver is one of the organs most commonly involved in metastatic disease, especially due to its unique vascularization. It's well known that liver metastases represent the most common hepatic malignant tumors. From a practical point of view, it's of utmost importance to evaluate the presence of liver metastases when staging oncologic patients, to select the best treatment possible, and finally to predict the overall prognosis. In the past few years, imaging techniques have gained a central role in identifying liver metastases, thanks to ultrasonography, contrast-enhanced computed tomography (CT), and magnetic resonance imaging (MRI). All these techniques, especially CT and MRI, can be considered the non-invasive reference standard techniques for the assessment of liver involvement by metastases. On the other hand, the liver can be affected by different focal lesions, sometimes benign, and sometimes malignant. On these bases, radiologists should face the differential diagnosis between benign and secondary lesions to correctly allocate patients to the best management. Considering the above-mentioned principles, it's extremely important to underline and refresh the broad spectrum of liver metastases features that can occur in everyday clinical practice. This review aims to summarize the most common imaging features of liver metastases, with a special focus on typical and atypical appearance, by using MRI.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Federica Vernuccio
- University Hospital of Padova, Institute of Radiology, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Francesco Cortese
- Unit of Interventional Radiology, F Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Clara Gaetani
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
- School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Arianna Defeudis
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Giulia Pilato
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Davide Tore
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
4
|
Haskell MW, Nielsen JF, Noll DC. Off-resonance artifact correction for MRI: A review. NMR IN BIOMEDICINE 2023; 36:e4867. [PMID: 36326709 PMCID: PMC10284460 DOI: 10.1002/nbm.4867] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/25/2022] [Accepted: 11/01/2022] [Indexed: 06/06/2023]
Abstract
In magnetic resonance imaging (MRI), inhomogeneity in the main magnetic field used for imaging, referred to as off-resonance, can lead to image artifacts ranging from mild to severe depending on the application. Off-resonance artifacts, such as signal loss, geometric distortions, and blurring, can compromise the clinical and scientific utility of MR images. In this review, we describe sources of off-resonance in MRI, how off-resonance affects images, and strategies to prevent and correct for off-resonance. Given recent advances and the great potential of low-field and/or portable MRI, we also highlight the advantages and challenges of imaging at low field with respect to off-resonance.
Collapse
Affiliation(s)
- Melissa W Haskell
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
- Hyperfine Research, Guilford, Connecticut, USA
| | | | - Douglas C Noll
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Jariyawattanarat W, Thiravit S, Suvannarerg V, Srisajjakul S, Sutchritpongsa P. Bladder involvement in placenta accreta spectrum disorder with placenta previa: MRI findings and outcomes correlation. Eur J Radiol 2023; 160:110695. [PMID: 36657210 DOI: 10.1016/j.ejrad.2023.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Placental accreta spectrum (PAS) disorder with bladder involvement can be associated with maternal and neonatal morbidity. Magnetic resonance imaging (MRI) may provide accurate preoperative diagnoses. OBJECTIVE This study had 2 aims: to retrospectively review the MRI findings for bladder involvement in PAS with placental previa and to correlate bladder involvement with maternal and neonatal outcomes. MATERIALS AND METHODS MRI images of 48 patients with severe PAS (increta and percreta) with placenta previa/low-lying placenta were evaluated by 2 experienced radiologists blinded to the final diagnoses. Nine MRI findings and stepwise logistic regression analysis were assessed to identify predictive MRI findings for bladder involvement. The correlations between PAS patients with bladder involvement and clinical outcomes were analyzed using Fisher's exact test. RESULTS Of the 48 patients, 27 did not have bladder involvement, while 21 did. Logistic regression analysis identified 2 predictive MRI features for bladder involvement. They were abnormal vascularization (OR,6.94; 95 %CI,1.05-45.75) and loss of the chemical shift line at the uterovesical interface (OR, 4.41; 95 %CI, 0.63-30.98). The sensitivity and specificity of the combined MRI features were 38.1 % and 100 %, respectively (p = 0.001). A significant correlation was found between bladder involvement and massive blood loss during surgery (p = 0.022). CONCLUSIONS PAS with bladder involvement was significantly correlated with massive surgical blood loss. Prenatally, the disorder was predicted with high specificity by the combination of loss of chemical shift artifacts in the steady-state free precession sequence and abnormal vascularization at the uterovesical interface on MRI.
Collapse
Affiliation(s)
- Watchaya Jariyawattanarat
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Shanigarn Thiravit
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Voraparee Suvannarerg
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Sitthipong Srisajjakul
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pavit Sutchritpongsa
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
6
|
Liu Z, Gu A, Kuang Y, Yu D, Sun Y, Liu H, Xie G. Water excitation with LIBRE pulses in three-dimensional variable flip angle fast spin echo for fat-free and large field of view imaging at 3 tesla. Magn Reson Imaging 2023; 96:17-26. [PMID: 36375762 DOI: 10.1016/j.mri.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE To develop and evaluate a sequence in which water excitation with lipid insensitive binomial off-resonant radio frequency excitation (LIBRE) pulses is incorporated into three-dimensional (3D) variable flip angle fast spin echo (LIBRE-vf-FSE) for fat-free and large field of view imaging at 3 Tesla (T). MATERIALS AND METHODS Numerical simulation was conducted to optimize the parameters of LIBRE pulses, including the flip angle, pulse duration, and frequency offset, for maximizing the fat suppression effect of the proposed LIBRE-vf-FSE sequence. The sequence was then implemented at 3 T and assessed in phantoms, lower extremity imaging of 8 healthy volunteers, and head/neck imaging of 5 healthy volunteers. Conventional water excitation (WE) and fat saturation (FatSat) were also performed for comparison. Signal-to-noise ratio (SNR) of fat and contrast-to-noise ratio (CNR) between fat and water were used to evaluate the level of fat suppression. Standard deviation (SD) of SNR was used to evaluate the uniformity of fat suppression. RESULTS The numerical simulation demonstrated that LIBRE-vf-FSE enables large volume imaging with uniform fat suppression, which was further confirmed by phantom and healthy volunteer experiments. LIBRE provided the lowest fat SNR and offered more uniform fat suppression compared with the WE and FatSat. Specifically, average oil SNRs obtained by LIBRE (1.10 ms, 360 Hz, and 60°), WE, and FatSat were (180.1 vs. 280.2 vs. 811.2) in phantom experiments, and average fat SNRs and SDs in legs obtained by LIBRE (1.10 ms, 360 Hz, and 60°), WE, and FatSat were (85.1 vs. 105.0 vs. 105.1) and (22.4 vs. 27.4 vs. 56.4) in vivo experiments, respectively. CONCLUSION The proposed LIBRE-vf-FSE sequence allows for fat suppression and large field of view imaging at 3 T. It could be an alternative approach for fat-free vf-FSE scan.
Collapse
Affiliation(s)
- Zeping Liu
- School of Biomedical Engineering, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Anyan Gu
- School of Biomedical Engineering, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yinan Kuang
- School of Biomedical Engineering, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Donglin Yu
- School of Biomedical Engineering, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Sun
- Siemens Healthineers, Shanghai 201318, China
| | - Hongyan Liu
- School of Biomedical Engineering, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Guoxi Xie
- School of Biomedical Engineering, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Stewart J, Sahgal A, Zadeh MM, Moazen B, Jabehdar Maralani P, Breen S, Lau A, Binda S, Keller B, Husain Z, Myrehaug S, Detsky J, Soliman H, Tseng CL, Ruschin M. Empirical planning target volume modeling for high precision MRI guided intracranial radiotherapy. Clin Transl Radiat Oncol 2023; 39:100582. [PMID: 36699195 PMCID: PMC9869418 DOI: 10.1016/j.ctro.2023.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Purpose Magnetic resonance image-guided radiotherapy for intracranial indications is a promising advance; however, uncertainties remain for both target localization after translation-only MR setup and intrafraction motion. This investigation quantified these uncertainties and developed a population-based planning target volume (PTV) model to explore target and organ-at-risk (OAR) volumetric coverage tradeoffs. Methods Sixty-six patients, 49 with a primary brain tumor and 17 with a post-surgical resection cavity, treated on a 1.5T-based MR-linac across 1329 fractions were included. At each fraction, patients were setup by translation-only fusion of the online T1 MRI to the planning image. Each fusion was independently repeated offline accounting for rotations. The six degree-of-freedom difference between fusions was applied to transform the planning CTV at each fraction (CTVfx). A PTV model parameterized by volumetric CTVfx coverage, proportion of fractions, and proportion of patients was developed. Intrafraction motion was quantified in a 412 fraction subset as the fusion difference between post- and pre-irradiation T1 MRIs. Results For the left-right/anterior-posterior/superior-inferior axes, mean ± SD of the rotational fusion differences were 0.1 ± 0.8/0.1 ± 0.8/-0.2 ± 0.9°. Covering 98 % of the CTVfx in 95 % of fractions in 95 % of patients required a 3 mm PTV margin. Margin reduction decreased PTV-OAR overlap; for example, the proportion of optic chiasm overlapped by the PTV was reduced up to 23.5 % by margin reduction from 4 mm to 3 mm. Conclusions An evidence-based PTV model was developed for brain cancer patients treated on the MR-linac. Informed by this model, we have clinically adopted a 3 mm PTV margin for conventionally fractionated intracranial patients.
Collapse
Affiliation(s)
- James Stewart
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Mahtab M. Zadeh
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bahareh Moazen
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Stephen Breen
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Angus Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Shawn Binda
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Brian Keller
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Corresponding author at: Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| |
Collapse
|
8
|
Abstract
ABSTRACT This review summarizes the current state-of-the-art of musculoskeletal 7 T magnetic resonance imaging (MRI), the associated technological challenges, and gives an overview of current and future clinical applications of 1 H-based 7 T MRI. The higher signal-to-noise ratio at 7 T is predominantly used for increased spatial resolution and thus the visualization of anatomical details or subtle lesions rather than to accelerate the sequences. For musculoskeletal MRI, turbo spin echo pulse sequences are particularly useful, but with altered relaxation times, B1 inhomogeneity, and increased artifacts at 7 T; specific absorption rate limitation issues quickly arise for turbo spin echo pulse sequences. The development of dedicated pulse sequence techniques in the last 2 decades and the increasing availability of specialized coils now facilitate several clinical musculoskeletal applications. 7 T MRI is performed in vivo in a wide range of applications for the knee joint and other anatomical areas, such as ultra-high-resolution nerve imaging or bone trabecular microarchitecture imaging. So far, however, it has not been shown systematically whether the higher field strength compared with the established 3 T MRI systems translates into clinical advantages, such as an early-stage identification of tissue damage allowing for preventive therapy or an influence on treatment decisions and patient outcome. At the moment, results tend to suggest that 7 T MRI will be reserved for answering specific, targeted musculoskeletal questions rather than for a broad application, as is the case for 3 T MRI. Future data regarding the implementation of clinical use cases are expected to clarify if 7 T musculoskeletal MRI applications with higher diagnostic accuracy result in patient benefits compared with MRI at lower field strengths.
Collapse
|
9
|
Manson EN, Inkoom S, Mumuni AN. Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review. REPORTS IN MEDICAL IMAGING 2022. [DOI: 10.2147/rmi.s369491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
MRI Detection of Hepatic N-Acetylcysteine Uptake in Mice. Biomedicines 2022; 10:biomedicines10092138. [PMID: 36140239 PMCID: PMC9495914 DOI: 10.3390/biomedicines10092138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
This proof-of-concept study looked at the feasibility of using a thiol–water proton exchange (i.e., CEST) MRI contrast to detect in vivo hepatic N-acetylcysteine (NAC) uptake. The feasibility of detecting NAC-induced glutathione (GSH) biosynthesis using CEST MRI was also investigated. The detectability of the GSH amide and NAC thiol CEST effect at B0 = 7 T was determined in phantom experiments and simulations. C57BL/6 mice were injected intravenously (IV) with 50 g L−1 NAC in PBS (pH 7) during MRI acquisition. The dynamic magnetisation transfer ratio (MTR) and partial Z-spectral data were generated from the acquisition of measurements of the upfield NAC thiol and downfield GSH amide CEST effects in the liver. The 1H-NMR spectroscopy on aqueous mouse liver extracts, post-NAC-injection, was performed to verify hepatic NAC uptake. The dynamic MTR and partial Z-spectral data revealed a significant attenuation of the mouse liver MR signal when a saturation pulse was applied at −2.7 ppm (i.e., NAC thiol proton resonance) after the IV injection of the NAC solution. The 1H-NMR data revealed the presence of hepatic NAC, which coincided strongly with the increased upfield MTR in the dynamic CEST data, providing strong evidence that hepatic NAC uptake was detected. However, this MTR enhancement was attributed to a combination of NAC thiol CEST and some other upfield MT-generating mechanism(s) to be identified in future studies. The detection of hepatic GSH via its amide CEST MRI contrast was inconclusive based on the current results.
Collapse
|
11
|
Park J, Lee JM, Lee G, Jeon SK, Joo I. Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques. Korean J Radiol 2022; 23:13-29. [PMID: 34983091 PMCID: PMC8743150 DOI: 10.3348/kjr.2021.0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Gunwoo Lee
- Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Gaeta M, Cavallaro M, Vinci SL, Mormina E, Blandino A, Marino MA, Granata F, Tessitore A, Galletta K, D'Angelo T, Visalli C. Magnetism of materials: theory and practice in magnetic resonance imaging. Insights Imaging 2021; 12:179. [PMID: 34862955 PMCID: PMC8643382 DOI: 10.1186/s13244-021-01125-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023] Open
Abstract
All substances exert magnetic properties in some extent when placed in an external magnetic field. Magnetic susceptibility represents a measure of the magnitude of magnetization of a certain substance when the external magnetic field is applied. Depending on the tendency to be repelled or attracted by the magnetic field and in the latter case on the magnitude of this effect, materials can be classified as diamagnetic or paramagnetic, superparamagnetic and ferromagnetic, respectively. Knowledge of type and extent of susceptibility of common endogenous and exogenous substances and how their magnetic properties affect the conventional sequences used in magnetic resonance imaging (MRI) can help recognize them and exalt or minimize their presence in the acquired images, so as to improve diagnosis in a wide variety of benign and malignant diseases. Furthermore, in the context of diamagnetic susceptibility, chemical shift imaging enables to assess the intra-voxel ratio between water and fat content, analyzing the tissue composition of various organs and allowing a precise fat quantification. The following article reviews the fundamental physical principles of magnetic susceptibility and examines the magnetic properties of the principal endogenous and exogenous substances of interest in MRI, providing potential through representative cases for improved diagnosis in daily clinical routine.
Collapse
Affiliation(s)
- Michele Gaeta
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Marco Cavallaro
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Sergio Lucio Vinci
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Enricomaria Mormina
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy.
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Maria Adele Marino
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Francesca Granata
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Agostino Tessitore
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Karol Galletta
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Carmela Visalli
- Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| |
Collapse
|
13
|
Hori M, Hagiwara A, Goto M, Wada A, Aoki S. Low-Field Magnetic Resonance Imaging: Its History and Renaissance. Invest Radiol 2021; 56:669-679. [PMID: 34292257 PMCID: PMC8505165 DOI: 10.1097/rli.0000000000000810] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT Low-field magnetic resonance imaging (MRI) systems have seen a renaissance recently due to improvements in technology (both hardware and software). Originally, the performance of low-field MRI systems was rated lower than their actual clinical usefulness, and they were viewed as low-cost but poorly performing systems. However, various applications similar to high-field MRI systems (1.5 T and 3 T) have gradually become possible, culminating with high-performance low-field MRI systems and their adaptations now being proposed that have unique advantages over high-field MRI systems in various aspects. This review article describes the physical characteristics of low-field MRI systems and presents both their advantages and disadvantages for clinical use (past to present), along with their cutting-edge clinical applications.
Collapse
Affiliation(s)
- Masaaki Hori
- From the Department of Radiology, Toho University Omori Medical Center
- Department of Radiology, Juntendo University School of Medicine
| | | | - Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University School of Medicine
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
14
|
Bydder M, Carl M, Bydder GM, Du J. MRI chemical shift artifact produced by center-out radial sampling of k-space: a potential pitfall in clinical diagnosis. Quant Imaging Med Surg 2021; 11:3677-3683. [PMID: 34341741 DOI: 10.21037/qims-21-115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
Background Center-out radial sampling of k-space in magnetic resonance imaging employs a different direction for each readout. Off-resonance artifacts (including those produced by chemical shift between water and fat) found with this type of sampling are usually described as blurring, however more specific characterization of these artifacts can be ascertained from the fact that their point spread function is ring-shaped. This produces effects that differ from those seen with Cartesian sampling of k-space. Experiments were designed to demonstrate the origin of these artifacts and a volunteer was imaged to show them. Methods Two phantoms containing oil in a syringe and an annulus of oil surrounded by water were scanned with a range of bandwidths from 62.5 down to 4 kHz. In a human volunteer, head, pelvis and spine images were obtained with bandwidths of 62.5 and 4 kHz. Results The two phantoms showed displacement of the oil signal away from the center into the region of the surrounding water. The effect increased as the bandwidth was decreased. In the head of the volunteer, signal from fat in red bone marrow in the skull was displaced centrally and peripherally relative to water within the marrow, and appeared in the region between the skull and the brain, as well as in the surrounding scalp. Displacements of the former type simulated subdural hematomas. Displacement of perivesical fat signal centrally over the wall of the bladder simulated bladder tumor, and displacement of fat signal from red bone marrow in the lumbar spine to the intervertebral discs simulated their cartilaginous endplates. Conclusions Center-out radial artifacts are important to recognize on clinical images since they may mimic anatomy and simulate pathology. The article shows how these artifacts originate, includes examples, and describes how the artifacts differ from Cartesian chemical shift artifacts.
Collapse
Affiliation(s)
- Mark Bydder
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael Carl
- Global MR Application and Workflow, GE Healthcare, San Diego, CA, USA
| | - Graeme M Bydder
- Department of Radiology, University of California San Diego, San Diego, CA, USA.,Department of Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
15
|
Panda S, Irodi A, Daniel R, Chacko BR, Vimala LR, Gnanamuthu BR. Utility of cine MRI in evaluation of cardiovascular invasion by mediastinal masses. Indian J Radiol Imaging 2020; 30:280-285. [PMID: 33273761 PMCID: PMC7694725 DOI: 10.4103/ijri.ijri_69_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Accurate imaging assessment of cardiovascular invasion by mediastinal masses is essential for determining surgical feasibility. This can sometimes be difficult on CT owing to limited space available in the mediastinum, resulting in mediastinal masses abutting and indenting adjacent cardiovascular structures. Cine MRI may aid in such situations by demonstrating differential mobility. AIMS AND OBJECTIVES To evaluate the role of cine MRI in assessing cardiovascular invasion by mediastinal masses, by evaluating sliding motion and the presence of chemical shift artifact between the mediastinal mass and apposing structures. MATERIAL AND METHODS Retrospective study of 44 patients with mediastinal masses, with equivocal involvement of 162 cardiovascular structures on CT scan, in whom cine MRI was done. Involvement on CT was considered equivocal when there was a loss of intervening fat plane and broad surface (>3 cm) or angle (>90°) of contact between the mediastinal mass and cardiovascular structure. The presence of either sliding movement or type 2 chemical shift artifact or both between mass and the cardiovascular structure was considered as no adherence or invasion. The absence of both the parameters was considered as the presence of invasion or adhesion. Imaging findings were correlated with intraoperative findings. RESULTS After excluding 25 cardiovascular structures in 7 patients, 137 cardiovascular structures whose involvement was suspected on CT were evaluated in 37 patients with mediastinal masses. In all, 31 cardiovascular structures showed invasion on MRI out of which 28 structures were invaded or adhered intraoperatively and 106 cardiovascular structures showed no invasion on MRI out of which 97 structures were intraoperatively not invaded/adhered. The sensitivity, specificity and accuracy of our study are 75.7%, 97% and 91.2%, respectively. CONCLUSION Cine MRI can be used as an effective tool in patients with equivocal cardiovascular invasion by mediastinal masses on CT scans.
Collapse
Affiliation(s)
- Sourav Panda
- Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Aparna Irodi
- Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Riya Daniel
- Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Binita R Chacko
- Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Leena R Vimala
- Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Birla R Gnanamuthu
- Department of Cardiothoracic Surgery, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
16
|
Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 2020; 15:93. [PMID: 32370788 PMCID: PMC7201982 DOI: 10.1186/s13014-020-01524-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
Collapse
Affiliation(s)
- Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
- German Cancer Consortium (DKTK), 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Privata Campeggi 53, 27100, Pavia, Italy
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Centre Utrecht, PO box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|
17
|
Saifuddin A, Siddiqui S, Pressney I, Khoo M. The incidence and diagnostic relevance of chemical shift artefact in the magnetic resonance imaging characterisation of superficial soft tissue masses. Br J Radiol 2019; 93:20190828. [PMID: 31834812 DOI: 10.1259/bjr.20190828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Chemical shift artefact (CSA) is often encountered during MRI evaluation of superficial soft tissue masses. The study aim was to determine the incidence and diagnostic relevance of CSA in a consecutive series of superficial soft tissue masses referred to a specialist musculoskeletal sarcoma service. METHODS All patients referred over a 6 month period with a non-lipomatous superficial soft tissue mass were prospectively analysed. Patients characteristics (age, gender), lesion features (anatomical location, size, relationship to the skin and deep fascia), presence of CSA and final histopathological diagnosis were collected. The presence of CSA was statistically analysed against these clinical, imaging and histopathological variables. RESULTS 128 patients fulfilled the inclusion criteria [63 males, 65 females; mean age = 50.6 years (7-96 years)]. CSA was present in 50 cases (39.1%) overall, but in 39 (41.5%) of 94 cases with histological diagnosis. There was no statistically significant relationship to any assessed variable apart from relationship to the deep fascia, CSA being more frequent in lesions contacting the fascia compared to lesions contacting both skin and fascia (p-value 0.02). In particular, the presence of CSA did not allow differentiation between non-malignant and malignant lesions. CONCLUSION The presence of CSA is a not infrequent finding in the MRI assessment of superficial soft tissue masses but does not appear to be of any significance in differentiating between non-malignant and malignant lesions. ADVANCES IN KNOWLEDGE CSA is a relatively common finding in association with superficial soft tissue masses, but does not indicate a particular histological diagnosis or help in the differentiation of non-malignant from malignant lesions.
Collapse
Affiliation(s)
- Asif Saifuddin
- Department of Radiology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Shuaib Siddiqui
- Department of Accident & Emergency, East Surrey Hospital, Redhill, UK
| | - Ian Pressney
- Department of Radiology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Michael Khoo
- Department of Radiology, Royal National Orthopaedic Hospital, Stanmore, UK
| |
Collapse
|
18
|
Triadyaksa P, Oudkerk M, Sijens PE. Cardiac T 2 * mapping: Techniques and clinical applications. J Magn Reson Imaging 2019; 52:1340-1351. [PMID: 31837078 PMCID: PMC7687175 DOI: 10.1002/jmri.27023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiac T2* mapping is a noninvasive MRI method that is used to identify myocardial iron accumulation in several iron storage diseases such as hereditary hemochromatosis, sickle cell disease, and β‐thalassemia major. The method has improved over the years in terms of MR acquisition, focus on relative artifact‐free myocardium regions, and T2* quantification. Several improvement factors involved include blood pool signal suppression, the reproducibility of T2* measurement as affected by scanner hardware, and acquisition software. Regarding the T2* quantification, improvement factors include the applied curve‐fitting method with or without truncation of the signals acquired at longer echo times and whether or not T2* measurement focuses on multiple segmental regions or the midventricular septum only. Although already widely applied in clinical practice, data processing still differs between centers, contributing to measurement outcome variations. State of the art T2* measurement involves pixelwise quantification providing better spatial iron loading information than region of interest‐based quantification. Improvements have been proposed, such as on MR acquisition for free‐breathing mapping, the generation of fast mapping, noise reduction, automatic myocardial contour delineation, and different T2* quantification methods. This review deals with the pro and cons of different methods used to quantify T2* and generate T2* maps. The purpose is to recommend a combination of MR acquisition and T2* mapping quantification techniques for reliable outcomes in measuring and follow‐up of myocardial iron overload. The clinical application of cardiac T2* mapping for iron overload's early detection, monitoring, and treatment is addressed. The prospects of T2* mapping combined with different MR acquisition methods, such as cardiac T1 mapping, are also described. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Pandji Triadyaksa
- University of Groningen, Groningen, The Netherlands.,Universitas Diponegoro, Department of Physics, Faculty of Science and Mathematics, Semarang, Indonesia
| | - Matthijs Oudkerk
- University of Groningen, Groningen, The Netherlands.,Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Paul E Sijens
- University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, Department of Radiology, Groningen, The Netherlands
| |
Collapse
|
19
|
d'Amuri FV, Maestroni U, Pagnini F, Russo U, Melani E, Ziglioli F, Negrini G, Cella S, Cappabianca S, Reginelli A, Barile A, De Filippo M. Magnetic resonance imaging of adrenal gland: state of the art. Gland Surg 2019; 8:S223-S232. [PMID: 31559189 DOI: 10.21037/gs.2019.06.02] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Detection of adrenal lesions, because of the widespread use of imaging and especially high-resolution imaging procedures, is increased. Because of the importance to characterize those findings, magnetic resonance imaging (MRI), in particular chemical shift imaging (CSI), is useful to distinguish whether a lesion is benignant or malignant and to avoid further diagnostic or surgical procedures. It represents the first choice of imaging in patient like children or pregnant women, and a valid complement to other imaging techniques like CT or PET/CT. In this review we analyze the role and characteristic of MRI and the imaging features of most common benignant (adenoma, hyperplasia, pheochromocytoma, hemorrhage, cyst, myelolipoma, teratoma, ganglioneuroma, cystic lymphangioma, hemangioma) and malignant [neuroblastoma, adrenocortical carcinoma (ACC), metastases, lymphoma] adrenal lesions.
Collapse
Affiliation(s)
- Fabiano Vito d'Amuri
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| | - Umberto Maestroni
- Department of Medicine and Surgery, Unit of Urology, Maggiore Hospital, Parma, Italy
| | - Francesco Pagnini
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| | - Umberto Russo
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| | - Elisa Melani
- Department of Medicine and Surgery, Unit of Urology, Maggiore Hospital, Parma, Italy
| | - Francesco Ziglioli
- Department of Medicine and Surgery, Unit of Urology, Maggiore Hospital, Parma, Italy
| | - Giulio Negrini
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| | - Simone Cella
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| | - Salvatore Cappabianca
- Department of Radiology and Radiotherapy, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alfonso Reginelli
- Department of Radiology and Radiotherapy, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Ospedale San Salvatore, L'Aquila, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| |
Collapse
|
20
|
Schmalfuss IM, Davenport J, Harris ME. Orbital Implants: Normal Imaging Appearance, Pitfalls and Complications. Semin Roentgenol 2019; 54:227-243. [PMID: 31376864 DOI: 10.1053/j.ro.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Jake Davenport
- Medical Center Radiology Group, Orlando, FL; University of Florida, Gainesville, FL
| | - Matthew E Harris
- Radiology Partners MBB Radiology, Jacksonville, FL; University of Florida, Gainesville, FL
| |
Collapse
|
21
|
Tuan PA, Vien MV, Dong HV, Sibell D, Giang BV. The Value of CT and MRI for Determining Thymoma in Patients With Myasthenia Gravis. Cancer Control 2019; 26:1073274819865281. [PMID: 31331197 PMCID: PMC6651671 DOI: 10.1177/1073274819865281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to evaluate the usefulness of computed tomography (CT) and magnetic resonance imaging (MRI) for differentiating thymoma from nonthymoma abnormalities in patients with myasthenia gravis (MG). A cross-sectional study of 53 patients with MG, who had undergone surgical thymectomy, was conducted at 103 Hospital (Hanoi, Vietnam) and Cho Ray Hospital (Ho Chi Minh City, Vietnam) during August 2014 and January 2017. The CT and MRI images of patients with MG were qualitatively and quantitatively (radiodensity and chemical shift ratio [CSR]) analyzed to determine and compare their ability to distinguish thymoma from nonthymoma abnormalities. Logistic regression was used to identify the association between imaging parameters (eg, CSR) and the thymoma status. The receiver operating curve (ROC) analysis was used to determine the differentiating ability of CSR and radiodensity. As results, of the 53 patients with MG, 33 were with thymoma and 20 were with nonthymoma abnormalities. At qualitative assessment, MRI had significantly higher accuracy than did CT in differentiating thymoma from nonthymoma abnormalities (94.3% vs 83%). At quantitative assessment, both the radiodensity and CSR were significantly higher for thymoma compared with nonthymoma groups (P < .001). The ROC analysis showed that CSR had significantly higher sensitivity (Se) and specificity (Sp) than radiodensity in discriminating between the 2 groups (CSR: Se 100%, Sp 95% vs radiodensity: Se 90.9%, Sp 70%). When combining both qualitative and quantitative parameters, MRI had even higher accuracy than did CT in thymoma diagnosis (P = .031). In conclusion, chemical shift MRI was more accurate than CT for differentiating thymoma from nonthymoma in patients with MG.
Collapse
Affiliation(s)
| | | | | | - David Sibell
- 3 Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
22
|
Bechler E, Stabinska J, Wittsack H. Analysis of different phase unwrapping methods to optimize quantitative susceptibility mapping in the abdomen. Magn Reson Med 2019; 82:2077-2089. [DOI: 10.1002/mrm.27891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Hans‐Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
23
|
Shetty AS, Sipe AL, Zulfiqar M, Tsai R, Raptis DA, Raptis CA, Bhalla S. In-Phase and Opposed-Phase Imaging: Applications of Chemical Shift and Magnetic Susceptibility in the Chest and Abdomen. Radiographics 2019; 39:115-135. [DOI: 10.1148/rg.2019180043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anup S. Shetty
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Adam L. Sipe
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Maria Zulfiqar
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Richard Tsai
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Demetrios A. Raptis
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Constantine A. Raptis
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Sanjeev Bhalla
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| |
Collapse
|
24
|
Tyagi P, Moon CH, Janicki J, Kaufman J, Chancellor M, Yoshimura N, Chermansky C. Recent advances in imaging and understanding interstitial cystitis. F1000Res 2018; 7. [PMID: 30473772 PMCID: PMC6234747 DOI: 10.12688/f1000research.16096.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition associated with intense pelvic pain and bladder storage symptoms. Since diagnosis is difficult, prevalence estimates vary with the methodology used. There is also a lack of proven imaging tools and biomarkers to assist in differentiation of IC/BPS from other urinary disorders (overactive bladder, vulvodynia, endometriosis, and prostatitis). Current uncertainty regarding the etiology and pathology of IC/BPS ultimately impacts its timely and successful treatment, as well as hampers future drug development. This review will cover recent developments in imaging methods, such as magnetic resonance imaging, that advance the understanding of IC/BPS and guide drug development.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Urology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15213, USA
| | - Chan-Hong Moon
- Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15213, USA
| | | | | | | | - Naoki Yoshimura
- Urology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15213, USA
| | | |
Collapse
|
25
|
Diagnostic Performance of In-Phase and Opposed-Phase Chemical-Shift Imaging for Differentiating Benign and Malignant Vertebral Marrow Lesions: A Meta-Analysis. AJR Am J Roentgenol 2018; 211:W188-W197. [DOI: 10.2214/ajr.17.19306] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Calandriello L, Larici AR, Sica G, Ciliberto M, Manfredi R. The added value of chemical shift MRI in the preoperative diagnosis of thymolipoma. TUMORI JOURNAL 2018; 104:NP57-NP60. [PMID: 29714656 DOI: 10.1177/0300891618763204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thymolipoma is a rare tumor of the thymus. Classic radiologic findings of thymolipoma include fatty masses of the anterior mediastinum in conjunction with the thymus. Differential diagnosis with other more aggressive entities like liposarcoma and teratoma can be challenging. We report a case where chemical shift magnetic resonance imaging helped in the differential diagnosis.
Collapse
Affiliation(s)
- Lucio Calandriello
- Institute of Radiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Anna Rita Larici
- Institute of Radiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giuliano Sica
- Institute of Radiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Mario Ciliberto
- Institute of Radiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Riccardo Manfredi
- Institute of Radiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
27
|
Yang A, Xiao XH, Wang ZL, Wang ZY, Wang KY. T2-weighted balanced steady-state free procession MRI evaluated for diagnosing placental adhesion disorder in late pregnancy. Eur Radiol 2018; 28:3770-3778. [PMID: 29651765 DOI: 10.1007/s00330-018-5388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/19/2018] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE This study evaluated the imaging characteristics and accuracy of T2-weighted (T2W) balanced steady-state free procession (b-SSFP) magnetic resonance imaging, relative to b-SSFP or single-shot fast spin echo (SSFSE), for the diagnosis of placental adhesion disorder (PAD). METHODS Fifty-one pregnant patients suspected of PAD were examined with T2W b-SSFP, b-SSFP and SSFSE. The image types were independently analysed for signs of PAD: abnormal placental bulge (APB), dark intraplacental bands (DIB), placental heterogeneity (PH) and placental protrusion into adjacent structures (PPAS). The sequences were compared for muscle-to-placenta signal ratio, signs of PAD and area under the receiver operating characteristic curve (AUC) for diagnostic accuracy of PAD. RESULTS PAD was confirmed in 34 women. The muscle-to-placenta signal ratio was highest in the T2W b-SSFP. The diagnostic rates of APB in T2W b-SSFP were comparable to that of b-SSFP, but were significantly higher than that of SSFSE. The rates of PH in SSFE were comparable to that of b-SSFP, but both were significantly lower than that of T2W b-SSFP. The rates of DIB were significantly higher in T2W b-SSFP images compared with SSFSE. Rates of PPAS were comparable among three sequences. The AUCs of the T2W b-SSFP, b-SSFP and SSFSE were 0.966, 0.890 and 0.823, respectively. CONCLUSION T2W b-SSFP has high diagnostic accuracy for PAD relative to SSFSE or b-SSFP, which may be due to its high SNR, T2-weighting and lack of blur. KEY POINTS • Signal myometrium-to-placenta ratio was highest in the T2W b-SSFP images. • Diagnostic rate of APB in T2W b-SSFP was highest. • Diagnostic rate of DIB was higher in T2W b-SSFP than in SSFSE. • Diagnostic rate of PH in T2W b-SSFP was highest. • Maximum AUC for diagnostic accuracy of PAD was in T2W b-SSFP.
Collapse
Affiliation(s)
- Ang Yang
- MR department of Affiliated Zhongshan City Hospital of Sun Yat-sen University, Sun Wendong Road No. 2, Zhongshan City, Guangdong Province, China.
| | - Xue Hong Xiao
- MR department of Affiliated Zhongshan City Hospital of Sun Yat-sen University, Sun Wendong Road No. 2, Zhongshan City, Guangdong Province, China
| | - Zhi Long Wang
- MR department of Affiliated Zhongshan City Hospital of Sun Yat-sen University, Sun Wendong Road No. 2, Zhongshan City, Guangdong Province, China
| | - Ze Yan Wang
- MR department of Affiliated Zhongshan City Hospital of Sun Yat-sen University, Sun Wendong Road No. 2, Zhongshan City, Guangdong Province, China
| | - Ke Yi Wang
- MR department of Affiliated Zhongshan City Hospital of Sun Yat-sen University, Sun Wendong Road No. 2, Zhongshan City, Guangdong Province, China
| |
Collapse
|
28
|
Performance of Magnetic Resonance Susceptibility-Weighted Imaging for Detection of Calcifications in Patients With Hepatic Echinococcosis. J Comput Assist Tomogr 2018; 42:211-215. [PMID: 29189399 DOI: 10.1097/rct.0000000000000687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We evaluated the performance of susceptibility-weighted imaging (SWI) for identification of hepatic calcifications in alveolar echinococcosis and cystic echinococcosis. METHODS The SWI images of 58 lesions in 40 patients (age, 49 ± 14 y) with alveolar echinococcosis (n = 22) or cystic echinococcosis (n = 18) were reviewed for calcifications. First, calcifications were suggested by visual assessment. Second, ratios of minimum intralesional intensity and mean lumbar muscle intensity were recorded. Computed tomography (CT) served as the criterion standard. RESULTS Thirty-seven lesions showed calcifications on CT. Susceptibility-weighted imaging provided a sensitivity of 89.2% (95% confidence interval [CI], 50.1-75.7) and a specificity of 57.1% (95% CI, 34.4-77.4) for calcifications detected by visual assessment. Receiver operating characteristic curves demonstrated a sensitivity of 67.6% and a specificity of 85.0% for an intensity ratio of 0.61. A specificity of 100% (95% CI, 80.8-100) and a sensitivity of 84.5% (95% CI, 67.3-93.2) were achieved by SWI for calcifications with a density greater than 184 HU in CT. CONCLUSIONS Identification of hepatic calcifications is possible with SWI. Susceptibility-weighted imaging offers the potential to reduce the need for of CT imaging for evaluation of echinococcosis.
Collapse
|
29
|
Derakhshan JJ, McDonald ES, Siegelman ES, Schnall MD, Wehrli FW. Characterizing and eliminating errors in enhancement and subtraction artifacts in dynamic contrast-enhanced breast MRI: Chemical shift artifact of the third kind. Magn Reson Med 2018; 79:2277-2289. [PMID: 28840613 PMCID: PMC5811365 DOI: 10.1002/mrm.26879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE To characterize errors in enhancement in breast dynamic contrast-enhanced (DCE) MRI studies as a function of echo time and determine the source of dark band artifacts in clinical subtraction images. METHODS Computer simulations, oil and water substitute (methylene chloride), as well as an American College of Radiology quality control phantom were tested. Routine clinical DCE breast MRI study was bracketed with (accelerated) in-phase DCE acquisitions in five patients. RESULTS Simulation results demonstrated up to -160% suppression of the expected enhancement caused by differential enhancement of fat and water. Two-dimensional gradient-recalled echo and fat-suppressed 3D GRE phantom imaging confirmed the simulation results and showed that fat suppression does not eliminate the artifact. In vivo in-phase DCE images showed increased enhancement consistent with predictions and also confirmed increased spatial blurring on in-phase 3D gradient-recalled echo images. Combined multi-dimensional partial Fourier and parallel imaging provided a time-equivalent in-phase DCE MRI acquisition. CONCLUSION Errors in expected enhancement occur in DCE breast MRI subtraction images because of differential enhancement of fat and water and incomplete fat signal suppression. These errors can lead to artificial suppression of enhancement as well as dark band artifacts on subtraction images. These artifacts can be eliminated with a time-equivalent in-phase fat-suppressed 3D gradient-recalled echo sequence. Understanding chemical shift artifact of the third kind, a unique artifact of artificial enhancement suppression in the presence of intravoxel fat and water signal, will aid DCE breast MRI image interpretation. In-phase acquisitions (combined with simultaneous minimum echo time or opposed-phase echoes) may facilitate qualitative, quantitative and longitudinal analysis of contrast enhancement. Magn Reson Med 79:2277-2289, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jamal J Derakhshan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth S McDonald
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evan S Siegelman
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mitchell D Schnall
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Emmerich J, Laun FB, Pfaffenberger A, Schilling R, Denoix M, Maier F, Sterzing F, Bostel T, Straub S. Technical Note: On the size of susceptibility-induced MR image distortions in prostate and cervix in the context of MR-guided radiation therapy. Med Phys 2018; 45:1586-1593. [DOI: 10.1002/mp.12785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/11/2017] [Accepted: 01/14/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Julian Emmerich
- Department of Medical Physics in Radiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Frederik B. Laun
- Department of Medical Physics in Radiology; German Cancer Research Center (DKFZ); Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
| | - Asja Pfaffenberger
- Department of Medical Physics in Radiation Oncology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | | | - Michael Denoix
- Department of Medical Physics in Radiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Florian Maier
- Department of Medical Physics in Radiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Florian Sterzing
- Clinical Cooperation Unit Radiation Oncology; German Cancer Research Center (DKFZ); Heidelberg Germany
- Department of Radiation Oncology; University Hospital Heidelberg; Heidelberg Germany
- National Center for Research in Radiation Oncology; Heidelberg Institute for Radiation Oncology (HIRO); Heidelberg Germany
| | - Tilman Bostel
- Clinical Cooperation Unit Radiation Oncology; German Cancer Research Center (DKFZ); Heidelberg Germany
- Department of Radiation Oncology; University Hospital Heidelberg; Heidelberg Germany
- National Center for Research in Radiation Oncology; Heidelberg Institute for Radiation Oncology (HIRO); Heidelberg Germany
| | - Sina Straub
- Department of Medical Physics in Radiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
31
|
MRI Findings of Adult-Onset Orbital Xanthogranulomatous Disease : A Case Report. Clin Neuroradiol 2018; 28:601-604. [PMID: 29427029 DOI: 10.1007/s00062-018-0673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
32
|
Tyagi P, Janicki J, Moon CH, Kaufman J, Chermansky C. Novel contrast mixture achieves contrast resolution of human bladder wall suitable for T1 mapping: applications in interstitial cystitis and beyond. Int Urol Nephrol 2018; 50:401-409. [PMID: 29392488 DOI: 10.1007/s11255-018-1794-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Instillation of novel contrast mixture (NCM) was recently shown to improve the contrast resolution of rat bladder wall with high contrast-to-noise ratio (CNR). Here, the clinical safety and the feasibility of NCM-enhanced MRI to achieve artifact-free visualization of human bladder wall suitable for quantitative measurement of the magnetic resonance (MR) longitudinal relaxation time (T1) was assessed. METHODS Six female subjects [two controls and two with Hunner-type interstitial cystitis IC and two with non-Hunner-type IC] consented for MRI at 3 T before and after instillation of NCM [4 mM gadobutrol and 5 mM ferumoxytol in 50 mL of sterile water for injection]. Single breath-hold fast MR acquisition in large readout bandwidth for 5-mm-thick single slice with variable flip angle was applied to minimize the motion and chemical shift artifacts in measurements of bladder wall thickness (BWT), CNR and T1 from 20 pixels. RESULTS NCM instillation in subjects did not evoke pain or discomfort. Fourfold increase in bladder wall CNR (*p < 0.02) and pixel size of 0.35 mm with minimal influence of artifacts allowed accurate determination of bladder wall thinning ~ 0.46 mm from 50 mL NCM (*p < 0.05). Pre-contrast bladder wall T1 of 1544 ± 34.2 ms was shortened to 860.09 ± 13.95 ms in Hunner-type IC (*p < 0.0001) relative to only 1257.42 ± 20.59 and 1258.16 ± 6.16 ms in non-Hunner-type IC and controls, respectively. CONCLUSION Findings demonstrate the safety and feasibility of NCM-enhanced MRI to achieve artifact-free differential contrast and spatial resolution of human bladder wall, which is suitable for measuring BWT and pixel-wise measurement of T1 in post-contrast setting.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, E313 Montefiore Hospital, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | | | - Chan-Hong Moon
- Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Christopher Chermansky
- Department of Urology, University of Pittsburgh, E313 Montefiore Hospital, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Chemical shift magnetic resonance imaging for distinguishing minimal-fat renal angiomyolipoma from renal cell carcinoma: a meta-analysis. Eur Radiol 2017; 28:1854-1861. [PMID: 29178029 DOI: 10.1007/s00330-017-5141-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To determine the performance of chemical shift signal intensity index (CS-SII) values for distinguishing minimal-fat renal angiomyolipoma (mfAML) from renal cell carcinoma (RCC) and to assess RCC subtype characterisation. METHODS We identified eligible studies on CS magnetic resonance imaging (CS-MRI) of focal renal lesions via PubMed, Embase, and the Cochrane Library. CS-SII values were extracted by lesion type and evaluated using linear mixed model-based meta-regression. RCC subtypes were analysed. Two-sided p value <0.05 indicated statistical significance. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. RESULTS Eleven articles involving 850 patients were included. Minimal-fat AML had significantly higher CS-SII value than RCC (p < 0.05); there were no significant differences between mfAML and clear cell RCC (cc-RCC) (p = 0.112). Clear cell RCC had a significantly higher CS-SII value than papillary RCC (p-RCC) (p < 0.001) and chromophobe RCC (ch-RCC) (p = 0.045). The methodological quality was relatively high, and Begg's test data points indicated no obvious publication bias. CONCLUSIONS The CS-SII value for differentiating mfAML from cc-RCC remains unproven, but is a promising method for differentiating cc-RCC from p-RCC and ch-RCC. KEY POINTS • RCC CS-SII values are significantly lower than those of mfAML overall. • CS-SII values cannot aid differentiation between mfAML and cc-RCC. • CS-SII values might help characterise RCC subtypes.
Collapse
|
34
|
Sinibaldi R, Conti A, Sinjari B, Spadone S, Pecci R, Palombo M, Komlev VS, Ortore MG, Tromba G, Capuani S, Guidotti R, De Luca F, Caputi S, Traini T, Della Penna S. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process. J Tissue Eng Regen Med 2017; 12:750-761. [PMID: 28593731 DOI: 10.1002/term.2494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 04/23/2017] [Accepted: 06/05/2017] [Indexed: 01/05/2023]
Abstract
Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration.
Collapse
Affiliation(s)
- R Sinibaldi
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Multimodal3D s.r.l., Rome, Italy
| | - A Conti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - B Sinjari
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - S Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - R Pecci
- Department of Technologies and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Palombo
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CEA/DSV/I2BM, MIRCen, Fontenay-aux-Roses, France
| | - V S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russian Federation
| | - M G Ortore
- Department of Life and Environmental Science, Marche Polytechnic University, Ancona, Italy
| | - G Tromba
- Elettra Sincrotrone Trieste, Trieste, Italy
| | - S Capuani
- CNR (Institute for Complex Systems) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - R Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - F De Luca
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - S Caputi
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - T Traini
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - S Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
35
|
Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans. Med Image Anal 2017; 39:44-55. [DOI: 10.1016/j.media.2017.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/23/2022]
|
36
|
Janvier V, Olive J, Rossier Y. Magnetic Resonance Assessment of the Equine Distal Phalanx Facies Flexoria. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
[A two-point Dixon technique for water-fat separation using multiresolution and region-growing algorithm]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017. [PMID: 28219871 PMCID: PMC6779665 DOI: 10.3969/j.issn.1673-4254.2017.02.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE An improved water-fat separation method based on region-growing was proposed for use in regions with low signal-noise ratio (SNR). METHODS Region-growing method was applied to 4 sub-images acquired by a down- sampling operation on the acquired phasor maps. The spatial smoothing constraint was exploited to calculate 4 error phasor maps to construct the final smooth error phasor map, which was used in two-point Dixon technique for water-fat separation. RESULTS The simulation experiment showed that the proposed method produced smaller errors, and for clinical images of the knees, abdomen and lower limbs, the proposed method achieved accurate water-fat separations. CONCLUSION The proposed method is more robust and reliable than the original global region-growing algorithm, and serves as a promising water-fat separation method for clinical applications.
Collapse
|
38
|
Zubkov M, Stait-Gardner T, Price WS. Low-bandwidth space/frequency component separation for quantitative imaging. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:137-144. [PMID: 27601402 DOI: 10.1002/mrc.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
Quantitative MRI is often used to analyse multicomponent systems. The analysis requires the contributions from different species to be isolated. Species with distinct chemical shifts can be separated by using a low acquisition bandwidth, which is easy to achieve in common quantitative imaging protocols. The bandwidth reduction leads to separation of NMR contributions from different species in the image space. This new method was implemented and tested on two multicomponent systems containing several spectrally and spatially unresolved components with both distinctly different and similar diffusion coefficients and relaxation times. Separation was achieved with routine MRI diffusion and relaxation measurement pulse sequences in a microimaging environment for water/polyethylene glycol solution and for chloroform/TMS/polyethylene glycol solution. Conventional monoexponential fitting was used to determine diffusion coefficients and relaxation times from the spectrally separated data, whereas biexponential or triexponential fitting was required in the unseparated reference experiments. In the two-component sample, the variation in the determined fast diffusing components was on the same order of magnitude for all experiments, while the variation in the slow diffusing polyethylene glycol was larger when no separation was present. The separation technique provided lower variability for all the determined diffusion coefficients and relaxation times in the three-component sample. The low-bandwidth separation method can provide separation of multicomponent systems based on the chemical shift difference between the species. The accuracy of the technique is comparable with the commonly used methods for bicomponent system analysis and surpasses those when there are more than two components in the sample. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mikhail Zubkov
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
39
|
Kim H, Kim DH, Sohn CH, Park J. Rapid chemical shift encoding with single-acquisition single-slab 3D GRASE. Magn Reson Med 2017; 78:1852-1861. [DOI: 10.1002/mrm.26595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hahnsung Kim
- Department of Biomedical Engineering; Sungkyunkwan University; Suwon Republic of Korea
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology; Seoul National University Hospital; Seoul Republic of Korea
| | - Jaeseok Park
- Department of Biomedical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|
40
|
Kumar I, Verma A, Ojha R, Shukla RC, Jain M, Srivastava A. Invasive placental disorders: a prospective US and MRI comparative analysis. Acta Radiol 2017; 58:121-128. [PMID: 26993291 DOI: 10.1177/0284185116638567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Invasive placental disorders are potentially life-threatening. Its diagnosis and evaluation of degree of invasiveness is vital in surgical and treatment planning. PURPOSE To compare the role of various imaging modalities used in current practice for evaluation of invasive placental disorders, and evaluate the validity of certain imaging signs for prediction of invasive placenta. MATERIAL AND METHODS Twenty-two patients, which were clinically stratified as a risk group for underlying invasive placental abnormality, underwent Doppler sonography and magnetic resonance imaging (MRI). Abnormal placental invasiveness was assessed using various Doppler sonography and MRI signs described in the existing literature. We systematically evaluated the utility of each of these modalities and signs, and compared the roles played by them separately and in combination. All the cases were correlated with surgical and pathological findings. RESULTS Nine patients had surgical and pathological confirmation of placental adhesive disorders, of which eight were predicted correctly by MRI (true positive) while one was misdiagnosed as normal placenta (false negative). All the nine cases were correctly identified by Doppler sonography. MRI was more accurate in predicting bladder invasion, identifying 5/6 cases. CONCLUSION Both MRI and Doppler sonography are useful for detection of invasive placental disorders. However, MRI is a better predictor of bladder invasion.
Collapse
Affiliation(s)
- Ishan Kumar
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ritu Ojha
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ram C Shukla
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Madhu Jain
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Arvind Srivastava
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
41
|
Winfeld M, Ahlawat S, Safdar N. Utilization of chemical shift MRI in the diagnosis of disorders affecting pediatric bone marrow. Skeletal Radiol 2016; 45:1205-12. [PMID: 27179650 DOI: 10.1007/s00256-016-2403-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE MRI signal intensity of pediatric bone marrow can be difficult to interpret using conventional methods. Chemical shift imaging (CSI), which can quantitatively assess relative fat content, may improve the ability to accurately diagnose bone marrow abnormalities in children. METHODS Consecutive pelvis and extremity MRI at a children's hospital over three months were retrospectively reviewed for inclusion of CSI. Medical records were reviewed for final pathological and/or clinical diagnosis. Cases were classified as normal or abnormal, and if abnormal, subclassified as marrow-replacing or non-marrow-replacing entities. Regions of interest (ROI) were then drawn on corresponding in and out-of-phase sequences over the marrow abnormality or over a metaphysis and epiphysis in normal studies. Relative signal intensity ratio for each case was then calculated to determine the degree of fat content in the ROI. RESULTS In all, 241 MRI were reviewed and 105 met inclusion criteria. Of these, 61 had normal marrow, 37 had non-marrow-replacing entities (osteomyelitis without abscess n = 17, trauma n = 9, bone infarction n = 8, inflammatory arthropathy n = 3), and 7 had marrow-replacing entities (malignant neoplasm n = 4, bone cyst n = 1, fibrous dysplasia n = 1, and Langerhans cell histiocytosis n = 1). RSIR averages were: normal metaphyseal marrow 0.442 (0.352-0.533), normal epiphyseal marrow 0.632 (0.566-698), non-marrow-replacing diagnoses 0.715 (0.630-0.799), and marrow-replacing diagnoses 1.06 (0.867-1.26). RSIR for marrow-replacing entities proved significantly different from all other groups (p < 0.05). ROC analysis demonstrated an AUC of 0.89 for RSIR in distinguishing marrow-replacing entities. CONCLUSION CSI techniques can help to differentiate pathologic processes that replace marrow in children from those that do not.
Collapse
Affiliation(s)
- Matthew Winfeld
- University of Pennsylvania Perelman School of Medicine, 3737 Market St, 6th floor, Philadelphia, PA, 19102, USA.
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 601 N Caroline St, Baltimore, MD, 21287, USA
| | - Nabile Safdar
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
42
|
Warda MHA, Shehata SM, Zaiton F. Chemical-shift MRI versus washout CT for characterizing adrenal incidentalomas. Clin Imaging 2016; 40:780-7. [DOI: 10.1016/j.clinimag.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/09/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
43
|
Kumar I, Verma A, Jain S, Jain M, Shukla RC, Srivastava A. Chemical Shift Artifact on Steady-State MRI Sequences for Detection of Vesical Wall Invasion in Placenta Percreta. J Obstet Gynaecol India 2016; 66:101-6. [PMID: 27046963 DOI: 10.1007/s13224-014-0660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/12/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Antenatal diagnosis of the invasiveness of a placenta percreta helps in planning the surgical approach, reducing blood loss and morbidity. Doppler sonography is the mainstay diagnostic modality with a sensitivity of 80-95 %. With the advent of high magnetic field MRI techniques, there has been recent interest in evaluation of placenta by MRI. On an extensive PUBMED search, we could not find any citations describing imaging, ultrasound, or MRI features to evaluate vesical wall invasion by placenta percreta. PURPOSE We attempt to evaluate transmyometrial vesical wall invasion by placenta percreta using chemical shift artifact as a marker of intact bladder-myometrial interface on steady-state MRI sequences. MATERIALS AND METHODS This is a prospective observational study, conducted at a university hospital. We have compiled clinico-radiological criteria for diagnosis of invasive placentae based on the existing body of evidences, in four patients. We further go on to analyze a specific proposed sign on a newly introduced MR imaging sequence i.e., loss of chemical shift artifact (India ink line) on steady-state GRE sequence (TrueFISP), to diagnose transmyometrial vesical invasion in placenta percreta. RESULTS Though the sample size is small, the sensitivity, specificity, positive, and negative predictive value of the proposed sign for the purpose was 100 %. CONCLUSIONSS Loss of chemical shift artifact (India ink line) on steady-state GRE sequences at the vesico-myometrial junction in case of invasive placentae confirms vesical wall invasion, a prospective diagnoses of which can help in planning the surgical protocol and preventing potentially fatal blood loss.
Collapse
Affiliation(s)
- Ishan Kumar
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ashish Verma
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Shivi Jain
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Madhu Jain
- Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - R C Shukla
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Arvind Srivastava
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
44
|
|
45
|
Weygand J, Fuller CD, Ibbott GS, Mohamed ASR, Ding Y, Yang J, Hwang KP, Wang J. Spatial Precision in Magnetic Resonance Imaging-Guided Radiation Therapy: The Role of Geometric Distortion. Int J Radiat Oncol Biol Phys 2016; 95:1304-16. [PMID: 27354136 DOI: 10.1016/j.ijrobp.2016.02.059] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/11/2022]
Abstract
Because magnetic resonance imaging-guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into account relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility-induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility-induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.
Collapse
Affiliation(s)
- Joseph Weygand
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| | - Clifton David Fuller
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Geoffrey S Ibbott
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Clinical Oncology and Nuclear Medicine, Alexandria University, Alexandria, Egypt
| | - Yao Ding
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
46
|
Park JJ, Park BK, Kim CK. Adrenal imaging for adenoma characterization: imaging features, diagnostic accuracies and differential diagnoses. Br J Radiol 2016; 89:20151018. [PMID: 26867466 DOI: 10.1259/bjr.20151018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adrenocortical adenoma is the most common adrenal tumour. This lesion is frequently encountered on cross-sectional imaging that has been performed for unrelated reasons. Adrenal adenoma manifests various imaging features on CT, MRI and positron emission tomography/CT. The learning objectives of this review are to describe the imaging findings of adrenocortical adenoma, to compare the sensitivities of different imaging modalities for adenoma characterization and to introduce differential diagnoses.
Collapse
Affiliation(s)
- Jung Jae Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chan Kyo Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment. Clin Radiol 2016; 71:e157-69. [DOI: 10.1016/j.crad.2015.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/03/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022]
|
48
|
Priola AM, Gned D, Veltri A, Priola SM. Chemical shift and diffusion-weighted magnetic resonance imaging of the anterior mediastinum in oncology: Current clinical applications in qualitative and quantitative assessment. Crit Rev Oncol Hematol 2016; 98:335-57. [DOI: 10.1016/j.critrevonc.2015.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 10/04/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022] Open
|
49
|
Bolster F, Lawler L, Geoghegan T. Loss of renal India ink artifact-a useful radiological sign for obstructive hydronephrosis in pregnancy. Clin Imaging 2015; 39:717-9. [PMID: 25863876 DOI: 10.1016/j.clinimag.2015.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/10/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Magnetic resonance imaging is a useful tool for investigating causes of abdominal pain in pregnancy. Differentiating between physiologic hydronephrosis of pregnancy and pathologic hydronephrosis can be challenging for clinicians and radiologists. This report describes loss of the India ink artifact around the obstructed kidney as a novel and potentially useful radiological sign, which may be of value in the evaluation of abdominal pain and hydronephrosis in pregnancy.
Collapse
Affiliation(s)
- Ferdia Bolster
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland.
| | - Leo Lawler
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Tony Geoghegan
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| |
Collapse
|
50
|
From Tumor to Trauma: Etiologically Deconstructing a Unique Differential Diagnosis of Musculoskeletal Entities With High Signal Intensity on T1-Weighted MRI. AJR Am J Roentgenol 2015; 204:817-26. [DOI: 10.2214/ajr.14.13360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|