1
|
Eajazi A, Weinschenk C, Chhabra A. Imaging Biomarkers of Peripheral Nerves: Focus on Magnetic Resonance Neurography and Ultrasonography. Semin Musculoskelet Radiol 2024; 28:92-102. [PMID: 38330973 DOI: 10.1055/s-0043-1776427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Peripheral neuropathy is a prevalent and debilitating condition affecting millions of individuals globally. Magnetic resonance neurography (MRN) and ultrasonography (US) are noninvasive methods offering comprehensive visualization of peripheral nerves, using anatomical and functional imaging biomarkers to ensure accurate evaluation. For optimized MRN, superior and high-resolution two-dimensional and three-dimensional imaging protocols are essential. The anatomical MRN and US imaging markers include quantitative measures of nerve and fascicular size and signal, and qualitative markers of course and morphology. Among them, quantitative markers of T2-signal intensity ratio are sensitive to nerve edema-like signal changes, and the T1-mapping technique reveals nerve and muscle tissue fatty and fibrous compositional alterations.The functional markers are derived from physiologic properties of nerves, such as diffusion characteristics or blood flow. They include apparent diffusion coefficient from diffusion-weighted imaging and fractional anisotropy and tractography from diffusion tensor imaging to delve into peripheral nerve microstructure and integrity. Peripheral nerve perfusion using dynamic contrast-enhanced magnetic resonance imaging estimates perfusion parameters, offering insights into nerve health and neuropathies involving edema, inflammation, demyelination, and microvascular alterations in conditions like type 2 diabetes, linking nerve conduction pathophysiology to vascular permeability alterations.Imaging biomarkers thus play a pivotal role in the diagnosis, prognosis, and monitoring of nerve pathologies, thereby ensuring comprehensive assessment and elevating patient care. These biomarkers provide valuable insights into nerve structure, function, and pathophysiology, contributing to the accurate diagnosis and management planning for peripheral neuropathy.
Collapse
Affiliation(s)
- Alireza Eajazi
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Cindy Weinschenk
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiology & Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Durak MA, Ozhan O, Tetik B, Yildiz A, Aksungur Z, Vardi N, Turkoz Y, Ucar M, Parlakpinar H. Effects of apocynin on sciatic nerve injury in rabbits. Biotech Histochem 2023; 98:172-178. [PMID: 36440649 DOI: 10.1080/10520295.2022.2146195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the effects of apocynin (APO) on experimental sciatic nerve compression injury in rabbits. We used 21 male rabbits divided randomly into three groups of seven. The control group was subjected to sciatic nerve compression with no further intervention. The APO treated group was subjected to compression injury and 20 mg/kg APO was administered daily for 21 days by intraperitoneal injection beginning the day after the injury. The sham group was treated with APO without injury. The control group exhibited shrinkage of axons, disruption of myelin sheaths and loss of nerve fibers. The damage for the control group was significantly greater than for the sham group. The severity of histopathology was decreased in the APO treated group compared to the control group, as was the oxidative stress index. Our findings suggest that APO treatment may contribute to healing of sciatic nerve damage.
Collapse
Affiliation(s)
- Mehmet Akif Durak
- Department of Neurosurgery, Medical School, Inonu University, Malatya, Turkey
| | - Onural Ozhan
- Department of Pharmacology, Medical School, Inonu University, Malatya, Turkey
| | - Bora Tetik
- Department of Neurosurgery, Medical School, Inonu University, Malatya, Turkey
| | - Azibe Yildiz
- Department of Histology and Embryology, Medical School, Inonu University, Malatya, Turkey
| | - Zeynep Aksungur
- Department of Biochemistry, Medical School, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Medical School, Inonu University, Malatya, Turkey
| | - Yusuf Turkoz
- Department of Biochemistry, Medical School, Inonu University, Malatya, Turkey
| | - Muharrem Ucar
- Department of Anesthesiology, Medical School, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Medical School, Inonu University, Malatya, Turkey
| |
Collapse
|
3
|
Chen Y, Pan Z, Meng F, Yu X, Xu Q, Huang L, Liang Q, Wu Y, Lin X. Magnetic resonance imaging assessment of the therapeutic effect of combined electroacupuncture and stem cells in acute peripheral nerve injury. Front Cell Neurosci 2022; 16:1065557. [PMID: 36605615 PMCID: PMC9807880 DOI: 10.3389/fncel.2022.1065557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives: This study aimed to evaluate the therapeutic effect of a combination of Bone Mesenchymal stem cells (BMSCs) transplantation and Electroacupuncture (EA) for acute sciatic nerve injury in rats using magnetic resonance. Methods: Ninety-two male adult healthy Sprague-Dawley rats were randomly divided into the EA+BMSCs group, EA group, MSCs group, and PBS group (control). Electroacupuncture was performed on a rat receiving EA treatment at Huantiao (GB30) and Zusanli (ST36). T2 values and diffusion tensor imaging (DTI) derived from multiparametric magnetic resonance imaging (MRI), histological assessments, and immunohistochemistry was used to monitor nerve regeneration. Walking track analysis was used to assess nerve functional recovery. Repeated-measures one-way analysis of variance was used to evaluate the significance of T2, DTI, and SFI values among the four groups. One-way analysis of variance was used for comparing the histological characteristics. Bonferroni test was used for multiple pairwise comparisons at each time point. Results: In terms of FA, the EA+BMSCs and EA groups had faster recovery than PBS (control) in all time points after surgery, and the EA+BMSCs group recovered better than the BMSCs group at 3 weeks (P ≤ 0.008). FA values were higher in the EA group than in the BMSCs group at 4 weeks (P ≤ 0.008). In terms of RD, the EA+BMSCs group recovered better than the BMSCs group at 2 and 4 weeks (P ≤ 0.008). Immunofluorescence staining for axon guidance molecule netrin-1 revealed that it was significantly higher in the EA+BMSCs subgroup and EA subgroup than it was in the control (PBS) subgroup at 1-3 weeks (P < 0.001). Immunofluorescence staining for S100 showed the continuity of nerve fibers recovered more quickly in the EA+BMSCs subgroup than in the BMSCs subgroup. Conclusion: Our research revealed that a combination of MSCs and EA can provide both topological and biomolecular guidance to promote axonal extension, myelin regeneration, and functional recovery after PNI. EA not only promotes nerve repair on its own, but also enhanced the beneficial effects of stem cell treatment and the secretion of netrin 1, a guidance regeneration factor, and promotes the orderly growth of nerve fibers. These PNI repairs could be monitored non-invasively and in situ by MRI. The FA and RD values derived from MRI could be sensitive biomarkers to reflect the PNI repair process.
Collapse
Affiliation(s)
- Yueyao Chen
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Zhongxian Pan
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Fanqi Meng
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Qian Xu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Leyu Huang
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Qiumei Liang
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China
| | | | - Xiaofeng Lin
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Xiaofeng Lin
| |
Collapse
|
4
|
Zhu Y, Peng N, Wang J, Jin Z, Zhu L, Wang Y, Chen S, Hu Y, Zhang T, Song Q, Xie F, Yan L, Li Y, Xiao J, Li X, Jiang B, Peng J, Wang Y, Luo Y. Peripheral nerve defects repaired with autogenous vein grafts filled with platelet-rich plasma and active nerve microtissues and evaluated by novel multimodal ultrasound techniques. Biomater Res 2022; 26:24. [PMID: 35690849 PMCID: PMC9188244 DOI: 10.1186/s40824-022-00264-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developing biocompatible nerve conduits that accelerate peripheral nerve regeneration, lengthening and functional recovery remains a challenge. The combined application of nerve microtissues and platelet-rich plasma (PRP) provides abundant Schwann cells (SCs) and various natural growth factors and can compensate for the deficiency of SCs in the nerve bridge, as well as the limitations of applying a single type of growth factor. Multimodal ultrasound evaluation can provide additional information on the stiffness and microvascular flow perfusion of the tissue. This study was designed to investigate the effectiveness of a novel tissue-engineered nerve graft composed of an autogenous vein, nerve microtissues and PRP in reconstructing a 12-mm tibial nerve defect and to explore the value of multimodal ultrasound techniques in evaluating the prognosis of nerve repair. METHODS In vitro, nerve microtissue activity was first investigated, and the effects on SC proliferation, migration, factor secretion, and axonal regeneration of dorsal root ganglia (DRG) were evaluated by coculture with nerve microtissues and PRP. In vivo, seventy-five rabbits were equally and randomly divided into Hollow, PRP, Micro-T (Microtissues), Micro-T + PRP and Autograft groups. By analysing the neurological function, electrophysiological recovery, and the comparative results of multimodal ultrasound and histological evaluation, we investigated the effect of these new nerve grafts in repairing tibial nerve defects. RESULTS Our results showed that the combined application of nerve microtissues and PRP could significantly promote the proliferation, secretion and migration of SCs and the regeneration of axons in the early stage. The Micro-T + PRP group and Autograft groups exhibited the best nerve repair 12 weeks postoperatively. In addition, the changes in target tissue stiffness and microvascular perfusion on multimodal ultrasound (shear wave elastography; contrast-enhanced ultrasonography; Angio PlaneWave UltrasenSitive, AngioPLUS) were significantly correlated with the histological results, such as collagen area percentage and VEGF expression, respectively. CONCLUSION Our novel tissue-engineered nerve graft shows excellent efficacy in repairing 12-mm defects of the tibial nerve in rabbits. Moreover, multimodal ultrasound may provide a clinical reference for prognosis by quantitatively evaluating the stiffness and microvescular flow of nerve grafts and targeted muscles.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Peng
- Department of Geriatric Rehabilitation, The Second Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhuang Jin
- General hospital of Northern Theater Command, Liaoning, China
| | - Lianhua Zhu
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Anesthesiology, JiangXi PingXiang People's Hospital, Jiangxi, China
| | - Tieyuan Zhang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Xie
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Yan
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yingying Li
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Xiao
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Xinyang Li
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Jiang
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China. .,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.
| | - Yukun Luo
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Zheng C, Yang Z, Chen S, Zhang F, Rao Z, Zhao C, Quan D, Bai Y, Shen J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Am J Cancer Res 2021; 11:2917-2931. [PMID: 33456580 PMCID: PMC7806490 DOI: 10.7150/thno.50825] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Peripheral nerve injury (PNI) is a great challenge for regenerative medicine. Nerve autograft is the gold standard for clinical PNI repair. Due to its significant drawbacks, artificial nerve guidance conduits (NGCs) have drawn much attention as replacement therapies. We developed a combinatorial NGC consisting of longitudinally aligned electrospun nanofibers and porcine decellularized nerve matrix hydrogel (pDNM gel). The in vivo capacity for facilitating nerve tissue regeneration and functional recovery was evaluated in a rat sciatic nerve defect model. Methods: Poly (L-lactic acid) (PLLA) was electrospun into randomly oriented (PLLA-random) and longitudinally aligned (PLLA-aligned) nanofibers. PLLA-aligned were further coated with pDNM gel at concentrations of 0.25% (PLLA-aligned/0.25% pDNM gel) and 1% (PLLA-aligned/1% pDNM gel). Axonal extension and Schwann cells migration were evaluated by immunofluorescence staining of dorsal root ganglia cultured on the scaffolds. To fabricate implantable NGCs, the nanofibrous scaffolds were rolled and covered with an electrospun protection tube. The fabricated NGCs were then implanted into a 5 mm sciatic nerve defect model in adult male Sprague-Dawley rats. Nerves treated with NGCs were compared to contralateral uninjured nerves (control group), injured but untreated nerves (unstitched group), and autografted nerves. Nerve regeneration was monitored by an established set of assays, including T2 values and diffusion tensor imaging (DTI) derived from multiparametric magnetic resonance imaging (MRI), histological assessments, and immunostaining. Nerve functional recovery was evaluated by walking track analysis. Results: PLLA-aligned/0.25% pDNM gel scaffold exhibited the best performance in facilitating directed axonal extension and Schwann cells migration in vitro due to the combined effects of the topological cues provided by the aligned nanofibers and the biochemical cues retained in the pDNM gel. Consistent results were obtained in animal experiments with the fabricated NGCs. Both the T2 and fractional anisotropy values of the PLLA-aligned/0.25% pDNM gel group were the closest to those of the autografted group, and returned to normal much faster than those of the other NGCs groups. Histological assessment indicated that the implanted PLLA-aligned/0.25% pDNM gel NGC resulted in the largest number of axons and the most extensive myelination among all fabricated NGCs. Further, the PLLA-aligned/0.25% pDNM gel group exhibited the highest sciatic nerve function index, which was comparable to that of the autografted group, at 8 weeks post-surgery. Conclusions: NGCs composed of aligned PLLA nanofibers decorated with 0.25% pDNM gel provided both topological and biochemical guidance for directing and promoting axonal extension, nerve fiber myelination, and functional recovery. Moreover, T2-mapping and DTI metrics were found to be useful non-invasive monitoring techniques for PNI treatment.
Collapse
|
6
|
Ultrasound-guided platelet-rich plasma injection and multimodality ultrasound examination of peripheral nerve crush injury. NPJ Regen Med 2020; 5:21. [PMID: 33298932 PMCID: PMC7680141 DOI: 10.1038/s41536-020-00101-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ultrasound-guided platelet-rich plasma (PRP) injection is able to make up for the limitations of applying a single growth factor. The goal of this study was to investigate the effects of serial ultrasound-guided PRP injections of the appropriate concentration on the treatment of sciatic nerve crush injury, and explore the value of multimodality ultrasound techniques in evaluating the prognosis of crushed peripheral nerve. In vitro, optimal concentration of PRP (from 150%, 250%, 450%, and 650%) was screened due for its maximal effect on proliferation and neurotrophic function of Schwann cells (SCs). In vivo, ninety rabbits were equally and randomly divided into normal control, model, PRP-2.5×, PRP-4.5×, and PRP-6.5× groups. The neurological function and electrophysiological recovery evaluation, and the comparison of the multimodality ultrasound evaluation with the histological results of sciatic nerve crush injury were performed to investigate the regenerative effects of PRP at different concentrations on the sciatic nerve crush injury. Our results showed that the PRP with a 4.5-fold concentration of whole blood platelets could significantly stimulate the proliferation and secretion of SCs and nerve repair. The changes in stiffness and blood perfusion were positively correlated with the collagen area percentage and VEGF expression in the injured nerve, respectively. Thus, serial ultrasound-guided PRP injections at an appropriate concentration accelerates the recovery of axonal function. Multimodality ultrasound techniques provide a clinical reference for prognosis by allowing the stiffness and microcirculation perfusion of crush-injured peripheral nerves to be quantitatively evaluated.
Collapse
|
7
|
Kim BR, Ha DH, Kim JK, Kim YH. Comparison of MR findings of acute traumatic peripheral nerve injury and acute compressive neuropathy in a rat model. PLoS One 2020; 15:e0240911. [PMID: 33211695 PMCID: PMC7676645 DOI: 10.1371/journal.pone.0240911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose The treatment strategy is different for acute traumatic peripheral nerve injury and acute compressive neuropathy. This study aimed to compare magnetic resonance imaging (MRI) features of acute traumatic peripheral nerve injury and acute compressive neuropathy in a rat model. Materials and methods Twenty female Sprague-Dawley rats were divided into two groups. In the crush injury group (n = 10), the unilateral sciatic nerve was crushed using forceps to represent acute traumatic peripheral nerve injury. In the compression injury group (n = 10), the unilateral sciatic nerve was ligated using silk to represent acute compressive neuropathy. The MRI of eight rats from each group were acquired on postoperative days 3 and 10. Fat-suppressed T2-weighted images were acquired. Changes in the injured nerve were divided into three grades. A Fisher’s exact test was used to compare the changes in the nerves of the two groups. Histological staining and a western blot analysis were performed on one rat in each group on day 3. Neurofilament, myelin basic protein (MBP), and p75NTR staining were performed. Expression of neurofilament, MBP, p75NTR, and c-jun was evaluated by western blot analysis. Results MR neurography revealed substantial nerve changes in the compression injury group compared with the crush injury group at two-time points (p = 0.001 on day 3, p = 0.026 on day 10). The histopathological analysis indicated the destruction of the axon and myelin, mainly at the injury site and the distal portion of the injury in the crush injury group. It was prominent in the proximal portion, the injury site, and the distal portion of the injury in the compression injury group. The degree of axonal and myelin destruction was more pronounced in the compression injury group than in the crush injury group. Conclusion MR neurography showed prominent and long-segmental changes associated with the injured nerve in acute compressive neuropathy compared with acute traumatic peripheral nerve injury.
Collapse
Affiliation(s)
- Bo Ra Kim
- Department of Radiology, Dong-A University Medical Center, Busan, Republic of Korea
| | - Dong-Ho Ha
- Department of Radiology, Dong-A University Medical Center, Busan, Republic of Korea
- * E-mail:
| | - Jong Kuk Kim
- Department of Neurology, Dong-A University Medical Center, Busan, Republic of Korea
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, Republic of Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
8
|
Kwon JH, Kim MD, Kim SH, Lee EW, Kahlid SA. Effects of irreversible electroporation on femoral nerves in a rabbit model. MINIM INVASIV THER 2020; 31:306-312. [PMID: 32744129 DOI: 10.1080/13645706.2020.1799820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Irreversible electroporation (IRE) is a novel technique that uses a non-thermal ablation to avoid adjacent major structure injury. The aim of this study was to sequentially evaluate the effects of IRE on the femoral nerve during acute-to-delayed periods in a rabbit model. MATERIAL AND METHODS Ultrasound-guided IRE of femoral neurovascular bundles was performed in seven rabbits. Functional and histopathologic evaluation was performed sequentially after IRE. The extent of nerve fiber affected, and the proportion of perineurial inflammation and surrounding tissue injury were recorded. RESULTS After IRE, femoral nerve function was damaged before four weeks, but then gradually returned to normal. Perineural inflammatory cell infiltration was most severe three days after IRE (80-85%), and was normalized after eight weeks. Surrounding tissue injury was prominent at three days and one week after IRE (80-90%), and then gradually recovered. However, peripheral nerve fibers were markedly damaged at one and two weeks (80-100%). Nerve fibers then recovered and were normalized at eight weeks. CONCLUSION Nerve tissue injury with transient functional impairment can occur after IRE. However, endoneurial and epineurial extracellular matrix were preserved with Schwann cell regeneration, which could lead to regeneration of nerve tissues within eight weeks.
Collapse
Affiliation(s)
- Joon Ho Kwon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Man-Deuk Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Edward W Lee
- Division of Interventional Radiology, Department of Radiology, Ronald Reagan Medical Center at UCLA Medical Center, Los Angeles, CA, USA
| | - Suliman Aljoqiman Kahlid
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Radiology, King Faisal University College of Medicine, Al-Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Sakai T, Aoki Y, Watanabe A, Yoneyama M, Ochi S, Miyati T. Functional Assessment of Lumbar Nerve Roots Using Coronal-plane Single-shot Turbo Spin-echo Diffusion Tensor Imaging. Magn Reson Med Sci 2019; 19:159-165. [PMID: 31189790 PMCID: PMC7232038 DOI: 10.2463/mrms.tn.2019-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We investigated the usefulness of diffusion tensor imaging using single-shot turbo spin-echo sequence (TSE–DTI) in detecting the responsible nerve root by multipoint measurements of fractional anisotropy (FA) values. Five patients with bilateral lumbar spinal stenosis showing unilateral neurological symptoms were examined using TSE–DTI. In the spinal canal, FA values in the symptomatic side were lower than those in the asymptomatic side. TSE–DTI using multipoint measurements of FA values can differentiate the responsible lumbar nerve root.
Collapse
Affiliation(s)
- Takayuki Sakai
- Department of Radiology, Eastern Chiba Medical Center.,Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yasuchika Aoki
- Department of General Medical Services, Graduate School of Medicine, Chiba University.,Department of Orthopedic Surgery, Eastern Chiba Medical Center
| | - Atsuya Watanabe
- Department of General Medical Services, Graduate School of Medicine, Chiba University.,Department of Orthopedic Surgery, Eastern Chiba Medical Center
| | | | | | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
10
|
Hiwatashi A, Togao O, Yamashita K, Kikuchi K, Momosaka D, Nakatake H, Yamasaki R, Ogata H, Yoneyama M, Kira JI, Honda H. Simultaneous MR neurography and apparent T2 mapping in brachial plexus: Evaluation of patients with chronic inflammatory demyelinating polyradiculoneuropathy. Magn Reson Imaging 2018; 55:112-117. [PMID: 30266626 DOI: 10.1016/j.mri.2018.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE MR neurography is known to be useful to evaluate nerve pathology. The purpose of this study was to evaluate the usefulness of simultaneous apparent T2 mapping and neurography with nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (SHINKEI) to distinguish patients with chronic inflammatory demyelinating polyneuropathy (CIDP) from healthy subjects. MATERIALS AND METHODS This retrospective study included 13 patients with CIDP and five healthy subjects from 2015 to 2017. The T2 relaxation time and the size of the cervical ganglia and roots of the brachial plexus were measured. Statistical analyses were performed with the Mann-Whitney U test and receiver operating characteristics (ROC) analysis. RESULTS The T2 relaxation times of the ganglia and roots were longer in patients with CIDP (119.31 ± 35.53 msec and 111.15 ± 33.82 msec) than in healthy subjects (101.42 ± 26.42 msec and 85.29 ± 13.22 msec, P = 0.0007 and P < 0.0001, respectively). The sizes of the ganglia and the roots were larger in patients with CIDP (6.25 ± 1.56 mm and 4.37 ± 1.71 mm) than in healthy subjects (5.59 ± 1.08 mm and 3.50 ± 0.62 mm, P = 0.0114 and P = 0.0014, respectively). ROC analysis revealed that T2 relaxation time of the roots was best at distinguishing CIDP patients from healthy subjects (the area under the curve = 0.748). CONCLUSION Patients with CIDP could be distinguished from healthy subjects using simultaneous apparent T2 mapping and neurography with SHINKEI.
Collapse
Affiliation(s)
- Akio Hiwatashi
- Departments of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Japan.
| | - Osamu Togao
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Koji Yamashita
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kazufumi Kikuchi
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Daichi Momosaka
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hiroshi Nakatake
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Ryo Yamasaki
- Neurology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hidenori Ogata
- Neurology, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | - Jun-Ichi Kira
- Neurology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hiroshi Honda
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
11
|
Hiwatashi A, Togao O, Yamashita K, Kikuchi K, Momosaka D, Nakatake H, Yamasaki R, Ogata H, Yoneyama M, Kira JI, Honda H. Lumbar plexus in patients with chronic inflammatory demyelinating polyradiculoneuropathy: evaluation with simultaneous T 2 mapping and neurography method with SHINKEI. Br J Radiol 2018; 91:20180501. [PMID: 30160180 DOI: 10.1259/bjr.20180501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE: To evaluate the usefulness of simultaneous T2 mapping and neurography with nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (SHINKEI) in the lumbar plexus to distinguish patients with chronic inflammatory demyelinating polyneuropathy (CIDP) from healthy controls. METHODS: Our institutional review boards approved this retrospective study, and written informed consent was waived. 10 patients with CIDP from 2015 to 2017 were studied along with 5 healthy controls on a 3 T scanner. The T2 relaxation time and the size of the dorsal root ganglia and nerves of the lumbar plexus at L3-S1 were measured. Statistical analyses were performed with the Mann-Whitney U test and a receiver operating characteristics analysis. RESULTS: The T2 relaxation times of the dorsal root ganglia and the nerves of the lumbar plexus were longer in the CIDP patients (133.34 ± 41.36 and 130.40 ± 47.78 ms) compared to the healthy controls (114.69 ± 24.90 and 83.72 ± 17.51 ms, p = 0.0265 and p < 0.0001, respectively). The sizes of the nerves were larger in the CIDP patients (6.19 ± 2.28 mm) compared to the controls (4.54 ± 0.86 mm, p < 0.0001). However, there was no significant difference between the sizes of the ganglia in the CIDP patients and the controls. The receiver operating characteristics analysis revealed that the T2 relaxation time of the nerves was best at distinguishing the CIDP patients from the controls (Az = 0.848). CONCLUSION: Patients with CIDP could be distinguished from healthy controls using simultaneous T2 mapping and neurography with SHINKEI in the lumbar plexus. ADVANCES IN KNOWLEDGE: Patients with CIDP could be distinguished from healthy controls using simultaneous T2 mapping and neurography with SHINKEI in the lumbar plexus.
Collapse
Affiliation(s)
- Akio Hiwatashi
- 1 Departments of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Osamu Togao
- 2 Clinical Radiology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Koji Yamashita
- 2 Clinical Radiology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Kazufumi Kikuchi
- 2 Clinical Radiology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Daichi Momosaka
- 2 Clinical Radiology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Hiroshi Nakatake
- 2 Clinical Radiology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Ryo Yamasaki
- 3 Neurology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Hidenori Ogata
- 3 Neurology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | | | - Jun-Ichi Kira
- 3 Neurology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Hiroshi Honda
- 2 Clinical Radiology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
12
|
Fan SJ, Wong J, Cheng X, Ma YJ, Chang EY, Du J, Shah SB. Feasibility of quantitative ultrashort echo time (UTE)-based methods for MRI of peripheral nerve. NMR IN BIOMEDICINE 2018; 31:e3948. [PMID: 30011103 PMCID: PMC6310234 DOI: 10.1002/nbm.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Peripheral nerves are a composite tissue consisting of neurovascular elements packaged within a well-organized extracellular matrix. Their composition, size, and anatomy render nerves a challenging medical imaging target. In contrast to morphological MRI, which represents the predominant approach to nerve imaging, quantitative MRI sequences can provide information regarding tissue composition. Here, we applied standard clinical Carr-Purcell-Meiboom-Gill (CPMG) and experimental three-dimensional (3D) ultrashort echo time (UTE) Cones sequences for quantitative nerve imaging including T2 measurement with single-component analysis, T2 * measurement with single-component and bi-component analyses, and magnetization transfer ratio (MTR) analysis. We demonstrated the feasibility and the high quality of single-component T2 *, bi-component T2 *, and MTR approaches to analyze nerves imaged with clinically deployed 3D UTE Cones pulse sequences. For 24 single fascicles from eight nerves, we measured a mean single-component T2 * of 22.6 ±8.9 ms, and a short T2 * component (STC) with a mean T2 * of 1.7 ±1.0 ms and a mean fraction of (6.74 ±4.31)% in bi-component analysis. For eight whole nerves, we measured a mean single-component T2 * of 16.7 ±2.2 ms, and an STC with a mean T2 * of 3.0 ±1.0 ms and a mean fraction of (15.56 ±7.07)% in bi-component analysis. For nine fascicles from three healthy nerves, we measured a mean MTR of (25.2 ±1.9)% for single fascicles and a mean MTR of (23.6 ±0.9)% for whole nerves. No statistically significant correlation was observed between any MRI parameter and routine histological outcomes, perhaps due to the small sample size and lack of apparent sample pathology. Overall, we have successfully demonstrated the feasibility of measuring quantitative MR outcomes ex vivo, which might reflect features of nerve structure and macromolecular content. These methods should be validated comprehensively on a larger and more diverse set of nerve samples, towards the interpretation of in vivo outcomes. These approaches have new and broad implications for the management of nerve disease, injury, and repair.
Collapse
Affiliation(s)
- Shu-Juan Fan
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan Wong
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Xin Cheng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Zuniga JR, Mistry C, Tikhonov I, Dessouky R, Chhabra A. Magnetic Resonance Neurography of Traumatic and Nontraumatic Peripheral Trigeminal Neuropathies. J Oral Maxillofac Surg 2018; 76:725-736. [DOI: 10.1016/j.joms.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
14
|
Chen MW, Zhang X, Lu LJ, Zhang F, Duan XH, Zheng CS, Chen YY, Shen J. Monitoring of macrophage recruitment enhanced by Toll-like receptor 4 activation with MR imaging in nerve injury. Muscle Nerve 2018; 58:123-132. [PMID: 29424947 DOI: 10.1002/mus.26097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Macrophage recruitment is critical for nerve regeneration after an injury. The aim of this study was to investigate whether ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle-based MRI could be used to monitor the enhanced macrophage recruitment by Toll-like receptor 4 (TLR4) activation in nerve injury. METHODS Rats received intraperitoneal injections of either lipopolysaccharide (LPS) or phosphate buffered saline (PBS) or no injection (controls) after a sciatic nerve crush injury. After intravenous injection of the USPIOs (LPS and PBS groups) or PBS (control group), MRI was performed and correlated with histological findings. RESULTS LPS group showed more remarkable hypointense signals on T2*-weighted imaging and lower T2 values in the crushed nerves than PBS group. The hypointense signal areas were associated with an enhanced recruitment of iron-loaded macrophages to the injured nerves. DISCUSSION USPIO-enhanced MRI can be used to monitor the enhanced macrophage recruitment by means of TLR4 signal pathway activation in nerve injury. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| |
Collapse
|
15
|
Yao Z, Yan LW, Wang T, Qiu S, Lin T, He FL, Yuan RH, Liu XL, Qi J, Zhu QT. A rapid micro-magnetic resonance imaging scanning for three-dimensional reconstruction of peripheral nerve fascicles. Neural Regen Res 2018; 13:1953-1960. [PMID: 30233069 PMCID: PMC6183031 DOI: 10.4103/1673-5374.238718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging (Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by 1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions (Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent (Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.
Collapse
Affiliation(s)
- Zhi Yao
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Li-Wei Yan
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Tao Wang
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Shuai Qiu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Tao Lin
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Fu-Lin He
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Ru-Heng Yuan
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, Guangdong Province, China
| | - Jian Qi
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, Guangdong Province, China
| | - Qing-Tang Zhu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
The Safety of Irreversible Electroporation on Nerves Adjacent to Treated Tumors. World Neurosurg 2017; 108:642-649. [DOI: 10.1016/j.wneu.2017.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022]
|
17
|
Dessouky R, Xi Y, Zuniga J, Chhabra A. Role of MR Neurography for the Diagnosis of Peripheral Trigeminal Nerve Injuries in Patients with Prior Molar Tooth Extraction. AJNR Am J Neuroradiol 2017; 39:162-169. [PMID: 29146720 DOI: 10.3174/ajnr.a5438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Clinical neurosensory testing is an imperfect reference standard to evaluate molar tooth extraction related peripheral trigeminal neuropathy. The purpose was to evaluate the diagnostic accuracy of MR neurography in this domain and correlation with neurosensory testing and surgery. MATERIALS AND METHODS In this retrospective study, nerve caliber, T2 signal intensity ratio, and contrast-to-noise ratios were recorded by 2 observers using MR neurography for bilateral branches of the peripheral trigeminal nerve, the inferior alveolar and lingual nerves. Patient demographics and correlation of the MR neurography findings with the Sunderland classification of nerve injury and intraoperative findings of surgical patients were obtained. RESULTS Among 42 patients, the mean ± SD age for case and control patients were 35.8 ± 10.2 years and 43.2 ± 11.5 years, respectively, with male-to-female ratios of 1:1.4 and 1:5, respectively. Case subjects (peripheral trigeminal neuropathy or injury) had significantly larger differences in nerve thickness, T2 signal intensity ratio, and contrast-to-noise ratios than control patients for the inferior alveolar nerve and lingual nerve (P = .01 and .0001, .012 and .005, and .01 and .01, respectively). Receiver operating characteristic analysis showed a significant association among differences in nerve thickness, T2 signal intensity ratio, and contrast-to-noise ratios and nerve injury (area under the curve, 0.83-0.84 for the inferior alveolar nerve and 0.77-0.78 for the lingual nerve). Interobserver agreement was good for the inferior alveolar nerve (intraclass correlation coefficient, 0.70-0.79) and good to excellent for the lingual nerve (intraclass correlation coefficient, 0.75-0.85). MR neurography correlations with respect to clinical neurosensory testing and surgical classifications were moderate to good. Pearson correlation coefficients of 0.68 and 0.81 and κ of 0.60 and 0.77 were observed for differences in nerve thickness. CONCLUSIONS MR neurography can be reliably used for the diagnosis of injuries to the peripheral trigeminal nerve related to molar tooth extractions, with good to excellent correlation of imaging with clinical findings and surgical results.
Collapse
Affiliation(s)
- R Dessouky
- From the Departments of Radiology (R.D., Y.X., A.C.).,Department of Radiodiagnosis (R.D.), Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Y Xi
- From the Departments of Radiology (R.D., Y.X., A.C.)
| | - J Zuniga
- Oral and Maxillofacial Surgery (J.Z.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - A Chhabra
- From the Departments of Radiology (R.D., Y.X., A.C.)
| |
Collapse
|
18
|
Chen H, Yang S, Zhou T, Xu J, Hu J, Xing D. Synthesis and characterization of an HSP27-targeted nanoprobe for in vivo photoacoustic imaging of early nerve injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:1453-62. [PMID: 27046663 DOI: 10.1016/j.nano.2016.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023]
Abstract
Imaging is routinely used for clinical and diagnostic purposes, but techniques capable of high specificity and resolution for the early detection of nerve injury are still limited. In this study, we found that heat shock protein 27 (HSP27) becomes highly upregulated within 3 to 7 days of nerve injury. Taking advantage of this expression pattern, we conjugated gold nanorods (GNRs) to HSP27-specific antibodies to generate a nanoprobe (GNR-HSP27Abs) that could be targeted to the site of nerve injury and detected by near-infrared photoacoustic imaging. Notably, photoacoustic images acquired 12hours after local administration of GNR-HSP27Abs demonstrated that the nanoprobe can distinguish between injured and uninjured nerves in rats. Taken together, these findings expand the application of nanoprobe-targeted photoacoustic imaging to the detection of injured nerves, and prompt further development of this novel imaging platform for clinical application.
Collapse
Affiliation(s)
- Hongjiang Chen
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Ting Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Jiankun Xu
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China.
| |
Collapse
|
19
|
Effects of hyaluronic acid and tacrolimus on the prevention of perineural scar formation and on nerve regeneration after sciatic nerve repair in a rabbit model. Eur J Trauma Emerg Surg 2016; 43:497-504. [PMID: 27194249 DOI: 10.1007/s00068-016-0683-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Scar formation after injured peripheral nerve repair is a significant clinical problem because it prevents nerve regeneration. The aim of this study was to investigate and compare the effects of hyaluronic acid (HA) and tacrolimus (FK506) on peripheral nerve regeneration in rabbits after the drugs were topically applied at the site of nerve repair. METHODS Thirty adult male European rabbits (Oryctolagus cuniculus), ranging in weight from 2.5 to 3 kg, were randomly assigned to three groups: the HA and FK506 groups comprised the experimental groups, while the saline group served as the control. At week 12, macroscopic and microscopic evaluations were performed and analyzed. RESULTS In general, the macroscopic evaluations (skin and muscle fascia closure and nerve adherence), microscopic evaluations (cellular components, scar tissue formation index, and histomorphological organization), and measurements of nerve diameter and gastrocnemius muscle wet weight demonstrated the positive effects of topical application of these pharmacological agents (HA and FK506); HA and FK506 prevented scar formation and enhanced nerve regeneration. No significant differences in the parameters described above were observed between the HA and FK506 groups (P > 0.05). However, significant differences were observed between both the HA and FK506 groups and the saline group (P < 0.05). CONCLUSION Based on our findings, topical application of HA and FK506 exhibits equally positive effects, preventing perineural scar formation and enhancing nerve regeneration after peripheral nerve repair.
Collapse
|
20
|
Li HF, Wang YR, Huo HP, Wang YX, Tang J. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury. Neural Regen Res 2016; 10:1846-55. [PMID: 26807123 PMCID: PMC4705800 DOI: 10.4103/1673-5374.170315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.
Collapse
Affiliation(s)
- Hong-Fei Li
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yi-Ru Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hui-Ping Huo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yue-Xiang Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Wan Q, Wang S, Zhou J, Zou Q, Deng Y, Wang S, Zheng X, Li X. Evaluation of radiation-induced peripheral nerve injury in rabbits with MR neurography using diffusion tensor imaging andT2measurements: Correlation with histological and functional changes. J Magn Reson Imaging 2015; 43:1492-9. [PMID: 26691400 DOI: 10.1002/jmri.25114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Qi Wan
- Department of Radiology; First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Shiyang Wang
- Department of Radiology; Medical Center of University of Chicago; Chicago Illinois USA
| | - Jiaxuan Zhou
- Department of Radiology; First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Qiao Zou
- Department of Radiology; First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Yingshi Deng
- Department of Radiology; First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Shouyang Wang
- Department of Radiology; First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | | | - Xinchun Li
- Department of Radiology; First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| |
Collapse
|
22
|
Lin Y, Wang S, Zhang Y, Gao J, Hong L, Wang X, Wu W, Jiang X. Ultra-high relaxivity iron oxide nanoparticles confined in polymer nanospheres for tumor MR imaging. J Mater Chem B 2015; 3:5702-5710. [PMID: 32262566 DOI: 10.1039/c5tb00593k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Superparamagnetic iron oxide nanoparticles encapsulated in hydrophilic chitosan nanospheres were prepared by nonsolvent-aided counterion complexation completely in an aqueous solution. The T2 relaxation of these hybrid nanospheres in vitro and in vivo was investigated. It was found that the molar transverse relaxivity rate r2 of hybrid nanospheres highly depends upon the payload of iron oxide nanoparticles within hybrid nanospheres. Compared to free iron oxide nanoparticles, the molar transverse relaxivity rate, r2 of hybrid nanospheres shows an approximately 8-fold increase and reaches the maximum of 533 Fe mM-1 s-1. Such a high r2 value is probably associated with the clustering effect of iron oxide nanoparticles, which are confined in the chitosan nanospheres. The in vivo magnetic resonance imaging (MRI) demonstrates that the hybrid nanospheres shorten transverse relaxation time, T2 and significantly decrease the signal intensity of the tumor area, giving rise to high contrast tumor MR imaging at a relatively low dose.
Collapse
Affiliation(s)
- Ying Lin
- School of Biology and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study. Eur Radiol 2015; 25:1911-8. [DOI: 10.1007/s00330-015-3613-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/30/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023]
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to review advances in magnetic resonance (MR)-neurography and nerve-ultrasound for the precise visualization and localization of nerve lesions not only in nerve trauma or mass lesions, but also in entrapment-related and spontaneously occurring intrinsic neuropathies. These advances may improve the understanding and classification of peripheral neuropathies. RECENT FINDINGS Diagnostic studies of MR-neurography and high-resolution ultrasound in entrapment-neuropathies consistently report accurate determination and localization of symptomatic nerve entrapment. Additionally, the longitudinal sampling of nerve-T2-signal over larger areas of coverage has become technically feasible. With this approach, more complex patterns of spatial lesion dispersion in nonfocal neuropathies could be observed with reliable lesion image contrast at the level of individual nerve fascicles. Imaging detection of fascicular lesions allows for more accurate localization, because fascicular lesion types represent a specific pitfall for clinical-electrophysiological examinations. Fascicular hypoechogenicity of high-resolution ultrasound is the correlate of nerve-T2-signal lesions, but contrast is inferior and difficult to quantify. Therefore, nerve enlargement remains the main diagnostic criterion in high-resolution ultrasound. Diffusion-tensor-MR-neurography provides quantitative estimates of fiber structure, which were shown to correlate with aging and focal entrapment. SUMMARY High-resolution nerve imaging with extended anatomical coverage is feasible and improves the topographic description of spatial lesion dispersion which is particularly relevant for the discrimination between focal and nonfocal neuropathies.
Collapse
|
25
|
|
26
|
Li HJ, Zhang X, Zhang F, Wen XH, Lu LJ, Shen J. Enhanced repair effect of toll-like receptor 4 activation on neurotmesis: assessment using MR neurography. AJNR Am J Neuroradiol 2014; 35:1608-14. [PMID: 24874529 DOI: 10.3174/ajnr.a3977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Alternative use of molecular approaches is promising for improving nerve regeneration in surgical repair of neurotmesis. The purpose of this study was to determine the role of MR imaging in assessment of the enhanced nerve regeneration with toll-like receptor 4 signaling activation in surgical repair of neurotmesis. MATERIALS AND METHODS Forty-eight healthy rats in which the sciatic nerve was surgically transected followed by immediate surgical coaptation received intraperitoneal injection of toll-like receptor 4 agonist lipopolysaccharide (n = 24, study group) or phosphate buffered saline (n = 24, control group) until postoperative day 7. Sequential T2 measurements and gadofluorine M-enhanced MR imaging and sciatic functional index were obtained over an 8-week follow-up period, with histologic assessments performed at regular intervals. T2 relaxation times and gadofluorine enhancement of the distal nerve stumps were measured and compared between nerves treated with lipopolysaccharide and those treated with phosphate buffered saline. RESULTS Nerves treated with lipopolysaccharide injection achieved better functional recovery and showed more prominent gadofluorine enhancement and prolonged T2 values during the degenerative phase compared with nerves treated with phosphate buffered saline. T2 values in nerves treated with lipopolysaccharide showed a more rapid return to baseline level than did gadofluorine enhancement. Histology exhibited more macrophage recruitment, faster myelin debris clearance, and more pronounced nerve regeneration in nerves treated with toll-like receptor 4 activation. CONCLUSIONS The enhanced nerve repair with toll-like receptor 4 activation in surgical repair of neurotmesis can be monitored by using gadofluorine M-enhanced MR imaging and T2 relaxation time measurements. T2 relaxation time seems more sensitive than gadofluorine M-enhanced MR imaging for detecting such improved nerve regeneration.
Collapse
Affiliation(s)
- H J Li
- From the Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | - X Zhang
- From the Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | - F Zhang
- From the Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | - X H Wen
- From the Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | - L J Lu
- From the Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | - J Shen
- From the Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China.
| |
Collapse
|
27
|
Jung Kim H, Hyun Park S. Sciatic nerve injection injury. J Int Med Res 2014; 42:887-97. [DOI: 10.1177/0300060514531924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
Nerve injury is a common complication following intramuscular injection and the sciatic nerve is the most frequently affected nerve, especially in children, the elderly and underweight patients. The neurological presentation may range from minor transient pain to severe sensory disturbance and motor loss with poor recovery. Management of nerve injection injury includes drug treatment of pain, physiotherapy, use of assistive devices and surgical exploration. Early recognition of nerve injection injury and appropriate management are crucial in order to reduce neurological deficit and to maximize recovery. Sciatic nerve injection injury is a preventable event. Total avoidance of intramuscular injection is recommended if other administration routes can be used. If the injection has to be administered into the gluteal muscle, the ventrogluteal region (gluteal triangle) has a more favourable safety profile than the dorsogluteal region (the upper outer quadrant of the buttock).
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Anaesthesiology and Pain Medicine, Jeju National University School of Medicine, Jeju-si, Republic of Korea
| | - Sang Hyun Park
- Department of Anaesthesiology and Pain Medicine, Jeju National University School of Medicine, Jeju-si, Republic of Korea
| |
Collapse
|
28
|
Zhang X, Zhang F, Lu L, Li H, Wen X, Shen J. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis. Eur Radiol 2014; 24:1145-52. [PMID: 24573569 DOI: 10.1007/s00330-014-3134-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/21/2014] [Accepted: 02/17/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the role of MR imaging in neurotmesis combined with surgical repair and Toll-like receptor 4 (TLR4) activation. METHODS Forty-eight rats received subepineurial microinjection of the TLR4 agonist lipopolysaccharide (LPS, n = 24) or phosphate buffered saline (PBS, n = 24) immediately after surgical repair of the transected sciatic nerve. Sequential fat-suppressed T2-weighted imaging and quantitative T2 measurements were obtained at 3, 7, 14 and 21 days after surgery, with histologic assessments performed at regular intervals. T2 relaxation times and histological quantification of the distal stumps were measured and compared. RESULTS The distal stumps of transected nerves treated with LPS or PBS both showed persistent enlargement and hyperintense signal. T2 values of the distal stumps showed a rapid rise to peak level followed by a rapid decline pattern in nerves treated with LPS, while exhibiting a slow rise to peak value followed by a slow decline in nerves treated with PBS. Nerves treated with LPS exhibited more prominent macrophage recruitment, faster myelin debris clearance and more pronounced nerve regeneration. CONCLUSION Nerves treated with TLR4 activation had a characteristic pattern of T2 value change over time. Longitudinal T2 measurements can be used to detect the enhanced repair effect associated with TLR4 activation in the surgical repair of neurotmesis. KEY POINTS • TLR4 activation had additional beneficial effects on neurotmesis beyond surgical repair. • TLR4 activation had a characteristic time course of T2 values. • T2 measurements can help detect beneficial effects with TLR4 activation.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | | | | | | | | | | |
Collapse
|
29
|
A dual ligand targeted nanoprobe with high MRI sensitivity for diagnosis of breast cancer. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1399-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Cha JG, Han JK, Im SB, Kang SJ. Median nerve T2 assessment in the wrist joints: Preliminary study in patients with carpal tunnel syndrome and healthy volunteers. J Magn Reson Imaging 2013; 40:789-95. [DOI: 10.1002/jmri.24448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/10/2013] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jang Gyu Cha
- Department of Radiology; Soonchunhyang University Bucheon Hospital; Bucheon Korea
| | - Jong Kyu Han
- Department of Radiology; Soonchunhyang University Cheonan Hospital; Chungcheongnam-do Korea
| | - Soo Bin Im
- Department of Neurosurgery; Soonchunhyang University Bucheon Hospital; Bucheon Korea
| | - Sung Jin Kang
- Department of Radiology; Soonchunhyang University Bucheon Hospital; Bucheon Korea
| |
Collapse
|
31
|
In vivo DTI longitudinal measurements of acute sciatic nerve traction injury and the association with pathological and functional changes. Eur J Radiol 2013; 82:e707-14. [DOI: 10.1016/j.ejrad.2013.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022]
|
32
|
Long-Term Regeneration and Functional Recovery of a 15 mm Critical Nerve Gap Bridged by Tremella fuciformis Polysaccharide-Immobilized Polylactide Conduits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:959261. [PMID: 24027599 PMCID: PMC3763589 DOI: 10.1155/2013/959261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
Abstract
Novel peripheral nerve conduits containing the negatively charged Tremella fuciformis polysaccharide (TF) were prepared, and their efficacy in bridging a critical nerve gap was evaluated. The conduits were made of poly(D,L-lactide) (PLA) with asymmetric microporous structure. TF was immobilized on the lumen surface of the nerve conduits after open air plasma activation. The TF-modified surface was characterized by the attenuated total reflection Fourier-transformed infrared spectroscopy and the scanning electron microscopy. TF modification was found to enhance the neurotrophic gene expression of C6 glioma cells in vitro. TF-modified PLA nerve conduits were tested for their ability to bridge a 15 mm gap of rat sciatic nerve. Nerve regeneration was monitored by the magnetic resonance imaging. Results showed that TF immobilization promoted the nerve connection in 6 weeks. The functional recovery in animals receiving TF-immobilized conduits was greater than in those receiving the bare conduits during an 8-month period. The degree of functional recovery reached ~90% after 8 months in the group of TF-immobilized conduits.
Collapse
|
33
|
Zhu Y, Ling Y, Zhong J, Liu X, Wei K, Huang S. Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 2012; 53:812-9. [PMID: 22798291 DOI: 10.1258/ar.2012.120040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Radiation-induced brain injury (RBI) is the most serious complication of primary and metastatic brain and neck malignant tumors following radiation therapy. However, at present, RBI is difficult to diagnose in the early period. Recently, studies have demonstrated that the early stage of RBI is characterized by an inflammatory reaction, and that intercellular adhesion molecule-1 (ICAM-1) is significantly up-regulated in the irradiated brain tissues. PURPOSE To provide an early diagnosis of RBI using molecular magnetic resonance imaging (MRI) with microparticles of iron oxide (MPIO) targeted to ICAM-1 in the vascular endothelium of brains. MATERIAL AND METHODS A monoclonal antibody against ICAM-1 was conjugated to MPIO to form the targeted MRI contrast agent ICAM-MPIO. The adhesion of ICAM-MPIO to endothelial cells was quantified by optical imaging and MRI. Sprague-Dawley rats were irradiated to establish an animal model of the early period of RBI. ICAM-MPIO and free-MPIO were injected via tail vein, respectively. T(2) signal intensity and T(2) values of the irradiated brains and normal brains were subsequently evaluated by MRI. RESULTS In vitro, the adhesion of ICAM-MPIO to the activated endothelial cells was 5 ± 0.5-fold greater than to the non-stimulated cells, which could be detected by optical imaging and MRI (R(2) = 1.0, P < 0.01). In vivo, ICAM-MPIO caused a marked negative MRI contrast effect in irradiated brains. As compared with brains without irradiation, the specific contrast effect increased more than seven-fold after administration of ICAM-MPIO (F = 751.495, P < 0.05). CONCLUSION MPIO coated with monoclonal antibody of ICAM-1 could be used for detecting the early period of RBI by optical imaging and MRI.
Collapse
Affiliation(s)
- Yeqing Zhu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - You Ling
- China and College of Materials Science and Engineering, South China University of Technology, Guangzhou
| | - Jinglian Zhong
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Xueguo Liu
- Department of Radiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kun Wei
- China and College of Materials Science and Engineering, South China University of Technology, Guangzhou
| | - Suiqiao Huang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
34
|
Liao CD, Zhang F, Guo RM, Zhong XM, Zhu J, Wen XH, Shen J. Peripheral Nerve Repair: Monitoring by Using Gadofluorine M–enhanced MR Imaging with Chitosan Nerve Conduits with Cultured Mesenchymal Stem Cells in Rat Model of Neurotmesis. Radiology 2012; 262:161-171. [PMID: 22056686 DOI: 10.1148/radiol.11110911] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
35
|
Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury: assessment using MRI. AJR Am J Roentgenol 2011; 196:1381-7. [PMID: 21606303 DOI: 10.2214/ajr.10.5495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of our study was to monitor neural stem cells (NSCs) transplanted in acute peripheral nerve traction injury and to use MRI to assess the ability of NSCs to promote nerve regeneration. MATERIALS AND METHODS After labeling with gadolinium-diethylene triamine pentaacetic acid (gadopentetate dimeglumine) and fluorescent dye (PKH26), 5 × 10(5) NSCs were grafted to acutely distracted sciatic nerves in 21 New Zealand White rabbits. In addition, 5 × 10(5) unlabeled NSCs (n = 21) and vehicle alone (n = 21) subjects were injected as a control. Serial MRI was performed with a 1.5-T scanner to determine the distribution of grafted cells. Sequential T1 and T2 values of the nerves and functional recovery were measured over a 70-day follow-up period, with histologic assessments performed at regular intervals. RESULTS The distribution and migration of labeled NSCs could be tracked with MRI until 10 days after transplantation. Compared with vehicle control, nerves grafted with labeled or unlabeled NSCs had better functional recovery and showed improved nerve regeneration but exhibited a sustained increase of T1 and T2 values during the phase of regeneration. CONCLUSION Gadopentetate dimeglumine-based labeling allowed short-term in vivo MRI tracking of NSCs grafted in injured nerves. NSCs transplantation could promote nerve regeneration in acute peripheral nerve traction injury as shown by a prolonged increase of nerve T1 and T2 values.
Collapse
|
36
|
Duan XH, Cheng LN, Zhang F, Liu J, Guo RM, Zhong XM, Wen XH, Shen J. In vivo MRI monitoring nerve regeneration of acute peripheral nerve traction injury following mesenchymal stem cell transplantation. Eur J Radiol 2011; 81:2154-60. [PMID: 21726973 DOI: 10.1016/j.ejrad.2011.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/03/2011] [Accepted: 06/09/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess the continuous process of nerve regeneration in acute peripheral nerve traction injury treated with mesenchymal stem cells (MSCs) transplantation using MRI. MATERIALS AND METHODS 1 week after acute nerve traction injury was established in the sciatic nerve of 48 New Zealand white rabbits, 5×10(5) MSCs and vehicle alone were grafted to the acutely distracted sciatic nerves each in 24 animals. Serial MRI and T1 and T2 measurements of the injured nerves were performed with a 1.5-T scanner and functional recovery was recorded over a 10-week follow-up period, with histological assessments performed at regular intervals. RESULTS Compared with vehicle control, nerves grafted with MSCs had better functional recovery and showed improved nerve regeneration, with a sustained increase of T1 and T2 values during the phase of regeneration. CONCLUSION MRI could be used to monitor the enhanced nerve regeneration in acute peripheral nerve traction injury treated with MSC transplantation, reflected by a prolonged increase in T1 and T2 values of the injured nerves.
Collapse
Affiliation(s)
- Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Shen J, Duan XH, Cheng LN, Zhong XM, Guo RM, Zhang F, Zhou CP, Liang BL. In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury. J Magn Reson Imaging 2011; 32:1076-85. [PMID: 21031511 DOI: 10.1002/jmri.22353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate in vivo MRI tracking mesenchymal stem cells (MSCs) in peripheral nerve injures using a clinically available paramagnetic contrast agent (Gd-DTPA) and commercially available rhodamine-incorporated transfection reagents (PEI-FluoR). MATERIALS AND METHODS After bone marrow MSCs were labeled with Gd-DTPA and PEI-FluoR complex, the labeling efficacy and longevity of Gd-DTPA maintenance were measured and cell viability, proliferation, and apoptosis were assessed. Thirty-six rabbits with acute sciatic nerve traction injury randomly received 1 × 10(6) labeled (n = 12) or unlabeled MSCs (n = 12) or vehicle alone injection. The distribution and migration of implanted cells was followed by MRI and correlated with histology. The relative signal intensity (RSL) of the grafts was measured. RESULTS The labeling efficiency was 76 ± 4.7% and the labeling procedure did not influence cell viability, proliferation, and apoptosis. A persistent higher RSL in grafts was found in the labeled group compared with the unlabeled and vehicle groups until 10 days after transplantation (P < 0.05). The distribution and migration of labeled cells could be tracked by MRI until 10 days after transplantation. Transplanted MSCs were not found to transdifferentiate into Schwann-like cells within 14-day follow-up. CONCLUSION Labeling MSCs with the dual agents may enable cellular MRI of the engraftment in the experimental peripheral nerve injury.
Collapse
Affiliation(s)
- Jun Shen
- Department of Radiology, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China. junshenjun@ hotmail.com
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cheng D, Hong G, Wang W, Yuan R, Ai H, Shen J, Liang B, Gao J, Shuai X. Nonclustered magnetite nanoparticle encapsulated biodegradable polymeric micelles with enhanced properties for in vivo tumor imaging. JOURNAL OF MATERIALS CHEMISTRY 2011; 21:4796. [DOI: 10.1039/c0jm03783d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
39
|
|