1
|
Pippard BJ, Neal MA, Holland CW, Maunder AM, Forrest I, Lawson RA, Fisher HF, Matthews JNS, Wild JM, Simpson AJ, Thelwall PE. Assessing Lung Ventilation and Bronchodilator Response in Asthma and Chronic Obstructive Pulmonary Disease with 19F MRI. Radiology 2024; 313:e240949. [PMID: 39718495 DOI: 10.1148/radiol.240949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (19F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using 19F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease. Materials and Methods This prospective, dual-center study included participants with asthma or COPD from July 2019 to September 2022 and healthy participants from May 2018 to June 2019. Participants underwent conventional spirometry, proton MRI, and 19F MRI following inhalation of a 79% perfluoropropane and 21% oxygen gas mixture. Three-dimensional 19F MRI scans were acquired during a single breath hold. For participants with asthma or COPD, spirometric and MRI measurements were repeated following administration of nebulized salbutamol. Ventilation defect percentage (VDP) was calculated from perfluoropropane distribution. Linear mixed-effects models were used to assess differences in VDP between participant groups and before and after bronchodilator administration. Results Thirty-five participants with asthma (mean age, 50 years ± 18 [SD]; 21 male participants), 21 participants with COPD (mean age, 69 years ± 6; 14 male participants), and 38 healthy participants (mean age, 41 years ± 11; 20 male participants) were evaluated. 19F MRI-derived VDP was elevated in participants with COPD (geometric mean, 27.2%) and participants with asthma (geometric mean, 8.3%) compared with healthy participants (geometric mean, 1.8%; geometric mean ratio, 15.2 [95% CI: 11.1, 20.6] for COPD and 4.6 [95% CI: 3.2, 6.6] for asthma; P < .001 for both). After bronchodilator administration, VDP was reduced by 33% in participants with asthma (from 8.3% to 5.6%) and 14% in participants with COPD (from 27.2% to 23.3%; P < .001 for both). Conclusion 19F MRI of inhaled perfluoropropane was sensitive to changes in regional ventilation properties associated with lung disease and enabled quantification of changes following bronchodilator therapy. Published under a CC BY-NC-ND 4.0 license. Supplemental material is available for this article. See also the editorial by Unger in this issue.
Collapse
Affiliation(s)
- Benjamin J Pippard
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Mary A Neal
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Charlotte W Holland
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Adam M Maunder
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Ian Forrest
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Rod A Lawson
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Holly F Fisher
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - John N S Matthews
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - James M Wild
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - A John Simpson
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| | - Peter E Thelwall
- From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.)
| |
Collapse
|
2
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
3
|
Ohno Y, Ozawa Y, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Koyama H. Lung Magnetic Resonance Imaging: Technical Advancements and Clinical Applications. Invest Radiol 2024; 59:38-52. [PMID: 37707840 DOI: 10.1097/rli.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno and H.N.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ozawa and T.U.); Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.Y., D.T.); and Department of Radiology, Advanced Diagnostic Medical Imaging, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (H.K.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Raoof S, Shah M, Braman S, Agrawal A, Allaqaband H, Bowler R, Castaldi P, DeMeo D, Fernando S, Hall CS, Han MK, Hogg J, Humphries S, Lee HY, Lee KS, Lynch D, Machnicki S, Mehta A, Mehta S, Mina B, Naidich D, Naidich J, Ohno Y, Regan E, van Beek EJR, Washko G, Make B. Lung Imaging in COPD Part 2: Emerging Concepts. Chest 2023; 164:339-354. [PMID: 36907375 PMCID: PMC10475822 DOI: 10.1016/j.chest.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
The diagnosis, prognostication, and differentiation of phenotypes of COPD can be facilitated by CT scan imaging of the chest. CT scan imaging of the chest is a prerequisite for lung volume reduction surgery and lung transplantation. Quantitative analysis can be used to evaluate extent of disease progression. Evolving imaging techniques include micro-CT scan, ultra-high-resolution and photon-counting CT scan imaging, and MRI. Potential advantages of these newer techniques include improved resolution, prediction of reversibility, and obviation of radiation exposure. This article discusses important emerging techniques in imaging patients with COPD. The clinical usefulness of these emerging techniques as they stand today are tabulated for the benefit of the practicing pulmonologist.
Collapse
Affiliation(s)
- Suhail Raoof
- Northwell Health, Lenox Hill Hospital, New York, NY.
| | - Manav Shah
- Northwell Health, Lenox Hill Hospital, New York, NY
| | - Sidney Braman
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Dawn DeMeo
- Brigham and Women's Hospital, Boston, MA
| | | | | | | | - James Hogg
- University of British Columbia, Vancouver, BC, Canada
| | | | - Ho Yun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Sungkyunkwan University, ChangWon, South Korea
| | - Kyung Soo Lee
- Sungkyunkwan University School of Medicine, Samsung ChangWon Hospital, ChangWon, South Korea
| | | | | | | | | | - Bushra Mina
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Chung SH, Huynh KM, Goralski JL, Chen Y, Yap PT, Ceppe AS, Powell MZ, Donaldson SH, Lee YZ. Feasibility of free-breathing 19 F MRI image acquisition to characterize ventilation defects in CF and healthy volunteers at wash-in. Magn Reson Med 2023; 90:79-89. [PMID: 36912481 PMCID: PMC10149612 DOI: 10.1002/mrm.29630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE To explore the feasibility of measuring ventilation defect percentage (VDP) using 19 F MRI during free-breathing wash-in of fluorinated gas mixture with postacquisition denoising and to compare these results with those obtained through traditional Cartesian breath-hold acquisitions. METHODS Eight adults with cystic fibrosis and 5 healthy volunteers completed a single MR session on a Siemens 3T Prisma. 1 H Ultrashort-TE MRI sequences were used for registration and masking, and ventilation images with 19 F MRI were obtained while the subjects breathed a normoxic mixture of 79% perfluoropropane and 21% oxygen (O2 ). 19 F MRI was performed during breath holds and while free breathing with one overlapping spiral scan at breath hold for VDP value comparison. The 19 F spiral data were denoised using a low-rank matrix recovery approach. RESULTS VDP measured using 19 F VIBE and 19 F spiral images were highly correlated (r = 0.84) at 10 wash-in breaths. Second-breath VDPs were also highly correlated (r = 0.88). Denoising greatly increased SNR (pre-denoising spiral SNR, 2.46 ± 0.21; post-denoising spiral SNR, 33.91 ± 6.12; and breath-hold SNR, 17.52 ± 2.08). CONCLUSION Free-breathing 19 F lung MRI VDP analysis was feasible and highly correlated with breath-hold measurements. Free-breathing methods are expected to increase patient comfort and extend ventilation MRI use to patients who are unable to perform breath holds, including younger subjects and those with more severe lung disease.
Collapse
Affiliation(s)
- Sang Hun Chung
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
| | - Khoi Minh Huynh
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
| | - Jennifer L. Goralski
- Division of Pulmonary and Critical Care Medicine, UNC-Chapel Hill
- Marsico Lung Institute/UNC Cystic Fibrosis Center, UNC-Chapel Hill
- Division of Pediatric Pulmonology, UNC-Chapel Hill
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill
| | - Agathe S. Ceppe
- Division of Pulmonary and Critical Care Medicine, UNC-Chapel Hill
- Marsico Lung Institute/UNC Cystic Fibrosis Center, UNC-Chapel Hill
| | | | - Scott H. Donaldson
- Division of Pulmonary and Critical Care Medicine, UNC-Chapel Hill
- Marsico Lung Institute/UNC Cystic Fibrosis Center, UNC-Chapel Hill
| | - Yueh Z. Lee
- Division of Pulmonary and Critical Care Medicine, UNC-Chapel Hill
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill
| |
Collapse
|
6
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Stewart NJ, Smith LJ, Chan HF, Eaden JA, Rajaram S, Swift AJ, Weatherley ND, Biancardi A, Collier GJ, Hughes D, Klafkowski G, Johns CS, West N, Ugonna K, Bianchi SM, Lawson R, Sabroe I, Marshall H, Wild JM. Lung MRI with hyperpolarised gases: current & future clinical perspectives. Br J Radiol 2022; 95:20210207. [PMID: 34106792 PMCID: PMC9153706 DOI: 10.1259/bjr.20210207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.
Collapse
Affiliation(s)
- Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James A Eaden
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Smitha Rajaram
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Nicholas D Weatherley
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alberto Biancardi
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David Hughes
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Christopher S Johns
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Noreen West
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Kelechi Ugonna
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Stephen M Bianchi
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Rod Lawson
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Ian Sabroe
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Helen Marshall
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
8
|
Shammi UA, D'Alessandro MF, Altes T, Hersman FW, Ruset IC, Mugler J, Meyer C, Mata J, Qing K, Thomen R. Comparison of Hyperpolarized 3He and 129Xe MR Imaging in Cystic Fibrosis Patients. Acad Radiol 2022; 29 Suppl 2:S82-S90. [PMID: 33487537 DOI: 10.1016/j.acra.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis. MATERIALS AND METHODS Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility. RESULTS A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients. CONCLUSION In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.
Collapse
Affiliation(s)
- Ummul Afia Shammi
- Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri
| | | | - Talissa Altes
- Radiology, School of Medicine, University of Missouri, Columbia, Missouri
| | | | | | - John Mugler
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia; Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Craig Meyer
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia; Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jamie Mata
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kun Qing
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert Thomen
- Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri; Radiology, School of Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
9
|
Svenningsen S, McIntosh M, Ouriadov A, Matheson AM, Konyer NB, Eddy RL, McCormack DG, Noseworthy MD, Nair P, Parraga G. Reproducibility of Hyperpolarized 129Xe MRI Ventilation Defect Percent in Severe Asthma to Evaluate Clinical Trial Feasibility. Acad Radiol 2021; 28:817-826. [PMID: 32417033 DOI: 10.1016/j.acra.2020.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVES 129Xe MRI has been developed to noninvasively visualize and quantify the functional consequence of airway obstruction in asthma. Its widespread application requires evidence of intersite reproducibility and agreement. Our objective was to evaluate reproducibility and agreement of 129Xe ventilation MRI measurements in severe asthmatics at two sites. MATERIALS AND METHODS In seven adults with severe asthma, 129Xe ventilation MRI was acquired pre- and post-bronchodilator at two geographic sites within 24-hours. 129Xe MRI signal-to-noise ratio (SNR) was calculated and ventilation abnormalities were quantified as the whole-lung and slice-by-slice ventilation defect percent (VDP). Intraclass correlation coefficients (ICC) and Bland-Altman analysis were used to determine intersite 129Xe VDP reproducibility and agreement. RESULTS Whole-lung and slice-by-slice 129Xe VDP measured at both sites were correlated and reproducible (pre-bronchodilator: whole-lung ICC = 0.90, p = 0.005, slice-by-slice ICC = 0.78, p < 0.0001; post-bronchodilator: whole-lung ICC = 0.94, p < 0.0001, slice-by-slice ICC = 0.83, p < 0.0001) notwithstanding intersite differences in the 129Xe-dose-equivalent-volume (101 ± 15 mL site 1, 49 ± 6 mL site 2, p < 0.0001), gas-mixture (129Xe/4He site 1; 129Xe/N2 site 2) and SNR (40 ± 19 site 1, 23 ± 5 site 2, p = 0.02). Qualitative 129Xe gas distribution differences were observed between sites and slice-by-slice 129Xe VDP, but not whole-lung 129Xe VDP, was significantly lower at site 1 (pre-bronchodilator VDP: whole-lung bias = -3%, p > 0.99, slice-by-slice bias = -3%, p = 0.0001; post-bronchodilator VDP: whole-lung bias = -2%, p = 0.59, slice-by-slice-bias = -2%, p = 0.0003). CONCLUSION 129Xe MRI VDP at two different sites measured within 24-hours in the same severe asthmatics were correlated. Qualitative and quantitative intersite differences in 129Xe regional gas distribution and VDP point to site-specific variability that may be due to differences in gas-mixture composition or SNR.
Collapse
Affiliation(s)
- Sarah Svenningsen
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Hamilton, Canada; Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, Ontario, Canada L8N 4A6.
| | - Marrissa McIntosh
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Alexei Ouriadov
- Department of Physics and Astronomy, Western University, London, Canada
| | - Alexander M Matheson
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Norman B Konyer
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Rachel L Eddy
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | | | - Michael D Noseworthy
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Hamilton, Canada; Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, Ontario, Canada L8N 4A6
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Medicine, Western University, London, Canada
| |
Collapse
|
10
|
Brooke JP, Hall IP. Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:123-145. [PMID: 34019267 DOI: 10.1007/978-3-030-68748-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excessive pulmonary inflammation can lead to damage of lung tissue, airway remodelling and established structural lung disease. Novel therapeutics that specifically target inflammatory pathways are becoming increasingly common in clinical practice, but there is yet to be a similar stepwise change in pulmonary diagnostic tools. A variety of thoracic magnetic resonance imaging (MRI) tools are currently in development, which may soon fulfil this emerging clinical need for highly sensitive assessments of lung structure and function. Given conventional MRI techniques are poorly suited to lung imaging, alternate strategies have been developed, including the use of inhaled contrast agents, intravenous contrast and specialized lung MR sequences. In this chapter, we discuss technical challenges of performing MRI of the lungs and how they may be overcome. Key thoracic MRI modalities are reviewed, namely, hyperpolarized noble gas MRI, oxygen-enhanced MRI (OE-MRI), ultrashort echo time (UTE) MRI and dynamic contrast-enhanced (DCE) MRI. Finally, we consider potential clinical applications of these techniques including phenotyping of lung disease, evaluation of novel pulmonary therapeutic efficacy and longitudinal assessment of specific patient groups.
Collapse
Affiliation(s)
- Jonathan P Brooke
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| | - Ian P Hall
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
11
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
12
|
Nilsen K, Thompson BR, Zajakovski N, Kean M, Harris B, Cowin G, Robinson P, Prisk GK, Thien F. Airway closure is the predominant physiological mechanism of low ventilation seen on hyperpolarized helium-3 MRI lung scans. J Appl Physiol (1985) 2020; 130:781-791. [PMID: 33332988 DOI: 10.1152/japplphysiol.00163.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarized helium-3 MRI (3He MRI) provides detailed visualization of low- (hypo- and non-) ventilated lungs. Physiological measures of gas mixing may be assessed by multiple breath nitrogen washout (MBNW) and of airway closure by a forced oscillation technique (FOT). We hypothesize that in patients with asthma, areas of low-ventilated lung on 3He MRI are the result of airway closure. Ten control subjects, ten asthma subjects with normal spirometry (non-obstructed), and ten asthmatic subjects with reduced baseline lung function (obstructed) attended two testing sessions. On visit one, baseline plethysmography was performed followed by spirometry, MBNW, and FOT assessment pre and post methacholine challenge. On visit two, 3He MRI scans were conducted pre and post methacholine challenge. Post methacholine the volume of low-ventilated lung increased from 8.3% to 13.8% in the non-obstructed group (P = 0.012) and from 13.0% to 23.1% in the obstructed group (P = 0.001). For all subjects, the volume of low ventilation from 3He MRI correlated with a marker of airway closure in obstructive subjects, Xrs (6 Hz) and the marker of ventilation heterogeneity Scond with r2 values of 0.61 (P < 0.001) and 0.56 (P < 0.001), respectively. The change in Xrs (6 Hz) correlated well (r2 = 0.45, p < 0.001), whereas the change in Scond was largely independent of the change in low ventilation volume (r2 = 0.13, P < 0.01). The only significant predictor of low ventilation volume from the multi-variate analysis was Xrs (6 Hz). This is consistent with the concept that regions of poor or absent ventilation seen on 3He MRI are primarily the result of airway closure.NEW & NOTEWORTHY This study introduces a novel technique of generating high-resolution 3D ventilation maps from hyperpolarized helium-3 MRI. It is the first study to demonstrate that regions of poor or absent ventilation seen on 3He MRI are primarily the result of airway closure.
Collapse
Affiliation(s)
- Kris Nilsen
- The Alfred Hospital, Melbourne, Australia.,Swinburne University of Technology, Melbourne, Australia
| | - Bruce R Thompson
- Swinburne University of Technology, Melbourne, Australia.,Monash University, Melbourne, Australia
| | | | - Michael Kean
- The Royal Children's Hospital, Melbourne, Australia
| | - Benjamin Harris
- University of Sydney, Sydney, Australia.,Respiratory Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Phil Robinson
- The Royal Children's Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - G Kim Prisk
- University of California, San Diego, California
| | - Francis Thien
- Monash University, Melbourne, Australia.,Box Hill Hospital, Eastern Health, Melbourne, Australia
| |
Collapse
|
13
|
Hatabu H, Ohno Y, Gefter WB, Parraga G, Madore B, Lee KS, Altes TA, Lynch DA, Mayo JR, Seo JB, Wild JM, van Beek EJR, Schiebler ML, Kauczor HU. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020; 297:286-301. [PMID: 32870136 DOI: 10.1148/radiol.2020201138] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary MRI provides structural and quantitative functional images of the lungs without ionizing radiation, but it has had limited clinical use due to low signal intensity from the lung parenchyma. The lack of radiation makes pulmonary MRI an ideal modality for pediatric examinations, pregnant women, and patients requiring serial and longitudinal follow-up. Fortunately, recent MRI techniques, including ultrashort echo time and zero echo time, are expanding clinical opportunities for pulmonary MRI. With the use of multicoil parallel acquisitions and acceleration methods, these techniques make pulmonary MRI practical for evaluating lung parenchymal and pulmonary vascular diseases. The purpose of this Fleischner Society position paper is to familiarize radiologists and other interested clinicians with these advances in pulmonary MRI and to stratify the Society recommendations for the clinical use of pulmonary MRI into three categories: (a) suggested for current clinical use, (b) promising but requiring further validation or regulatory approval, and (c) appropriate for research investigations. This position paper also provides recommendations for vendors and infrastructure, identifies methods for hypothesis-driven research, and suggests opportunities for prospective, randomized multicenter trials to investigate and validate lung MRI methods.
Collapse
Affiliation(s)
- Hiroto Hatabu
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Yoshiharu Ohno
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Warren B Gefter
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Grace Parraga
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Bruno Madore
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Kyung Soo Lee
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Talissa A Altes
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - David A Lynch
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - John R Mayo
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Joon Beom Seo
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Jim M Wild
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Edwin J R van Beek
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Mark L Schiebler
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Hans-Ulrich Kauczor
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | -
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| |
Collapse
|
14
|
Serajeddini H, Eddy RL, Licskai C, McCormack DG, Parraga G. FEV 1 and MRI ventilation defect reversibility in asthma and COPD. Eur Respir J 2020; 55:13993003.01947-2019. [PMID: 31806718 DOI: 10.1183/13993003.01947-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hana Serajeddini
- Robarts Research Institute, Western University, London, ON, Canada.,Division of Respirology, Dept of Medicine, Western University, London, ON, Canada.,Contributed equally as first authors
| | - Rachel L Eddy
- Robarts Research Institute, Western University, London, ON, Canada.,Dept of Medical Biophysics, Western University, London, ON, Canada.,Contributed equally as first authors
| | - Christopher Licskai
- Division of Respirology, Dept of Medicine, Western University, London, ON, Canada
| | - David G McCormack
- Division of Respirology, Dept of Medicine, Western University, London, ON, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada .,Division of Respirology, Dept of Medicine, Western University, London, ON, Canada.,Dept of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
15
|
Westcott A, Capaldi DPI, McCormack DG, Ward AD, Fenster A, Parraga G. Chronic Obstructive Pulmonary Disease: Thoracic CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation. Radiology 2019; 293:676-684. [PMID: 31638491 DOI: 10.1148/radiol.2019190450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Fixed airflow limitation and ventilation heterogeneity are common in chronic obstructive pulmonary disease (COPD). Conventional noncontrast CT provides airway and parenchymal measurements but cannot be used to directly determine lung function. Purpose To develop, train, and test a CT texture analysis and machine-learning algorithm to predict lung ventilation heterogeneity in participants with COPD. Materials and Methods In this prospective study (ClinicalTrials.gov: NCT02723474; conducted from January 2010 to February 2017), participants were randomized to optimization (n = 1), training (n = 67), and testing (n = 27) data sets. Hyperpolarized (HP) helium 3 (3He) MRI ventilation maps were co-registered with thoracic CT to provide ground truth labels, and 87 quantitative imaging features were extracted and normalized to lung averages to generate 174 features. The volume-of-interest dimension and the training data sampling method were optimized to maximize the area under the receiver operating characteristic curve (AUC). Forward feature selection was performed to reduce the number of features; logistic regression, linear support vector machine, and quadratic support vector machine classifiers were trained through fivefold cross validation. The highest-performing classification model was applied to the test data set. Pearson coefficients were used to determine the relationships between the model, MRI, and pulmonary function measurements. Results The quadratic support vector machine performed best in training and was applied to the test data set. Model-predicted ventilation maps had an accuracy of 88% (95% confidence interval [CI]: 88%, 88%) and an AUC of 0.82 (95% CI: 0.82, 0.83) when the HP 3He MRI ventilation maps were used as the reference standard. Model-predicted ventilation defect percentage (VDP) was correlated with VDP at HP 3He MRI (r = 0.90, P < .001). Both model-predicted and HP 3He MRI VDP were correlated with forced expiratory volume in 1 second (FEV1) (model: r = -0.65, P < .001; MRI: r = -0.70, P < .001), ratio of FEV1 to forced vital capacity (model: r = -0.73, P < .001; MRI: r = -0.75, P < .001), diffusing capacity (model: r = -0.69, P < .001; MRI: r = -0.65, P < .001), and quality-of-life score (model: r = 0.59, P = .001; MRI: r = 0.65, P < .001). Conclusion Model-predicted ventilation maps generated by using CT textures and machine learning were correlated with MRI ventilation maps (r = 0.90, P < .001). © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Fain in this issue.
Collapse
Affiliation(s)
- Andrew Westcott
- From the Robarts Research Institute, London, Canada (A.W., A.F., G.P.); Department of Medical Biophysics (A.W., A.D.W., A.F., G.P.), Division of Respirology, Department of Medicine (D.G.M., G.P.), and Department of Oncology (A.D.W.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.)
| | - Dante P I Capaldi
- From the Robarts Research Institute, London, Canada (A.W., A.F., G.P.); Department of Medical Biophysics (A.W., A.D.W., A.F., G.P.), Division of Respirology, Department of Medicine (D.G.M., G.P.), and Department of Oncology (A.D.W.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.)
| | - David G McCormack
- From the Robarts Research Institute, London, Canada (A.W., A.F., G.P.); Department of Medical Biophysics (A.W., A.D.W., A.F., G.P.), Division of Respirology, Department of Medicine (D.G.M., G.P.), and Department of Oncology (A.D.W.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.)
| | - Aaron D Ward
- From the Robarts Research Institute, London, Canada (A.W., A.F., G.P.); Department of Medical Biophysics (A.W., A.D.W., A.F., G.P.), Division of Respirology, Department of Medicine (D.G.M., G.P.), and Department of Oncology (A.D.W.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.)
| | - Aaron Fenster
- From the Robarts Research Institute, London, Canada (A.W., A.F., G.P.); Department of Medical Biophysics (A.W., A.D.W., A.F., G.P.), Division of Respirology, Department of Medicine (D.G.M., G.P.), and Department of Oncology (A.D.W.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.)
| | - Grace Parraga
- From the Robarts Research Institute, London, Canada (A.W., A.F., G.P.); Department of Medical Biophysics (A.W., A.D.W., A.F., G.P.), Division of Respirology, Department of Medicine (D.G.M., G.P.), and Department of Oncology (A.D.W.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.)
| |
Collapse
|
16
|
Grychtol B, Schramel JP, Braun F, Riedel T, Auer U, Mosing M, Braun C, Waldmann AD, Böhm SH, Adler A. Thoracic EIT in 3D: experiences and recommendations. Physiol Meas 2019; 40:074006. [PMID: 31189141 DOI: 10.1088/1361-6579/ab291d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In EIT applications to the thorax, a single electrode plane has typically been used to reconstruct a transverse 2D 'slice'. However, such images can be misleading as EIT is sensitive to contrasts above and below the electrode plane, and ventilation and aeration inhomogeneities can be distributed in complex ways. Using two (or more) electrode planes, 3D EIT images may be reconstructed, but 3D reconstructions are currently little used in thoracic EIT. In this paper, we investigate an incremental pathway towards 3D EIT reconstructions, using two electrode planes to calculate improved transverse slices as an intermediate step. We recommend a specific placement of electrode planes, and further demonstrate the feasibility of multi-slice reconstruction in two species. APPROACH Simulations of the forward and reconstructed sensitivities were analysed for two electrode planes using a 'square' pattern of electrode placement as a function of two variables: the stimulation and measurement 'skip', and the electrode plane separation. Next, single- versus two-plane measurements were compared in a horse and in human volunteers. We further show the feasibility of 3D reconstructions by reconstructing multiple transverse and, unusually, frontal slices during ventilation. MAIN RESULTS Using two electrode planes leads to a reduced position error and improvement in off-plane contrast rejection. 2D reconstructions from two-plane measurements showed better separation of lungs, as compared to the single plane measurements which tend to push contrasts in the center of the image. 3D reconstructions of the same data show anatomically plausible images, inside as well as outside the volume between the two electrode planes. SIGNIFICANCE Based on the results, we recommend EIT electrode planes separated by less than half of the minimum thoracic dimension with a 'skip 4' pattern and 'square' placement to produce images with good slice selectivity.
Collapse
Affiliation(s)
- Bartłomiej Grychtol
- Fraunhofer Project Group for Automation in Medicine and Biotechnology, Mannheim, Germany. Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Young HM, Eddy RL, Parraga G. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics. Clin Biomech (Bristol, Avon) 2019; 66:107-122. [PMID: 29037603 DOI: 10.1016/j.clinbiomech.2017.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. METHODS We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). FINDINGS Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth.
Collapse
Affiliation(s)
- Heather M Young
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Rachel L Eddy
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Graduate Program in Biomedical Engineering, Western University, London, Canada.
| |
Collapse
|
18
|
Myc LA, Shim YM, Laubach VE, Dimastromatteo J. Role of medical and molecular imaging in COPD. Clin Transl Med 2019; 8:12. [PMID: 30989390 PMCID: PMC6465368 DOI: 10.1186/s40169-019-0231-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/09/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is expected to climb on the podium of the leading causes of mortality worldwide in the upcoming decade. Clinical diagnosis of COPD has classically relied upon detecting irreversible airflow obstruction on pulmonary function testing as a global assessment of pulmonary physiology. However, the outcome is still not favorable to decrease mortality due to COPD. Progress made in both medical and molecular imaging fields are beginning to offer additional tools to address this clinical problem. This review aims to describe medical and molecular imaging modalities used to diagnose COPD and to select patients for appropriate treatments and to monitor response to therapy.
Collapse
Affiliation(s)
- Lukasz A Myc
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, P.O. Box 400546, Charlottesville, VA, USA
| | - Yun M Shim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, P.O. Box 400546, Charlottesville, VA, USA
| | - Victor E Laubach
- Department of Surgery, Division of Thoracic Surgery, University of Virginia School of Medicine, P.O. Box 801359, Charlottesville, VA, USA
| | - Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia School of Medicine, P.O. Box 800759, Charlottesville, VA, 22908, USA.
| |
Collapse
|
19
|
Collier GJ, Hughes PJC, Horn FC, Chan H, Tahir B, Norquay G, Stewart NJ, Wild JM. Single breath‐held acquisition of coregistered 3D
129
Xe lung ventilation and anatomical proton images of the human lung with compressed sensing. Magn Reson Med 2019; 82:342-347. [DOI: 10.1002/mrm.27713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Guilhem J. Collier
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| | - Paul J. C. Hughes
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| | - Felix C. Horn
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| | - Ho‐Fung Chan
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| | - Bilal Tahir
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
- Academic Unit of Clinical Oncology University of Sheffield Sheffield UK
| | - Graham Norquay
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| | - Neil J. Stewart
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| | - Jim M. Wild
- POLARIS, Academic Unit of Radiology, Department of IICD University of Sheffield Sheffield UK
| |
Collapse
|
20
|
Guo F, Capaldi D, Kirby M, Sheikh K, Svenningsen S, McCormack DG, Fenster A, Parraga G. Development of a pulmonary imaging biomarker pipeline for phenotyping of chronic lung disease. J Med Imaging (Bellingham) 2018; 5:026002. [PMID: 29963580 DOI: 10.1117/1.jmi.5.2.026002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
We designed and generated pulmonary imaging biomarker pipelines to facilitate high-throughput research and point-of-care use in patients with chronic lung disease. Image processing modules and algorithm pipelines were embedded within a graphical user interface (based on the .NET framework) for pulmonary magnetic resonance imaging (MRI) and x-ray computed-tomography (CT) datasets. The software pipelines were generated using C++ and included: (1) inhaled He3/Xe129 MRI ventilation and apparent diffusion coefficients, (2) CT-MRI coregistration for lobar and segmental ventilation and perfusion measurements, (3) ultrashort echo-time H1 MRI proton density measurements, (4) free-breathing Fourier-decomposition H1 MRI ventilation/perfusion and free-breathing H1 MRI specific ventilation, (5) multivolume CT and MRI parametric response maps, and (6) MRI and CT texture analysis and radiomics. The image analysis framework was implemented on a desktop workstation/tablet to generate biomarkers of regional lung structure and function related to ventilation, perfusion, lung tissue texture, and integrity as well as multiparametric measures of gas trapping and airspace enlargement. All biomarkers were generated within 10 min with measurement reproducibility consistent with clinical and research requirements. The resultant pulmonary imaging biomarker pipeline provides real-time and automated lung imaging measurements for point-of-care and high-throughput research.
Collapse
Affiliation(s)
- Fumin Guo
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada.,University of Toronto, Sunnybrook Research Institute, Toronto, Canada
| | - Dante Capaldi
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
| | - Miranda Kirby
- University of British Columbia, St. Paul's Hospital, Centre for Heart Lung Innovation, Vancouver, Canada
| | - Khadija Sheikh
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| | - Sarah Svenningsen
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| | - David G McCormack
- University of Western Ontario, Division of Respirology, Department of Medicine, London, Ontario, Canada
| | - Aaron Fenster
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada.,University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
| | - Grace Parraga
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada.,University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
| | | |
Collapse
|
21
|
Young HM, Guo F, Eddy RL, Maksym G, Parraga G. Oscillometry and pulmonary MRI measurements of ventilation heterogeneity in obstructive lung disease: relationship to quality of life and disease control. J Appl Physiol (1985) 2018. [PMID: 29543132 DOI: 10.1152/japplphysiol.01031.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ventilation heterogeneity is a hallmark finding in obstructive lung disease and may be evaluated using a variety of methods, including multiple-breath gas washout and pulmonary imaging. Such methods provide an opportunity to better understand the relationships between structural and functional abnormalities in the lungs, and their relationships with important clinical outcomes. We measured ventilation heterogeneity and respiratory impedance in 100 subjects [50 patients with asthma, 22 ex-smokers, and 28 patients with chronic obstructive pulmonary disease (COPD)] using oscillometry and hyperpolarized 3He magnetic resonance imaging (MRI) and determined their relationships with quality of life scores and disease control/exacerbations. We also coregistered MRI ventilation maps to a computational airway tree model to generate patient-specific respiratory impedance predictions for comparison with experimental measurements. In COPD and asthma patients, respectively, forced oscillation technique (FOT)-derived peripheral resistance (5-19 Hz) and MRI ventilation defect percentage (VDP) were significantly related to quality of life (FOT: COPD ρ = 0.4, P = 0.004; asthma ρ = -0.3, P = 0.04; VDP: COPD ρ = 0.6, P = 0.003; asthma ρ = -0.3, P = 0.04). Patients with poorly controlled asthma (Asthmatic Control Questionnaire >2) had significantly increased resistance (5 Hz: P = 0.01; 5-19 Hz: P = 0.006) and reactance (5 Hz: P = 0.03). FOT-derived peripheral resistance (5-19 Hz) was significantly related to VDP in patients with asthma and COPD patients (asthma: ρ = 0.5, P < 0.001; COPD: ρ = 0.5, P = 0.01), whereas total respiratory impedance was related to VDP only in patients with asthma (resistance 5 Hz: ρ = 0.3, P = 0.02; reactance 5 Hz: ρ = -0.5, P < 0.001). Model-predicted and FOT-measured reactance (5 Hz) were correlated in patients with asthma (ρ = 0.5, P = 0.001), whereas in COPD patients, model-predicted and FOT-measured resistance (5-19 Hz) were correlated (ρ = 0.5, P = 0.004). In summary, in patients with asthma and COPD patients, we observed significant, independent relationships for FOT-measured impedance and MRI ventilation heterogeneity measurements with one another and with quality of life scores. NEW & NOTEWORTHY In 100 patients, including patients with asthma and ex-smokers, 3He MRI ventilation heterogeneity and respiratory system impedance were correlated and both were independently related to quality of life scores and asthma control. These findings demonstrated the critical relationships between respiratory system impedance and ventilation heterogeneity and their role in determining quality of life and disease control. These observations underscore the dominant role that abnormalities in the lung periphery play in ventilation heterogeneity that results in patients' symptoms.
Collapse
Affiliation(s)
- Heather M Young
- Robarts Research Institute, Western University , London, Ontario , Canada.,Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Fumin Guo
- Robarts Research Institute, Western University , London, Ontario , Canada.,Graduate Program in Biomedical Engineering, Western University , London, Ontario , Canada
| | - Rachel L Eddy
- Robarts Research Institute, Western University , London, Ontario , Canada.,Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Geoffrey Maksym
- School of Biomedical Engineering, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Grace Parraga
- Robarts Research Institute, Western University , London, Ontario , Canada.,Department of Medical Biophysics, Western University , London, Ontario , Canada.,Graduate Program in Biomedical Engineering, Western University , London, Ontario , Canada
| |
Collapse
|
22
|
Guo F, Svenningsen S, Kirby M, Capaldi DP, Sheikh K, Fenster A, Parraga G. Thoracic CT-MRI coregistration for regional pulmonary structure-function measurements of obstructive lung disease. Med Phys 2017; 44:1718-1733. [PMID: 28206676 DOI: 10.1002/mp.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Recent pulmonary imaging research has revealed that in patients with chronic obstructive pulmonary disease (COPD) and asthma, structural and functional abnormalities are spatially heterogeneous. This novel information may help optimize treatment in individual patients, monitor interventional efficacy, and develop new treatments. Moreover, by automating the measurement of regional biomarkers for the 19 different anatomical lung segments, there is an opportunity to embed imaging biomarkers into clinically acceptable clinical workflows and improve lung disease clinical care. Therefore, to exploit the regional structure-function information provided by thoracic imaging, and as a first step toward this goal, our objective was to develop a fully automated registration pipeline for thoracic x-ray computed tomography (CT) and inhaled gas functional magnetic resonance imaging (MRI) whole lung and segmental structure-function biomarkers. METHODS Thirty-five patients including 15 severe, poorly controlled asthmatics and 20 COPD patients [classified according to the global initiative for chronic obstructive lung disease (GOLD) criteria)] provided written informed consent to a study protocol approved by Health Canada and underwent pulmonary function tests, MRI, and CT during a single 2-hour visit. Using this diverse patient dataset, we developed and evaluated a joint deformable registration approach to simultaneously coregister CT with both 1 H and 3 He MRI by enforcing the similarity of the deformation fields from the two individual registrations. We derived a simpler model that was equivalent to the original challenging optimization problem through variational analysis and the simpler model gave rise to an efficient numerical solver that was parallelized on a graphics processing unit. The coregistered CT-3 He MRI and whole lung/segmental lung masks were used to generate whole lung and segmental 3 He MRI ventilation defect percent (VDP). To estimate fiducial localization reproducibility, a single observer manually identified 109 pairs of CT and 3 He MRI fiducials for 35 patient images on five separate occasions and determined the fiducial localization error (FLE). CT-3 He MRI registration accuracy was evaluated using the target registration error (TRE). Whole lung VDP generated using the algorithm was compared with VDP generated using a previously validated semiautomated approach and computational efficiency was evaluated using run time. RESULTS In 35 patients including 15 with severe asthma and 20 with COPD, mean forced expiratory volume in 1 s (FEV1 ) was 63±24%pred and FEV1 /forced vital capacity (FVC) was 54 ± 17%. FLE was 0.16 mm and 0.34 mm for 3 He MRI and CT, respectively. TRE was 4.5 ± 2.0 mm, 4.0 ± 1.7 mm, 4.8 ± 2.3 mm for asthma, COPD GOLD II, and GOLD III groups, respectively, with a mean of 4.4 ± 2.0 mm for the entire dataset. TRE was significantly improved for joint CT-1 H/3 He MRI registration compared with CT-1 H MRI rigid registration (P < 0.0001). Whole lung VDP generated using the pipeline was not significantly different (P = 0.37) compared to a semiautomated method with which it was strongly correlated (r = 0.93, P < 0.0001). The fully automated pipeline required 11 ± 0.4 min to generate whole lung and segmental VDP. CONCLUSIONS For a diverse group of patients with COPD and asthma, whole lung and segmental VDP was measured using an automated lung image analysis pipeline which provides a way to incorporate lung functional biomarkers into clinical research and patient care.
Collapse
Affiliation(s)
- Fumin Guo
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Sarah Svenningsen
- Robarts Research Institute, The University of Western Ontario, London, Canada
| | - Miranda Kirby
- James Hogg Research Centre, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dante Pi Capaldi
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Khadija Sheikh
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Aaron Fenster
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Grace Parraga
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| |
Collapse
|
23
|
Noncystic Fibrosis Bronchiectasis: Regional Abnormalities and Response to Airway Clearance Therapy Using Pulmonary Functional Magnetic Resonance Imaging. Acad Radiol 2017; 24:4-12. [PMID: 27717759 DOI: 10.1016/j.acra.2016.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 11/22/2022]
Abstract
RATIONALE AND OBJECTIVES Evidence-based treatment and management for patients with bronchiectasis remain challenging. There is a need for regional disease measurements as focal distribution of disease is common. Our objective was to evaluate the ability of magnetic resonance imaging (MRI) to detect regional ventilation impairment and response to airway clearance therapy (ACT) in patients with noncystic fibrosis (CF) bronchiectasis, providing a new way to objectively and regionally evaluate response to therapy. MATERIALS AND METHODS Fifteen participants with non-CF bronchiectasis and 15 age-matched healthy volunteers provided written informed consent to an ethics board-approved Health Insurance Portability and Accountability Act-compliant protocol and underwent spirometry, plethysmography, computed tomography (CT), and hyperpolarized 3He MRI. Bronchiectasis patients also completed a Six-Minute Walk Test, the St. George's Respiratory questionnaire, and Patient Evaluation Questionnaire (PEQ), and returned for a follow-up visit after 3 weeks of daily oscillatory positive expiratory pressure use. CT evidence of bronchiectasis was qualitatively reported by lobe, and MRI ventilation defect percent (VDP) was measured for the entire lung and individual lobes. RESULTS CT evidence of bronchiectasis and abnormal VDP (14 ± 7%) was observed for all bronchiectasis patients and no healthy volunteers. There was CT evidence of bronchiectasis in all lobes for 3 patients and in 3 ± 1 lobes (range = 1-4) for 12 patients. VDP in lobes with CT evidence of bronchiectasis (19 ± 12%) was significantly higher than in lobes without CT evidence of bronchiectasis (8 ± 5%, P = .001). For patients, VDP in lung lobes with (P < .0001) and without CT evidence of bronchiectasis (P = .006) was higher than in healthy volunteers (3 ± 1%). For all patients, mean PEQ-ease-bringing-up-sputum (P = .048) and PEQ-patient-global-assessment (P = .01) were significantly improved post-oscillatory positive expiratory pressure. An improvement in regional VDP greater than the minimum clinical important difference was observed for 8 of the 14 patients evaluated. CONCLUSIONS There was CT and MRI evidence of structure-function abnormalities in patients with bronchiectasis; in approximately half, there was evidence of ventilation improvements after airway clearance therapy.
Collapse
|
24
|
Leary D, Svenningsen S, Guo F, Bhatawadekar S, Parraga G, Maksym GN. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics. Physiol Rep 2016; 4:4/7/e12761. [PMID: 27053294 PMCID: PMC4831329 DOI: 10.14814/phy2.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well‐understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquired MRI ventilation defect maps, forced expiratory volume in one‐second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs). MRI ventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to the MRI ventilation defects. The relationships for VDP with Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14 (r = 0.91, P < 0.0001) and Rrs>9 (r = 0.88, P < 0.0001) were significantly stronger (P = 0.005; P = 0.03, respectively) than with FEV1 (r = −0.68, P = 0.0001). The slopes for the relationship of VDP with simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for the VDP‐Xrs0.2 relationship was largest, suggesting that VDP was dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild‐moderate asthmatics.
Collapse
Affiliation(s)
- Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Sarah Svenningsen
- Robarts Research Institute, The University of Western Ontario, London, Canada Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Fumin Guo
- Robarts Research Institute, The University of Western Ontario, London, Canada Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Swati Bhatawadekar
- University Health Network-Toronto Rehabilitation Institute, Toronto, Canada
| | - Grace Parraga
- Robarts Research Institute, The University of Western Ontario, London, Canada Department of Medical Biophysics, The University of Western Ontario, London, Canada Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| |
Collapse
|
25
|
Wagenaar J, Adler A. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation. Physiol Meas 2016; 37:922-37. [DOI: 10.1088/0967-3334/37/6/922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Hoffman EA, Lynch DA, Barr RG, van Beek EJR, Parraga G. Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J Magn Reson Imaging 2016; 43:544-57. [PMID: 26199216 PMCID: PMC5207206 DOI: 10.1002/jmri.25010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary x-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to subphenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion, and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification, and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs, as well as the mortality and morbidity associated with COPD.
Collapse
Affiliation(s)
- Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health Center, Denver, Colorado, USA
| | - R Graham Barr
- Division of General Medicine, Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia University Medical Center, New York, New York, USA
| | - Edwin J R van Beek
- Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Grace Parraga
- Robarts Research Institute, University of Western Ontario, London, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
27
|
Fregonese L. Regulatory perspective on the use of lung imaging in drug development. IMAGING 2016. [DOI: 10.1183/2312508x.10003515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
28
|
Stewart NJ, Wild JM. MRI methods for structural and functional assessment of the lungs: proton and multinuclear. IMAGING 2016. [DOI: 10.1183/2312508x.10002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Kirby M, Lane P, Coxson HO. Measurement of pulmonary structure and function. IMAGING 2016. [DOI: 10.1183/2312508x.10003415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Second-order Texture Measurements of (3)He Ventilation MRI: Proof-of-concept Evaluation of Asthma Bronchodilator Response. Acad Radiol 2016; 23:176-85. [PMID: 26601971 DOI: 10.1016/j.acra.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES (3)He magnetic resonance imaging (MRI) can be used to quantify functional responses to asthma therapy and provocation. Ventilation imaging offers quantitative information beyond ventilation defects that have not yet been exploited. Therefore, our objective was to evaluate hyperpolarized (3)He MRI ventilation defect percent (VDP) and compare this and pulmonary function measurements to ventilation image texture features and their changes post-bronchodilator administration in patients with asthma. MATERIALS AND METHODS Volunteers with a diagnosis of asthma provided written informed consent to an ethics board-approved protocol and underwent pulmonary function tests and MRI before and after salbutamol inhalation. MR images were analyzed using VDP, and their texture was evaluated via gray-level run-length matrices. These texture classifiers were compared to VDP in responders to bronchodilation based on VDP (VDP responders) and forced expiratory volume in 1 s (FEV1) (FEV1 responders). RESULTS In total, 47 patients with asthma (18 males 39 ± 13 years, FEV1 = 79 ± 21%) reported significantly improved FEV1, FEV1/forced vital capacity (FVC), residual volume (RV)/total lung capacity (TLC) (all P = .0001) and VDP (P = .01) post-salbutamol. Post-salbutamol, VDP responders and nonresponders to salbutamol were significantly different for coarse-texture features including long-run emphasis (LRE) and long-run, low gray-level emphasis (LRLGE, both P < .05) and for FEV1 responders to salbutamol, there was significantly different long-run, high gray-level emphasis (LRHGE, P = .04). There were significant relationships for VDP with LRE (R = .50, P = .0003), LRLGE (R = .34, P = .02), and LRHGE (R = .56, P = .0001). Receiver operating characteristic curves showed VDP with the strongest performance (AUC = .92), followed by coarse-texture classifier LRHGE (AUC = .83), FEV1 (AUC = .80), LRE (AUC = .66), FVC (AUC = .58), and LRLGE (AUC = .42). CONCLUSIONS In patients with asthma, differences in ventilation patchiness post-salbutamol can be quantified using coarse-texture classifiers that are significantly different in bronchodilator responders.
Collapse
|
31
|
Pike D, Kirby M, Eddy RL, Guo F, Capaldi DPI, Ouriadov A, McCormack DG, Parraga G. Regional Heterogeneity of Chronic Obstructive Pulmonary Disease Phenotypes: Pulmonary (3)He Magnetic Resonance Imaging and Computed Tomography. COPD 2016; 13:601-9. [PMID: 26788765 DOI: 10.3109/15412555.2015.1123682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary ventilation may be visualized and measured using hyperpolarized (3)He magnetic resonance imaging (MRI) while emphysema and its distribution can be quantified using thoracic computed tomography (CT). Our objective was to phenotype ex-smokers with COPD based on the apical-to-basal distribution of ventilation abnormalities and emphysema to better understand how these phenotypes change regionally as COPD progresses. We evaluated 100 COPD ex-smokers who provided written informed consent and underwent spirometry, CT and (3)He MRI. (3)He MRI ventilation imaging was used to quantify the ventilation defect percent (VDP) for whole-lung and individual lung lobes. Regional VDP was used to generate the apical-lung (AL)-to-basal-lung (BL) difference (ΔVDP); a positive ΔVDP indicated AL-predominant and negative ΔVDP indicated BL-predominant ventilation defects. Emphysema was quantified using the relative-area-of-the-lung ≤-950HU (RA950) of the CT density histogram for whole-lung and individual lung lobes. The AL-to-BL RA950 difference (ΔRA950) was generated with a positive ΔRA950 indicating AL-predominant emphysema and a negative ΔRA950 indicating BL-predominant emphysema. Seventy-two ex-smokers reported BL-predominant MRI ventilation defects and 71 reported AL-predominant CT emphysema. BL-predominant ventilation defects (AL/BL: GOLD I = 18%/82%, GOLD II = 24%/76%) and AL-predominant emphysema (AL/BL: GOLD I = 84%/16%, GOLD II = 72%/28%) were the major phenotypes in mild-moderate COPD. In severe COPD there was a more uniform distribution for ventilation defects (AL/BL: GOLD III = 40%/60%, GOLD IV = 43%/57%) and emphysema (AL/BL: GOLD III = 64%/36%, GOLD IV = 43%/57%). Basal-lung ventilation defects predominated in mild-moderate GOLD grades, and a more homogeneous distribution of ventilation defects was observed in more advanced grade COPD; these differences suggest that over time, regional ventilation abnormalities become more homogenously distributed during disease progression.
Collapse
Affiliation(s)
- Damien Pike
- a Robarts Research Institute, The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Miranda Kirby
- c James Hogg Research Centre, St. Paul's Hospital, University of British Columbia , Vancouver , Canada
| | - Rachel L Eddy
- a Robarts Research Institute, The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Fumin Guo
- a Robarts Research Institute, The University of Western Ontario , London , Canada.,d Graduate Program in Biomedical Engineering, The University of Western Ontario , London , Canada
| | - Dante P I Capaldi
- a Robarts Research Institute, The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Alexei Ouriadov
- a Robarts Research Institute, The University of Western Ontario , London , Canada
| | - David G McCormack
- e Division of Respirology, Department of Medicine , The University of Western Ontario , London , Canada
| | - Grace Parraga
- a Robarts Research Institute, The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada.,d Graduate Program in Biomedical Engineering, The University of Western Ontario , London , Canada
| |
Collapse
|
32
|
Svenningsen S, Paulin GA, Sheikh K, Guo F, Hasany A, Kirby M, Rezai RE, McCormack DG, Parraga G. Oscillatory Positive Expiratory Pressure in Chronic Obstructive Pulmonary Disease. COPD 2015; 13:66-74. [PMID: 26430763 DOI: 10.3109/15412555.2015.1043523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Evidence-based guidance for the use of airway clearance techniques (ACT) in chronic obstructive pulmonary disease (COPD) is lacking in-part because well-established measurements of pulmonary function such as the forced expiratory volume in 1s (FEV1) are relatively insensitive to ACT. The objective of this crossover study was to evaluate daily use of an oscillatory positive expiratory pressure (oPEP) device for 21-28 days in COPD patients who were self-identified as sputum-producers or non-sputum-producers. COPD volunteers provided written informed consent to daily oPEP use in a randomized crossover fashion. Participants completed baseline, crossover and study-end pulmonary function tests, St. George's Respiratory Questionnaire (SGRQ), Patient Evaluation Questionnaire (PEQ), Six-Minute Walk Test and (3)He magnetic resonance imaging (MRI) for the measurement of ventilation abnormalities using the ventilation defect percent (VDP). Fourteen COPD patients, self-identified as sputum-producers and 13 COPD-non-sputum-producers completed the study. Post-oPEP, the PEQ-ease-bringing-up-sputum was improved for sputum-producers (p = 0.005) and non-sputum-producers (p = 0.04), the magnitude of which was greater for sputum-producers (p = 0.03). There were significant post-oPEP improvements for sputum-producers only for FVC (p = 0.01), 6MWD (p = 0.04), SGRQ total score (p = 0.01) as well as PEQ-patient-global-assessment (p = 0.02). Clinically relevant post-oPEP improvements for PEQ-ease-bringing-up-sputum/PEQ-patient-global-assessment/SGRQ/VDP were observed in 8/7/9/6 of 14 sputum-producers and 2/0/3/3 of 13 non-sputum-producers. The post-oPEP change in (3)He MRI VDP was related to the change in PEQ-ease-bringing-up-sputum (r = 0.65, p = 0.0004) and FEV1 (r = -0.50, p = 0.009). In COPD patients with chronic sputum production, PEQ and SGRQ scores, FVC and 6MWD improved post-oPEP. FEV1 and PEQ-ease-bringing-up-sputum improvements were related to improved ventilation providing mechanistic evidence to support oPEP use in COPD. Clinical Trials # NCT02282189 and NCT02282202.
Collapse
Affiliation(s)
- Sarah Svenningsen
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Gregory A Paulin
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Khadija Sheikh
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Fumin Guo
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada.,c Graduate Program in Biomedical Engineering , The University of Western Ontario , London , Canada
| | - Aasim Hasany
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada
| | - Miranda Kirby
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada
| | - Roya Etemad Rezai
- d Department of Medical Imaging , The University of Western Ontario , London , Canada
| | - David G McCormack
- e Division of Respirology, Department of Medicine , The University of Western Ontario , London , Canada
| | - Grace Parraga
- a Imaging Research Laboratories, Robarts Research Institute , The University of Western Ontario , London , Canada.,b Department of Medical Biophysics , The University of Western Ontario , London , Canada.,c Graduate Program in Biomedical Engineering , The University of Western Ontario , London , Canada.,d Department of Medical Imaging , The University of Western Ontario , London , Canada
| |
Collapse
|
33
|
Tahir BA, Van Holsbeke C, Ireland RH, Swift AJ, Horn FC, Marshall H, Kenworthy JC, Parra-Robles J, Hartley R, Kay R, Brightling CE, De Backer J, Vos W, Wild JM. Comparison of CT-based Lobar Ventilation with 3He MR Imaging Ventilation Measurements. Radiology 2015; 278:585-92. [PMID: 26322908 DOI: 10.1148/radiol.2015142278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare lobar lung ventilation computed from expiratory and inspiratory computed tomographic (CT) data with direct measurements of ventilation at hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging by using same-breath hydrogen 1 ((1)H) MR imaging examinations to coregister the multimodality images. MATERIALS AND METHODS The study was approved by the national research ethics committee, and written patient consent was obtained. Thirty patients with asthma underwent breath-hold CT at total lung capacity and functional residual capacity. (3)He and (1)H MR images were acquired during the same breath hold at a lung volume of functional residual capacity plus 1 L. Lobar segmentations delineated by major fissures on both CT scans were used to calculate the percentage of ventilation per lobe from the change in inspiratory and expiratory lobar volumes. CT-based ventilation was compared with (3)He MR imaging ventilation by using diffeomorphic image registration of (1)H MR imaging to CT, which enabled indirect registration of (3)He MR imaging to CT. Statistical analysis was performed by using the Wilcoxon signed-rank test, Pearson correlation coefficient, and Bland-Altman analysis. RESULTS The mean ± standard deviation absolute difference between the CT and (3)He MR imaging percentage of ventilation volume in all lobes was 4.0% (right upper and right middle lobes, 5.4% ± 3.3; right lower lobe, 3.7% ± 3.9; left upper lobe, 2.8% ± 2.7; left lower lobe, 3.9% ± 2.6; Wilcoxon signed-rank test, P < .05). The Pearson correlation coefficient between the two techniques in all lobes was 0.65 (P < .001). Greater percentage of ventilation was seen in the upper lobes with (3)He MR imaging and in the lower lobes with CT. This was confirmed with Bland-Altman analysis, with 95% limits of agreement for right upper and middle lobes, -2.4, 12.7; right lower lobe, -11.7, 4.6; left upper lobe, -4.9, 8.7; and left lower lobe, -9.8, 2.8. CONCLUSION The percentage of regional ventilation per lobe calculated at CT was comparable to a direct measurement of lung ventilation at hyperpolarized (3)He MR imaging. This work provides evidence for the validity of the CT model, and same-breath (1)H MR imaging enables regional interpretation of (3)He ventilation MR imaging on the underlying lung anatomy at thin-section CT.
Collapse
Affiliation(s)
- Bilal A Tahir
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Cedric Van Holsbeke
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Rob H Ireland
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Andrew J Swift
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Felix C Horn
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Helen Marshall
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - John C Kenworthy
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Juan Parra-Robles
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Ruth Hartley
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Richard Kay
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Chris E Brightling
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Jan De Backer
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Wim Vos
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| | - Jim M Wild
- From the Academic Units of Academic Radiology (B.A.T., A.J.S., F.C.H., H.M., J.C.K., J.P.R., J.M.W.) and Clinical Oncology (B.A.T., R.H.I.), University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, England; Fluidda, Kontich, Belgium (C.V.H., J.D.B., W.V.); Institute for Lung Health, University of Leicester, Leicester, England (R.H., C.E.B.); Novartis, Basel, Switzerland (R.K.); and INSIGNEO Institute of In-silico Medicine, Sheffield, England (A.J.S., J.M.W.)
| |
Collapse
|
34
|
Pike D, Kirby M, Guo F, McCormack DG, Parraga G. Ventilation heterogeneity in ex-smokers without airflow limitation. Acad Radiol 2015; 22:1068-78. [PMID: 26008133 DOI: 10.1016/j.acra.2015.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVES Hyperpolarized (3)He magnetic resonance imaging (MRI) ventilation abnormalities are visible in ex-smokers without airflow limitation, but the clinical relevance of this is not well-understood. Our objective was to phenotype healthy ex-smokers with normal and abnormally elevated ventilation defect percent (VDP). MATERIALS AND METHODS Sixty ex-smokers without airflow limitation provided written informed consent to (3)He MRI, computed tomography (CT), and pulmonary function tests in a single visit. (3)He MRI VDP and apparent diffusion coefficients (ADCs) were measured for whole-lung and each lung lobe as were CT measurements of emphysema (relative area [RA] with attenuation ≤-950 HU, RA950) and airway morphology (wall area percent [WA%], lumen area [LA] and LA normalized to body surface area [LA/BSA]). RESULTS In 42 ex-smokers, there was abnormally elevated VDP and no significant differences for pulmonary function, RA950, or airway measurements compared to 18 ex-smokers with normal VDP. Ex-smokers with abnormally elevated VDP reported significantly greater (3)He ADC in the apical lung (right upper lobe [RUL], P = .02; right middle lobe [RML], P = .04; and left upper lobe [LUL], P = .009). Whole lung (r = 0.40, P = .001) and lobar VDP (RUL, r = 0.32, P = .01; RML, r = 0.46, P = .002; right lower lobe [RLL], r = 0.38, P = .003; LUL, r = 0.35, P = .006; and left lower lobe, r = 0.37, P = .004) correlated with regional (3)He ADC. Although whole-lung VDP and CT airway morphology measurements were not correlated, regional VDP was correlated with RUL LA (r = -0.37, P = .004), LA/BSA (r = -0.42, P = .0008), RLL WA% (r = 0.28, P = .03), LA (r = -0.28, P = .03), and LA/BSA (r = -0.37, P = .004). CONCLUSIONS Abnormally elevated VDP in ex-smokers without airflow limitation was coincident with very mild emphysema detected using MRI and regional airway remodeling detected using CT representing a subclinical obstructive lung disease phenotype.
Collapse
Affiliation(s)
- Damien Pike
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Miranda Kirby
- James Hogg Research Centre, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Fumin Guo
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond St N, London, ON, Canada N6A 5B7; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, London, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada.
| |
Collapse
|
35
|
|
36
|
Magnetic resonance imaging biomarkers of chronic obstructive pulmonary disease prior to radiation therapy for non-small cell lung cancer. Eur J Radiol Open 2015; 2:81-9. [PMID: 26937440 PMCID: PMC4750562 DOI: 10.1016/j.ejro.2015.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 11/21/2022] Open
Abstract
Three imaging phenotypes of COPD and ventilation heterogeneity. We examine relationships for non-tumour lobe ventilation voids and clinical tests. Smoking history and airflow obstruction were diagnostics for imaging phenotypes.
Objective In this prospectively planned interim-analysis, the prevalence of chronic obstructive lung disease (COPD) phenotypes was determined using magnetic resonance imaging (MRI) and X-ray computed tomography (CT) in non-small-cell-lung-cancer (NSCLC) patients. Materials and methods Stage-III-NSCLC patients provided written informed consent for pulmonary function tests, imaging and the 6-min-walk-test. Ventilation defect percent (VDP) and CT lung density (relative-of-CT-density-histogram <−950, RA950) were measured. Patients were classified into three subgroups based on qualitative and quantitative COPD and tumour-specific imaging phenotypes: (1) tumour-specific ventilation defects (TSD), (2) tumour-specific and other ventilation defects without emphysema (TSDV), and, (3) tumour-specific and other ventilation defects with emphysema (TSDVE). Results Seventeen stage-III NSCLC patients were evaluated (68 ± 7 years, 7 M/10 F, mean FEV1 = 77%pred) including seven current and 10 ex-smokers and eight patients with a prior lung disease diagnosis. There was a significant difference for smoking history (p = .02) and FEV1/FVC (p = .04) for subgroups classified using quantitative imaging. Patient subgroups classified using qualitative imaging findings were significantly different for emphysema (RA950, p < .001). There were significant relationships for whole-lung VDP (p < .05), but not RECIST or tumour-lobe VDP measurements with pulmonary function and exercise measurements. Preliminary analysis for non-tumour burden ventilation abnormalities using Reader-operator-characteristic (ROC) curves reflected a 94% classification rate for smoking pack-years, 93% for FEV1/FVC and 82% for RA950. ROC sensitivity/specificity/positive/negative likelihood ratios were also generated for pack-years, (0.92/0.80/4.6/0.3), FEV1/FVC (0.92/0.80/4.6/0.3), RA950 (0.92/0.80/4.6/0.3) and RECIST (0.58/0.80/2.9/1.1). Conclusions In this prospectively planned interim-analysis of a larger clinical trial, NSCLC patients were classified based on COPD imaging phenotypes. A proof-of-concept evaluation showed that FEV1/FVC and smoking history identified NSCLC patients with ventilation abnormalities appropriate for functional lung avoidance radiotherapy.
Collapse
|
37
|
Guo F, Yuan J, Rajchl M, Svenningsen S, Capaldi DPI, Sheikh K, Fenster A, Parraga G. Globally optimal co-segmentation of three-dimensional pulmonary ¹H and hyperpolarized ³He MRI with spatial consistence prior. Med Image Anal 2015; 23:43-55. [PMID: 25958028 DOI: 10.1016/j.media.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Pulmonary imaging using hyperpolarized (3)He/(129)Xe gas is emerging as a new way to understand the regional nature of pulmonary ventilation abnormalities in obstructive lung diseases. However, the quantitative information derived is completely dependent on robust methods to segment both functional and structural/anatomical data. Here, we propose an approach to jointly segment the lung cavity from (1)H and (3)He pulmonary magnetic resonance images (MRI) by constraining the spatial consistency of the two segmentation regions, which simultaneously employs the image features from both modalities. We formulated the proposed co-segmentation problem as a coupled continuous min-cut model and showed that this combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. In particular, we introduced a dual coupled continuous max-flow model to study the convex relaxed coupled continuous min-cut model under a primal and dual perspective. This gave rise to an efficient duality-based convex optimization algorithm. We implemented the proposed algorithm in parallel using general-purpose programming on graphics processing unit (GPGPU), which substantially increased its computational efficiency. Our experiments explored a clinical dataset of 25 subjects with chronic obstructive pulmonary disease (COPD) across a wide range of disease severity. The results showed that the proposed co-segmentation approach yielded superior performance compared to single-channel image segmentation in terms of precision, accuracy and robustness.
Collapse
Affiliation(s)
- Fumin Guo
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada.
| | - Jing Yuan
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Martin Rajchl
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada.
| | - Sarah Svenningsen
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Dante P I Capaldi
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Khadija Sheikh
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Aaron Fenster
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Grace Parraga
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada; Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
38
|
Milne S, King GG. Advanced imaging in COPD: insights into pulmonary pathophysiology. J Thorac Dis 2014; 6:1570-85. [PMID: 25478198 DOI: 10.3978/j.issn.2072-1439.2014.11.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings.
Collapse
Affiliation(s)
- Stephen Milne
- 1 The Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia ; 2 Northern Clinical School, University of Sydney, NSW 2006, Australia ; 3 Northern and Central Clinical Schools, University of Sydney, NSW 2006, Australia ; 4 Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gregory G King
- 1 The Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia ; 2 Northern Clinical School, University of Sydney, NSW 2006, Australia ; 3 Northern and Central Clinical Schools, University of Sydney, NSW 2006, Australia ; 4 Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
39
|
Kirby M, Pike D, Coxson HO, McCormack DG, Parraga G. Hyperpolarized3He Ventilation Defects Used to Predict Pulmonary Exacerbations in Mild to Moderate Chronic Obstructive Pulmonary Disease. Radiology 2014; 273:887-96. [DOI: 10.1148/radiol.14140161] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Horn FC, Tahir BA, Stewart NJ, Collier GJ, Norquay G, Leung G, Ireland RH, Parra-Robles J, Marshall H, Wild JM. Lung ventilation volumetry with same-breath acquisition of hyperpolarized gas and proton MRI. NMR IN BIOMEDICINE 2014; 27:1461-1467. [PMID: 25208220 DOI: 10.1002/nbm.3187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this work was to assess the reproducibility of percentage of ventilated lung volume (PV) measured from hyperpolarized (HP) (3)He and (1)H anatomical images acquired in the same breath-hold when compared with PV measured from (3)He and (1)H images from separate breath-holds. Volumetric (3)He ventilation and (1)H anatomical images of the same resolution were acquired during the same breath-hold. To assess reproducibility, this procedure was performed twice with a short gap between acquisitions. In addition, (1)H images were also acquired in a separate breath for comparison. PV ((3)He ventilated volume divided by (1)H total lung volume) was calculated using the single-breath-hold images (PV(single)) and the separate-breath-hold images (PV(separate)). Short-term reproducibility of PV measurement was assessed for both single- and separate-breath acquisitions. Dice similarity coefficients (DSCs) were calculated to quantify spatial overlap between (3)He and (1)H segmentations for the single- and separate-breath-hold acquisitions. The efficacy of using the separate-breath method combined with image registration was also assessed. The mean magnitude difference between the two sets of PV values (±standard deviation) was 1.49 ± 1.32% for PV(single) and 4.19 ± 4.10% for PV(separate), with a significant difference (p < 0.01). The mean magnitude difference between the two PV values for the registered separate-breath technique (PV(sep-registered)) was 2.27 ± 2.23%. Bland-Altman analysis showed that PV measured with single-breath acquisitions was more repeatable than PV measured with separate-breath acquisitions, regardless of image registration. DSC values were significantly greater (p < 0.01) for single-breath acquisition than for separate-breath acquisition. Acquisition of HP gas ventilation and (1)H anatomical images in a single breath-hold provides a more reproducible means of percentage lung ventilation volume measurement than the previously used separate-breath-hold scan approach, and reduces errors.
Collapse
Affiliation(s)
- F C Horn
- Academic Radiology, Department of Cardiovascular Sciences, University of Sheffield, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Neder JA, O'Donnell CDJ, Cory J, Langer D, Ciavaglia CE, Ling Y, Webb KA, O'Donnell DE. Ventilation Distribution Heterogeneity at Rest as a Marker of Exercise Impairment in Mild-to-Advanced COPD. COPD 2014; 12:249-56. [PMID: 25230258 DOI: 10.3109/15412555.2014.948997] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The difference between total lung capacity (TLC) by body plethysmography and alveolar volume (VA) from the single-breath lung diffusing capacity measurement provides an index of ventilation distribution inequalities in COPD. The relevance of these abnormalities to dyspnea and exercise intolerance across the continuum of disease severity remains unknown. Two-hundred and seventy-six COPD patients distributed across GOLD grades 1 to 4 and 67 healthy controls were evaluated. The "poorly communicating fraction" (PCF) of the TLC was estimated as the ratio (%) of TLC to VA. Healthy subjects showed significantly lower PCF values compared to GOLD grades 1 to 4 (10 ± 3% vs. 17 ± 8% vs. 27 ± 10% vs. 37 ± 10% vs. 56 ± 11%, respectively; p < 0.05). Pulmonary gas exchange impairment, mechanical ventilatory constraints and ventilation-corrected dyspnea scores worsened across PCF tertiles (p < 0.05). Of note, GOLD grades 1 and 2 patients with the highest PCF values had pronounced exercise ventilatory inefficiency and dyspnea as a limiting symptom. In fact, dyspnea was a significant contributor to exercise limitation only in those with "moderate" or "extensive" PCF (p < 0.05). A receiver operating characteristics curve analysis revealed that PCF was a better predictor of severely reduced maximal exercise capacity than traditional pulmonary function indexes including FEV1 (area under the curve (95% confidence interval) = 0.85 (0.81-0.89), best cutoff = 33.4%; p < 0.01). In conclusion, PCF is a readily available functional marker of gas exchange and mechanical abnormalities relevant to dyspnea and exercise intolerance across the COPD grades.
Collapse
Affiliation(s)
- J Alberto Neder
- 1 Respiratory Investigation Unit, Queen's University & Kingston General Hospital , Kingston, Ontario , Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kirby M, Parraga G. Paradoxical response to bronchodilators in COPD: curious enigma or clinically important phenotype? THE LANCET RESPIRATORY MEDICINE 2014; 2:865-867. [PMID: 25217077 DOI: 10.1016/s2213-2600(14)70198-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Miranda Kirby
- James Hogg Research Centre, University of British Columbia and Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street N, London, ON, Canada N6A 5B7; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
43
|
Coxson HO, Leipsic J, Parraga G, Sin DD. Using Pulmonary Imaging to Move Chronic Obstructive Pulmonary Disease beyond FEV1. Am J Respir Crit Care Med 2014; 190:135-44. [DOI: 10.1164/rccm.201402-0256pp] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Leary D, Winkler T, Braune A, Maksym GN. Effects of airway tree asymmetry on the emergence and spatial persistence of ventilation defects. J Appl Physiol (1985) 2014; 117:353-62. [PMID: 24947031 DOI: 10.1152/japplphysiol.00881.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asymmetry and heterogeneity in the branching of the human bronchial tree are well documented, but their effects on bronchoconstriction and ventilation distribution in asthma are unclear. In a series of seminal studies, Venegas et al. have shown that bronchoconstriction may lead to self-organized patterns of patchy ventilation in a computational model that could explain areas of poor ventilation [ventilation defects (VDefs)] observed in positron emission tomography images during induced bronchoconstriction. To investigate effects of anatomic asymmetry on the emergence of VDefs we used the symmetric tree computational model that Venegas and Winkler developed using different trees, including an anatomic human airway tree provided by M. Tawhai (University of Auckland), a symmetric tree, and three trees with intermediate asymmetry (Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, Fischman AJ, Callahan RJ, Bellani G, Harris RS. Nature 434: 777-782, 2005 and Winkler T, Venegas JG. J Appl Physiol 103: 655-663, 2007). Ventilation patterns, lung resistance (RL), lung elastance (EL), and the entropy of the ventilation distribution were compared at different levels of airway smooth muscle activation. We found VDefs emerging in both symmetric and asymmetric trees, but VDef locations were largely persistent in asymmetric trees, and bronchoconstriction reached steady state sooner than in a symmetric tree. Interestingly, bronchoconstriction in the asymmetric tree resulted in lower RL (∼%50) and greater EL (∼%25). We found that VDefs were universally caused by airway instability, but asymmetry in airway branching led to local triggers for the self-organized patchiness in ventilation and resulted in persistent locations of VDefs. These findings help to explain the emergence and the persistence in location of VDefs found in imaging studies.
Collapse
Affiliation(s)
- D Leary
- Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - T Winkler
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A Braune
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - G N Maksym
- Dalhousie University, Halifax, Nova Scotia, Canada; and
| |
Collapse
|
45
|
Sheikh K, Paulin GA, Svenningsen S, Kirby M, Paterson NAM, McCormack DG, Parraga G. Pulmonary ventilation defects in older never-smokers. J Appl Physiol (1985) 2014; 117:297-306. [PMID: 24903918 DOI: 10.1152/japplphysiol.00046.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarized (3)He MRI previously revealed spatially persistent ventilation defects in healthy, older compared with healthy, younger never-smokers. To understand better the physiological consequences and potential relevance of (3)He MRI ventilation defects, we evaluated (3)He-MRI ventilation-defect percent (VDP) and the effect of deep inspiration (DI) and salbutamol on VDP in older never-smokers. To identify the potential determinants of ventilation defects in these subjects, we evaluated dyspnea, pulmonary function, and cardiopulmonary exercise test (CPET) measurements, as well as occupational and second-hand smoke exposure. Fifty-two never-smokers (71 ± 6 yr) with no history of chronic respiratory disease were evaluated. During a single visit, pulmonary function tests, CPET, and (3)He MRI were performed and the Burden of Obstructive Lung Disease questionnaire administered. For eight of 52 subjects, there was spirometry evidence of airflow limitation (Global Initiative for Chronic Obstructive Lung Disease-Unclassified, I, and II), and occupational exposure was reported in 13 of 52 subjects. In 13 of 52 (25%) subjects, there were no ventilation defects and in 39 of 52 (75%) subjects, ventilation defects were observed. For those subjects with ventilation defects, six of 39 showed a VDP response to DI/salbutamol. Ventilation heterogeneity and VDP were significantly greater, and forced expiratory volume in 1 s (FEV1)/forced vital capacity was significantly lower (P < 0.05) for subjects with ventilation defects with a response to DI/salbutamol than subjects with ventilation defects without a response to DI/salbutamol and subjects without ventilation defects. In a step-wise, forward multivariate model, FEV1, inspiratory capacity, and airway resistance significantly predicted VDP (R(2) = 0.45, P < 0.001). In conclusion, most never-smokers had normal spirometry and peripheral ventilation defects not reversed by DI/salbutamol; such ventilation defects were likely related to irreversible airway narrowing/collapse but not to dyspnea and decreased exercise capacity.
Collapse
Affiliation(s)
- Khadija Sheikh
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Gregory A Paulin
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Sarah Svenningsen
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Miranda Kirby
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Nigel A M Paterson
- Division of Respirology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada;
| |
Collapse
|
46
|
Yoon SH, Goo JM, Jung J, Hong H, Park EA, Lee CH, Lee Y, Jin KN, Choo JY, Lee NK. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at two-phase xenon-enhanced CT. Korean J Radiol 2014; 15:386-96. [PMID: 24843245 PMCID: PMC4023059 DOI: 10.3348/kjr.2014.15.3.386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/24/2014] [Indexed: 11/15/2022] Open
Abstract
Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.
Collapse
Affiliation(s)
- Soon Ho Yoon
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Julip Jung
- Department of Multimedia Engineering, Seoul Women's University, Seoul 139-774, Korea
| | - Helen Hong
- Department of Multimedia Engineering, Seoul Women's University, Seoul 139-774, Korea
| | - Eun Ah Park
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea
| | - Youkyung Lee
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea. ; Department of Radiology, SMG-SNU Boramae Medical Center, Seoul 156-707, Korea
| | - Kwang Nam Jin
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea. ; Department of Radiology, SMG-SNU Boramae Medical Center, Seoul 156-707, Korea
| | - Ji Yung Choo
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea
| | - Nyoung Keun Lee
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744, Korea
| |
Collapse
|
47
|
Kirby M, Parraga G. Pulmonary functional imaging using hyperpolarized noble gas MRI: six years of start-up experience at a single site. Acad Radiol 2013; 20:1344-56. [PMID: 24119346 DOI: 10.1016/j.acra.2013.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/01/2022]
Abstract
RATIONALE AND OBJECTIVES In this review, we summarize our experience evaluating pulmonary function in 330 different subjects using hyperpolarized noble gas magnetic resonance imaging (MRI) after enrollment and screening of >1100 subjects with and without respiratory disease during the period February 1, 2006, through November 1, 2012. MATERIALS AND METHODS We discuss the feasibility of hyperpolarized gas MRI research in a small nonhospital research unit and provide an overview of our experience since we initiated patient-based studies. We also discuss the importance of infrastructure support, collaboration, research trainees, and a large and willing patient population that helped to advance the research and technological deliverables. A summary of patient safety and tolerability, key feasibility, and research milestones is provided, as well as a roadmap for future studies. RESULTS Hyperpolarized (3)He and (129)Xe gas MRI is feasible at smaller centers without significant human resources for large and small longitudinal studies by virtue of its excellent patient safety and tolerability, the speed with which images can be acquired and quantitatively analyzed and the high spatial-temporal dynamics of the method that allows for acute and chronic therapy studies. CONCLUSIONS The hyperpolarized noble gas MRI community's highly collaborative efforts and motivation to further the development and application of this tool has resulted in a moment-of-opportunity to translate the method clinically to provide an improved understanding of pulmonary disease. There are, as well, new and unprecedented opportunities for the evaluation of disease progression and to help develop the new treatments and interventions critically required for chronic pulmonary disease.
Collapse
Affiliation(s)
- Miranda Kirby
- Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada, N6A 5K8; Department of Medical Biophysics, London, Canada
| | | |
Collapse
|
48
|
Costella S, Kirby M, Maksym GN, McCormack DG, Paterson NAM, Parraga G. Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging. Respirology 2013; 17:1237-46. [PMID: 22889229 DOI: 10.1111/j.1440-1843.2012.02250.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Spirometry is insensitive to small airway abnormalities in asthma. Our objective was to evaluate regional lung structure and function using hyperpolarized (3)He magnetic resonance imaging (MRI) before, during and after a methacholine challenge (MCh). METHODS Twenty-five asthmatics (mean age = 34 ± 11 years) and eight healthy volunteers (HV) (mean age = 33 ± 11 years) underwent spirometry, plethysmography and hyperpolarized (3)He MRI prior to a MCh. MRI was repeated following the MCh and again 25 min after salbutamol administration. (3)He MRI gas distribution was quantified using semiautomated segmentation of the ventilation defect percent (VDP). Tissue microstructure was measured using the (3)He apparent diffusion coefficient (ADC). Analysis of variance with repeated measures was used to evaluate changes at each time point as well as to determine interactions between regions of interest (ROI) and subject group. Pearson's correlations were performed to evaluate associations between (3)He MRI measurements and established clinical measures. RESULTS In asthmatics, but not HV, whole-lung ADC was increased post-MCh (P < 0.01). In asthmatics only, ADC was increased post-MCh in posterior ROI (P < 0.01) and all ROI in the superior-inferior direction (P < 0.01). VDP was increased in posterior and inferior ROI (P < 0.001). There was a correlation between VDP and specific airway resistance (r = 0.74, P < 0.0001), dyspnoea score (r = 0.66, P < 0.01) and fractional exhaled nitric oxide (r = 0.45, P < 0.05). CONCLUSIONS We evaluated the regional pulmonary response to methacholine and salbutamol using (3)He MRI and showed heterogeneous VDP and ADC consistent with bronchoconstriction and gas trapping, respectively, post-MCh. These regional alterations resolved post-salbutamol.
Collapse
Affiliation(s)
- Stephen Costella
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Virgincar RS, Cleveland ZI, Kaushik SS, Freeman MS, Nouls J, Cofer GP, Martinez-Jimenez S, He M, Kraft M, Wolber J, McAdams HP, Driehuys B. Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR IN BIOMEDICINE 2013; 26:424-35. [PMID: 23065808 PMCID: PMC3624045 DOI: 10.1002/nbm.2880] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 05/12/2023]
Abstract
In this study, hyperpolarized (129) Xe MR ventilation and (1) H anatomical images were obtained from three subject groups: young healthy volunteers (HVs), subjects with chronic obstructive pulmonary disease (COPD) and age-matched controls (AMCs). Ventilation images were quantified by two methods: an expert reader-based ventilation defect score percentage (VDS%) and a semi-automated segmentation-based ventilation defect percentage (VDP). Reader-based values were assigned by two experienced radiologists and resolved by consensus. In the semi-automated analysis, (1) H anatomical images and (129) Xe ventilation images were both segmented following registration to obtain the thoracic cavity volume and ventilated volume, respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the thoracic cavity volume, and heterogeneity was analyzed using the coefficient of variation (CV). The reader-based VDS% correlated strongly with the semi-automatically generated VDP (r = 0.97, p < 0.0001) and with CV (r = 0.82, p < 0.0001). Both (129) Xe ventilation defect scoring metrics readily separated the three groups from one another and correlated significantly with the forced expiratory volume in 1 s (FEV1 ) (VDS%: r = -0.78, p = 0.0002; VDP: r = -0.79, p = 0.0003; CV: r = -0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HVs and AMCs), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between subjects with COPD with similar ventilation defect scores, but visibly different ventilation patterns.
Collapse
Affiliation(s)
- Rohan S. Virgincar
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Zackary I. Cleveland
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - S. Sivaram Kaushik
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew S. Freeman
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - John Nouls
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Gary P. Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | - Mu He
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Monica Kraft
- Department of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jan Wolber
- GE Healthcare, The Grove Center, White Lion Rd, Amersham, UK
- Academic Radiology, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - H. Page McAdams
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| |
Collapse
|
50
|
Wild JM, Marshall H, Xu X, Norquay G, Parnell SR, Clemence M, Griffiths PD, Parra-Robles J. Simultaneous Imaging of Lung Structure and Function with Triple-Nuclear Hybrid MR Imaging. Radiology 2013; 267:251-5. [DOI: 10.1148/radiol.12121153] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|