1
|
Marks C, Leech M. Optimising hypoxia PET imaging and its applications in guiding targeted radiation therapy for non-small cell lung cancer: a scoping review. J Med Radiat Sci 2024. [PMID: 39422481 DOI: 10.1002/jmrs.831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death. Definitive treatment includes chemotherapy and radiation therapy. Tumour hypoxia impacts the efficacy of these treatment modalities. Novel positron-emission tomography (PET) imaging has been developed to non-invasively quantify hypoxic tumour subregions, and to guide personalised treatment strategies. This review evaluates the reliability of hypoxia imaging in NSCLC in relation to various tracers, its correlations to treatment-related outcomes, and to assess if this imaging modality can be meaningfully applied into radiation therapy workflows. METHODS A literature search was conducted on the Medline (Ovid) and Embase databases. Searches included terms related to 'hypoxia', 'positron-emission tomography', 'magnetic resonance imaging' and 'lung cancer'. Results were filtered to exclude studies prior to 2011, and animal studies were excluded. Only studies referring to a confirmed pathology of NSCLC were included, while disease staging was not a limiting factor. Full-text English language and translated literature examined included clinical trials, clinical cohort studies and feasibility studies. RESULTS Quantification of hypoxic volumes in a pre-treatment setting is of prognostic value, and indicative of treatment response. Dosimetric comparisons have highlighted potential to significantly dose escalate to hypoxic volumes without risk of additional toxicity. However, clinical data to support these strategies are lacking. CONCLUSION Heterogenous study design and non-standardised imaging parameters have led to a lack of clarity regarding the application of hypoxia PET imaging in NSCLC. PET imaging using nitroimidazole tracers is the most investigated method of non-invasively measuring tumour hypoxia and has potential to guide hypoxia-targeted radiation therapy. Further clinical research is required to elucidate the benefits versus risks of dose-escalation strategies.
Collapse
Affiliation(s)
- Carol Marks
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland
| | - Michelle Leech
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Bozovic G, Schaefer-Prokop CM, Bankier AA. Pulmonary functional imaging (PFI): A historical review and perspective. Acta Radiol 2022; 64:90-100. [PMID: 35118881 DOI: 10.1177/02841851221076324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFI Pulmonary Functional Imaging (PFI) refers to visualization and measurement of ventilation, perfusion, gas flow and exchange as well as biomechanics. In this review, we will highlight the historical development of PFI, describing recent advances and listing the various techniques for PFI offered per modality. Challenges PFI is facing and requirements for PFI from a clinical point of view will be pointed out. Hereby the review is meant as an introduction to PFI.
Collapse
Affiliation(s)
- Gracijela Bozovic
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cornelia M Schaefer-Prokop
- Department of Radiology, Meander Medical Centre, TZ Amersfoort, The Netherlands
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
4
|
Ziółkowska-Suchanek I. Mimicking Tumor Hypoxia in Non-Small Cell Lung Cancer Employing Three-Dimensional In Vitro Models. Cells 2021; 10:cells10010141. [PMID: 33445709 PMCID: PMC7828188 DOI: 10.3390/cells10010141] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This review defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME. In this study, a systematic review of the current NSCLC 3D models that have been able to mimic the hypoxic TME is presented. The multicellular tumor spheroid, organoids, scaffolds, microfluidic devices and 3D bioprinting currently being utilized in NSCLC hypoxia studies are reviewed. Additionally, the utilization of 3D in vitro models for exploring biological and therapeutic parameters in the future is described.
Collapse
|
5
|
A prospective feasibility study evaluating the role of multimodality imaging and liquid biopsy for response assessment in locally advanced rectal carcinoma. Abdom Radiol (NY) 2019; 44:3641-3651. [PMID: 31327041 DOI: 10.1007/s00261-019-02135-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Colorectal cancer is a commonly encountered disease that poses several diagnostic and therapeutic challenges. The inherent heterogeneity of tumor biology and propensity to relapse despite "curative" resection pose significant challenges with regard to response assessment. Although MR imaging already plays a key role in primary staging of patients with rectal carcinoma, its reliability in restaging after neoadjuvant therapy is debatable (Van der broek et al. in Dis Colon Rectum 60(3):274-283, 2017). Therefore, there is significant interest in developing additional methods which may improve diagnostic accuracy. This study aims to evaluate the role of multimodality imaging and liquid biopsy in therapeutic response assessment. METHODS Seventeen patients were enrolled into the study over a span of 24 months. All underwent hybrid PET-MRI and CT-perfusion (CT-P), prior to and following neoadjuvant therapy for locally advanced rectal carcinoma. Twelve of the 17 patients also underwent liquid biopsy, which consisted of blood sampling and analysis of circulating tumor cells (CTCs) and extracellular vesicles (EVs), including cell fragments and microparticles (MPs), using the Cell Search System (Menarini Silicon Biosystems). SUV, DWI, and ADC were calculated during PET-MRI, and several parameters were evaluated during CT-perfusion, including average perfusion, blood flow (BF), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), contrast extraction efficiency (E), and K-trans (K). Changes observed pre- and post-neoadjuvant therapy in each modality were compared to tumor response at histopathology using a modified Ryan tumor regression grading system. RESULTS Of the 17 patients included in the study, 14 were classified as non-responders, and 3 were classified as responders as determined by the modified Ryan Tumor Regression Grade (TRG) scoring system (Van der broek et al. in Dis Colon Rectum 60(3):274-283, 2017). When combined, blood markers and CT-P parameters (mean transit time (MTT), K-trans, and permeability-surface area product (PS)) produced the strongest models (p < 0.01). PET (SUV measurement) combined with CT-P-derived K-trans produced a marginally significant (p = 0.057) model for predicting response. MRI-derived ADC value did not provide a significant model for response prediction. CONCLUSION A model of CT-P parameters plus liquid biopsy more accurately predicts tumor response than PET-MRI, CT-P alone, or liquid biopsy alone. These results suggest that in the evaluation of treatment response, liquid biopsy could provide additional information to functional imaging modalities such as CT-P and should therefore be explored further in a trial with larger sample size.
Collapse
|
6
|
Lee SH, Rimner A, Deasy JO, Hunt MA, Tyagi N. Dual-input tracer kinetic modeling of dynamic contrast-enhanced MRI in thoracic malignancies. J Appl Clin Med Phys 2019; 20:169-188. [PMID: 31602789 PMCID: PMC6839367 DOI: 10.1002/acm2.12740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Pulmonary perfusion with dynamic contrast‐enhanced (DCE‐) MRI is typically assessed using a single‐input tracer kinetic model. Preliminary studies based on perfusion CT are indicating that dual‐input perfusion modeling of lung tumors may be clinically valuable as lung tumors have a dual blood supply from the pulmonary and aortic system. This study aimed to investigate the feasibility of fitting dual‐input tracer kinetic models to DCE‐MRI datasets of thoracic malignancies, including malignant pleural mesothelioma (MPM) and nonsmall cell lung cancer (NSCLC), by comparing them to single‐input (pulmonary or systemic arterial input) tracer kinetic models for the voxel‐level analysis within the tumor with respect to goodness‐of‐fit statistics. Fifteen patients (five MPM, ten NSCLC) underwent DCE‐MRI prior to radiotherapy. DCE‐MRI data were analyzed using five different single‐ or dual‐input tracer kinetic models: Tofts‐Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH) and distributed parameter (DP) models. The pulmonary blood flow (BF), blood volume (BV), mean transit time (MTT), permeability‐surface area product (PS), fractional interstitial volume (vI), and volume transfer constant (KTrans) were calculated for both single‐ and dual‐input models. The pulmonary arterial flow fraction (γ), pulmonary arterial blood flow (BFPA) and systemic arterial blood flow (BFA) were additionally calculated for only dual‐input models. The competing models were ranked and their Akaike weights were calculated for each voxel according to corrected Akaike information criterion (cAIC). The optimal model was chosen based on the lowest cAIC value. In both types of tumors, all five dual‐input models yielded lower cAIC values than their corresponding single‐input models. The 2CX model was the best‐fitted model and most optimal in describing tracer kinetic behavior to assess microvascular properties in both MPM and NSCLC. The dual‐input 2CX‐model‐derived BFA was the most significant parameter in differentiating adenocarcinoma from squamous cell carcinoma histology for NSCLC patients.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margie A Hunt
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Woolf DK, Li SP, Detre S, Liu A, Gogbashian A, Simcock IC, Stirling J, Kosmin M, Cook GJ, Siddique M, Dowsett M, Makris A, Goh V. Assessment of the Spatial Heterogeneity of Breast Cancers: Associations Between Computed Tomography and Immunohistochemistry. BIOMARKERS IN CANCER 2019; 11:1179299X19851513. [PMID: 31210736 PMCID: PMC6552350 DOI: 10.1177/1179299x19851513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Tumour heterogeneity is considered an important mechanism of treatment failure. Imaging-based assessment of tumour heterogeneity is showing promise but the relationship between these mathematically derived measures and accepted 'gold standards' of tumour biology such as immunohistochemical measures is not established. METHODS A total of 20 women with primary breast cancer underwent a research dynamic contrast-enhanced computed tomography prior to treatment with data being available for 15 of these. Texture analysis was performed of the primary tumours to extract 13 locoregional and global parameters. Immunohistochemical analysis associations were assessed by the Spearman rank correlation. RESULTS Hypoxia-inducible factor-1α was correlated with first-order kurtosis (r = -0.533, P = .041) and higher order neighbourhood grey-tone difference matrix coarseness (r = 0.54, P = .038). Vascular maturity-related smooth muscle actin was correlated with higher order grey-level run-length long-run emphasis (r = -0.52, P = .047), fractal dimension (r = 0.613, P = .015), and lacunarity (r = -0.634, P = .011). Micro-vessel density, reflecting angiogenesis, was also associated with lacunarity (r = 0.547, P = .035). CONCLUSIONS The associations suggest a biological basis for these image-based heterogeneity features and support the use of imaging, already part of standard care, for assessing intratumoural heterogeneity.
Collapse
Affiliation(s)
- David K Woolf
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Sonia P Li
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | - Simone Detre
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK
| | - Alison Liu
- Division of Imaging Sciences, King’s College London, St Thomas’ Hospital, London, UK
| | - Andrew Gogbashian
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - Ian C Simcock
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - James Stirling
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - Michael Kosmin
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | - Gary J Cook
- Division of Imaging Sciences, King’s College London, St Thomas’ Hospital, London, UK
| | - Muhammad Siddique
- Division of Imaging Sciences, King’s College London, St Thomas’ Hospital, London, UK
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK
| | - Andreas Makris
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | - Vicky Goh
- Division of Imaging Sciences, King’s College London, St Thomas’ Hospital, London, UK
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
8
|
Zhou F, Ma W, Li W, Ni H, Gao G, Chen X, Zhang J, Shi J. Thick-wall cavity predicts worse progression-free survival in lung adenocarcinoma treated with first-line EGFR-TKIs. BMC Cancer 2018; 18:1033. [PMID: 30352571 PMCID: PMC6199793 DOI: 10.1186/s12885-018-4938-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cavity occurs in 5.7 to 14.9% of patients with lung adenocarcinoma (ADC). However, the impact of cavity on the therapeutic response to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in ADC patients with EGFR mutations remains unclear. The aim of the present retrospective study was to elucidate the incidence and detailed characteristics of EGFR-mutant cavitary ADC and investigate the efficacy of EGFR-TKI treatment in this subgroup. METHODS Two hundred seventy-six consecutive patients with advanced EGFR-mutant lung ADC treated with first-line EGFR-TKIs were enrolled. Cavitation and the thickness of cavity wall were assessed based on high-resolution computed tomography scans. Progression-free survival (PFS) was analyzed by the Kaplan-Meier plots and the log-rank test was used to calculate the significance between groups. RESULTS Cavity occurred in 5.4% (15/276) of patients with EGFR-mutant lung ADC and was more prevalent among male patients (66.7% vs. 33.3%, P = 0.008). Of the 15 EGFR-mutant cavitary ADC, 9 patients had exon 19 deletion (19DEL) and 6 harbored L858R mutation, 9 patients had thick-wall cavity while 6 had thin-wall cavity. Cavity had an adverse impact on the PFS of EGFR-mutant ADC treated with first-line EGFR-TKIs (noncavity versus cavity, 11.0 versus 6.5 months, hazard ratio [HR]: 0.33, 95% confidence interval [CI], 0.15-0.73, P = 0.003). The impaired effect was only observed in patients with L858R mutation (11.0 vs. 4.2 months, HR: 0.05, 95%CI, 0.01-0.27, P = 0.0003) but not in those with 19DEL (10.4 versus 9.7 months, HR: 0.73, 95%CI, 0.30-1.75, P = 0.483). All six L858R-mutant cavitary ADC patients had thick-wall cavity while thick-wall cavity was only identified in one thirds (3/9) of patients with 19DEL. Further analyses showed that patients with thick-wall cavity had worse PFS (6.0 versus 11.0 months, P = 0.013). Multivariate analysis identified cavity as an independent predictive factor for PFS (HR: 0.49, 95% CI, 0.26-0.90, P = 0.022). CONCLUSION Cavitary ADC was associated with a worse PFS of first-line EGFR-TKI therapy, mainly in those with L858R mutation. Thick-wall cavity formation may be the main cause that contribute to the worse PFS.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, China
| | - Wanrong Ma
- Department of Intensive Care Unit, Shanghai Jingan District Shibei Hospital, Shanghai, China
| | - Wei Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, China
| | - Huijuan Ni
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, China
| | - Guanghui Gao
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, China
| | - Xiaoxia Chen
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, China.
| | - Jie Zhang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, China.
| | - Jingyun Shi
- Department of Imaging, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
9
|
CT Perfusion in Patients with Lung Cancer: Squamous Cell Carcinoma and Adenocarcinoma Show a Different Blood Flow. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6942131. [PMID: 30255097 PMCID: PMC6140241 DOI: 10.1155/2018/6942131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/04/2018] [Accepted: 08/16/2018] [Indexed: 01/27/2023]
Abstract
Objectives To characterize tumour baseline blood flow (BF) in two lung cancer subtypes, adenocarcinoma (AC) and squamous cell carcinoma (SCC), also investigating those “borderline” cases whose perfusion value is closer to the group mean of the other histotype. Materials and Methods 26 patients (age range 36-81 years) with primary Non-Small Cell Lung Cancer (NSCLC), subdivided into 19 AC and 7 SCC, were enrolled in this study and underwent a CT perfusion, at diagnosis. BF values were computed according to the maximum-slope method and unreliable values (e.g., arising from artefacts or vessels) were automatically removed. The one-tail Welch's t-test (p-value <0.05) was employed for statistical assessment. Results At diagnosis, mean BF values (in [mL/min/100g]) of AC group [(83.5 ± 29.4)] are significantly greater than those of SCC subtype [(57.0 ± 27.2)] (p-value = 0.02). However, two central SCCs undergoing artefacts from vena cava and pulmonary artery have an artificially increased mean BF. Conclusions The different hemodynamic behaviour of AC and SCC should be considered as a biomarker supporting treatment planning to select the patients, mainly with AC, that would most benefit from antiangiogenic therapies. The significance of results was achieved by automatically detecting and excluding artefactual BF values.
Collapse
|
10
|
Trinidad López C, Souto Bayarri M, Oca Pernas R, Delgado Sánchez-Gracián C, González Vázquez M, Vaamonde Liste A, Tardáguila De La Fuente G, De La Fuente Aguado J. Characteristics of computed tomography perfusion parameters in non-small-cell-lung-cancer and its relationship to histology, size, stage an treatment response. Clin Imaging 2018; 50:5-12. [DOI: 10.1016/j.clinimag.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
|
11
|
Calandriello L, Larici AR, Leccisotti L, del Ciello A, Sica G, Infante A, Congedo MT, Poscia A, Giordano A, Bonomo L. Multifunctional Assessment of Non–Small Cell Lung Cancer. Clin Nucl Med 2018; 43:e18-e24. [DOI: 10.1097/rlu.0000000000001888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Even AJG, Reymen B, La Fontaine MD, Das M, Jochems A, Mottaghy FM, Belderbos JSA, De Ruysscher D, Lambin P, van Elmpt W. Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT. Acta Oncol 2017; 56:1591-1596. [PMID: 28840770 DOI: 10.1080/0284186x.2017.1349332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT). MATERIAL AND METHODS For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUVmean) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared. RESULTS Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm3) by the best performing model. CONCLUSIONS We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The model correctly classifies all tumors, and could therefore, aid tumor hypoxia classification and patient stratification.
Collapse
Affiliation(s)
- Aniek J. G. Even
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthew D. La Fontaine
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco Das
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arthur Jochems
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - José S. A. Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
13
|
Wang Y, Stewart E, Desjardins L, Hadway J, Morrison L, Crukley C, Lee TY. Assessment of intratumor hypoxia by integrated 18F-FDG PET / perfusion CT in a liver tumor model. PLoS One 2017; 12:e0173016. [PMID: 28264009 PMCID: PMC5338799 DOI: 10.1371/journal.pone.0173016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/13/2017] [Indexed: 11/24/2022] Open
Abstract
Objectives Hypoxia in solid tumors occurs when metabolic demands in tumor cells surpass the delivery of oxygenated blood. We hypothesize that the 18F-fluorodeoxyglucose (18F-FDG) metabolism and tumor blood flow mismatch would correlate with tumor hypoxia. Methods Liver perfusion computed tomography (CT) and 18F-FDG positron emission tomography (PET) imaging were performed in twelve rabbit livers implanted with VX2 carcinoma. Under CT guidance, a fiber optic probe was inserted into the tumor to measure the partial pressure of oxygen (pO2). Tumor blood flow (BF) and standardized uptake value (SUV) were measured to calculate flow-metabolism ratio (FMR). Tumor hypoxia was further identified using pimonidazole immunohistochemical staining. Pearson correlation analysis was performed to determine the correlation between the imaging parameters and pO2 and pimonidazole staining. Results Weak correlations were found between blood volume (BV) and pO2 level (r = 0.425, P = 0.004), SUV and pO2 (r = -0.394, P = 0.007), FMR and pimonidazole staining score (r = -0.388, P = 0.031). However, there was stronger correlation between tumor FMR and pO2 level (r = 0.557, P < 0.001). Conclusions FMR correlated with tumor oxygenation and pimonidazole staining suggesting it may be a potential hypoxic imaging marker in liver tumor.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Errol Stewart
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Lise Desjardins
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Jennifer Hadway
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Laura Morrison
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Cathie Crukley
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Ting-Yim Lee
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. Sci Rep 2016; 6:38282. [PMID: 27922113 PMCID: PMC5138817 DOI: 10.1038/srep38282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
This was a retrospective study to investigate the predictive and prognostic ability of quantitative computed tomography phenotypic features in patients with non-small cell lung cancer (NSCLC). 661 patients with pathological confirmed as NSCLC were enrolled between 2007 and 2014. 592 phenotypic descriptors was automatically extracted on the pre-therapy CT images. Firstly, support vector machine (SVM) was used to evaluate the predictive value of each feature for pathology and TNM clinical stage. Secondly, Cox proportional hazards model was used to evaluate the prognostic value of these imaging signatures selected by SVM which subjected to a primary cohort of 138 patients, and an external independent validation of 61 patients. The results indicated that predictive accuracy for histopathology, N staging, and overall clinical stage was 75.16%, 79.40% and 80.33%, respectively. Besides, Cox models indicated the signatures selected by SVM: “correlation of co-occurrence after wavelet transform” was significantly associated with overall survival in the two datasets (hazard ratio [HR]: 1.65, 95% confidence interval [CI]: 1.41–2.75, p = 0.010; and HR: 2.74, 95%CI: 1.10–6.85, p = 0.027, respectively). Our study indicates that the phenotypic features might provide some insight in metastatic potential or aggressiveness for NSCLC, which potentially offer clinical value in directing personalized therapeutic regimen selection for NSCLC.
Collapse
|
15
|
Meijer TWH, de Geus-Oei LF, Visser EP, Oyen WJG, Looijen-Salamon MG, Visvikis D, Verhagen AFTM, Bussink J, Vriens D. Tumor Delineation and Quantitative Assessment of Glucose Metabolic Rate within Histologic Subtypes of Non-Small Cell Lung Cancer by Using Dynamic 18F Fluorodeoxyglucose PET. Radiology 2016; 283:547-559. [PMID: 27846378 DOI: 10.1148/radiol.2016160329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose To assess whether dynamic fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static 18F-FDG PET for tumor delineation in non-small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of 18F-FDG metabolism, including regional variation, between NSCLC histologic subtypes. Materials and Methods The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic 18F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (VB) were computed by using compartment modeling. Results Pathology volumes were larger than PET volumes (median difference, 8.7-25.2 cm3; Wilcoxon signed rank test, P < .001). Static fuzzy locally adaptive Bayesian (FLAB) volumes corresponded best with pathology volumes (intraclass correlation coefficient, 0.72; P < .001). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes. Glucose metabolic rate and 18F-FDG phosphorylation rate were higher in squamous cell carcinoma (SCC) than in adenocarcinoma (AC), whereas VB was lower (Mann-Whitney U test or t test, P = .003, P = .036, and P = .019, respectively). Glucose metabolic rate, 18F-FDG phosphorylation rate, and VB were less heterogeneous in AC than in SCC (Friedman analysis of variance). Conclusion Parametric images are not superior to static images for NSCLC delineation. FLAB-based segmentation on static 18F-FDG PET images is in best agreement with pathology volume and could be useful for NSCLC autocontouring. Differences in glycolytic rate and VB between SCC and AC are relevant for research in targeting agents and radiation therapy dose escalation. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Tineke W H Meijer
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Lioe-Fee de Geus-Oei
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Eric P Visser
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Wim J G Oyen
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Monika G Looijen-Salamon
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Dimitris Visvikis
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Ad F T M Verhagen
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Johan Bussink
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| | - Dennis Vriens
- From the Departments of Radiation Oncology (T.W.H.M., J.B.), Radiology and Nuclear Medicine (L.F.d.G.O., E.P.V., W.J.G.O.), Pathology (M.G.L.S.), and Cardiothoracic Surgery (A.F.T.M.V.), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (L.F.d.G.O., D. Vriens); Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, the Netherlands (L.F.d.G.O.); Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England (W.J.G.O.); and INSERM, UMR 1101, LaTIM, Université de Bretagne Occidentale, Brest, France (D. Visvikis)
| |
Collapse
|
16
|
Suo S, Cheng J, Cao M, Lu Q, Yin Y, Xu J, Wu H. Assessment of Heterogeneity Difference Between Edge and Core by Using Texture Analysis: Differentiation of Malignant From Inflammatory Pulmonary Nodules and Masses. Acad Radiol 2016; 23:1115-22. [PMID: 27298058 DOI: 10.1016/j.acra.2016.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to test the hypothesis that the heterogeneity difference between edge and core of lesions by using intensity and entropy features obtained from whole-lesion texture analysis on contrast-enhanced computed tomography (CT) may be useful for differentiation of malignant from inflammatory pulmonary nodules and masses. MATERIALS AND METHODS In all, 48 single pulmonary nodules and masses were retrospectively evaluated. All lesions were histologically or clinically confirmed (malignancy: inflammation = 24:20). We utilized a newly introduced texture analysis method based on contrast-enhanced CT (first described by Grove et al.) that automatically divided the whole lesion volume into two regions: edge and core. Mean attenuation value (AV) and entropy of each region and also the whole lesion were evaluated separately. Each texture metric (absolute value for each region, and difference value defined as difference between edge and core) of malignant and inflammatory lesions were compared using Mann-Whitney U test. Individual image parameters were combined by using linear discriminant analysis. Receiver operating characteristic curves were generated to assess each texture metric and their combination for discriminating between the two entities. RESULTS Mean AV difference and entropy difference were significantly higher in malignant lesions than in inflammatory lesions (4.71 HU ± 5.06 vs -1.53 HU ± 5.05, P < .001; 0.45 ± 0.23 vs 0.18 ± 0.30, P = .001). Receiver operating characteristic curves for individual mean AV difference and entropy difference provided relatively high values for the area under the curve (0.836 and 0.795, respectively). The combination of mean AV difference, entropy difference, and lesion volume improved the area under the curve to 0.864. CONCLUSION Heterogeneity difference between edge and core by using whole-lesion texture analysis on contrast-enhanced CT may be a promising tool for estimating the probability of malignancy in pulmonary nodules and masses.
Collapse
Affiliation(s)
- Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China
| | - Jiejun Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China
| | - Qing Lu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China
| | - Yan Yin
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China.
| | - Huawei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
17
|
Kim JI, Lee HJ, Goo JM, Kim MA, Chung DH. Correlation of volumetric perfusion CT parameters with hypoxia inducible factor-1 alpha expression in a rabbit VX2 tumor model. Acta Radiol 2016; 57:708-15. [PMID: 26339038 DOI: 10.1177/0284185115603243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/01/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hypoxia inducible factor-1 alpha (HIF-1α) plays a critical role in tumoral angiogenesis and HIF-1α overexpression is associated with an increased risk of patient mortality in many cancers. A number of studies have introduced perfusion computed tomography (CT) as a monitoring modality for antiangiogenic therapy. PURPOSE To investigate significance of volumetric perfusion CT parameters in relationship to HIF-1α expression in VX2 tumor rabbit models. MATERIAL AND METHODS Twenty VX2 carcinoma tumors of bilateral back muscles of 10 rabbits were evaluated with serial volumetric perfusion CT in 7, 10, and 14 days after tumor implantation. CT perfusion data were analyzed to calculate blood flow (BF), blood volume (BV), and permeability surface area product (PS) of whole tumor and non-necrotic peripheral area (periphery). Immunohistochemical analysis of HIF-1α expression and microvessel density (MVD) was performed. RESULTS HIF-1α was expressed in 12 tumors; two, three, and seven tumors classified as scores 1, 2 and 3, respectively. Mean MVD was 24.85 ± 13.7. PS of both the whole tumor and periphery showed positive correlations with HIF-1α score (r = 0.41, P = 0.046; r = 0.43, P = 0.002, respectively). BV of periphery showed a negative correlation with HIF-1α (r = -0.48, P = 0.040). There was strong positive correlation between HIF-1α expression and MVD (r = 0.82, P < 0.001). CONCLUSION In VX2 tumors, volumetric perfusion CT parameters were of limited value for the prediction of HIF-1α activity although HIF-1α expression was found to be weakly positively correlated with PS and negatively correlated with BV.
Collapse
Affiliation(s)
- Jung Im Kim
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ju Lee
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Min A Kim
- Department of Pathology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
18
|
Real-time Tumor Oxygenation Changes After Single High-dose Radiation Therapy in Orthotopic and Subcutaneous Lung Cancer in Mice: Clinical Implication for Stereotactic Ablative Radiation Therapy Schedule Optimization. Int J Radiat Oncol Biol Phys 2016; 95:1022-1031. [PMID: 27130790 DOI: 10.1016/j.ijrobp.2016.01.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022]
Abstract
PURPOSE To investigate the serial changes of tumor hypoxia in response to single high-dose irradiation by various clinical and preclinical methods to propose an optimal fractionation schedule for stereotactic ablative radiation therapy. METHODS AND MATERIALS Syngeneic Lewis lung carcinomas were grown either orthotopically or subcutaneously in C57BL/6 mice and irradiated with a single dose of 15 Gy to mimic stereotactic ablative radiation therapy used in the clinic. Serial [(18)F]-misonidazole (F-MISO) positron emission tomography (PET) imaging, pimonidazole fluorescence-activated cell sorting analyses, hypoxia-responsive element-driven bioluminescence, and Hoechst 33342 perfusion were performed before irradiation (day -1), at 6 hours (day 0), and 2 (day 2) and 6 (day 6) days after irradiation for both subcutaneous and orthotopic lung tumors. For F-MISO, the tumor/brain ratio was analyzed. RESULTS Hypoxic signals were too low to quantitate for orthotopic tumors using F-MISO PET or hypoxia-responsive element-driven bioluminescence imaging. In subcutaneous tumors, the maximum tumor/brain ratio was 2.87 ± 0.483 at day -1, 1.67 ± 0.116 at day 0, 2.92 ± 0.334 at day 2, and 2.13 ± 0.385 at day 6, indicating that tumor hypoxia was decreased immediately after irradiation and had returned to the pretreatment levels at day 2, followed by a slight decrease by day 6 after radiation. Pimonidazole analysis also revealed similar patterns. Using Hoechst 33342 vascular perfusion dye, CD31, and cleaved caspase 3 co-immunostaining, we found a rapid and transient vascular collapse, which might have resulted in poor intratumor perfusion of F-MISO PET tracer or pimonidazole delivered at day 0, leading to decreased hypoxic signals at day 0 by PET or pimonidazole analyses. CONCLUSIONS We found tumor hypoxia levels decreased immediately after delivery of a single dose of 15 Gy and had returned to the pretreatment levels 2 days after irradiation and had decreased slightly by day 6. Our results indicate that single high-dose irradiation can produce a rapid, but reversible, vascular collapse in tumors.
Collapse
|
19
|
Thaiss WM, Sauter AW, Bongers M, Horger M, Nikolaou K. Clinical applications for dual energy CT versus dynamic contrast enhanced CT in oncology. Eur J Radiol 2015; 84:2368-79. [DOI: 10.1016/j.ejrad.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
|
20
|
Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol 2015; 9:1485-93. [PMID: 25170642 DOI: 10.1097/jto.0000000000000286] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Biological features of non-small-cell lung carcinomas (NSCLCs) are important determinants for prognosis. In this study, differences in glucose metabolism between adeno- and squamous cell NSCLCs were quantified using the hypoxia and glycolysis-related markers glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), monocarboxylate transporter 1 (MCT1) and 4 (MCT4) vasculature, and 18-fluoro-2-deoxyglucose (FDG)-uptake. Relevance of these markers for disease-free survival (DFS) was analyzed. METHODS Patients with curatively resected stage I to II and resectable stage IIIA, cN0-1 adeno- or squamous cell NSCLC, of whom fresh-frozen lung resection biopsies and pretreatment FDG-positron emission tomography (PET) scans were available, were included in this study (n = 108). FDG-uptake was quantified by calculating total lesion glycolysis (TLG). Metabolic marker expression was measured by immunofluorescent staining (protein) and quantitative polymerase chain reaction (messenger ribonucleic acid [mRNA]). Patients were retrospectively evaluated for DFS. RESULTS mRNA and protein expression of metabolic markers, with the exception of MCT4, and TLG were higher in squamous cell carcinomas than in adenocarcinomas, whereas adenocarcinomas were better vascularized. Adenocarcinomas had a worse DFS compared with squamous cell carcinomas (p = 0.016) based on the potential to metastasize. High TLG was associated with a worse DFS only in adenocarcinomas. CONCLUSION Our findings suggest that the adenocarcinomas exhibit glycolysis under normoxic conditions, whereas squamous cell carcinomas are exposed to diffusion-limited hypoxia resulting in a very high anaerobic glycolytic rate. Although squamous cell carcinomas have a higher FDG-uptake, in general regarded as a poor prognostic factor, adenocarcinomas have a higher metastatic potential and a worse DFS. These findings show that FDG-PET should be interpreted in relation to histology. This may improve the prognostic potential of FDG-PET and may aid in exploiting FDG-PET in treatment strategies allied to histology.
Collapse
|
21
|
García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A, Oleaga L, Gómez-Caamaño A, Koh DM. Imaging of Tumor Angiogenesis for Radiologists—Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 2015; 44:407-24. [DOI: 10.1067/j.cpradiol.2015.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/09/2023]
|
22
|
Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:269641. [PMID: 26146615 PMCID: PMC4471256 DOI: 10.1155/2015/269641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Pancreatic adenocarcinoma is one of the deadliest human malignancies. Early detection is difficult and effective treatment is limited. Verifying the presence of micrometastatic dissemination and vessel invasion remains elusive, limiting radiological staging once this diagnosis is made. Diagnostic imaging provides independent tools to evaluate and characterize the biologic behavior of pancreatic cancer. Conventional anatomic imaging alone with either CT or MRI yields useful information on organ involvement but is limited in providing molecular and physiological information. Molecular imaging techniques such as PET or MRS provide information on metabolic and signaling pathways. Advanced MR sequences that target physiological parameters expand imaging options to characterize these tumors. By considering the parametric data from these three imaging approaches (anatomic, molecular, and physiological) we can better define specific tumor signatures. Such parametric characterization can provide insight into tumor metabolism, cellular density, protein expression, focal perfusion, and vascular permeability of these tumors. Radiogenomics research has already demonstrated ability to obtain information about cancer's genotype and phenotype; this is without invasive procedures or surgery. Further advances in these areas of experimental imaging hold promise to enable future clinical advances in detection and therapy of pancreatic cancer.
Collapse
|
23
|
Winfield JM, Payne GS, deSouza NM. Functional MRI and CT biomarkers in oncology. Eur J Nucl Med Mol Imaging 2015; 42:562-78. [PMID: 25578953 DOI: 10.1007/s00259-014-2979-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T1 relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R2*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives.
Collapse
Affiliation(s)
- J M Winfield
- CRUK Imaging Centre at the Institute of Cancer Research, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK,
| | | | | |
Collapse
|
24
|
Brustugun OT. Hypoxia as a cause of treatment failure in non-small cell carcinoma of the lung. Semin Radiat Oncol 2014; 25:87-92. [PMID: 25771412 DOI: 10.1016/j.semradonc.2014.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is an important factor in tumor biology and is both a predictive and a prognostic factor in non-small cell lung cancer. The negative effect of low oxygenation on radiation therapy effect has been known for decades, but more recent research has emphasized that hypoxia also has a profound effect on a tumor's aggression and metastatic propensity. In this review, current knowledge on both these aspects of treatment failure in NSCLC due to hypoxia has been discussed, along with a presentation of modern methods for hypoxia measurement and current therapeutical interventions to circumvent the negative effect of hypoxia on treatment results.
Collapse
Affiliation(s)
- Odd Terje Brustugun
- Department of Oncology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
van Elmpt W, Zegers CML, Das M, De Ruysscher D. Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 2014; 6:319-27. [PMID: 24688776 DOI: 10.3978/j.issn.2072-1439.2013.08.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Abstract
Imaging techniques for the characterization and delineation of primary lung tumours and lymph nodes are a prerequisite for adequate radiotherapy. Numerous imaging modalities have been proposed for this purpose, but only computed tomography (CT) and FDG-PET have been implemented in clinical routine. Hypoxia PET, dynamic contrast-enhanced CT (DCE-CT), dual energy CT (DECT) and (functional) magnetic resonance imaging (MRI) hold promise for the future. Besides information on the primary tumour, these techniques can be used for quantification of tissue heterogeneity and response. In the future, treatment strategies may be designed which are based on imaging techniques to optimize individual treatment.
Collapse
Affiliation(s)
- Wouter van Elmpt
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Catharina M L Zegers
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Marco Das
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Abstract
OBJECTIVE The purpose of this article is to review the most common data analysis methods encountered in radiology-based studies. Initially, description of variable types and their corresponding summary measures are provided; subsequent discussion focuses on comparison of these summary measures between groups, with a particular emphasis on regression analysis. CONCLUSION Knowledge of statistical applications is critical for radiologists to accurately evaluate the current literature and to conduct scientifically rigorous studies. Misapplication of statistical methods can lead to inappropriate conclusions and clinical recommendations.
Collapse
|
27
|
Goh V, Glynne-Jones R. Perfusion CT imaging of colorectal cancer. Br J Radiol 2014; 87:20130811. [PMID: 24434157 PMCID: PMC4064549 DOI: 10.1259/bjr.20130811] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Imaging plays an important role in the assessment of colorectal cancer, including diagnosis, staging, selection of treatment, assessment of treatment response, surveillance and investigation of suspected disease relapse. Anatomical imaging remains the mainstay for size measurement and structural evaluation; however, functional imaging techniques may provide additional insights into the tumour microenvironment. With dynamic contrast-enhanced CT techniques, iodinated contrast agent kinetics may inform on regional tumour perfusion, shunting and microvascular function and provide a surrogate measure of tumour hypoxia and angiogenesis. In colorectal cancer, this may be relevant for clinical practice in terms of tumour phenotyping, prognostication, selection of individualized treatment and therapy response assessment.
Collapse
Affiliation(s)
- V Goh
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | | |
Collapse
|
28
|
Cuenod C, Balvay D. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 2013; 94:1187-204. [DOI: 10.1016/j.diii.2013.10.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
van Elmpt W, Das M, Hüllner M, Sharifi H, Zegers K, Reymen B, Lambin P, Wildberger JE, Troost EGC, Veit-Haibach P, De Ruysscher D. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer. Radiother Oncol 2013; 109:65-70. [PMID: 24044795 DOI: 10.1016/j.radonc.2013.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. METHODS Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (≥50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. RESULTS DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. CONCLUSIONS No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging.
Collapse
Affiliation(s)
- W van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M Das
- Department of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martin Hüllner
- Department of Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - H Sharifi
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - K Zegers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - B Reymen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P Lambin
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J E Wildberger
- Department of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E G C Troost
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P Veit-Haibach
- Department of Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - D De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Radiation Oncology, University Hospitals Leuven/ KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Ravanelli M, Farina D, Morassi M, Roca E, Cavalleri G, Tassi G, Maroldi R. Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol 2013; 23:3450-5. [PMID: 23835926 DOI: 10.1007/s00330-013-2965-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To assess whether tumour heterogeneity, quantified by texture analysis (TA) on contrast-enhanced computed tomography (CECT), can predict response to chemotherapy in advanced non-small cell lung cancer (NSCLC). METHODS Fifty-three CECT studies of patients with advanced NSCLC who had undergone first-line chemotherapy were retrospectively reviewed. Response to chemotherapy was evaluated according to RECIST1.1. Tumour uniformity was assessed by a TA method based on Laplacian of Gaussian filtering. The resulting parameters were correlated with treatment response and overall survival by multivariate analysis. RESULTS Thirty-one out of 53 patients were non-responders and 22 were responders. Average overall survival was 13 months (4-35), minimum follow-up was 12 months. In the adenocarcinoma group (n = 31), the product of tumour uniformity and grey level (GL*U) was the unique independent variable correlating with treatment response. Dividing the GL*U (range 8.5-46.6) into tertiles, lesions belonging to the second and the third tertiles had an 8.3-fold higher probability of treatment response compared with those in the first tertile. No association between texture features and response to treatment was observed in the non-adenocarcinoma group (n = 22). GL*U did not correlate with overall survival. CONCLUSIONS TA on CECT images in advanced lung adenocarcinoma provides an independent predictive indicator of response to first-line chemotherapy.
Collapse
Affiliation(s)
- Marco Ravanelli
- Department of Radiology, University of Brescia, Brescia, Italy,
| | | | | | | | | | | | | |
Collapse
|
31
|
Assessment of tumor vascularity in lung cancer using volume perfusion CT (VPCT) with histopathologic comparison: a further step toward an individualized tumor characterization. J Comput Assist Tomogr 2013; 37:15-21. [PMID: 23321828 DOI: 10.1097/rct.0b013e318277c84f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To measure perfusion in different lung cancer subtypes and compare results with histopathological/immunohistochemical results. METHODS Seventy-two consecutive untreated patients with lung cancer (40 adenocarcinomas, 20 squamous cell, and 12 small cell lung cancers) were enrolled. A 40-second volume perfusion computed tomography of the tumor bulk was obtained. Blood flow (BF), blood volume (BV), and transit constant were determined. Tumor volume and tumor necrosis were determined on contrast-enhanced computed tomography. Pathologic specimens were assessed for microvessel density (MVD), hypoxia-induced transcription (hif-1/-2), and proliferation (Ki-67). RESULTS Higher MVD is associated with higher BF and BV. Higher tumor grade leads to lower BF but increased necrosis and tumor volume. Markers of hypoxia were independent from perfusion parameters, extent of necrosis or MVD. Blood flow, BV, and MVD were not significantly different among lung cancer subtypes. Transit constant was significantly reduced in small cell lung cancer versus adenocarcinoma. CONCLUSIONS Perfusion values are related to MVD and tumor grade but vary considerably among lung cancer subtypes.
Collapse
|
32
|
Correlation between [18F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2013; 40:677-84. [DOI: 10.1007/s00259-012-2318-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
33
|
Lin BQ, Zeng ZY, Yang SS, Zhuang CW. Dietary restriction suppresses tumor growth, reduces angiogenesis, and improves tumor microenvironment in human non-small-cell lung cancer xenografts. Lung Cancer 2012. [PMID: 23199512 DOI: 10.1016/j.lungcan.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. The aim of present study was to elucidate the therapeutic effect of dietary restriction in human NSCLC xenografts. Adult female nude mice were injected subcutaneously in the right dorsal flank with NSCLC cell line A549 cells. 5 days after tumor implantation, animals were randomly divided into ad libitum-fed group (AL, 95% of average diary intake) or dietary-restriction-fed group (DR, 70% average diary intake). 24 days after implantation, it was found that DR inhibited tumor growth marked by lower tumor volume and weight. DR suppressed tumor proliferation marked by reduced proliferating cell nuclear antigen (PCNA) expression and activated mitochondria-mediated apoptosis. DR decreased microvessel density marked by decreased CD31 immunostaining and promoted vessel maturation marked by increased alpha-smooth muscle actin (α-SMA) and reduced Factor VIII expression. DR reduced intratumoral interstitial fluid pressure and attenuated tumor hypoxia detected by EF5 immunostaining. In addition, DR suppressed NFκB signaling pathway and downregulated its downstream proteins expression including cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). DR suppressed phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In conclusion, dietary restriction suppresses tumor growth, reduces angiogenesis, and improves tumor microenvironment in human non-small-cell lung cancer xenografts. Dietary restriction could thus be envisaged as a nutritional countermeasure against non-small-cell lung cancer.
Collapse
Affiliation(s)
- Bao-Quan Lin
- Department of Cardiothoracic Surgery, Fuzhou General Hospital of Nanjing Command, Fuzhou 350025, China
| | | | | | | |
Collapse
|
34
|
Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 2012; 266:326-36. [PMID: 23169792 DOI: 10.1148/radiol.12112428] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To correlate computed tomographic (CT) texture in non-small cell lung cancer (NSCLC) with histopathologic markers for angiogenesis and hypoxia. MATERIALS AND METHODS The study was institutional review board approved, and informed consent was obtained. Fourteen patients with NSCLC underwent CT prior to intravenous administration of pimonidazole (0.5 g/m(2)), a marker of hypoxia, 24 hours before surgery. Texture was assessed for unenhanced and contrast material-enhanced CT images by using a software algorithm that selectively filters and extracts texture at different anatomic scales (1.0 [fine detail] to 2.5 [coarse features]), with quantification of the standard deviation (SD) of all pixel values and the mean value of positive pixels (MPP) and uniformity of distribution of positive gray-level pixel values (UPP). After surgery, matched tumor sections were stained for angiogenesis (CD34 expression) and for markers of hypoxia (glucose transporter protein 1 [Glut-1] and pimonidazole). The percentage and average intensity of the tumor stained were assessed. A linear mixed-effects model was used to assess the correlations between CT texture and staining intensity. RESULTS SD and MPP quantified from medium to coarse texture on contrast-enhanced CT images showed significant associations with the average intensity of tumor staining with pimonidazole (for SD: filter value, 2.5; slope = 0.003; P = .0003). UPP (medium to coarse texture) on unenhanced CT images showed a significant inverse association with tumor Glut-1 expression (filter value, 2.5; slope = -115.13; P = .0008). MPP quantified from medium to coarse texture on both unenhanced and contrast-enhanced CT images showed significant inverse associations with tumor CD34 expression (unenhanced CT: filter value, 1.8; slope = -0.0008; P = .003; contrast-enhanced CT: filter value, 1.8; slope = -0.0006; P = .004). CONCLUSION Texture parameters derived from CT images of NSCLC have the potential to act as imaging correlates for tumor hypoxia and angiogenesis. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112428/-/DC1.
Collapse
Affiliation(s)
- Balaji Ganeshan
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, England
| | | | | | | | | | | |
Collapse
|