1
|
Robbins CM, Qian K, Zhang YJ, Kainerstorfer JM. Monte Carlo simulation of spatial frequency domain imaging for breast tumors during compression. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:096001. [PMID: 39282216 PMCID: PMC11399730 DOI: 10.1117/1.jbo.29.9.096001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
Significance Near-infrared optical imaging methods have shown promise for monitoring response to neoadjuvant chemotherapy (NAC) for breast cancer, with endogenous contrast coming from oxy- and deoxyhemoglobin. Spatial frequency domain imaging (SFDI) could be used to detect this contrast in a low-cost and portable format, but it has limited imaging depth. It is possible that local tissue compression could be used to reduce the effective tumor depth. Aim To evaluate the potential of SFDI for therapy response prediction, we aim to predict how changes to tumor size, stiffness, and hemoglobin concentration would be reflected in contrast measured by SFDI under tissue compression. Approach Finite element analysis of compression on an inclusion-containing soft material is combined with Monte Carlo simulation to predict the measured optical contrast. Results When the effect of compression on blood volume is not considered, contrast gain from compression increases with the size and stiffness of the inclusion and decreases with the inclusion depth. With a model of reduction of blood volume from compression, compression reduces imaging contrast, an effect that is greater for larger inclusions and stiffer inclusions at shallower depths. Conclusions This computational modeling study represents a first step toward tracking tumor changes induced by NAC using SFDI and local compression.
Collapse
Affiliation(s)
- Constance M Robbins
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States
| | - Kuanren Qian
- Carnegie Mellon University, Department of Mechanical Engineering, Pittsburgh, Pennsylvania, United States
| | - Yongjie Jessica Zhang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Mechanical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jana M Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Xue M, Li S, Zhu Q. Improving diffuse optical tomography imaging quality using APU-Net: an attention-based physical U-Net model. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:086001. [PMID: 39070721 PMCID: PMC11272096 DOI: 10.1117/1.jbo.29.8.086001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Significance Traditional diffuse optical tomography (DOT) reconstructions are hampered by image artifacts arising from factors such as DOT sources being closer to shallow lesions, poor optode-tissue coupling, tissue heterogeneity, and large high-contrast lesions lacking information in deeper regions (known as shadowing effect). Addressing these challenges is crucial for improving the quality of DOT images and obtaining robust lesion diagnosis. Aim We address the limitations of current DOT imaging reconstruction by introducing an attention-based U-Net (APU-Net) model to enhance the image quality of DOT reconstruction, ultimately improving lesion diagnostic accuracy. Approach We designed an APU-Net model incorporating a contextual transformer attention module to enhance DOT reconstruction. The model was trained on simulation and phantom data, focusing on challenges such as artifact-induced distortions and lesion-shadowing effects. The model was then evaluated by the clinical data. Results Transitioning from simulation and phantom data to clinical patients' data, our APU-Net model effectively reduced artifacts with an average artifact contrast decrease of 26.83% and improved image quality. In addition, statistical analyses revealed significant contrast improvements in depth profile with an average contrast increase of 20.28% and 45.31% for the second and third target layers, respectively. These results highlighted the efficacy of our approach in breast cancer diagnosis. Conclusions The APU-Net model improves the image quality of DOT reconstruction by reducing DOT image artifacts and improving the target depth profile.
Collapse
Affiliation(s)
- Minghao Xue
- Washington University in St. Louis, Biomedical Engineering Department, St. Louis, Missouri, United States
| | - Shuying Li
- Boston University, Electrical and Computer Engineering Department, Boston, Massachusetts, United States
| | - Quing Zhu
- Washington University in St. Louis, Biomedical Engineering Department, St. Louis, Missouri, United States
- Washington University in St. Louis, Radiology Department, St. Louis, Missouri, United States
| |
Collapse
|
3
|
Zou Y, Xue M, Hossain MI, Zhu Q. Ultrasound and diffuse optical tomography-transformer model for assessing pathological complete response to neoadjuvant chemotherapy in breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076007. [PMID: 39050779 PMCID: PMC11268382 DOI: 10.1117/1.jbo.29.7.076007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Significance We evaluate the efficiency of integrating ultrasound (US) and diffuse optical tomography (DOT) images for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients. The ultrasound-diffuse optical tomography (USDOT)-Transformer model represents a significant step toward accurate prediction of pCR, which is critical for personalized treatment planning. Aim We aim to develop and assess the performance of the USDOT-Transformer model, which combines US and DOT images with tumor receptor biomarkers to predict the pCR of breast cancer patients under NAC. Approach We developed the USDOT-Transformer model using a dual-input transformer to process co-registered US and DOT images along with tumor receptor biomarkers. Our dataset comprised imaging data from 60 patients at multiple time points during their chemotherapy treatment. We used fivefold cross-validation to assess the model's performance, comparing its results against a single modality of US or DOT. Results The USDOT-Transformer model demonstrated excellent predictive performance, with a mean area under the receiving characteristic curve of 0.96 (95%CI: 0.93 to 0.99) across the fivefold cross-validation. The integration of US and DOT images significantly enhanced the model's ability to predict pCR, outperforming models that relied on a single imaging modality (0.87 for US and 0.82 for DOT). This performance indicates the potential of advanced deep learning techniques and multimodal imaging data for improving the accuracy (ACC) of pCR prediction. Conclusion The USDOT-Transformer model offers a promising non-invasive approach for predicting pCR to NAC in breast cancer patients. By leveraging the structural and functional information from US and DOT images, the model offers a faster and more reliable tool for personalized treatment planning. Future work will focus on expanding the dataset and refining the model to further improve its accuracy and generalizability.
Collapse
Affiliation(s)
- Yun Zou
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Minghao Xue
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Md Iqbal Hossain
- Washington University in St. Louis, Imaging Science, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Deng B, Muldoon A, Cormier J, Mercaldo ND, Niehoff E, Moffett N, Saksena MA, Isakoff SJ, Carp SA. Functional hemodynamic imaging markers for the prediction of pathological outcomes in breast cancer patients treated with neoadjuvant chemotherapy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066001. [PMID: 38737790 PMCID: PMC11088438 DOI: 10.1117/1.jbo.29.6.066001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Significance Achieving pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) is a significant predictor of increased likelihood of survival in breast cancer patients. Early prediction of pCR is of high clinical value as it could allow personalized adjustment of treatment regimens in non-responding patients for improved outcomes. Aim We aim to assess the association between hemoglobin-based functional imaging biomarkers derived from diffuse optical tomography (DOT) and the pathological outcome represented by pCR at different timepoints along the course of NACT. Approach Twenty-two breast cancer patients undergoing NACT were enrolled in a multimodal DOT and X-ray digital breast tomosynthesis (DBT) imaging study in which their breasts were imaged at different compression levels. Logistic regressions were used to study the associations between DOT-derived imaging markers evaluated after the first and second cycles of chemotherapy, respectively, with pCR status determined after the conclusion of NACT at the time of surgery. Receiver operating characteristic curve analysis was also used to explore the predictive performance of selected DOT-derived markers. Results Normalized tumor HbT under half compression was significantly lower in the pCR group compared to the non-pCR group after two chemotherapy cycles (p = 0.042 ). In addition, the change in normalized tumor StO 2 upon reducing compression from full to half mammographic force was identified as another potential indicator of pCR at an earlier time point, i.e., after the first chemo cycle (p = 0.038 ). Exploratory predictive assessments showed that AUCs using DOT-derived functional imaging markers as predictors reach as high as 0.75 and 0.71, respectively, after the first and second chemo cycle, compared to AUCs of 0.50 and 0.53 using changes in tumor size measured on DBT and MRI. Conclusions These findings suggest that breast DOT could be used to assist response assessment in women undergoing NACT, a critical but unmet clinical need, and potentially enable personalized adjustments of treatment regimens.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Ailis Muldoon
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jayne Cormier
- Massachusetts General Hospital, Breast Imaging Division, Department of Radiology, Boston, Massachusetts, United States
| | - Nathaniel D. Mercaldo
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Institute for Technology Assessment, Boston, Massachusetts, United States
| | - Elizabeth Niehoff
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Natalie Moffett
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Mansi A. Saksena
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Breast Imaging Division, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Yang J, Cheng Y, Nie Y, Tian B, Huang J, Gong R, Li Z, Zhu J, Gong Y. TRPC5 expression promotes the proliferation and invasion of papillary thyroid carcinoma through the HIF-1α/Twist pathway. Transl Oncol 2024; 39:101809. [PMID: 37918167 PMCID: PMC10638037 DOI: 10.1016/j.tranon.2023.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of TRPC5 on PTC (papillary thyroid carcinoma) proliferation and invasion. METHODS Immunofluorescence and western blot were used to evaluate the expression of TRPC5 in paraffin sections and clinical tissues. Overexpression and silencing of TRPC5 to generate the cells for in vitro experiments. Wound-healing assay, transwell invasion assay, MTT assay, and in vivo tumorigenicity assay were used to determine cell proliferation and cell migration in vitro and in vivo. Real-time PCR was used to test the expression of TRPC5. Western blot was used to test the expression of downstream factors: E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, ZEB, Snail, and Twist. RESULTS The level of TRPC5 protein expression was higher in PTC than in adjacent normal thyroid tissue. TPC-1 cells overexpressing TRPC5 were more proliferative, had longer migration distances, and increased the number of invading cells. TPC-1 cells silenced with TRPC5 had a weaker proliferation capacity, shorter migration distances, and a reduced number of invading cells. Overexpression and silencing of TRPC5 modulated E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, and Twist, but did not affect ZEB and Snail. The results of tumor formation experiments in nude mice showed that inhibition of TRPC5 expression suppressed the volume and weight of transplanted tumors. CONCLUSION TRPC5 induced papillary thyroid cancer metastasis and progression via up-regulated HIF-1α signaling in vivo and in vitro. High TRPC5 expression is a biomarker for lymph node metastasis at its early stages.
Collapse
Affiliation(s)
- Jing Yang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Sichuan Electric Power Hospital, China
| | - Yan Nie
- West China School of Medicine, Sichuan University, China
| | - Bole Tian
- Department of pancreatic Surgery, West China Hospital, Sichuan University, China
| | - Jing Huang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rixiang Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Xue M, Zhang M, Li S, Zou Y, Zhu Q. Automated pipeline for breast cancer diagnosis using US assisted diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6072-6087. [PMID: 38021111 PMCID: PMC10659805 DOI: 10.1364/boe.502244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Ultrasound (US)-guided diffuse optical tomography (DOT) is a portable and non-invasive imaging modality for breast cancer diagnosis and treatment response monitoring. However, DOT data pre-processing and imaging reconstruction often require labor intensive manual processing which hampers real-time diagnosis. In this study, we aim at providing an automated US-assisted DOT pre-processing, imaging and diagnosis pipeline to achieve near real-time diagnosis. We have developed an automated DOT pre-processing method including motion detection, mismatch classification using deep-learning approach, and outlier removal. US-lesion information needed for DOT reconstruction was extracted by a semi-automated lesion segmentation approach combined with a US reading algorithm. A deep learning model was used to evaluate the quality of the reconstructed DOT images and a two-step deep-learning model developed earlier is implemented to provide final diagnosis based on US imaging features and DOT measurements and imaging results. The presented US-assisted DOT pipeline accurately processed the DOT measurements and reconstruction and reduced the procedure time to 2 to 3 minutes while maintained a comparable classification result with manually processed dataset.
Collapse
Affiliation(s)
- Minghao Xue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Menghao Zhang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shuying Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yun Zou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Zhang M, Li S, Xue M, Zhu Q. Two-stage classification strategy for breast cancer diagnosis using ultrasound-guided diffuse optical tomography and deep learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:086002. [PMID: 37638108 PMCID: PMC10457211 DOI: 10.1117/1.jbo.28.8.086002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Significance Ultrasound (US)-guided diffuse optical tomography (DOT) has demonstrated great potential for breast cancer diagnosis in which real-time or near real-time diagnosis with high accuracy is desired. Aim We aim to use US-guided DOT to achieve an automated, fast, and accurate classification of breast lesions. Approach We propose a two-stage classification strategy with deep learning. In the first stage, US images and histograms created from DOT perturbation measurements are combined to predict benign lesions. Then the non-benign suspicious lesions are passed through to the second stage, which combine US image features, DOT histogram features, and 3D DOT reconstructed images for final diagnosis. Results The first stage alone identified 73.0% of benign cases without image reconstruction. In distinguishing between benign and malignant breast lesions in patient data, the two-stage classification approach achieved an area under the receiver operating characteristic curve of 0.946, outperforming the diagnoses of all single-modality models and of a single-stage classification model that combines all US images, DOT histogram, and imaging features. Conclusions The proposed two-stage classification strategy achieves better classification accuracy than single-modality-only models and a single-stage classification model that combines all features. It can potentially distinguish breast cancers from benign lesions in near real-time.
Collapse
Affiliation(s)
- Menghao Zhang
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Shuying Li
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Minghao Xue
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
8
|
Pavlov MV, Bavrina AP, Plekhanov VI, Golubyatnikov GY, Orlova AG, Subochev PV, Davydova DA, Turchin IV, Maslennikova AV. Changes in the tumor oxygenation but not in the tumor volume and tumor vascularization reflect early response of breast cancer to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:12. [PMID: 36717842 PMCID: PMC9887770 DOI: 10.1186/s13058-023-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.
Collapse
Affiliation(s)
- Mikhail V. Pavlov
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Anna P. Bavrina
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950
| | - Vladimir I. Plekhanov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - German Yu. Golubyatnikov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna G. Orlova
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Pavel V. Subochev
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Diana A. Davydova
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Ilya V. Turchin
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna V. Maslennikova
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950 ,grid.28171.3d0000 0001 0344 908XNational Research Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., 23, Nizhny Novgorod, Russia 603022
| |
Collapse
|
9
|
Non-invasive monitoring of blood oxygenation in human placentas via concurrent diffuse optical spectroscopy and ultrasound imaging. Nat Biomed Eng 2022; 6:1017-1030. [PMID: 35970929 PMCID: PMC9944515 DOI: 10.1038/s41551-022-00913-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.
Collapse
|
10
|
Díaz C, González-Olmedo C, Díaz-Beltrán L, Camacho J, Mena García P, Martín-Blázquez A, Fernández-Navarro M, Ortega-Granados AL, Gálvez-Montosa F, Marchal JA, Vicente F, Pérez Del Palacio J, Sánchez-Rovira P. Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach. Mol Oncol 2022; 16:2658-2671. [PMID: 35338693 PMCID: PMC9297806 DOI: 10.1002/1878-0261.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) outcomes vary according to breast cancer (BC) subtype. Since pathologic complete response is one of the most important target endpoints of NACT, further investigation of NACT outcomes in BC is crucial. Thus, identifying sensitive and specific predictors of treatment response for each phenotype would enable early detection of chemoresistance and residual disease, decreasing exposures to ineffective therapies and enhancing overall survival rates. We used liquid chromatography−high‐resolution mass spectrometry (LC‐HRMS)‐based untargeted metabolomics to detect molecular changes in plasma of three different BC subtypes following the same NACT regimen, with the aim of searching for potential predictors of response. The metabolomics data set was analyzed by combining univariate and multivariate statistical strategies. By using ANOVA–simultaneous component analysis (ASCA), we were able to determine the prognostic value of potential biomarker candidates of response to NACT in the triple‐negative (TN) subtype. Higher concentrations of docosahexaenoic acid and secondary bile acids were found at basal and presurgery samples, respectively, in the responders group. In addition, the glycohyocholic and glycodeoxycholic acids were able to classify TN patients according to response to treatment and overall survival with an area under the curve model > 0.77. In relation to luminal B (LB) and HER2+ subjects, it should be noted that significant differences were related to time and individual factors. Specifically, tryptophan was identified to be decreased over time in HER2+ patients, whereas LysoPE (22:6) appeared to be increased, but could not be associated with response to NACT. Therefore, the combination of untargeted‐based metabolomics along with longitudinal statistical approaches may represent a very useful tool for the improvement of treatment and in administering a more personalized BC follow‐up in the clinical practice.
Collapse
Affiliation(s)
- Caridad Díaz
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | | | | | - José Camacho
- Department of Signal Theory, Networking and Communications, University of Granada, 18071, Granada, Spain
| | - Patricia Mena García
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | - Ariadna Martín-Blázquez
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | | | | | | | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18100, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18012, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | | |
Collapse
|
11
|
Mazza C, Gaydou V, Eymard JC, Birembaut P, Untereiner V, Côté JF, Brocheriou I, Coeffic D, Villena P, Larré S, Vuiblet V, Piot O. Identification of Neoadjuvant Chemotherapy Response in Muscle-Invasive Bladder Cancer by Fourier-Transform Infrared Micro-Imaging. Cancers (Basel) 2021; 14:cancers14010021. [PMID: 35008184 PMCID: PMC8750189 DOI: 10.3390/cancers14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Assessing the tumor response to chemotherapy is a paramount predictive step to improve patient care. Infrared spectroscopy probes the chemical composition of samples, and in combination with statistical multivariate processing, presents the capacity to highlight subtle molecular alterations associated with malignancy characteristics. Microscopic infrared imaging of tissue samples reveals spectral heterogeneity within histological structures, providing a new approach to characterize tumoral heterogeneity. We have taken advantage of the analytical capabilities of mid-infrared spectral imaging to implement a classification model to predict the response of a tumor to chemotherapy. Our development was demonstrated in muscle-invasive bladder cancer (MIBC) by comparing samples from responders and non-responders to neoadjuvant chemotherapy. Abstract Background: Neoadjuvant chemotherapy (NAC) improves survival in responder patients. However, for non-responders, the treatment represents an ineffective exposure to chemotherapy and its potential adverse events. Predicting the response to treatment is a major issue in the therapeutic management of patients, particularly for patients with muscle-invasive bladder cancer. Methods: Tissue samples of trans-urethral resection of bladder tumor collected at the diagnosis time, were analyzed by mid-infrared imaging. A sequence of spectral data processing was implemented for automatic recognition of informative pixels and scoring each pixel according to a continuous scale (from 0 to 10) associated with the response to NAC. The ground truth status of the responder or non-responder was based on histopathological examination of the samples. Results: Although the TMA spots of tumors appeared histologically homogeneous, the infrared approach highlighted spectral heterogeneity. Both the quantification of this heterogeneity and the scoring of the NAC response at the pixel level were used to construct sensitivity and specificity maps from which decision criteria can be extracted to classify cancerous samples. Conclusions: This proof-of-concept appears as the first to evaluate the potential of the mid-infrared approach for the prediction of response to neoadjuvant chemotherapy in MIBC tissues.
Collapse
Affiliation(s)
- Camille Mazza
- Jean Godinot Institute, 51100 Reims, France; (C.M.); (J.-C.E.)
| | - Vincent Gaydou
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
| | | | - Philippe Birembaut
- Department of Biopathology, University Hospital of Reims, 51100 Reims, France;
| | - Valérie Untereiner
- Cellular and Tissular Imaging Platform (PICT), Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Jean-François Côté
- Department of Biopathology, Hôpital de la Pitié-Salpêtrière, APHP, 51100 Paris, France; (J.-F.C.); (I.B.)
| | - Isabelle Brocheriou
- Department of Biopathology, Hôpital de la Pitié-Salpêtrière, APHP, 51100 Paris, France; (J.-F.C.); (I.B.)
| | - David Coeffic
- Polyclinique Courlancy, 51100 Reims, France; (D.C.); (P.V.)
| | | | - Stéphane Larré
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
- Department of Urology, University Hospital of Reims, 51100 Reims, France
| | - Vincent Vuiblet
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
- Department of Biopathology, University Hospital of Reims, 51100 Reims, France;
- Correspondence: (V.V.); (O.P.)
| | - Olivier Piot
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
- Cellular and Tissular Imaging Platform (PICT), Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Correspondence: (V.V.); (O.P.)
| |
Collapse
|
12
|
Cortese L, Lo Presti G, Zanoletti M, Aranda G, Buttafava M, Contini D, Dalla Mora A, Dehghani H, Di Sieno L, de Fraguier S, Hanzu FA, Mora Porta M, Nguyen-Dinh A, Renna M, Rosinski B, Squarcia M, Tosi A, Weigel UM, Wojtkiewicz S, Durduran T. The LUCA device: a multi-modal platform combining diffuse optics and ultrasound imaging for thyroid cancer screening. BIOMEDICAL OPTICS EXPRESS 2021; 12:3392-3409. [PMID: 34221667 PMCID: PMC8221941 DOI: 10.1364/boe.416561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 05/07/2023]
Abstract
We present the LUCA device, a multi-modal platform combining eight-wavelength near infrared time resolved spectroscopy, sixteen-channel diffuse correlation spectroscopy and a clinical ultrasound in a single device. By simultaneously measuring the tissue hemodynamics and performing ultrasound imaging, this platform aims to tackle the low specificity and sensitivity of the current thyroid cancer diagnosis techniques, improving the screening of thyroid nodules. Here, we show a detailed description of the device, components and modules. Furthermore, we show the device tests performed through well established protocols for phantom validation, and the performance assessment for in vivo. The characterization tests demonstrate that LUCA device is capable of performing high quality measurements, with a precision in determining in vivo tissue optical and dynamic properties of better than 3%, and a reproducibility of better than 10% after ultrasound-guided probe repositioning, even with low photon count-rates, making it suitable for a wide variety of clinical applications.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marta Zanoletti
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Gloria Aranda
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Mauro Buttafava
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Felicia A. Hanzu
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mireia Mora Porta
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | - Marco Renna
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Mattia Squarcia
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Neuroradiology Department, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
13
|
Zhu Q, Ademuyiwa FO, Young C, Appleton C, Covington MF, Ma C, Sanati S, Hagemann IS, Mostafa A, Uddin KMS, Grigsby I, Frith AE, Hernandez-Aya LF, Poplack SS. Early Assessment Window for Predicting Breast Cancer Neoadjuvant Therapy using Biomarkers, Ultrasound, and Diffuse Optical Tomography. Breast Cancer Res Treat 2021; 188:615-630. [PMID: 33970392 DOI: 10.1007/s10549-021-06239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The purpose of the study was to assess the utility of tumor biomarkers, ultrasound (US) and US-guided diffuse optical tomography (DOT) in early prediction of breast cancer response to neoadjuvant therapy (NAT). METHODS This prospective HIPAA compliant study was approved by the institutional review board. Forty one patients were imaged with US and US-guided DOT prior to NAT, at completion of the first three treatment cycles, and prior to definitive surgery from February 2017 to January 2020. Miller-Payne grading was used to assess pathologic response. Receiver operating characteristic curves (ROCs) were derived from logistic regression using independent variables, including: tumor biomarkers, US maximum diameter, percentage reduction of the diameter (%US), pretreatment maximum total hemoglobin concentration (HbT) and percentage reduction in HbT (%HbT) at different treatment time points. Resulting ROCs were compared using area under the curve (AUC). Statistical significance was tested using two-sided two-sample student t-test with P < 0.05 considered statistically significant. Logistic regression was used for ROC analysis. RESULTS Thirty-eight patients (mean age = 47, range 24-71 years) successfully completed the study, including 15 HER2 + of which 11 were ER + ; 12 ER + or PR + /HER2-, and 11 triple negative. The combination of HER2 and ER biomarkers, %HbT at the end of cycle 1 (EOC1) and %US (EOC1) provided the best early prediction, AUC = 0.941 (95% CI 0.869-1.0). Similarly an AUC of 0.910 (95% CI 0.810-1.0) with %US (EOC1) and %HbT (EOC1) can be achieved independent of HER2 and ER status. The most accurate prediction, AUC = 0.974 (95% CI 0.933-1.0), was achieved with %US at EOC1 and %HbT (EOC3) independent of biomarker status. CONCLUSION The combined use of tumor HER2 and ER status, US, and US-guided DOT may provide accurate prediction of NAT response as early as the completion of the first treatment cycle. CLINICAL TRIAL REGISTRATION NUMBER NCT02891681. https://clinicaltrials.gov/ct2/show/NCT02891681 , Registration time: September 7, 2016.
Collapse
Affiliation(s)
- Quing Zhu
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 200F, St. Louis, MO, 63130, USA. .,Washington University School of Medicine in St Louis, St. Louis, USA.
| | - Foluso O Ademuyiwa
- Medical Oncology, Washington University School of Medicine in St Louis, St. Louis, USA
| | - Catherine Young
- Washington Baylor Scott & White Health, Medical Center, Texas, Dallas, USA
| | - Catherine Appleton
- Diagnostic Imaging Associates, Ltd. St. Luke's Hospital, Chesterfield, USA
| | - Matthew F Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, USA
| | - Cynthia Ma
- Medical Oncology, Washington University School of Medicine in St Louis, St. Louis, USA
| | - Souzan Sanati
- Pathology, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ian S Hagemann
- Washington University School of Medicine in St Louis, St. Louis, USA
| | - Atahar Mostafa
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 200F, St. Louis, MO, 63130, USA
| | - K M Shihab Uddin
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 200F, St. Louis, MO, 63130, USA
| | - Isabella Grigsby
- Medical Oncology, Washington University School of Medicine in St Louis, St. Louis, USA
| | - Ashley E Frith
- Medical Oncology, Washington University School of Medicine in St Louis, St. Louis, USA
| | | | - Steven S Poplack
- Washington University School of Medicine in St Louis, St. Louis, USA.,Radiology, Stanford University, Stanford, USA
| |
Collapse
|
14
|
Robbins CM, Tabassum S, Baumhauer MF, Yang J, Antaki JF, Kainerstorfer JM. Two-layer spatial frequency domain imaging of compression-induced hemodynamic changes in breast tissue. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:056005. [PMCID: PMC8145994 DOI: 10.1117/1.jbo.26.5.056005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/04/2021] [Indexed: 06/15/2023]
Abstract
Significance: Longitudinal tracking of hemodynamic changes in the breast has shown potential for neoadjuvant chemotherapy (NAC) outcome prediction. Spatial frequency domain imaging (SFDI) could be suitable for frequent monitoring of shallow breast tumors, but strong sensitivity to superficial absorbers presents a challenge. Aim: We investigated the efficacy of a two-layer SFDI inverse model that accounts for varying melanin concentration in the skin to improve discrimination of optical properties of deep tissue of the breast. Approach: Hemodynamic changes in response to localized breast compression were measured in 13 healthy volunteers using a handheld SFDI device. Epidermis optical thickness was determined based on spectral fitting of the model output and used to calculate subcutaneous optical properties. Results: Optical properties from a homogeneous model yielded physiologically unreasonable absorption and scattering coefficients for highly pigmented volunteers. The two-layer model compensated for the effect of melanin and yielded properties in the expected range for healthy breast. Extracted epidermal optical thickness was higher for higher Fitzpatrick types. Compression induced a decrease in total hemoglobin consistent with tissue blanching. Conclusions: The handheld SFDI device and two-layer model show potential for imaging hemodynamic responses that potentially could help predict efficacy of NAC in patients of varying skin tones.
Collapse
Affiliation(s)
- Constance M. Robbins
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Syeda Tabassum
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Molly F. Baumhauer
- Carnegie Mellon University, Department of Physics, Pittsburgh, Pennsylvania, United States
| | - Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - James F. Antaki
- Cornell University, School of Biomedical Engineering, Ithaca, New York, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
15
|
Comparison of Pathologic Response Evaluation Systems After Neoadjuvant Chemotherapy in Breast Cancers: Correlation With Computer-Aided Diagnosis of MRI Features. AJR Am J Roentgenol 2019; 213:944-952. [PMID: 31237439 DOI: 10.2214/ajr.18.21016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE. The objective of our study was to compare pathologic response assessment systems with dynamic contrast-enhanced MRI (DCE-MRI) features and evaluate the predictive performance of DCE-MRI features relative to different pathologic response assessment systems after neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS. This retrospective study included 223 women (mean age, 47.2 years; age range, 31-71 years) who underwent DCE-MRI before and after completing NAC before definitive surgery between January and December 2015. Six MRI features (i.e., tumor size; angio volume; peak enhancement; and persistent, plateau, and washout enhancing components) were measured and correlated with the Miller-Payne grading system, residual cancer burden (RCB) class, and modified in-breast RCB index. Percentage changes in MRI features were correlated with pathologic assessment systems using the Spearman rank correlation test; ROC curves were analyzed to predict pathologic outcomes. RESULTS. All six MRI features correlated most strongly with the in-breast RCB index (r = -0.75 to -0.51, p < 0.001) followed by the Miller-Payne system (r = 0.47-0.72, p < 0.001) and RCB class (r = -0.58 to -0.41, p < 0.001). The in-breast RCB index correlated most strongly with the angio volume reduction rate (r = -0.75, p < 0.001) followed by maximum diameter (r = -0.69, p < 0.001), peak enhancement (r = -0.67, p < 0.001), washout component (r = -0.60, p < 0.001), plateau component (r = -0.59, p < 0.001), and persistent component (r = -0.51, p < 0.001). CONCLUSION. The in-breast RCB index correlated best with changes in DCE-MRI features, and the MRI-measured angio volume reduction rate correlated best with pathologic tumor responses.
Collapse
|
16
|
Liang X, Li H, Coussy F, Callens C, Lerebours F. An update on biomarkers of potential benefit with bevacizumab for breast cancer treatment: Do we make progress? Chin J Cancer Res 2019; 31:586-600. [PMID: 31564802 PMCID: PMC6736652 DOI: 10.21147/j.issn.1000-9604.2019.04.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the first monoclonal antibody against vascular endothelial growth factor (VEGF), bevacizumab (BEV) is a definitely controversial antiangiogenic therapy in breast cancer. The initial excitement over improvements in progression-free survival (PFS) with BEV was tempered by an absence of overall survival (OS) benefit and serious adverse effects. Missing targeted population urged us to identify the predictive biomarkers for BEV efficacy. In this review we focus on the research in breast cancer and provide recent investigations on clinical, radiological, molecular and gene profiling markers of BEV efficacy, including the new results from randomized phase III clinical trials evaluating the efficacy of BEV in combination with comprehensive biomarker analyses. Current evidences indicate some predictive values for genetic variants, molecular imaging, VEGF pathway factors or associated factors in peripheral blood and gene profiling. The current challenge is to validate those potential biomarkers and implement them into clinical practice.
Collapse
Affiliation(s)
- Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Florence Coussy
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris 75005, France
| | - Celine Callens
- Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie, René Huguenin Hospital, Saint-Cloud 92210, France
| |
Collapse
|
17
|
Camorani S, Hill BS, Collina F, Gargiulo S, Napolitano M, Cantile M, Di Bonito M, Botti G, Fedele M, Zannetti A, Cerchia L. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Am J Cancer Res 2018; 8:5178-5199. [PMID: 30429893 PMCID: PMC6217067 DOI: 10.7150/thno.27798] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
While the overall mortality for breast cancer has recently declined, management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and the lack of targeted therapies. Genomic profiling studies highlighted the high level of heterogeneity of this cancer, which comprises different subtypes with unique phenotypes and response to treatment. Platelet-derived growth factor receptor β (PDGFRβ) is an established mesenchymal/stem cell-specific marker in human glioblastoma and, as recently suggested, it may uniquely mark breast cancer cells with stem-like characteristics and/or that have undergone epithelial-mesenchymal transition. Methods: Immunohistochemical analysis for PDGFRβ expression was performed on a human TNBC tissue microarray. Functional assays were conducted on mesenchymal-like TNBC cells to investigate the effect of a previously validated PDGFRβ aptamer on invasive cell growth in three-dimensional culture conditions, migration, invasion and tube formation. The aptamer was labeled with a near-infrared (NIR) dye and its binding specificity to PDGFRβ was assessed both in vitro (confocal microscopy and flow cytometry analyses) and in vivo (fluorescence molecular tomography in mice bearing TNBC xenografts). A mouse model of TNBC lung metastases formation was established and NIR-labeled PDGFRβ aptamer was used to detect lung metastases in mice untreated or intravenously injected with unlabeled aptamer. Results: Here, we present novel data showing that tumor cell expression of PDGFRβ identifies a subgroup of mesenchymal tumors with invasive and stem-like phenotype, and propose a previously unappreciated role for PDGFRβ in driving TNBC cell invasiveness and metastases formation. We show that the PDGFRβ aptamer blocked invasive growth and migration/invasion of mesenchymal TNBC cell lines and prevented TNBC lung metastases formation. Further, upon NIR-labeling, the aptamer specifically bound to TNBC xenografts and detected lung metastases. Conclusions: We propose PDGFRβ as a reliable biomarker of a subgroup of mesenchymal TNBCs with invasive and stem-like phenotype as well as the use of the PDGFRβ aptamer as a high efficacious tool for imaging and suppression of TNBC lung metastases. This study will allow for the significant expansion of the current repertoire of strategies for managing patients with more aggressive TNBC.
Collapse
|
18
|
Vavadi H, Mostafa A, Zhou F, Uddin KMS, Althobaiti M, Xu C, Bansal R, Ademuyiwa F, Poplack S, Zhu Q. Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-9. [PMID: 30350491 PMCID: PMC6197842 DOI: 10.1117/1.jbo.24.2.021203] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/19/2018] [Indexed: 05/02/2023]
Abstract
Near-infrared diffuse optical tomography (DOT) has demonstrated a great potential as an adjunct modality for differentiation of malignant and benign breast lesions and for monitoring treatment response in patients with locally advanced breast cancers. The path toward commercialization of DOT techniques depends upon the improvement of robustness and user-friendliness of this technique in hardware and software. In this study, we introduce our recently developed ultrasound-guided DOT system, which has been improved in system compactness, robustness, and user-friendliness by custom-designed electronics, automated data preprocessing, and implementation of a new two-step reconstruction algorithm. The system performance has been tested with several sets of solid and blood phantoms and the results show accuracy in reconstructed absorption coefficients as well as blood oxygen saturation. A clinical example of a breast cancer patient, who was undergoing neoadjuvant chemotherapy, is given to demonstrate the system performance.
Collapse
Affiliation(s)
- Hamed Vavadi
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - Atahar Mostafa
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Feifei Zhou
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - K. M. Shihab Uddin
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Murad Althobaiti
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - Chen Xu
- New York City College of Technology, Brooklyn, New York, United States
| | - Rajeev Bansal
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - Foluso Ademuyiwa
- Washington University School of Medicine, Department of Medical Oncology, St. Louis, Missouri, United States
| | - Steven Poplack
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Address all correspondence to: Quing Zhu, E-mail:
| |
Collapse
|
19
|
Zhu Q, Tannenbaum S, Kurtzman SH, DeFusco P, Ricci A, Vavadi H, Zhou F, Xu C, Merkulov A, Hegde P, Kane M, Wang L, Sabbath K. Identifying an early treatment window for predicting breast cancer response to neoadjuvant chemotherapy using immunohistopathology and hemoglobin parameters. Breast Cancer Res 2018; 20:56. [PMID: 29898762 PMCID: PMC6001175 DOI: 10.1186/s13058-018-0975-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) varies with tumor subtype. The purpose of this study was to identify an early treatment window for predicting pCR based on tumor subtype, pretreatment total hemoglobin (tHb) level, and early changes in tHb following NAC. METHODS Twenty-two patients (mean age 56 years, range 34-74 years) were assessed using a near-infrared imager coupled with an Ultrasound system prior to treatment, 7 days after the first treatment, at the end of each of the first three cycles, and before their definitive surgery. Pathologic responses were dichotomized by the Miller-Payne system. Tumor vascularity was assessed from tHb; vascularity changes during NAC were assessed from a percentage tHb normalized to the pretreatment level (%tHb). After training the logistic prediction models using the previous study data, we assessed the early treatment window for predicting pathological response according to their tumor subtype (human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), triple-negative (TN)) based on tHb, and %tHb measured at different cycles and evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS In the new study cohort, maximum pretreatment tHb and %tHb changes after cycles 1, 2, and 3 were significantly higher in responder Miller-Payne 4-5 tumors (n = 13) than non-or partial responder Miller-Payne 1-3 tumors (n = 9). However, no significance was found at day 7. The AUC of the predictive power of pretreatment tHb in the cohort was 0.75, which was similar to the performance of the HER2 subtype as a single predictor (AUC of 0.78). A greater predictive power of pretreatment tHb was found within each subtype, with AUCs of 0.88, 0.69, and 0.72, in the HER2, ER, and TN subtypes, respectively. Using pretreatment tHb and cycle 1 %tHb, AUC reached 0.96, 0.91, and 0.90 in HER2, ER, and TN subtypes, respectively, and 0.95 regardless of subtype. Additional cycle 2 %tHb measurements moderately improved prediction for the HER2 subtype but did not improve prediction for the ER and TN subtypes. CONCLUSIONS By combining tumor subtypes with tHb, we predicted the pCR of breast cancer to NAC before treatment. Prediction accuracy can be significantly improved by incorporating cycle 1 and 2 %tHb for the HER2 subtype and cycle 1 %tHb for the ER and TN subtypes. TRIAL REGISTRATION ClinicalTrials.gov, NCT02092636 . Registered in March 2014.
Collapse
Affiliation(s)
- Quing Zhu
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 300D, St. Louis, MO 63130 USA
| | - Susan Tannenbaum
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | | | | - Feifei Zhou
- University of Connecticut, Storrs, CT 06269 USA
| | - Chen Xu
- New York City College of Technology, City University of New York (CUNY), New York, USA
| | - Alex Merkulov
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Poornima Hegde
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Mark Kane
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Liqun Wang
- Department of Statistics, University of Manitoba, 186 Dysart Road, Winnipeg, Manitoba, R3T 2N2 Canada
| | | |
Collapse
|
20
|
Deng B, Lundqvist M, Fang Q, Carp SA. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2018; 9:1130-1150. [PMID: 29541508 PMCID: PMC5846518 DOI: 10.1364/boe.9.001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 05/18/2023]
Abstract
Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Mats Lundqvist
- Philips Healthcare, Torshamnsgatan 30A, 164 40 Kista, Sweden
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| |
Collapse
|
21
|
Gunther JE, Lim EA, Kim HK, Flexman M, Altoé M, Campbell JA, Hibshoosh H, Crew KD, Kalinsky K, Hershman DL, Hielscher AH. Dynamic Diffuse Optical Tomography for Monitoring Neoadjuvant Chemotherapy in Patients with Breast Cancer. Radiology 2018; 287:778-786. [PMID: 29431574 DOI: 10.1148/radiol.2018161041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose To identify dynamic optical imaging features that associate with the degree of pathologic response in patients with breast cancer during neoadjuvant chemotherapy (NAC). Materials and Methods Of 40 patients with breast cancer who participated in a longitudinal study between June 2011 and March 2016, 34 completed the study. There were 13 patients who obtained a pathologic complete response (pCR) and 21 patients who did not obtain a pCR. Imaging data from six subjects were excluded from the study because either the patients dropped out of the study before it was finished or there was an instrumentation malfunction. Two weeks into the treatment regimen, three-dimensional images of both breasts during a breath hold were acquired by using dynamic diffuse optical tomography. Features from the breath-hold traces were used to distinguish between response groups. Receiver operating characteristic (ROC) curves and sensitivity analysis were used to determine the degree of association with 5-month treatment outcome. Results An ROC curve analysis showed that this method could identify patients with a pCR with a positive predictive value of 70.6% (12 of 17), a negative predictive value of 94.1% (16 of 17), a sensitivity of 92.3% (12 of 13), a specificity of 76.2% (16 of 21), and an area under the ROC curve of 0.85. Conclusion Several dynamic optical imaging features obtained within 2 weeks of NAC initiation were identified that showed statistically significant differences between patients with pCR and patients without pCR as determined 5 months after treatment initiation. If confirmed in a larger cohort prospective study, these dynamic imaging features may be used to predict treatment outcome as early as 2 weeks after treatment initiation. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jacqueline E Gunther
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Emerson A Lim
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Hyun K Kim
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Molly Flexman
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Mirella Altoé
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Jessica A Campbell
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Hanina Hibshoosh
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Katherine D Crew
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Kevin Kalinsky
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Dawn L Hershman
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Andreas H Hielscher
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| |
Collapse
|
22
|
Zhi W, Liu G, Chang C, Miao A, Zhu X, Xie L, Zhou J. Predicting Treatment Response of Breast Cancer to Neoadjuvant Chemotherapy Using Ultrasound-Guided Diffuse Optical Tomography. Transl Oncol 2017; 11:56-64. [PMID: 29175630 PMCID: PMC5714257 DOI: 10.1016/j.tranon.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To prospectively investigate ultrasound-guided diffuse optical tomography (US-guided DOT) in predicting breast cancer response to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS Eighty-eight breast cancer patients, with a total of 93 lesions, were included in our study. Pre- and post-last chemotherapy, size and total hemoglobin concentration (THC) of each lesion were measured by conventional US and US-guided DOT 1 day before biopsy (time point t0, THC THC0, SIZE S0) and 1 to 2 days before surgery (time point tL, THCL, SL). The relative changes in THC and SIZE of lesions after the first and last NAC cycles were considered as the variables ΔTHC and ΔSIZE. Receiver operating characteristic curve was performed to calculate ΔTHC and ΔSIZE cutoff values to evaluate pathologic response of 93 breast cancers to NAC, which were then prospectively used to predicate response of 61 breast cancers to NAC. RESULTS The cutoff values of ΔTHC and ΔSIZE for evaluation of breast cancers NAC treatment response were 23.9% and 42.6%. At ΔTHC 23.9%, the predicted treatment response in 61 breast lesions for the time points t1 to t3 was calculated by area under the curve (AUC), which were AUC1 0.534 (P=.6668), AUC2 0.604 (P=.1893), and AUC3 0.674(P =. 0.027), respectively; for ΔSIZE 42.6%, at time points t1 to t3, AUC1 0.505 (P=.9121), AUC2 0.645 (P=.0115), and AUC3 0.719 (P=.0018). CONCLUSION US-guided DOT ΔTHC 23.9% and US ΔSIZE 42.6% can be used for the response evaluation and earlier prediction of the pathological response after three rounds of chemotherapy.
Collapse
Affiliation(s)
- Wenxiang Zhi
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Guangyu Liu
- Department of Breast Surgery, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Cai Chang
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
| | - Aiyu Miao
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Li Xie
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Jin Zhou
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
23
|
Anderson PG, Kalli S, Sassaroli A, Krishnamurthy N, Makim SS, Graham RA, Fantini S. Optical Mammography in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy: Individual Clinical Response Index. Acad Radiol 2017; 24:1240-1255. [PMID: 28532642 DOI: 10.1016/j.acra.2017.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES We present an optical mammography study that aims to develop quantitative measures of pathologic response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Such quantitative measures are based on the concentrations of oxyhemoglobin ([HbO2]), deoxyhemoglobin ([Hb]), total hemoglobin ([HbT]), and hemoglobin saturation (SO2) in breast tissue at the tumor location and at sequential time points during chemotherapy. MATERIALS AND METHODS Continuous-wave, spectrally resolved optical mammography was performed in transmission and parallel-plate geometry on 10 patients before treatment initiation and at each NAC administration (mean number of optical mammography sessions: 12, range: 7-18). Data on two patients were discarded for technical reasons. The patients were categorized as responders (R, >50% decrease in tumor size), or nonresponders (NR, <50% decrease in tumor size) based on imaging and histopathology results. RESULTS At 50% completion of the NAC regimen (therapy midpoint), R (6/8) demonstrated significant decreases in SO2 (-27% ± 4%) and [HbT] (-35 ± 4 µM) at the tumor location with respect to baseline values. By contrast, NR (2/8) showed nonsignificant changes in SO2 and [HbT] at therapy midpoint. We introduce a cumulative response index as a quantitative measure of the individual patient's response to therapy. At therapy midpoint, the SO2-based cumulative response index had a sensitivity of 100% and a specificity of 100% for the identification of R. CONCLUSIONS These results show that optical mammography is a promising tool to assess individual response to NAC at therapy midpoint to guide further decision making for neoadjuvant therapy.
Collapse
Affiliation(s)
- Pamela G Anderson
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Sirishma Kalli
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Nishanth Krishnamurthy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Shital S Makim
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Roger A Graham
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155.
| |
Collapse
|
24
|
Zhao Y, Burger WR, Zhou M, Bernhardt EB, Kaufman PA, Patel RR, Angeles CV, Pogue BW, Paulsen KD, Jiang S. Collagen quantification in breast tissue using a 12-wavelength near infrared spectral tomography (NIRST) system. BIOMEDICAL OPTICS EXPRESS 2017; 8:4217-4229. [PMID: 28966860 PMCID: PMC5611936 DOI: 10.1364/boe.8.004217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 05/20/2023]
Abstract
A portable near infrared spectral tomography (NIRST) system was adapted for breast cancer detection and treatment monitoring with improved speed of acquisition for parallel 12 wavelengths of parallel frequency-domain (FD) and continuous-wavelength (CW) measurement. Using a novel gain adjustment scheme in the Photomultiplier Tube detectors (PMTs), the data acquisition time for simultaneous acquisition involving three FD and three CW wavelengths, has been reduced from 90 to 55 seconds, while signal variation was also reduced from 2.1% to 1.1%. Tomographic images of breast collagen content have been recovered for the first time, and image reconstruction approaches with and without collagen content included have been validated in simulation studies and normal subject exams. Simulations indicate that including collagen content into the reconstruction procedure can significantly reduce the overestimation in total hemoglobin, water and lipid by 8.9μM, 1.8% and 15.8%, respectively, and underestimates in oxygen saturation by 9.5%, given an average 10% background collagen content. A breast cancer patient with invasive ductal carcinoma was imaged and the reconstructed images show that the recovered tumor/background contrast in total hemoglobin increased from 1.5 to 1.7 when collagen was included in reconstruction.
Collapse
Affiliation(s)
- Yan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - William R. Burger
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Mingwei Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Erica B. Bernhardt
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Peter A. Kaufman
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover NH 03755, USA
| | - Roshani R. Patel
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Christina V. Angeles
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| |
Collapse
|
25
|
Okamoto Y, Sugisaki S, Suga K, Umakoshi H. Development of Time-course Oxygen Binding Analysis for Hemoglobin-based Oxygen Carriers. ANAL SCI 2017; 33:953-956. [PMID: 28794333 DOI: 10.2116/analsci.33.953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developing blood substitutes is in urgent demand for chronic blood shortage all over the world. In this connection, the oxygen binding behavior of hemoglobin-based oxygen carriers (HBOCs) is one of the most important characteristics. However, present methods available for estimating oxygen binding behavior have need of expensive apparatus, and also are not suitable for high-throughput and the time-course analysis. To overcome these problems, we proposed a simple analysis method for the time-course oxygen binding behavior of HBOCs, which employs a general UV-Vis microplate reader and a common reagent, sodium dithionite, as a reductant for HBOCs and an oxygen scavenger. Our method enabled time-course oxygen binding behavior analysis of HBOCs in a simple manner, and obtained data corresponding with those by the conventional method. Thus, our developed method will accelerate the development of HBOCs due to easy oxygen binding analysis.
Collapse
Affiliation(s)
- Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Shigenori Sugisaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
26
|
Robbins CM, Raghavan G, Antaki JF, Kainerstorfer JM. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 28831792 PMCID: PMC5997013 DOI: 10.1117/1.jbo.22.12.121605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/27/2017] [Indexed: 05/04/2023]
Abstract
In breast cancer diagnosis and therapy monitoring, there is a need for frequent, noninvasive disease progression evaluation. Breast tumors differ from healthy tissue in mechanical stiffness as well as optical properties, which allows optical methods to detect and monitor breast lesions noninvasively. Spatial frequency-domain imaging (SFDI) is a reflectance-based diffuse optical method that can yield two-dimensional images of absolute optical properties of tissue with an inexpensive and portable system, although depth penetration is limited. Since the absorption coefficient of breast tissue is relatively low and the tissue is quite flexible, there is an opportunity for compression of tissue to bring stiff, palpable breast lesions within the detection range of SFDI. Sixteen breast tissue-mimicking phantoms were fabricated containing stiffer, more highly absorbing tumor-mimicking inclusions of varying absorption contrast and depth. These phantoms were imaged with an SFDI system at five levels of compression. An increase in absorption contrast was observed with compression, and reliable detection of each inclusion was achieved when compression was sufficient to bring the inclusion center within ∼12 mm of the phantom surface. At highest compression level, contrasts achieved with this system were comparable to those measured with single source-detector near-infrared spectroscopy.
Collapse
Affiliation(s)
- Constance M. Robbins
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Guruprasad Raghavan
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - James F. Antaki
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Address all correspondence to: Jana M. Kainerstorfer, E-mail:
| |
Collapse
|
27
|
Saha D, Tannenbaum S, Zhu Q. Treatment of Male Breast Cancer by Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade and Response Prediction Using Novel Optical Tomography Imaging: A Case Report. Cureus 2017; 9:e1481. [PMID: 28944120 PMCID: PMC5602378 DOI: 10.7759/cureus.1481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Male breast cancer, although rare, is on the rise. Prospective clinical trials are unlikely and current management mirrors that of post-menopausal women. Neoadjuvant chemotherapy is widely used and pathologic complete response (pCR) predicts long-term survival. The addition of dual HER2 (human epidermal growth factor receptor 2) blockade has shown the highest pCR rates; however, there is no published data of this approach in men. Also, newer monitoring tools are necessary during a neoadjuvant therapy to help personalize treatment. Here, we describe the case of a 64-year-old man with Stage IIB (tumor size 2 to 5 cm with involvement of axillary lymph nodes), high-grade estrogen receptor, progesterone receptor, and HER2-positive invasive ductal carcinoma with a germline breast cancer susceptibility gene 1 (BRCA1) mutation who was treated in a neoadjuvant fashion with dual HER2 blockade and platinum-based chemotherapy regimen. A novel predictive tool, ultrasound-localized diffuse optical tomography, was used to monitor his progress during treatment.
Collapse
Affiliation(s)
- Debasmita Saha
- Neag Comprehensive Cancer Center, University of Connecticut Health Center
| | - Susan Tannenbaum
- Neag Comprehensive Cancer Center, University of Connecticut Health Center
| | - Quing Zhu
- Biomedical Engineering and Radiology, Washington University, St Louis, Mo
| |
Collapse
|
28
|
Zhang Q, Yuan C, Dai W, Tang L, Shi J, Li Z, Chen M. Evaluating pathologic response of breast cancer to neoadjuvant chemotherapy with computer-extracted features from contrast-enhanced ultrasound videos. Phys Med 2017; 39:156-163. [PMID: 28690116 DOI: 10.1016/j.ejmp.2017.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/30/2023] Open
Abstract
PURPOSE To extract quantitative perfusion and texture features with computer assistance from contrast-enhanced ultrasound (CEUS) videos of breast cancer before and after neoadjuvant chemotherapy (NAC), and to evaluate pathologic response to NAC with these features. METHODS Forty-two CEUS videos with 140,484 images were acquired from 21 breast cancer patients pre- and post-NAC. Time-intensity curve (TIC) features were calculated including the difference between area under TIC within a tumor and that within a computer-detected reference region (AUT_T-R). Four texture features were extracted including Homogeneity and Contrast. All patients were identified as pathologic responders by Miller and Payne criteria. The features between pre- and post-treatment in these responders were statistically compared, and the discrimination between pre- and post-treatment cancers was assessed with a receiver operating characteristic (ROC) curve. RESULTS Compared with the pre-treatment cancers, the post-treatment cancers had significantly lower Homogeneity (p<0.001) and AUT_T-R (p=0.014), as well as higher Contrast (p<0.001), indicating the intratumoral contrast enhancement decreased and became more heterogeneous after NAC in responders. The combination of Homogeneity and AUT_T-R achieved an accuracy of 90.5% and area under ROC curve of 0.946 for discrimination between pre- and post-chemotherapy cancers without cross validation. The accuracy still reached as high as 85.7% under leave-one-out cross validation. CONCLUSIONS The computer-extracted CEUS features show reduced and more heterogeneous neovascularization of cancer after NAC. The features achieve high accuracy for discriminating between pre- and post-chemotherapy cancers in responders and thus are potentially valuable for tumor response evaluation in clinical practice.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Biomedical Engineering, Shanghai University, Shanghai, China; Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou, China.
| | - Congcong Yuan
- Department of Ultrasound, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Dai
- Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Lei Tang
- Department of Ultrasound, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Shi
- Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Zuoyong Li
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou, China
| | - Man Chen
- Department of Ultrasound, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
29
|
Shou K, Qu C, Sun Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1700995. [PMID: 29623009 PMCID: PMC5879786 DOI: 10.1002/adfm.201700995] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Compared with imaging in the visible (400 - 650 nm) and near-infrared window I (NIR-I, 650 - 900 nm) regions, imaging in near-infrared window II (NIR-II, 1,000-1,700 nm) is a highly promising in vivo imaging modality with improved resolution and deeper tissue penetration. In this work, a small molecule NIR-II dye,5,5'-(1H,5H-benzo[1,2-c:4,5-c'] bis[1,2,5]thiadiazole)-4,8-diyl)bis(N,N-bis(4-(3-((tert-butyldimethylsilyl)oxy)propyl)phenyl) thiophen-2-amine), has been successfully encapsulated into phospholipid vesicles to prepare a probe CQS1000. Then this novel NIR-II probe has been studied for in vivo multifunctional biological imaging. Our results indicate that the NIR-II vesicle CQS1000 can noninvasively and dynamically visualize and monitor many physiological and pathological conditions of circulatory systems, including lymphatic drainage and routing, angiogenesis of tumor and vascular deformity such as arterial thrombus formation and ischemia with high spatial and temporal resolution. More importantly, by virtue of the favorable half-life of blood circulation of CQS1000, NIR-II imaging is capable of aiding us to accomplish precise resection of tumor such as osteosarcoma, and to accelerate the process of lymph nodes dissection to complete sentinel lymph node biopsy for better decision-making during the tumor surgery. Overall, CQS1000 is a highly promising NIR-II probe for multifunctional biomedical imaging in physiological and pathological conditions, surpassing traditional NIR-I imaging modality and pathologic assessments for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Chunrong Qu
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yao Sun
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Si Chen
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Lei Zhang
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Eastlake Road, Wuhan 430071, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| |
Collapse
|
30
|
ElSaid NAE, Mahmoud HG, Salama A, Nabil M, ElDesouky ED. Role of contrast enhanced spectral mammography in predicting pathological response of locally advanced breast cancer post neo-adjuvant chemotherapy. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Predictive Clinicopathologic and Dynamic Contrast-Enhanced MRI Findings for Tumor Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. AJR Am J Roentgenol 2017; 208:W225-W230. [DOI: 10.2214/ajr.16.17125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Abstract
OBJECTIVE The objective of this article is to summarize the physical principles, technology features, and first clinical applications of optical imaging techniques to the breast. CONCLUSION Light-breast tissue interaction is expressed as absorption and scattering coefficients, allowing image reconstruction based on endogenous or exogenous contrast. Diffuse optical spectroscopy and imaging, fluorescence molecular tomography, photoacoustic imaging, and multiparametric infrared imaging show potential for clinical application, especially for lesion characterization, estimation of cancer probability, and monitoring the effect of neoadjuvant therapy.
Collapse
|
33
|
Zhou F, Mostafa A, Zhu Q. Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:36004. [PMID: 28253381 PMCID: PMC5333769 DOI: 10.1117/1.jbo.22.3.036004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/13/2017] [Indexed: 05/10/2023]
Abstract
We have developed the ultrasound (US)-guided diffuse optical tomography technique to assist US diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of patients with breast cancer. The technique was implemented using a hand-held hybrid probe consisting of a coregistered US transducer and optical source and detector fibers which couple the light illumination from laser diodes and photon detection to the photomultiplier tube detectors. With the US guidance, diffused light measurements were made at the breast lesion site and the normal contralateral reference site which was used to estimate the background tissue optical properties for imaging reconstruction. However, background optical properties were affected by the chest wall underneath the breast tissue. We have analyzed data from 297 female patients, and results have shown statistically significant correlation between the fitted optical properties ( ? a and ? s ? ) and the chest wall depth. After subtracting the background ? a at each wavelength, the difference of computed total hemoglobin (tHb) between malignant and benign lesion groups has improved. For early stage malignant lesions, the area-under-the-receiver operator characteristic curve (AUC) has improved from 88.5% to 91.5%. For all malignant lesions, the AUC has improved from 85.3% to 88.1%. Statistical test has revealed the significant difference of the AUC improvements after subtracting background tHb values.
Collapse
Affiliation(s)
- Feifei Zhou
- University of Connecticut, Department of Biomedical Engineering, Storrs, Connecticut, United States
| | - Atahar Mostafa
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Department of Biomedical Engineering and Radiolog, St. Louis, Missouri, United States
- Address all correspondence to: Quing Zhu, E-mail:
| |
Collapse
|
34
|
Lim EA, Gunther JE, Kim HK, Flexman M, Hibshoosh H, Crew K, Taback B, Campbell J, Kalinsky K, Hielscher A, Hershman DL. Diffuse optical tomography changes correlate with residual cancer burden after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 2017; 162:533-540. [PMID: 28190249 DOI: 10.1007/s10549-017-4150-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Breast cancer (BC) patients who achieve a favorable residual cancer burden (RCB) after neoadjuvant chemotherapy (NACT) have an improved recurrence-free survival. Those who have an unfavorable RCB will have gone through months of ineffective chemotherapy. No ideal method exists to predict a favorable RCB early during NACT. Diffuse optical tomography (DOT) is a novel imaging modality that uses near-infrared light to assess hemoglobin concentrations within breast tumors. We hypothesized that the 2-week percent change in DOT-measured hemoglobin concentrations would associate with RCB. METHODS We conducted an observational study of 40 women with stage II-IIIC BC who received standard NACT. DOT imaging was performed at baseline and 2 weeks after treatment initiation. We evaluated the associations between the RCB index (continuous measure), class (categorical 0, I, II, III), and response (RCB class 0/I = favorable, RCB class II/III = unfavorable) with changes in DOT-measured hemoglobin concentrations. RESULTS The RCB index correlated significantly with the 2-week percent change in oxyhemoglobin [HbO2] (r = 0.5, p = 0.003), deoxyhemoglobin [Hb] (r = 0.37, p = 0.03), and total hemoglobin concentrations [HbT] (r = 0.5, p = 0.003). The RCB class and response significantly associated with the 2-week percent change in [HbO2] (p ≤ 0.01) and [HbT] (p ≤ 0.02). [HbT] 2-week percent change had sensitivity, specificity, positive, and negative predictive values for a favorable RCB response of 86.7, 68.4, 68.4, and 86.7%, respectively. CONCLUSION The 2-week percent change in DOT-measured hemoglobin concentrations was associated with the RCB index, class, and response. DOT may help guide NACT for women with BC.
Collapse
Affiliation(s)
- Emerson A Lim
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, 161 Fort Washington Avenue, 9th Floor, New York, NY, 10032, USA.
| | - Jacqueline E Gunther
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, 341 Mudd Bldg, New York, NY, 10027, USA
| | - Hyun K Kim
- Department of Radiology, Columbia University, 650 West 168th Street, Black Building, Rm 1727, New York, NY, 10032, USA
| | - Molly Flexman
- Philips Research Americas, 2 Canal Park, 3rd Floor, Cambridge, MA, 02141, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, VC 14-215, New York, NY, 10032, USA
| | - Katherine Crew
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Bret Taback
- Department of Surgery, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Jessica Campbell
- Herbert Irving Comprehensive Cancer Center, 161 Fort Washington Avenue, Mezzanine, New York, NY, 10032, USA
| | - Kevin Kalinsky
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Andreas Hielscher
- Department of Biomedical Engineering, Columbia University, Engineering Terrace 351, Mail Code 8904, New York, NY, 10027, USA
| | - Dawn L Hershman
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| |
Collapse
|
35
|
Sajjadi AY, Isakoff SJ, Deng B, Singh B, Wanyo CM, Fang Q, Specht MC, Schapira L, Moy B, Bardia A, Boas DA, Carp SA. Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI). BIOMEDICAL OPTICS EXPRESS 2017; 8:555-569. [PMID: 28270967 PMCID: PMC5330555 DOI: 10.1364/boe.8.000555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
We characterize novel breast cancer imaging biomarkers for monitoring neoadjuvant chemotherapy (NACT) and predicting outcome. Specifically, we recruited 30 patients for a pilot study in which NACT patients were imaged using dynamic tomographic optical breast imaging (DTOBI) to quantify the hemodynamic changes due to partial mammographic compression. DTOBI scans were obtained pre-treatment (referred to as day 0), as well as 7 and 30 days into therapy on female patients undergoing NACT. We present data for the 13 patients who participated in both day 0 and 7 measurements and had evaluable data, of which 7 also returned for day 30 measurements. We acquired optical images over 2 minutes following 4-8 lbs (18-36 N) of compression. The timecourses of tissue-volume averaged total hemoglobin (HbT), as well as hemoglobin oxygen saturation (SO2) in the tumor vs. surrounding tissues were compared. Outcome prediction metrics based on the differential behavior in tumor vs. normal areas for responders (>50% reduction in maximum diameter) vs. non-responders were analyzed for statistical significance. At baseline, all patients exhibit an initial decrease followed by delayed recovery in HbT, and SO2 in the tumor area, in contrast to almost immediate recovery in surrounding tissue. At day 7 and 30, this contrast is maintained in non-responders; however, in responders, the contrast in hemodynamic time-courses between tumor and normal tissue starts decreasing at day 7 and substantially disappears at day 30. At day 30 into NACT, responding tumors demonstrate "normalization" of compression induced hemodynamics vs. surrounding normal tissue whereas non-responding tumors did not. This data suggests that DTOBI imaging biomarkers, which are governed by the interplay between tissue biomechanics and oxygen metabolism, may be suitable for guiding NACT by offering early predictions of treatment outcome.
Collapse
Affiliation(s)
- Amir Y Sajjadi
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA; These authors contributed equally to this work;
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; These authors contributed equally to this work;
| | - Bin Deng
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bhawana Singh
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Christy M Wanyo
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 0211, USA
| | - Michelle C Specht
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Lidia Schapira
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David A Boas
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stefan A Carp
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
36
|
Anderson PG, Sassaroli A, Kainerstorfer JM, Krishnamurthy N, Kalli S, Makim SS, Graham RA, Fantini S. Optical mammography: bilateral breast symmetry in hemoglobin saturation maps. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:101403. [PMID: 26849841 PMCID: PMC4742791 DOI: 10.1117/1.jbo.21.10.101403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
We present a study of the bilateral symmetry of human breast hemoglobin saturation maps measured with a broadband optical mammography instrument. We have imaged 21 patients with unilateral breast cancer, 32 patients with unilateral benign lesions, and 27 healthy patients. An image registration process was applied to the bilateral hemoglobin saturation (SO 2 SO2 ) images by assigning each pixel to the low, middle, or high range of SO 2 SO2 values, where the thresholds for the categories were the 15th and 85th percentiles of the individual saturation range. The Dice coefficient, which is a measure of similarity, was calculated for each patient’s pair of right and left breast SO 2 SO2 images. The invasive cancer patients were found to have an average Dice coefficient value of 0.55±0.07 0.55±0.07 , which was significantly lower than the benign and healthy groups (0.61±0.11 0.61±0.11 and 0.62±0.12 0.62±0.12 , respectively). Although differences were seen in a group analysis, the healthy patient Dice coefficients spanned a wide range, limiting the diagnostic capabilities of this SO 2 SO2 symmetry analysis on an individual basis. Our results suggest that for assessing the SO 2 SO2 contrast of breast lesions, it may be better to select a reference tissue in the ipsilateral rather than the contralateral breast.
Collapse
Affiliation(s)
- Pamela G. Anderson
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jana M. Kainerstorfer
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nishanth Krishnamurthy
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Sirishma Kalli
- Tufts Medical Center, Department of Radiology, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - Shital S. Makim
- Tufts Medical Center, Department of Radiology, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - Roger A. Graham
- Tufts Medical Center, Department of Surgery, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Ramirez G, Proctor AR, Jung KW, Wu TT, Han S, Adams RR, Ren J, Byun DK, Madden KS, Brown EB, Foster TH, Farzam P, Durduran T, Choe R. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3610-3630. [PMID: 27699124 PMCID: PMC5030036 DOI: 10.1364/boe.7.003610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 05/08/2023]
Abstract
The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments.
Collapse
Affiliation(s)
- Gabriel Ramirez
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Ki Won Jung
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642,
USA
| | - Songfeng Han
- The Institute of Optics, University of Rochester, Rochester, NY 14627,
USA
| | - Russell R. Adams
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Jingxuan Ren
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Daniel K. Byun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Kelley S. Madden
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Thomas H. Foster
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- The Institute of Optics, University of Rochester, Rochester, NY 14627,
USA
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642,
USA
| | - Parisa Farzam
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona,
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| |
Collapse
|
38
|
Zhu Q, Ricci A, Hegde P, Kane M, Cronin E, Merkulov A, Xu Y, Tavakoli B, Tannenbaum S. Assessment of Functional Differences in Malignant and Benign Breast Lesions and Improvement of Diagnostic Accuracy by Using US-guided Diffuse Optical Tomography in Conjunction with Conventional US. Radiology 2016; 280:387-97. [PMID: 26937708 PMCID: PMC4976463 DOI: 10.1148/radiol.2016151097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose To investigate ultrasonography (US)-guided diffuse optical tomography to distinguish the functional differences of hemoglobin concentrations in a wide range of malignant and benign breast lesions and to improve breast cancer diagnosis in conjunction with conventional US. Materials and Methods The study protocol was approved by the institutional review boards and was HIPAA compliant. Written informed consent was obtained from all patients. Patients (288 women; mean age, 50 years; range, 17-94 years) who underwent US-guided biopsy were imaged with a handheld US and optical probe. The US-imaged lesion was used to guide reconstruction of light absorption maps at four wavelengths, and total hemoglobin (tHb), oxygenated hemoglobin (oxyHb), and deoxygenated hemoglobin (deoxyHb) were computed from the absorption maps. A threshold (80 μmol/L) was chosen on the basis of this study population. Two radiologists retrospectively evaluated US images on the basis of the US Breast Imaging Reporting and Data System lexicon, and a lesion was considered malignant when a score of 4C or 5 was given or a lesion had tHb greater than 80 μmol/L. A two-sample t test was used to calculate significance between groups, and Spearman ρ was computed between hemoglobin parameters and tumor pathologic grades. Results Three tumors were Tis, 37 were T1, 19 were T2-T4 carcinomas, and 233 were benign lesions. The mean maximum tHb, oxyHb, and deoxyHb of Tis-T1 and T2-T4 groups were 89.3 μmol/L ± 20.2 (standard deviation), 65.0 μmol/L ± 20.8, and 33.5 μmol/L ± 11.3, respectively, and 84.7 μmol/L ± 32.8, 57.1 μmol/L ± 19.8, and 34.7 μmol/L ± 18.9, respectively. The corresponding values of benign lesions were 54.1 μmol/L ± 23.5, 38.0 μmol/L ± 17.4, and 25.2 μmol/L ± 13.8, respectively. The mean maximum tHb, oxyHb, and deoxyHb were significantly higher in the malignant groups than the benign group (P <.001, <.001, and .041, respectively). For malignant lesions, the mean maximum tHb moderately correlated with tumor histologic grade and nuclear grade (ρ = 0.283 and 0.315, respectively). The mean maximum oxyHb moderately correlated with tumor nuclear grade (ρ = 0.267). When radiologists' US diagnosis and the tHb were used together, the sensitivity, specificity, positive predictive value, and negative predictive value were 96.6%-100%, 77.3%-83.3%, 52.7%-59.4%, and 99.0%-100%, respectively, for the combined malignant group. Conclusion The tHb and oxyHb correlate with breast cancer pathologic grade and can be used as an adjunct to US to improve sensitivity and negative predictive value in breast cancer diagnosis. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Quing Zhu
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Andrew Ricci
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Poornima Hegde
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Mark Kane
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Edward Cronin
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Alex Merkulov
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Yan Xu
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Behnoosh Tavakoli
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| | - Susan Tannenbaum
- From the Department of Electrical and Biomedical Engineering (Q.Z.) and Department of Electrical and Computer Engineering (Y.X., B.T.), University of Connecticut, 371 Fairfield Rd, U4157, Storrs, CT 06269; Departments of Pathology (A.R.) and Radiology (E.C.), Hartford Hospital, Hartford, Conn; and Department of Pathology (P.H.), Department of Radiology (M.K., A.M.), and Carole & Ray Neag Comprehensive Cancer Center (S.T.), University of Connecticut Health Center, Farmington, Conn
| |
Collapse
|
39
|
Jiang S, Pogue BW. A Comparison of Near-Infrared Diffuse Optical Imaging and 18F-FDG PET/CT for the Early Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy. J Nucl Med 2016; 57:1166-7. [DOI: 10.2967/jnumed.116.174367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
|
40
|
Zhao Y, Pogue BW, Haider SJ, Gui J, diFlorio-Alexander RM, Paulsen KD, Jiang S. Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite. BIOMEDICAL OPTICS EXPRESS 2016; 7:2186-201. [PMID: 27375937 PMCID: PMC4918575 DOI: 10.1364/boe.7.002186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 05/09/2023]
Abstract
A portable near-infrared spectral tomography (NIRST) system was developed with simultaneous frequency domain (FD) and continuous-wave (CW) optical measurements for efficient characterization of breast cancer in a clinical oncology setting. Simultaneous FD and CW recordings were implemented to speed up acquisition to 3 minutes for all 9 wavelengths, spanning a range from 661nm to 1064nm. An adjustable interface was designed to fit various breast sizes and shapes. Spatial images of oxy- and deoxy-hemoglobin, water, lipid, and scattering components were reconstructed using a 2D FEM approach. The system was tested on a group of 10 normal subjects, who were examined bilaterally and the recovered optical images were compared to radiographic breast density. Significantly higher total hemoglobin and water were estimated in the high density relative to low density groups. One patient with invasive ductal carcinoma was also examined and the cancer region was characterized as having a contrast ratio of 1.4 in total hemoglobin and 1.2 in water.
Collapse
Affiliation(s)
- Yan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Steffen J. Haider
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Jiang Gui
- Department of Radiology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
41
|
Tran WT, Childs C, Chin L, Slodkowska E, Sannachi L, Tadayyon H, Watkins E, Wong SL, Curpen B, Kaffas AE, Al-Mahrouki A, Sadeghi-Naini A, Czarnota GJ. Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy. Oncotarget 2016; 7:19762-80. [PMID: 26942698 PMCID: PMC4991417 DOI: 10.18632/oncotarget.7844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This study evaluated pathological response to neoadjuvant chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOSI) biomarkers in locally advanced breast cancer (LABC). MATERIALS AND METHODS The institution's ethics review board approved this study. Subjects (n = 22) gave written informed consent prior to participating. US and DOSI data were acquired, relative to the start of neoadjuvant chemotherapy, at weeks 0, 1, 4, 8 and preoperatively. QUS parameters including the mid-band fit (MBF), 0-MHz intercept (SI), and the spectral slope (SS) were determined from tumor ultrasound data using spectral analysis. In the same patients, DOSI was used to measure parameters relating to tumor hemoglobin and composition. Discriminant analysis and receiver-operating characteristic (ROC) analysis was used to classify clinical and pathological response during treatment and to estimate the area under the curve (AUC). Additionally, multivariate analysis was carried out for pairwise QUS/DOSI parameter combinations using a logistic regression model. RESULTS Individual QUS and DOSI parameters, including the (SI), oxy-hemoglobin (HbO2), and total hemoglobin (HbT) were significant markers for response after one week of treatment (p < 0.01). Multivariate (pairwise) combinations increased the sensitivity, specificity and AUC at this time; the SI + HbO2 showed a sensitivity/specificity of 100%, and an AUC of 1.0. CONCLUSIONS QUS and DOSI demonstrated potential as coincident markers for treatment response and may potentially facilitate response-guided therapies. Multivariate QUS and DOSI parameters increased the sensitivity and specificity of classifying LABC patients as early as one week after treatment.
Collapse
Affiliation(s)
- William T. Tran
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Charmaine Childs
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Lee Chin
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | | | - Lakshmanan Sannachi
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Hadi Tadayyon
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Elyse Watkins
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | | | - Belinda Curpen
- Division of Radiology, Sunnybrook Hospital, Toronto, Canada
| | - Ahmed El Kaffas
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | - Azza Al-Mahrouki
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | - Gregory J. Czarnota
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Ueda S, Yoshizawa N, Shigekawa T, Takeuchi H, Ogura H, Osaki A, Saeki T, Ueda Y, Yamane T, Kuji I, Sakahara H. Near-Infrared Diffuse Optical Imaging for Early Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy: A Comparative Study Using 18F-FDG PET/CT. J Nucl Med 2016; 57:1189-95. [PMID: 26940765 DOI: 10.2967/jnumed.115.167320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Diffuse optical spectroscopic imaging (DOSI) is used as an indicator of tumor blood volume quantified by tissue hemoglobin concentrations. We aimed to determine whether early changes in tumor total hemoglobin (tHb) concentration can predict a pathologic complete response (pCR) to neoadjuvant chemotherapy in patients with operable breast cancer, and we compared the predictive value of pCR between DOSI and (18)F-FDG PET combined with CT. METHODS Of the 100 patients enrolled, 84 patients were prospectively evaluated for primary objective analysis. Sixty-four of the patients underwent both sequential DOSI scans at baseline after their first and second chemotherapy courses and (18)F-FDG PET/CT at baseline and after their second chemotherapy course. The mean tHb (tHbmean) concentration and SUVmax of the lesion were measured using DOSI and (18)F-FDG PET/CT, respectively, and the percentage change in tHbmean (∆tHbmean) and change in SUVmax (∆SUVmax) were calculated. We compared the diagnostic performances of DOSI and (18)F-FDG PET/CT for predicting pCR via the analysis of the receiver-operating-characteristic curves. RESULTS pCR was achieved in 16 patients, and neoadjuvant chemotherapy caused a significant reduction of ∆tHbmean in pCR compared with non-pCR after the 2 chemotherapy courses. When the tentative ∆tHbmean cutoff values after the first and second courses were used, the ability to predict pCR was as follows: 81.2% sensitivity/47.0% specificity and 93.7% sensitivity/47.7% specificity, respectively. Comparison of the diagnostic performances of DOSI and (18)F-FDG PET/CT revealed areas under the curve of 0.69 and 0.75 of ∆tHbmean after the first and second courses, respectively, which were lower than those of ∆SUVmax (0.90). CONCLUSION DOSI predicted pCR in patients with breast cancer with moderate accuracy. The diagnostic performance of DOSI was inferior to that of the early metabolic response as monitored by (18)F-FDG PET/CT.
Collapse
Affiliation(s)
- Shigeto Ueda
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Nobuko Yoshizawa
- Department of Diagnostic Radiology and Nuclear Medicine, Hamamatsu University, School of Medicine, Handayama, Hamamatsu, Japan
| | - Takashi Shigekawa
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Hideki Takeuchi
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Hiroyuki Ogura
- Department of Breast Surgery, Hamamatsu University, School of Medicine, Handayama, Hamamatsu, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Yukio Ueda
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakitaku, Hamamatsu, Japan; and
| | - Tomohiko Yamane
- Department of Nuclear Medicine, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, International Medical Center, Saitama Medical University, Yamane, Hidaka, Japan
| | - Harumi Sakahara
- Department of Diagnostic Radiology and Nuclear Medicine, Hamamatsu University, School of Medicine, Handayama, Hamamatsu, Japan
| |
Collapse
|
43
|
Alqasemi U, Salehi HS, Zhu Q. Method for estimating closed-form solutions of the light diffusion equation for turbid media of any boundary shape. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:205-213. [PMID: 26831771 PMCID: PMC5056907 DOI: 10.1364/josaa.33.000205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper reports a method of estimating an approximate closed-form solution to the light diffusion equation for any type of geometry involving Dirichlet's boundary condition with known source location. It is based on estimating the optimum locations of multiple imaginary point sources to cancel the fluence at the extrapolated boundary by constrained optimization using a genetic algorithm. The mathematical derivation of the problem to approach the optimum solution for the direct-current type of diffuse optical systems is described in detail. Our method is first applied to slab geometry and compared with a truncated series solution. After that, it is applied to hemispherical geometry and compared with Monte Carlo simulation results. The method provides a fast and sufficiently accurate fluence distribution for optical reconstruction.
Collapse
Affiliation(s)
- Umar Alqasemi
- Department of Electrical and Computer Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Hassan S. Salehi
- Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, U-4157, Storrs, Connecticut 06269-2157, USA
| | - Quing Zhu
- Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, U-4157, Storrs, Connecticut 06269-2157, USA
| |
Collapse
|
44
|
Xu C, Vavadi H, Merkulov A, Li H, Erfanzadeh M, Mostafa A, Gong Y, Salehi H, Tannenbaum S, Zhu Q. Ultrasound-Guided Diffuse Optical Tomography for Predicting and Monitoring Neoadjuvant Chemotherapy of Breast Cancers: Recent Progress. ULTRASONIC IMAGING 2016; 38:5-18. [PMID: 25887527 PMCID: PMC5056904 DOI: 10.1177/0161734615580280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this manuscript, we review the current progress of utilizing ultrasound-guided diffuse optical tomography (US-guided DOT) for predicting and monitoring neoadjuvant chemotherapy (NAC) outcomes of breast cancer patients. We also report the recent advance on optical tomography systems toward portable and robust clinical use at multiple clinical sites. The first patient who has been closely monitored before NAC, at day 2, day 8, end of first three cycles of NAC, and before surgery is given as an example to demonstrate the potential of US-guided DOT technique.
Collapse
Affiliation(s)
- Chen Xu
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Hamed Vavadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Alex Merkulov
- University of Connecticut Health Center, Farmington, CT, USA
| | - Hai Li
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | - Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Atahar Mostafa
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | - Yanping Gong
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | - Hassan Salehi
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | | | - Quing Zhu
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
45
|
Xu C, Vavadi H, Merkulov A, Li H, Erfanzadeh M, Mostafa A, Gong Y, Salehi H, Tannenbaum S, Zhu Q. Ultrasound-Guided Diffuse Optical Tomography for Predicting and Monitoring Neoadjuvant Chemotherapy of Breast Cancers: Recent Progress. ULTRASONIC IMAGING 2016. [PMID: 25887527 DOI: 10.1177/016173461558028010.1177/0161734615580280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this manuscript, we review the current progress of utilizing ultrasound-guided diffuse optical tomography (US-guided DOT) for predicting and monitoring neoadjuvant chemotherapy (NAC) outcomes of breast cancer patients. We also report the recent advance on optical tomography systems toward portable and robust clinical use at multiple clinical sites. The first patient who has been closely monitored before NAC, at day 2, day 8, end of first three cycles of NAC, and before surgery is given as an example to demonstrate the potential of US-guided DOT technique.
Collapse
Affiliation(s)
- Chen Xu
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Hamed Vavadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Alex Merkulov
- University of Connecticut Health Center, Farmington, CT, USA
| | - Hai Li
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | - Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Atahar Mostafa
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | - Yanping Gong
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | - Hassan Salehi
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA
| | | | - Quing Zhu
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
46
|
Erickson-Bhatt SJ, Roman M, Gonzalez J, Nunez A, Kiszonas R, Lopez-Penalver C, Godavarty A. Noninvasive Surface Imaging of Breast Cancer in Humans using a Hand-held Optical Imager. Biomed Phys Eng Express 2015; 1. [PMID: 27366327 DOI: 10.1088/2057-1976/1/4/045001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
X-ray mammography, the current gold standard for breast cancer detection, has a 20% false-negative rate (cancer is undetected) and increases in younger women with denser breast tissue. Diffuse optical imaging (DOI) is a safe (nonionizing), and relatively inexpensive method for noninvasive imaging of breast cancer in human subjects (including dense breast tissues) by providing physiological information (e.g. oxy- and deoxy- hemoglobin concentration). At the Optical Imaging Laboratory, a hand-held optical imager has been developed which employs a breast contourable probe head to perform simultaneous illumination and detection of large surfaces towards near real-time imaging of human breast cancer. Gen-1 and gen-2 versions of the handheld optical imager have been developed and previously demonstrated imaging in tissue phantoms and healthy human subjects. Herein, the hand-held optical imagers are applied towards in vivo imaging of breast cancer subjects in an attempt to determine the ability of the imager to detect breast tumors. Five female human subjects (ages 51-74) diagnosed with breast cancer were imaged with the gen-1 optical imager prior to surgical intervention. One of the subjects was also imaged with the gen-2 optical imager. Both imagers use 785 nm laser diode sources and ICCD camera detectors to generate 2D surfaces maps of total hemoglobin absorption. The subjects lay in supine position and images were collected at various locations on both the ipsilateral (tumor-containing) and contralateral (non-tumor containing) breasts. The optical images (2D surface maps of optical absorption due to total hemoglobin concentration) show regions of higher intensity at the tumor location, which is indicative of increased vasculature and higher blood content due to the presence of the tumor. Additionally, a preliminary result indicates the potential to image lymphatic spread. This study demonstrates the potential of the hand-held optical devices to noninvasively image breast cancer in human subjects.
Collapse
Affiliation(s)
- Sarah J Erickson-Bhatt
- Dept. of Biomedical Engineering, Florida International University, 10555 West Flagler St. EC2610, Miami, FL, USA 33174
| | - Manuela Roman
- Dept. of Biomedical Engineering, Florida International University, 10555 West Flagler St. EC2610, Miami, FL, USA 33174
| | - Jean Gonzalez
- Dept. of Biomedical Engineering, Florida International University, 10555 West Flagler St. EC2610, Miami, FL, USA 33174
| | - Annie Nunez
- Dept. of Biomedical Engineering, Florida International University, 10555 West Flagler St. EC2610, Miami, FL, USA 33174
| | - Richard Kiszonas
- Dept. of Breast Radiology, Sylvester Comprehensive Cancer Center, 1475 N.W. 12th Ave., Miami, FL, USA 33136
| | | | - Anuradha Godavarty
- Dept. of Biomedical Engineering, Florida International University, 10555 West Flagler St. EC2610, Miami, FL, USA 33174
| |
Collapse
|
47
|
Huang C, Lin Y, He L, Irwin D, Szabunio MM, Yu G. Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors. APPLIED OPTICS 2015; 54:8808-16. [PMID: 26479823 PMCID: PMC4801123 DOI: 10.1364/ao.54.008808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncontact diffuse correlation tomography (ncDCT) is an emerging technology for 3D imaging of deep tissue blood flow distribution without distorting hemodynamic properties. To adapt the ncDCT for imaging in vivo breast tumors, we designed a motorized ncDCT probe to scan over the breast surface. A computer-aided design (CAD)-based approach was proposed to create solid volume mesh from arbitrary breast surface obtained by a commercial 3D camera. The sources and detectors of ncDCT were aligned on the breast surface through ray tracing to mimic the ncDCT scanning with CAD software. The generated breast volume mesh along with the boundary data of ncDCT at the aligned source and detector pairs were used for finite-element-method-based flow image reconstruction. We evaluated the accuracy of source alignments on mannequin and human breasts; largest alignment errors were less than 10% in both tangential and radial directions of scanning. The impact of alignment errors (assigned 10%) on the tumor reconstruction was estimated using computer simulations. The deviations of simulated tumor location and blood flow contrast resulted from the alignment errors were 0.77 mm (less than the node distance of 1 mm) and 1%, respectively, which result in minor impact on flow image reconstruction. Finally, a case study on a human breast tumor was conducted and a tumor-to-normal flow contrast was reconstructed, demonstrating the feasibility of ncDCT in clinical application.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Yu Lin
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Lian He
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Irwin
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
- Corresponding author:
| |
Collapse
|
48
|
Xu Y, Zhu Q. Estimation and imaging of breast lesions using a two-layer tissue structure by ultrasound-guided optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:066002. [PMID: 26046722 PMCID: PMC4457415 DOI: 10.1117/1.jbo.20.6.066002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/07/2015] [Indexed: 05/03/2023]
Abstract
A new two-step estimation and imaging method is developed for a two-layer breast tissue structure consisting of a breast tissue layer and a chest wall underneath. First, a smaller probe with shorter distance source-detector pairs was used to collect the reflected light mainly from the breast tissue layer. Then, a larger probe with 9×14 source-detector pairs and a centrally located ultrasound transducer was used to collect reflected light from the two-layer tissue structure. The data collected from the smaller probe were used to estimate breast tissue optical properties. With more accurate estimation of the average breast tissue properties, the second layer properties can be assessed from data obtained from the larger probe. Using this approach, the unknown variables have been reduced from four to two and the estimated bulk tissue optical properties are more accurate and robust. In addition, a two-step reconstruction using a genetic algorithm and conjugate gradient method is implemented to simultaneously reconstruct the absorption and reduced scattering maps of targets inside a two-layer tissue structure. Simulations and phantom experiments have been performed to validate the new reconstruction method, and a clinical example is given to demonstrate the feasibility of this approach.
Collapse
Affiliation(s)
- Yan Xu
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157, United States
| | - Quing Zhu
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157, United States
- University of Connecticut, Biomedical Engineering Department, Storrs, Connecticut 06269, United States
- Address all correspondence to: Quing Zhu, E-mail:
| |
Collapse
|
49
|
Schaafsma BE, van de Giessen M, Charehbili A, Smit VTHBM, Kroep JR, Lelieveldt BPF, Liefers GJ, Chan A, Löwik CWGM, Dijkstra J, van de Velde CJH, Wasser MNJM, Vahrmeijer AL. Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin Cancer Res 2014; 21:577-84. [PMID: 25473002 DOI: 10.1158/1078-0432.ccr-14-0736] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse optical spectroscopy (DOS) has the potential to enable monitoring of tumor response during chemotherapy, particularly in the early stages of treatment. This study aims to assess feasibility of DOS for monitoring treatment response in HER2-negative breast cancer patients receiving neoadjuvant chemotherapy (NAC) and compare DOS with tumor response assessment by MRI. EXPERIMENTAL DESIGN Patients received NAC in six cycles of 3 weeks. In addition to standard treatment monitoring by dynamic contrast enhanced MRI (DCE-MRI), DOS scans were acquired after the first, third, and last cycle of chemotherapy. The primary goal was to assess feasibility of DOS for early assessment of tumor response. The predictive value of DOS and DCE-MRI compared with pathologic response was assessed. RESULTS Of the 22 patients, 18 patients had a partial or complete tumor response at pathologic examination, whereas 4 patients were nonresponders. As early as after the first chemotherapy cycle, a significant difference between responders and nonresponders was found using DOS (HbO2 86% ± 25 vs. 136% ± 25, P = 0.023). The differences between responders and nonresponders continued during treatment (halfway treatment, HbO2 68% ± 22 vs. 110% ± 10, P = 0.010). Using DCE-MRI, a difference between responders and nonresponders was found halfway treatment (P = 0.005) using tumor volume measurement calculations. CONCLUSIONS DOS allows for tumor response assessment and is able to differentiate between responders and nonresponders after the first chemotherapy cycle and halfway treatment. In this study, DOS was equally effective in predicting tumor response halfway treatment compared with DCE-MRI. Therefore, DOS may be used as a novel imaging modality for (early) treatment monitoring of NAC.
Collapse
Affiliation(s)
| | | | - Ayoub Charehbili
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands. Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith R Kroep
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gerrit-Jan Liefers
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Alan Chan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. Percuros B.V., Enschede, the Netherlands
| | - Clemens W G M Löwik
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jouke Dijkstra
- Division of Image Processing, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Martin N J M Wasser
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
50
|
Yuan G, Alqasemi U, Chen A, Yang Y, Zhu Q. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:126003. [PMID: 25473884 PMCID: PMC4255433 DOI: 10.1117/1.jbo.19.12.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions.
Collapse
Affiliation(s)
- Guangqian Yuan
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
| | - Umar Alqasemi
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
| | - Aaron Chen
- University of Pennsylvania, College of Art and Sciences, 249 South 36th Street, Philadelphia 19104-6304, United States
| | - Yi Yang
- University of Connecticut, Departments of Electrical and Computer Engineering, 371 Fairfield Way; U-4157, Storrs, Connecticut 06269-4157, United States
| | - Quing Zhu
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
- University of Pennsylvania, College of Art and Sciences, 249 South 36th Street, Philadelphia 19104-6304, United States
| |
Collapse
|