1
|
Serrano RR, Velasco‐Bosom S, Dominguez‐Alfaro A, Picchio ML, Mantione D, Mecerreyes D, Malliaras GG. High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301176. [PMID: 37203308 PMCID: PMC11251564 DOI: 10.1002/advs.202301176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Electrocardiography imaging (ECGi) is a non-invasive inverse reconstruction procedure which employs body surface potential maps (BSPM) obtained from surface electrode array measurements to improve the spatial resolution and interpretability of conventional electrocardiography (ECG) for the diagnosis of cardiac dysfunction. ECGi currently lacks precision, which has prevented its adoption in clinical setups. The introduction of high-density electrode arrays could increase ECGi reconstruction accuracy but is not attempted before due to manufacturing and processing limitations. Advances in multiple fields have now enabled the implementation of such arrays which poses questions on optimal array design parameters for ECGi. In this work, a novel conducting polymer electrode manufacturing process on flexible substrates is proposed to achieve high-density, mm-sized, conformable, long-term, and easily attachable electrode arrays for BSPM with parameters optimally selected for ECGi applications. Temporal, spectral, and correlation analysis are performed on a prototype array demonstrating the validity of the chosen parameters and the feasibility of high-density BSPM, paving the way for ECGi devices fit for clinical application.
Collapse
Affiliation(s)
| | | | - Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Matias L. Picchio
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Daniele Mantione
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | | |
Collapse
|
2
|
Haberl C, Crean AM, Zelt JGE, Redpath CJ, deKemp RA. Role of Nuclear Imaging in Cardiac Stereotactic Body Radiotherapy for Ablation of Ventricular Tachycardia. Semin Nucl Med 2024; 54:427-437. [PMID: 38658301 DOI: 10.1053/j.semnuclmed.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Ventricular tachycardia (VT) is a life-threatening arrhythmia common in patients with structural heart disease or nonischemic cardiomyopathy. Many VTs originate from regions of fibrotic scar tissue, where delayed electrical signals exit scar and re-enter viable myocardium. Cardiac stereotactic body radiotherapy (SBRT) has emerged as a completely noninvasive alternative to catheter ablation for the treatment of recurrent or refractory ventricular tachycardia. While there is no common consensus on the ideal imaging workflow, therapy planning for cardiac SBRT often combines information from a plurality of imaging modalities including MRI, CT, electroanatomic mapping and nuclear imaging. MRI and CT provide detailed anatomic information, and late enhancement contrast imaging can indicate regions of fibrosis. Electroanatomic maps indicate regions of heterogenous conduction voltage or early activation which are indicative of arrhythmogenic tissue. Some early clinical adopters performing cardiac SBRT report the use of myocardial perfusion and viability nuclear imaging to identify regions of scar. Nuclear imaging of hibernating myocardium, inflammation and sympathetic innervation have been studied for ventricular arrhythmia prognosis and in research relating to catheter ablation of VT but have yet to be studied in their potential applications for cardiac SBRT. The integration of information from these many imaging modalities to identify a target for ablation can be challenging. Multimodality image registration and dedicated therapy planning tools may enable higher target accuracy, accelerate therapy planning workflows and improve patient outcomes. Understanding the pathophysiology of ventricular arrhythmias, and localizing the arrhythmogenic tissues, is vital for successful ablation with cardiac SBRT. Nuclear imaging provides an arsenal of imaging strategies to identify regional scar, hibernation, inflammation, and sympathetic denervation with some advantages over alternative imaging strategies.
Collapse
Affiliation(s)
- Connor Haberl
- University of Ottawa Heart Institute, Ottawa, ON; Carleton University, Ottawa, ON
| | - Andrew M Crean
- University of Ottawa Heart Institute, Ottawa, ON; North West Heart Center, University of Manchester Foundation NHS Trust, Manchester, UK
| | - Jason G E Zelt
- The Ottawa Hospital, Ottawa, ON; Department of Medicine, University of Ottawa, Ottawa, ON
| | | | | |
Collapse
|
3
|
Li L, Ding W, Huang L, Zhuang X, Grau V. Multi-modality cardiac image computing: A survey. Med Image Anal 2023; 88:102869. [PMID: 37384950 DOI: 10.1016/j.media.2023.102869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, either combining information from different modalities or transferring information across modalities. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, modality selection, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future.
Collapse
Affiliation(s)
- Lei Li
- Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Wangbin Ding
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Liqin Huang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Hawson J, Joshi S, Al-Kaisey A, Das SK, Anderson RD, Morton J, Kumar S, Kistler P, Kalman J, Lee G. Utility of cardiac imaging in patients with ventricular tachycardia. Indian Pacing Electrophysiol J 2023; 23:63-76. [PMID: 36958589 PMCID: PMC10160788 DOI: 10.1016/j.ipej.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Ventricular tachycardia (VT) is a life-threatening arrhythmia that may be idiopathic or result from structural heart disease. Cardiac imaging is critical in the diagnostic workup and risk stratification of patients with VT. Data gained from cardiac imaging provides information on likely mechanisms and sites of origin, as well as risk of intervention. Pre-procedural imaging can be used to plan access route(s) and identify patients where post-procedural intensive care may be required. Integration of cardiac imaging into electroanatomical mapping systems during catheter ablation procedures can facilitate the optimal approach, reduce radiation dose, and may improve clinical outcomes. Intraprocedural imaging helps guide catheter position, target substrate, and identify complications early. This review summarises the contemporary imaging modalities used in patients with VT, and their uses both pre-procedurally and intra-procedurally.
Collapse
Affiliation(s)
- Joshua Hawson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Subodh Joshi
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ahmed Al-Kaisey
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Souvik K Das
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Robert D Anderson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Joseph Morton
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital and Westmead Applied Research Centre, Westmead, New South Wales, Australia; Western Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Kistler
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia; Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Prats-Boluda G, Guillem MS, Rodrigo M, Ye-Lin Y, Garcia-Casado J. Identification of atrial fibrillation drivers by means of concentric ring electrodes. Comput Biol Med 2022; 148:105957. [PMID: 35981454 DOI: 10.1016/j.compbiomed.2022.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE The prevalence of atrial fibrillation (AF) has tripled in the last 50 years due to population aging. High-frequency (DFdriver) activated atrial regions lead the activation of the rest of the atria, disrupting the propagation wavefront. Fourier based spectral analysis of body surface potential maps have been proposed for DFdriver identification, although these approaches present serious drawbacks due to their limited spectral resolution for short AF epochs and the blurring effect of the volume conductor. Laplacian signals (BC-ECG) from bipolar concentric ring electrodes (CRE) have been shown to outperform the spatial resolution achieved with conventional unipolar recordings. Our aimed was to determine the best DFdriver estimator in endocardial electrograms and to assess the BC-ECG capacity of CRE to quantify AF activity non-invasively. METHODS 31 AF episodes were simulated using realistic tridimensional models of the atria electrical activity and torso. Periodogram and autoregressive (AR) spectral estimators were computed and the percentile (P90th, P95th and P98th) to impose on the dominant frequencies (DFs) across whole atria to define the best DFdriver estimator evaluated. The identification of DFdriver on DFs from BC-ECG and unipolar surface signals with conventional disc electrodes was compared. RESULTS The best DFdriver estimator was P95th and AR order 100. BC-ECG signals allowed better detection of AF activity than unipolar signals, with a significantly greater percentage of electrode locations in which DFdriver was identified (p-value 0.0095). CONCLUSIONS The use of BC-ECG signals for body surface Laplacian potential mapping with CRE could be helpful for better AF diagnosis, prognosis and ablation procedures than those with conventional disk electrodes.
Collapse
Affiliation(s)
- Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| | - María S Guillem
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain.
| | - Miguel Rodrigo
- CommLab, Engineering Electronic Department, Universitat de València, Valencia, Spain.
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
6
|
Bergquist J, Rupp L, Zenger B, Brundage J, Busatto A, MacLeod RS. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. HEARTS 2021; 2:514-542. [PMID: 35665072 PMCID: PMC9164986 DOI: 10.3390/hearts2040040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Body surface potential mapping (BSPM) is a noninvasive modality to assess cardiac bioelectric activity with a rich history of practical applications for both research and clinical investigation. BSPM provides comprehensive acquisition of bioelectric signals across the entire thorax, allowing for more complex and extensive analysis than the standard electrocardiogram (ECG). Despite its advantages, BSPM is not a common clinical tool. BSPM does, however, serve as a valuable research tool and as an input for other modes of analysis such as electrocardiographic imaging and, more recently, machine learning and artificial intelligence. In this report, we examine contemporary uses of BSPM, and provide an assessment of its future prospects in both clinical and research environments. We assess the state of the art of BSPM implementations and explore modern applications of advanced modeling and statistical analysis of BSPM data. We predict that BSPM will continue to be a valuable research tool, and will find clinical utility at the intersection of computational modeling approaches and artificial intelligence.
Collapse
Affiliation(s)
- Jake Bergquist
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lindsay Rupp
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian Zenger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - James Brundage
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Busatto
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rob S. MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing. Proc Natl Acad Sci U S A 2021; 118:2103979118. [PMID: 34732573 DOI: 10.1073/pnas.2103979118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Propagation of electromechanical waves in excitable heart muscles follows complex spatiotemporal patterns holding the key to understanding life-threatening arrhythmias and other cardiac conditions. Accurate volumetric mapping of cardiac wave propagation is currently hampered by fast heart motion, particularly in small model organisms. Here we demonstrate that ultrafast four-dimensional imaging of cardiac mechanical wave propagation in entire beating murine heart can be accomplished by sparse optoacoustic sensing with high contrast, ∼115-µm spatial and submillisecond temporal resolution. We extract accurate dispersion and phase velocity maps of the cardiac waves and reveal vortex-like patterns associated with mechanical phase singularities that occur during arrhythmic events induced via burst ventricular electric stimulation. The newly introduced cardiac mapping approach is a bold step toward deciphering the complex mechanisms underlying cardiac arrhythmias and enabling precise therapeutic interventions.
Collapse
|
8
|
Wei C, Qian PC, Boeck M, Bredfeldt JS, Blankstein R, Tedrow UB, Mak R, Zei PC. Cardiac stereotactic body radiation therapy for ventricular tachycardia: Current experience and technical gaps. J Cardiovasc Electrophysiol 2021; 32:2901-2914. [PMID: 34587335 DOI: 10.1111/jce.15259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Despite advances in drug and catheter ablation therapy, long-term recurrence rates for ventricular tachycardia remain suboptimal. Cardiac stereotactic body radiotherapy (SBRT) is a novel treatment that has demonstrated reduction of arrhythmia episodes and favorable short-term safety profile in treatment-refractory patients. Nevertheless, the current clinical experience is early and limited. Recent studies have highlighted variable duration of treatment effect and substantial recurrence rates several months postradiation. Contributing to these differential outcomes are disparate approaches groups have taken in planning and delivering radiation, owing to both technical and knowledge gaps limiting optimization and standardization of cardiac SBRT. METHODS AND FINDINGS In this report, we review the historical basis for cardiac SBRT and existing clinical data. We then elucidate the current technical gaps in cardiac radioablation, incorporating the current clinical experience, and summarize the ongoing and needed efforts to resolve them. CONCLUSION Cardiac SBRT is an emerging therapy that holds promise for the treatment of ventricular tachycardia. Technical gaps remain, to be addressed by ongoing research and growing clincial experience.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre C Qian
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michelle Boeck
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Bredfeldt
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul C Zei
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Karoui A, Bendahmane M, Zemzemi N. Cardiac Activation Maps Reconstruction: A Comparative Study Between Data-Driven and Physics-Based Methods. Front Physiol 2021; 12:686136. [PMID: 34512373 PMCID: PMC8428526 DOI: 10.3389/fphys.2021.686136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023] Open
Abstract
One of the essential diagnostic tools of cardiac arrhythmia is activation mapping. Noninvasive current mapping procedures include electrocardiographic imaging. It allows reconstructing heart surface potentials from measured body surface potentials. Then, activation maps are generated using the heart surface potentials. Recently, a study suggests to deploy artificial neural networks to estimate activation maps directly from body surface potential measurements. Here we carry out a comparative study between the data-driven approach DirectMap and noninvasive classic technique based on reconstructed heart surface potentials using both Finite element method combined with L1-norm regularization (FEM-L1) and the spatial adaptation of Time-delay neural networks (SATDNN-AT). In this work, we assess the performance of the three approaches using a synthetic single paced-rhythm dataset generated on the atria surface. The results show that data-driven approach DirectMap quantitatively outperforms the two other methods. In fact, we observe an absolute activation time error and a correlation coefficient, respectively, equal to 7.20 ms, 93.2% using DirectMap, 14.60 ms, 76.2% using FEM-L1 and 13.58 ms, 79.6% using SATDNN-AT. In addition, results show that data-driven approaches (DirectMap and SATDNN-AT) are strongly robust against additive gaussian noise compared to FEM-L1.
Collapse
Affiliation(s)
- Amel Karoui
- Institute of Mathematics, University of Bordeaux, Bordeaux, France
- INRIA Bordeaux Sud-Ouest, Bordeaux, France
- IHU-Liryc, Bordeaux, France
| | - Mostafa Bendahmane
- Institute of Mathematics, University of Bordeaux, Bordeaux, France
- INRIA Bordeaux Sud-Ouest, Bordeaux, France
| | - Nejib Zemzemi
- Institute of Mathematics, University of Bordeaux, Bordeaux, France
- INRIA Bordeaux Sud-Ouest, Bordeaux, France
- IHU-Liryc, Bordeaux, France
| |
Collapse
|
10
|
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42:3904-3916. [PMID: 34392353 PMCID: PMC8497074 DOI: 10.1093/eurheartj/ehab544] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detection of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the concept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent technological advances in all aspects of arrhythmia care.
Collapse
Affiliation(s)
- Venkat D Nagarajan
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,Department of Cardiology, Doncaster and Bassetlaw Hospitals, NHS Foundation Trust, Thorne Road, Doncaster DN2 5LT, UK
| | - Su-Lin Lee
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), UCL, Foley Street, London W1W 7TS, UK
| | - Jan-Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Christoph A Nienaber
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Charles Street, Baltimore, MD 21218, USA
| | - Sabine Ernst
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
11
|
Borràs M, Chamorro-Servent J. Electrocardiographic Imaging: A Comparison of Iterative Solvers. Front Physiol 2021; 12:620250. [PMID: 33613311 PMCID: PMC7886787 DOI: 10.3389/fphys.2021.620250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac disease is a leading cause of morbidity and mortality in developed countries. Currently, non-invasive techniques that can identify patients at risk and provide accurate diagnosis and ablation guidance therapy are under development. One of these is electrocardiographic imaging (ECGI). In ECGI, the first step is to formulate a forward problem that relates the unknown potential sources on the cardiac surface to the measured body surface potentials. Then, the unknown potential sources on the cardiac surface are reconstructed through the solution of an inverse problem. Unfortunately, ECGI still lacks accuracy due to the underlying inverse problem being ill-posed, and this consequently imposes limitations on the understanding and treatment of many cardiac diseases. Therefore, it is necessary to improve the solution of the inverse problem. In this work, we transfer and adapt four inverse problem methods to the ECGI setting: algebraic reconstruction technique (ART), random ART, ART Split Bregman (ART-SB) and range restricted generalized minimal residual (RRGMRES) method. We test all these methods with data from the Experimental Data and Geometric Analysis Repository (EDGAR) and compare their solution with the recorded epicardial potentials provided by EDGAR and a generalized minimal residual (GMRES) iterative method computed solution. Activation maps are also computed and compared. The results show that ART achieved the most stable solutions and, for some datasets, returned the best reconstruction. Differences between the solutions derived from ART and random ART are almost negligible, and the accuracy of their solutions is followed by RRGMRES, ART-SB and finally the GMRES (which returned the worst reconstructions). The RRGMRES method provided the best reconstruction for some datasets but appeared to be less stable than ART when comparing different datasets. In conclusion, we show that the proposed methods (ART, random ART, and RRGMRES) improve the GMRES solution, which has been suggested as inverse problem solution for ECGI.
Collapse
Affiliation(s)
- Marta Borràs
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Judit Chamorro-Servent
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Krummen DE, Ho G, Hoffmayer KS, Schweis FN, Baykaner T, Rogers AJ, Han FT, Hsu JC, Viswanathan MN, Wang PJ, Rappel WJ, Narayan SM. Electrical Substrate Ablation for Refractory Ventricular Fibrillation: Results of the AVATAR Study. Circ Arrhythm Electrophysiol 2021; 14:e008868. [PMID: 33550811 DOI: 10.1161/circep.120.008868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David E Krummen
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.).,Veterans Affairs San Diego Healthcare System, CA (D.E.K., G.H., K.S.H., F.T.H.)
| | - Gordon Ho
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.).,Veterans Affairs San Diego Healthcare System, CA (D.E.K., G.H., K.S.H., F.T.H.)
| | - Kurt S Hoffmayer
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.).,Veterans Affairs San Diego Healthcare System, CA (D.E.K., G.H., K.S.H., F.T.H.)
| | - Franz N Schweis
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.)
| | - Tina Baykaner
- Stanford University, Palo Alto, CA (T.B., A.J.R., M.N.V., P.J.W., S.M.N.)
| | - A J Rogers
- Stanford University, Palo Alto, CA (T.B., A.J.R., M.N.V., P.J.W., S.M.N.)
| | - Frederick T Han
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.).,Veterans Affairs San Diego Healthcare System, CA (D.E.K., G.H., K.S.H., F.T.H.)
| | - Jonathan C Hsu
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.)
| | | | - Paul J Wang
- Stanford University, Palo Alto, CA (T.B., A.J.R., M.N.V., P.J.W., S.M.N.)
| | - Wouter-Jan Rappel
- University of California, San Diego (D.E.K., G.H., K.S.H., F.N.S., F.T.H., J.C.H., W.-J.R.)
| | - Sanjiv M Narayan
- Stanford University, Palo Alto, CA (T.B., A.J.R., M.N.V., P.J.W., S.M.N.)
| |
Collapse
|
13
|
Pereira H, Niederer S, Rinaldi CA. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 2020; 22:euaa165. [PMID: 32754737 PMCID: PMC7544539 DOI: 10.1093/europace/euaa165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Use of the 12-lead electrocardiogram (ECG) is fundamental for the assessment of heart disease, including arrhythmias, but cannot always reveal the underlying mechanism or the location of the arrhythmia origin. Electrocardiographic imaging (ECGi) is a non-invasive multi-lead ECG-type imaging tool that enhances conventional 12-lead ECG. Although it is an established technology, its continuous development has been shown to assist in arrhythmic activation mapping and provide insights into the mechanism of cardiac resynchronization therapy (CRT). This review addresses the validity, reliability, and overall feasibility of ECGi for use in a diverse range of arrhythmias. A systematic search limited to full-text human studies published in peer-reviewed journals was performed through Medline via PubMed, using various combinations of three key concepts: ECGi, arrhythmia, and CRT. A total of 456 studies were screened through titles and abstracts. Ultimately, 42 studies were included for literature review. Evidence to date suggests that ECGi can be used to provide diagnostic insights regarding the mechanistic basis of arrhythmias and the location of arrhythmia origin. Furthermore, ECGi can yield valuable information to guide therapeutic decision-making, including during CRT. Several studies have used ECGi as a diagnostic tool for atrial and ventricular arrhythmias. More recently, studies have tested the value of this technique in predicting outcomes of CRT. As a non-invasive method for assessing cardiovascular disease, particularly arrhythmias, ECGi represents a significant advancement over standard procedures in contemporary cardiology. Its full potential has yet to be fully explored.
Collapse
Affiliation(s)
- Helder Pereira
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiac Physiology Services—Clinical Investigation Centre, Bupa Cromwell Hospital, London, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher A Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiovascular Department, Guys and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Optimal ECG Lead System for Exercise Assessment of Ischemic Heart Disease. J Cardiovasc Transl Res 2019; 13:758-768. [PMID: 31872329 DOI: 10.1007/s12265-019-09949-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
The diagnostic value of an ECG exercise test in diagnosis of ischemic heart disease (IHD) is limited. We investigated whether it is possible to develop a method for diagnosis of IHD which uses a low number of optimal ECG leads and has a higher diagnostic efficiency than conventional exercise ECG. This study was carried out on 43 patients. The 67-lead high-resolution ECG was recorded at rest and during exercise. The diagnostic value of ST segment depression (ΔST60) and T-wave morphology change (δT) determined in optimized ECG lead configurations was higher than for the standard 12-lead ECG. The best results were obtained for δT determined from 6 ECG electrode locations where sensitivity and specificity were 70% and 69% whereas for the standard exercise ECG were 63% and 62%, respectively. The small number of ECG leads used allows for easy hardware implementation of the methods for use in clinical settings.
Collapse
|
15
|
Allegra AB, Gharibans AA, Schamberg GE, Kunkel DC, Coleman TP. Bayesian inverse methods for spatiotemporal characterization of gastric electrical activity from cutaneous multi-electrode recordings. PLoS One 2019; 14:e0220315. [PMID: 31609972 PMCID: PMC6791545 DOI: 10.1371/journal.pone.0220315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) problems give rise to 10 percent of initial patient visits to their physician. Although blockages and infections are easy to diagnose, more than half of GI disorders involve abnormal functioning of the GI tract, where diagnosis entails subjective symptom-based questionnaires or objective but invasive, intermittent procedures in specialized centers. Although common procedures capture motor aspects of gastric function, which do not correlate with symptoms or treatment response, recent findings with invasive electrical recordings show that spatiotemporal patterns of the gastric slow wave are associated with diagnosis, symptoms, and treatment response. We here consider developing non-invasive approaches to extract this information. Using CT scans from human subjects, we simulate normative and disordered gastric surface electrical activity along with associated abdominal activity. We employ Bayesian inference to solve the ill-posed inverse problem of estimating gastric surface activity from cutaneous recordings. We utilize a prior distribution on the spatiotemporal activity pertaining to sparsity in the number of wavefronts on the stomach surface, and smooth evolution of these wavefronts across time. We implement an efficient procedure to construct the Bayes optimal estimate and demonstrate its superiority compared to other commonly used inverse methods, for both normal and disordered gastric activity. Region-specific wave direction information is calculated and consistent with the simulated normative and disordered cases. We apply these methods to cutaneous multi-electrode recordings of two human subjects with the same clinical description of motor function, but different diagnosis of underlying cause. Our method finds statistically significant wave propagation in all stomach regions for both subjects, anterograde activity throughout for the subject with diabetic gastroparesis, and retrograde activity in some regions for the subject with idiopathic gastroparesis. These findings provide a further step towards towards non-invasive phenotyping of gastric function and indicate the long-term potential for enabling population health opportunities with objective GI assessment.
Collapse
Affiliation(s)
- Alexis B. Allegra
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Armen A. Gharibans
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Gabriel E. Schamberg
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - David C. Kunkel
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Todd P. Coleman
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
16
|
Chamorro-Servent J, Dubois R, Coudière Y. Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging. Front Physiol 2019; 10:273. [PMID: 30971937 PMCID: PMC6445955 DOI: 10.3389/fphys.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/28/2019] [Indexed: 11/24/2022] Open
Abstract
The electrocardiographic imaging (ECGI) inverse problem highly relies on adding constraints, a process called regularization, as the problem is ill-posed. When there are no prior information provided about the unknown epicardial potentials, the Tikhonov regularization method seems to be the most commonly used technique. In the Tikhonov approach the weight of the constraints is determined by the regularization parameter. However, the regularization parameter is problem and data dependent, meaning that different numerical models or different clinical data may require different regularization parameters. Then, we need to have as many regularization parameter-choice methods as techniques to validate them. In this work, we addressed this issue by showing that the Discrete Picard Condition (DPC) can guide a good regularization parameter choice for the two-norm Tikhonov method. We also studied the feasibility of two techniques: The U-curve method (not yet used in the cardiac field) and a novel automatic method, called ADPC due its basis on the DPC. Both techniques were tested with simulated and experimental data when using the method of fundamental solutions as a numerical model. Their efficacy was compared with the efficacy of two widely used techniques in the literature, the L-curve and the CRESO methods. These solutions showed the feasibility of the new techniques in the cardiac setting, an improvement of the morphology of the reconstructed epicardial potentials, and in most of the cases of their amplitude.
Collapse
Affiliation(s)
- Judit Chamorro-Servent
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- CARMEN Research Team, INRIA, Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, Talence, France
- Univ. Pompeu Fabra, PhySense Group, DTIC and BCN-Medtech, Barcelona, Spain
| | - Rémi Dubois
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Yves Coudière
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- CARMEN Research Team, INRIA, Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, Talence, France
| |
Collapse
|
17
|
Kitamura T, Martin CA, Vlachos K, Martin R, Frontera A, Takigawa M, Thompson N, Cheniti G, Massouille G, Lam A, Bourier F, Duchateau J, Pambrun T, Denis A, Derval N, Hocini M, HaÏssaguerre M, Cochet H, JaÏs P, Sacher F. Substrate Mapping and Ablation for Ventricular Tachycardia in Patients with Structural Heart Disease: How to Identify Ventricular Tachycardia Substrate. J Innov Card Rhythm Manag 2019; 10:3565-3580. [PMID: 32477720 PMCID: PMC7252795 DOI: 10.19102/icrm.2019.100302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023] Open
Abstract
Catheter ablation for ventricular tachycardia (VT) has been increasingly used over the past two decades in patients with structural heart disease (SHD). In these individuals, a substrate mapping strategy is being more commonly applied to identify targets for VT ablation, which has been shown to be more effective versus targeting mappable VTs alone. There are a number of substrate mapping methods in existence that aim to explore potential VT isthmuses, although their success rates vary. Most of the reported electrogram-based mapping studies have been performed with ablation catheters; meanwhile, the use of multipolar mapping catheters with smaller electrodes and closer interelectrode spacing has emerged, which allows for an assessment of detailed near-field abnormal electrograms at a higher resolution. Another recent advancement has occurred in the use of imaging techniques in VT ablation, particularly in refining the substrate. The goal of this paper is to review the key developments and limitations of current mapping strategies of substrate-based VT ablation and their outcomes. In addition, we briefly summarize the role of cardiac imaging in delineating VT substrate.
Collapse
Affiliation(s)
- Takeshi Kitamura
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan
| | - Claire A Martin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Konstantinos Vlachos
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Ruairidh Martin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Newcastle University, Newcastle-upon-Tyne, UK
| | - Antonio Frontera
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,San Raffaele Hospital, Milan, Italy
| | - Masateru Takigawa
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Nathaniel Thompson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Ghassen Cheniti
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Gregoire Massouille
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Anna Lam
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Felix Bourier
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Thomas Pambrun
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Arnaud Denis
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Nicolas Derval
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Meleze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Michel HaÏssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Pierre JaÏs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
High-Resolution Body Surface Potential Mapping in Exercise Assessment of Ischemic Heart Disease. Ann Biomed Eng 2019; 47:1300-1313. [PMID: 30790099 PMCID: PMC6454081 DOI: 10.1007/s10439-019-02231-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/13/2019] [Indexed: 11/01/2022]
Abstract
Standard 12-lead ECG exercise testing is commonly used for screening of ischemic heart disease (IHD). We studied if high-resolution body surface potential mapping (HR-BSPM) during exercise offers advantages over current standards in noninvasive evaluation of IHD. This study was carried out on 90 IHD patients and 33 healthy controls. The 67-lead HR-BSPM was recorded at rest and during exercise. Twenty-one ECG parameters including classical ST criteria were compared. The effectiveness of methods was verified based on the results of SPECT and coronary angiography. The most effective parameters in the diagnosis of IHD were: amplitude parameter ΔST60 and δT parameter showing T-wave morphology changes during exercise. The sensitivities/specificities of ΔST60 and δT parameters for the HR-BSPM were 70/69 and 59/62%, while for the standard 12-lead ECG system they were: 63/62 and 59/56%. These results demonstrate the usefulness of HR-BSPM measurements during exercise. HR-BSPM resulted in higher sensitivities and specificities compared to the standard 12-lead exercise test. The advantage was partially associated with observed ischemic changes outside standard precordial leads position that were not visible when using the standard 12-lead exercise test. This justifies research into the optimization of the number and position of ECG leads in exercise testing.
Collapse
|
19
|
Cheniti G, Vlachos K, Pambrun T, Hooks D, Frontera A, Takigawa M, Bourier F, Kitamura T, Lam A, Martin C, Dumas-Pommier C, Puyo S, Pillois X, Duchateau J, Klotz N, Denis A, Derval N, Jais P, Cochet H, Hocini M, Haissaguerre M, Sacher F. Atrial Fibrillation Mechanisms and Implications for Catheter Ablation. Front Physiol 2018; 9:1458. [PMID: 30459630 PMCID: PMC6232922 DOI: 10.3389/fphys.2018.01458] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
AF is a heterogeneous rhythm disorder that is related to a wide spectrum of etiologies and has broad clinical presentations. Mechanisms underlying AF are complex and remain incompletely understood despite extensive research. They associate interactions between triggers, substrate and modulators including ionic and anatomic remodeling, genetic predisposition and neuro-humoral contributors. The pulmonary veins play a key role in the pathogenesis of AF and their isolation is associated to high rates of AF freedom in patients with paroxysmal AF. However, ablation of persistent AF remains less effective, mainly limited by the difficulty to identify the sources sustaining AF. Many theories were advanced to explain the perpetuation of this form of AF, ranging from a single localized focal and reentrant source to diffuse bi-atrial multiple wavelets. Translating these mechanisms to the clinical practice remains challenging and limited by the spatio-temporal resolution of the mapping techniques. AF is driven by focal or reentrant activities that are initially clustered in a relatively limited atrial surface then disseminate everywhere in both atria. Evidence for structural remodeling, mainly represented by atrial fibrosis suggests that reentrant activities using anatomical substrate are the key mechanism sustaining AF. These reentries can be endocardial, epicardial, and intramural which makes them less accessible for mapping and for ablation. Subsequently, early interventions before irreversible remodeling are of major importance. Circumferential pulmonary vein isolation remains the cornerstone of the treatment of AF, regardless of the AF form and of the AF duration. No ablation strategy consistently demonstrated superiority to pulmonary vein isolation in preventing long term recurrences of atrial arrhythmias. Further research that allows accurate identification of the mechanisms underlying AF and efficient ablation should improve the results of PsAF ablation.
Collapse
Affiliation(s)
- Ghassen Cheniti
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France.,Cardiology Department, Hopital Sahloul, Universite de Sousse, Sousse, Tunisia
| | - Konstantinos Vlachos
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Thomas Pambrun
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Darren Hooks
- Cardiology Department, Wellington Hospital, Wellington, New Zealand
| | - Antonio Frontera
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Masateru Takigawa
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Felix Bourier
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Takeshi Kitamura
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Anna Lam
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Claire Martin
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | | | - Stephane Puyo
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Xavier Pillois
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France
| | - Josselin Duchateau
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Nicolas Klotz
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Arnaud Denis
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Nicolas Derval
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Pierre Jais
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Hubert Cochet
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France.,Department of Cardiovascular Imaging, Hopital Haut Leveque, Bordeaux, France
| | - Meleze Hocini
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Michel Haissaguerre
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Frederic Sacher
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| |
Collapse
|
20
|
Misra S, van Dam P, Chrispin J, Assis F, Keramati A, Kolandaivelu A, Berger R, Tandri H. Initial validation of a novel ECGI system for localization of premature ventricular contractions and ventricular tachycardia in structurally normal and abnormal hearts. J Electrocardiol 2018; 51:801-808. [PMID: 30177316 DOI: 10.1016/j.jelectrocard.2018.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND View into Ventricular Onset (VIVO) is a novel ECGI system that uses 3D body surface imaging, myocardial CT/MRI, and 12‑lead ECG to localize earliest ventricular activation through analysis of simulated and clinical vector cardiograms. OBJECTIVE To evaluate the accuracy of VIVO for the localization of ventricular arrhythmias (VA). METHODS In twenty patients presenting for catheter ablation of VT [8] or PVC [12], VIVO was used to predict the site earliest activation using 12‑lead ECG of the VA. Results were compared to invasive electroanatomic mapping (EAM). RESULTS A total of 22 PVC/VT morphologies were analyzed using VIVO. VIVO accurately predicted the location of the VA in 11/13 PVC cases and 8/9 VT cases. VIVO correctly predicted right vs left ventricular foci in 20/22 cases. CONCLUSION View into Ventricular Onset (VIVO) can accurately predict earliest activation of VA, which could aid in catheter ablation, and should be studied further.
Collapse
Affiliation(s)
- Satish Misra
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States.
| | - Peter van Dam
- Cardiac Arrhythmia Center, University of California - Los Angeles, 100 UCLA Medical Plaza, Suite 660, Los Angeles, CA 90095, United States
| | - Jonathan Chrispin
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Fabrizio Assis
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Ali Keramati
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Aravindan Kolandaivelu
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Ronald Berger
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Harikrishna Tandri
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| |
Collapse
|
21
|
Potse M. Scalable and Accurate ECG Simulation for Reaction-Diffusion Models of the Human Heart. Front Physiol 2018; 9:370. [PMID: 29731720 PMCID: PMC5920200 DOI: 10.3389/fphys.2018.00370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Realistic electrocardiogram (ECG) simulation with numerical models is important for research linking cellular and molecular physiology to clinically observable signals, and crucial for patient tailoring of numerical heart models. However, ECG simulation with a realistic torso model is computationally much harder than simulation of cardiac activity itself, so that many studies with sophisticated heart models have resorted to crude approximations of the ECG. This paper shows how the classical concept of electrocardiographic lead fields can be used for an ECG simulation method that matches the realism of modern heart models. The accuracy and resource requirements were compared to those of a full-torso solution for the potential and scaling was tested up to 14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were computed on a 3.3 billion-node heart-torso mesh at 0.2 mm resolution. The results show that the lead-field method is more efficient than a full-torso solution when the number of simulated samples is larger than the number of computed ECG leads. While the initial computation of the lead fields remains a hard and poorly scalable problem, the ECG computation itself scales almost perfectly and, even for several hundreds of ECG leads, takes much less time than the underlying simulation of cardiac activity.
Collapse
Affiliation(s)
- Mark Potse
- CARMEN Research Team, Inria Bordeaux Sud-Ouest, Talence, France.,Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, Talence, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France
| |
Collapse
|
22
|
Ghannam M, Cochet H, Jais P, Sermesant M, Patel S, Siontis KC, Morady F, Bogun F. Correlation between computer tomography-derived scar topography and critical ablation sites in postinfarction ventricular tachycardia. J Cardiovasc Electrophysiol 2018; 29:438-445. [PMID: 29380921 DOI: 10.1111/jce.13441] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Myocardial wall thickness (WT) in patients with a prior myocardial infarction has been used to indicate scarring. However, the correlation of WT with sites critical to ventricular tachycardia (VT) has not been previously investigated. The purpose of this study was to correlate electroanatomic mapping data obtained during VT ablation with WT determined by cardiac computed tomography (CT). METHODS AND RESULTS Cardiac CTs were performed in 15 consecutive patients (mean age 63 ± 10 years, 86% male, left ventricular ejection fraction 27 ± 12%) with a prior infarct referred for VT ablation. The CTs were registered to the electroanatomic maps obtained during the mapping procedure. Pacing was performed throughout the scar at sites with fractionated electrograms and isolated potentials. Ablation sites were identified by pace-mapping or entrainment-mapping and these sites were correlated with WT. Bipolar and unipolar voltage amplitude and bipolar electrogram width correlated with WT (correlation coefficient: 0.63, 0.65, and 0.41, respectively, P < 0.001). Ablation target sites were identified for 58 of 113 inducible VTs. The ablation target sites were located on CT-defined ridges (WT: 4.2 ± 1.2 mm) bordered by areas of thinning (WT: 2.6 ± 1.1 mm, P < 0.0001) in 14 of 15 patients. Ablation targets were found on ridges in 49 of 58 VTs (84%) for which target sites were identified. A total of 70 ridges were localized in the 15 patients. VT became noninducible postablation in 11 of 15 patients (73%). CONCLUSION WT measured by CT identifies ridges of myocardial tissue that often are critical for postinfarction VT and that can be appropriate target sites for ablation.
Collapse
Affiliation(s)
- Michael Ghannam
- Division of Cardiovascular Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Hubert Cochet
- Bordeaux University Hospital and University of Bordeaux, Bordeaux, France
| | - Pierre Jais
- Bordeaux University Hospital and University of Bordeaux, Bordeaux, France
| | | | - Smita Patel
- Division of Cardiovascular Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Konstantinos C Siontis
- Division of Cardiovascular Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Fred Morady
- Division of Cardiovascular Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Bogun
- Division of Cardiovascular Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Ho G, Hoffmayer KS, Villongco CT, Vidmar D, Rappel WJ, Krummen DE. Successful ventricular fibrillation functional substrate ablation via a single vascular access site. HeartRhythm Case Rep 2018; 4:173-176. [PMID: 29915711 PMCID: PMC6003783 DOI: 10.1016/j.hrcr.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gordon Ho
- Department of Medicine, University of California San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kurt S Hoffmayer
- Department of Medicine, University of California San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | - David Vidmar
- Department of Physics, University of California San Diego, La Jolla, California
| | - Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, California
| | - David E Krummen
- Department of Medicine, University of California San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
24
|
Mahida S, Sacher F, Dubois R, Sermesant M, Bogun F, Haïssaguerre M, Jaïs P, Cochet H. Cardiac Imaging in Patients With Ventricular Tachycardia. Circulation 2017; 136:2491-2507. [DOI: 10.1161/circulationaha.117.029349] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ventricular tachycardia (VT) is a major cause of sudden cardiac death. The majority of malignant VTs occur in patients with structural heart disease. Multimodality imaging techniques play an integral role in determining the underlying etiology and prognostic significance of VT. In recent years, advances in imaging technology have enabled characterization of the structural arrhythmogenic substrate in patients with VT with increasing precision. In parallel with these advances, the role of cardiac imaging has expanded from a largely diagnostic tool to an adjunctive tool to guide interventional approaches for treatment of VT. Invasive and noninvasive imaging techniques, often used in combination, have made it possible to integrate structural and electrophysiological information during VT ablation procedures. An important area of current development is the use of noninvasive imaging techniques based on body surface electrocardiographic mapping to elucidate the mechanisms of VT. In the future, these techniques may provide a priori information on mechanisms of VT in patients undergoing interventional procedures. This review provides an overview of the role of cardiac imaging in patients with VT.
Collapse
Affiliation(s)
- Saagar Mahida
- Department of Cardiac Electrophysiology, Liverpool Heart and Chest Hospital, UK (S.M.)
| | - Frédéric Sacher
- L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Centre Hospitalier Universitaire (CHU) de Bordeaux, France (F.S., R.D., M.H., P.J., H.C.)
| | - Rémi Dubois
- L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Centre Hospitalier Universitaire (CHU) de Bordeaux, France (F.S., R.D., M.H., P.J., H.C.)
| | - Maxime Sermesant
- Inria Sophia Antipolis, Sophia Antipolis-Méditerranée, France (M.S.)
| | - Frank Bogun
- Division of Cardiology, University of Michigan, Ann Arbor (F.B.)
| | - Michel Haïssaguerre
- L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Centre Hospitalier Universitaire (CHU) de Bordeaux, France (F.S., R.D., M.H., P.J., H.C.)
| | - Pierre Jaïs
- L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Centre Hospitalier Universitaire (CHU) de Bordeaux, France (F.S., R.D., M.H., P.J., H.C.)
| | - Hubert Cochet
- L’Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Centre Hospitalier Universitaire (CHU) de Bordeaux, France (F.S., R.D., M.H., P.J., H.C.)
| |
Collapse
|
25
|
Aronis KN, Ashikaga H. Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization. J Electrocardiol 2017; 51:82-91. [PMID: 28988690 DOI: 10.1016/j.jelectrocard.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9-11mm) inter-electrode distance (IED) of the multi-electrode basket catheter. METHODS AND RESULTS We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2-30mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED=1mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10mm, the error is 3.8mm (phase singularity), 3.7mm (dominant frequency), and 11.8mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10mm ranges from 30.0mm (two rotors) to 96.1mm (five rotors). CONCLUSIONS The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hiroshi Ashikaga
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
26
|
Ho G, Villongco CT, Yousefian O, Bradshaw A, Nguyen A, Faiwiszewski Y, Hayase J, Rappel WJ, McCulloch AD, Krummen DE. Rotors exhibit greater surface ECG variation during ventricular fibrillation than focal sources due to wavebreak, secondary rotors, and meander. J Cardiovasc Electrophysiol 2017; 28:1158-1166. [PMID: 28670858 DOI: 10.1111/jce.13283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ventricular fibrillation is a common life-threatening arrhythmia. The ECG of VF appears chaotic but may allow identification of sustaining mechanisms to guide therapy. HYPOTHESIS We hypothesized that rotors and focal sources manifest distinct features on the ECG, and computational modeling may identify mechanisms of such features. METHODS VF induction was attempted in 31 patients referred for ventricular arrhythmia ablation. Simultaneous surface ECG and intracardiac electrograms were recorded using biventricular basket catheters. Endocardial phase maps were used to mechanistically classify each VF cycle as rotor or focally driven. ECGs were analyzed from patients demonstrating both mechanisms in the primary analysis and from all patients with induced VF in the secondary analysis. The ECG voltage variation during each mechanism was compared. Biventricular computer simulations of VF driven by focal sources or rotors were created and resulting ECGs of each VF mechanism were compared. RESULTS Rotor-based VF exhibited greater voltage variation than focal source-based VF in both the primary analysis (n = 8, 110 ± 24% vs. 55 ± 32%, P = 0.02) and the secondary analysis (n = 18, 103 ± 30% vs. 67 ± 34%, P = 0.009). Computational VF simulations also revealed greater voltage variation in rotors compared to focal sources (110 ± 19% vs. 33 ± 16%, P = 0.001), and demonstrated that this variation was due to wavebreak, secondary rotor initiation, and rotor meander. CONCLUSION Clinical and computational studies reveal that quantitative criteria of ECG voltage variation differ significantly between VF-sustaining rotors and focal sources, and provide insight into the mechanisms of such variation. Future studies should prospectively evaluate if these criteria can separate clinical VF mechanisms and guide therapy.
Collapse
Affiliation(s)
- Gordon Ho
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Omid Yousefian
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Andrew Nguyen
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Yonatan Faiwiszewski
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Justin Hayase
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Andrew D McCulloch
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA
| | - David E Krummen
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
27
|
Narayan SA, Qureshi S. Multimodality medical image fusion: applications in congenital cardiology. Future Cardiol 2017. [PMID: 28631508 DOI: 10.2217/fca-2017-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Shakeel Qureshi
- Evelina London Children's Hospital, Guy's and St Thomas Hospital, London, UK
| |
Collapse
|
28
|
Role of low kilovoltage electrocardiographic-gated multidetector CT in electrophysiological procedures in the paediatric age group. Cardiol Young 2017; 27:617-624. [PMID: 27938453 DOI: 10.1017/s1047951116002596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Treatment of arrhythmias by catheter ablation targeting the anatomical foci of arrhythmias by radiofrequency has evolved dramatically in recent years. A road map for the relevant heart structures is an important asset for the success of the procedure and should be obtained before the intervention. This can be achieved by intra-cardiac echocardiography, conventional angiographic methods, multidetector CT, or MRI. The electrophysiological technique comprises a diagnostic procedure and an interventional - therapeutic - procedure. Electrocardiographic-gated multidetector CT is important in the diagnostic session to evaluate the anatomical details in combination with electric activity mapping. This combined protocol provides a unique view of the propagation of electrical activity, either normal or abnormal, over cardiac structures and allows a precise functional and anatomical evaluation to be obtained. In this review, we evaluate the role of electrocardiographic-gated multidetector CT in roadmapping arrhythmias in the paediatric age group, focussing on its strengths; we also evaluated some additional aspects that need further improvement in the future.
Collapse
|
29
|
Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method. FUNCTIONAL IMAGING AND MODELLING OF THE HEART 2017. [DOI: 10.1007/978-3-319-59448-4_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Bessiere F, N'djin WA, Colas EC, Chavrier F, Greillier P, Chapelon JY, Chevalier P, Lafon C. Ultrasound-Guided Transesophageal High-Intensity Focused Ultrasound Cardiac Ablation in a Beating Heart: A Pilot Feasibility Study in Pigs. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1848-1861. [PMID: 27158083 DOI: 10.1016/j.ultrasmedbio.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Catheter ablation for the treatment of arrhythmia is associated with significant complications and often-repeated procedures. Consequently, a less invasive and more efficient technique is required. Because high-intensity focused ultrasound (HIFU) enables the generation of precise thermal ablations in deep-seated tissues without harming the tissues in the propagation path, it has the potential to be used as a new ablation technique. A system capable of delivering HIFU into the heart by a transesophageal route using ultrasound (US) imaging guidance was developed and tested in vivo in six male pigs. HIFU exposures were performed on atria and ventricles. At the time of autopsy, visual inspection identified thermal lesions in the targeted areas in three of the animals. These lesions were confirmed by histologic analysis (mean size: 5.5 mm(2) × 11 mm(2)). No esophageal thermal injury was observed. One animal presented with bradycardia due to an atrio-ventricular block, which provides real-time confirmation of an interaction between HIFU and the electrical circuits of the heart. Thus, US-guided HIFU has the potential to minimally invasively create myocardial lesions without an intra-cardiac device.
Collapse
Affiliation(s)
- Francis Bessiere
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France; Inserm, LabTau, Lyon, France; Université de Lyon, Lyon, France.
| | | | | | | | - Paul Greillier
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France; Inserm, LabTau, Lyon, France
| | | | - Philippe Chevalier
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France; Université de Lyon, Lyon, France
| | - Cyril Lafon
- Inserm, LabTau, Lyon, France; Université de Lyon, Lyon, France
| |
Collapse
|
31
|
Krummen DE, Ho G, Villongco CT, Hayase J, Schricker AA. Ventricular fibrillation: triggers, mechanisms and therapies. Future Cardiol 2016; 12:373-90. [PMID: 27120223 DOI: 10.2217/fca-2016-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ventricular fibrillation (VF) is a common, life-threatening arrhythmia responsible for significant morbidity and mortality. Due to challenges in safely mapping VF, a comprehensive understanding of its mechanisms remains elusive. Recent findings have provided new insights into mechanisms that sustain early VF. Notably, the central role of electrical rotors and catheter-based ablation of VF rotor substrate have been recently reported. In this article, we will review data regarding four stages of VF: initiation, transition, maintenance and evolution. We will discuss the particular mechanisms for each stage and therapies targeting these mechanisms. We also examine inherited arrhythmia syndromes, including the mechanisms and therapies specific to each. We hope that the overview of VF outlined in this work will assist other investigators in designing future therapies to interrupt this life-threatening arrhythmia.
Collapse
Affiliation(s)
- David E Krummen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Gordon Ho
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Christopher T Villongco
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Hayase
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Amir A Schricker
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
32
|
Nedios S, Sommer P, Bollmann A, Hindricks G. Advanced Mapping Systems To Guide Atrial Fibrillation Ablation: Electrical Information That Matters. J Atr Fibrillation 2016; 8:1337. [PMID: 27909489 PMCID: PMC5089464 DOI: 10.4022/jafib.1337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 02/17/2016] [Accepted: 04/29/2016] [Indexed: 12/25/2022]
Abstract
Catheter ablation is an established and widespread treatment for atrial fibrillation (AF). Contemporary electroanatomical mapping systems (EAMs) have been developed to facilitate mapping processes but remain limited by spatiotemporal and processing restrictions. Advanced mapping systems emerged from the need to better understand and ablate complex AF substrate, by improving the acquisition and illustration of electrophysiological information. In this review, we present you the recently advanced mapping systems for AF ablation in comparison to the established contemporary EAMs.
Collapse
Affiliation(s)
- Sotirios Nedios
- Department of Electrophysiology, Heart Center, University of Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center, University of Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center, University of Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center, University of Leipzig, Germany
| |
Collapse
|
33
|
Donal E, Lip GYH, Galderisi M, Goette A, Shah D, Marwan M, Lederlin M, Mondillo S, Edvardsen T, Sitges M, Grapsa J, Garbi M, Senior R, Gimelli A, Potpara TS, Van Gelder IC, Gorenek B, Mabo P, Lancellotti P, Kuck KH, Popescu BA, Hindricks G, Habib G, Cosyns B, Delgado V, Haugaa KH, Muraru D, Nieman K, Cohen A. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur Heart J Cardiovasc Imaging 2016; 17:355-83. [DOI: 10.1093/ehjci/jev354] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
34
|
Bear L, Cuculich PS, Bernus O, Efimov I, Dubois R. Introduction to noninvasive cardiac mapping. Card Electrophysiol Clin 2015; 7:1-16. [PMID: 25784020 DOI: 10.1016/j.ccep.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the dawn of the twentieth century, the electrocardiogram (ECG) has revolutionized the way clinical cardiology has been practiced, and it has become the cornerstone of modern medicine today. Driven by clinical and research needs for a more precise understanding of cardiac electrophysiology beyond traditional ECG, inverse solution electrocardiography has been developed, tested, and validated. This article outlines the important progress from ECG development, through more extensive measurement of body surface potentials, and the fundamental leap to solving the inverse problem of electrocardiography, with a focus on mathematical methods and experimental validation.
Collapse
Affiliation(s)
- Laura Bear
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Inserm U1045, Cardiothoracic Research Center, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Phillip S Cuculich
- Cardiovascular Diseases and Electrophysiology, Barnes-Jewish Hospital, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA.
| | - Olivier Bernus
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Inserm U1045, Cardiothoracic Research Center, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Igor Efimov
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Department of Biomedical Engineering, Washington University School of Medicine, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130, USA
| | - Rémi Dubois
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Inserm U1045, Cardiothoracic Research Center, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| |
Collapse
|
35
|
Bhagirath P, van der Graaf M, van Dongen E, de Hooge J, van Driel V, Ramanna H, de Groot N, Götte MJW. Feasibility and Accuracy of Cardiac Magnetic Resonance Imaging-Based Whole-Heart Inverse Potential Mapping of Sinus Rhythm and Idiopathic Ventricular Foci. J Am Heart Assoc 2015; 4:e002222. [PMID: 26467997 PMCID: PMC4845111 DOI: 10.1161/jaha.115.002222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Inverse potential mapping (IPM) noninvasively reconstructs cardiac surface potentials using body surface potentials. This requires a volume conductor model (VCM), usually constructed from computed tomography; however, computed tomography exposes the patient to harmful radiation and lacks information about tissue structure. Magnetic resonance imaging (MRI) is not associated with this limitation and might have advantages for mapping purposes. This feasibility study investigated a magnetic resonance imaging–based IPM approach. In addition, the impact of incorporating the lungs and their particular resistivity values was explored. Methods and Results Three volunteers and 8 patients with premature ventricular contractions scheduled for ablation underwent 65‐electrode body surface potential mapping. A VCM was created using magnetic resonance imaging. Cardiac surface potentials were estimated from body surface potentials and used to determine the origin of electrical activation. The IPM‐defined origin of sinus rhythm corresponded well with the anatomic position of the sinus node, as described in the literature. In patients, the IPM‐derived premature ventricular contraction focus was 3‐dimensionally located within 8.3±2.7 mm of the invasively determined focus using electroanatomic mapping. The impact of lungs on the IPM was investigated using homogeneous and inhomogeneous VCMs. The inhomogeneous VCM, incorporating lung‐specific conductivity, provided more accurate results compared with the homogeneous VCM (8.3±2.7 and 10.3±3.1 mm, respectively; P=0.043). The interobserver agreement was high for homogeneous (intraclass correlation coefficient 0.862, P=0.003) and inhomogeneous (intraclass correlation coefficient 0.812, P=0.004) VCMs. Conclusion Magnetic resonance imaging–based whole‐heart IPM enables accurate spatial localization of sinus rhythm and premature ventricular contractions comparable to electroanatomic mapping. An inhomogeneous VCM improved IPM accuracy.
Collapse
Affiliation(s)
- Pranav Bhagirath
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| | - Maurits van der Graaf
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| | - Elise van Dongen
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| | - Jacques de Hooge
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| | - Vincent van Driel
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| | - Hemanth Ramanna
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| | - Natasja de Groot
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands (N.G.)
| | - Marco J W Götte
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands (P.B., M.G., E.D., J.H., V.D., H.R., M.W.)
| |
Collapse
|
36
|
Affiliation(s)
- Yoram Rudy
- From the Cardiac Bioelectricity and Arrhythmia Center (CBAC), Washington University in St. Louis, MO.
| |
Collapse
|
37
|
Dubois R, Shah AJ, Hocini M, Denis A, Derval N, Cochet H, Sacher F, Bear L, Duchateau J, Jais P, Haissaguerre M. Non-invasive cardiac mapping in clinical practice: Application to the ablation of cardiac arrhythmias. J Electrocardiol 2015; 48:966-74. [PMID: 26403066 DOI: 10.1016/j.jelectrocard.2015.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/17/2022]
Abstract
Ten years ago, electrocardiographic imaging (ECGI) started to demonstrate its efficiency in clinical settings. The initial application to localize focal ventricular arrhythmias such as ventricular premature beats was probably the easiest to challenge and validates the concept. Our clinical experience in using this non-invasive mapping technique to identify the sources of electrical disorders and guide catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats) and ventricular pre-excitation (Wolff-Parkinson-White syndrome) is described here.
Collapse
Affiliation(s)
- Rémi Dubois
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France.
| | - Ashok J Shah
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Mélèze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Arnaud Denis
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Frédéric Sacher
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Laura Bear
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Josselin Duchateau
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Pierre Jais
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Michel Haissaguerre
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| |
Collapse
|
38
|
Liguori C, Frauenfelder G, Massaroni C, Saccomandi P, Giurazza F, Pitocco F, Marano R, Schena E. Emerging clinical applications of computed tomography. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2015; 8:265-78. [PMID: 26089707 PMCID: PMC4467659 DOI: 10.2147/mder.s70630] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications.
Collapse
Affiliation(s)
| | | | - Carlo Massaroni
- Measurement and Biomedical Instrumentation Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Paola Saccomandi
- Measurement and Biomedical Instrumentation Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | | | - Riccardo Marano
- Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, A Gemelli University Hospital, Rome, Italy
| | - Emiliano Schena
- Measurement and Biomedical Instrumentation Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
39
|
Cakulev I, Sahadevan J, Waldo AL. Noninvasive diagnostic mapping of supraventricular arrhythmias (Wolf-Parkinson-White syndrome and atrial arrhythmias). Card Electrophysiol Clin 2015; 7:79-88. [PMID: 25784024 DOI: 10.1016/j.ccep.2014.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 12-lead electrocardiogram has limited value in precisely identifying the origin of focal or critical component of reentrant arrhythmias during supraventricular arrhythmias, as well as precisely locating accessory atrioventricular conduction pathways. Because of these limitations, efforts have been made to reconstruct epicardial activation sequences from body surface measurements obtained noninvasively. The last decade has registered significant progress in obtaining clinically useful data from the attempts to noninvasively map the epicardial electrical activity. This article summarizes the recent advances made in this area, specifically addressing the clinical outcomes of such efforts relating to atrial arrhythmias and Wolf-Parkinson-White syndrome.
Collapse
Affiliation(s)
- Ivan Cakulev
- Division of Cardiovascular Medicine, Department of Medicine, Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, 11100 Euclid Avenue, MS LKS 5038, Cleveland, OH 44106, USA.
| | - Jayakumar Sahadevan
- Department of Cardiology, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Albert L Waldo
- Division of Cardiovascular Medicine, Department of Medicine, Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, 11100 Euclid Avenue, MS LKS 5038, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Rolf S, Hindricks G, Sommer P, Richter S, Arya A, Bollmann A, Kosiuk J, Koutalas E. Electroanatomical mapping of atrial fibrillation: Review of the current techniques and advances. J Atr Fibrillation 2014; 7:1140. [PMID: 27957132 PMCID: PMC5135200 DOI: 10.4022/jafib.1140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 01/07/2023]
Abstract
The number of atrial fibrillation (AF) catheter ablations performed annually has been increasing exponentially in the western countries in the last few years. This is clearly related to technological advancements, which have greatly contributed to the improvements in catheter ablation of AF. In particular, state-of-the-art electroanatomical mapping systems have greatly facilitated mapping processes and have enabled complex AF ablation strategies. In this review, we outline contemporary and upcoming electroanatomical key technologies focusing on new mapping tools and strategies in the context of AF catheter ablation.
Collapse
Affiliation(s)
- Sascha Rolf
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Gerhard Hindricks
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Philipp Sommer
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Sergio Richter
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Arash Arya
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Andreas Bollmann
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Jedrzej Kosiuk
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| | - Emmanuel Koutalas
- University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig, Germany
| |
Collapse
|
41
|
Konrad T, Theis C, Mollnau H, Sonnenschein S, Rostock T. Body surface potential mapping for mapping and treatment of persistent atrial fibrillation. Herzschrittmacherther Elektrophysiol 2014; 25:226-9. [PMID: 25200166 DOI: 10.1007/s00399-014-0341-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 12/01/2022]
Abstract
Techniques facilitating individual mapping and ablation of arrhythmogenic substrates are desired to enhance our understanding of persistent atrial fibrillation (persAF) mechanisms as a prerequisite to increasing the success rates of single procedure persAF catheter ablation. The technique of body surface potential mapping (BSM) involves the use of multiple electrodes to collect the potentials over a large body surface area and, with the use of a computed tomography scan, it facilitates their correlation to a 3D model of the atrial structures. During AF,the visualization and localization of AF driver activity, both reentrant and focal wavefronts, is possible with this technique. The ECVUE system from CardioInsight was examined for this indication in clinical studies and showed a termination rate of persAF of 63 % in a large multicenter trial (AFACART) with a promising low recurrence rate during follow-up. From our initial experience, the system appears to be effective in persAF patients who have continuous AF for less than 1 year. However, the utility of the system for highly challenging cases like long-standing persistent AF and patients with very short AF cycle length remains to be explored. Further studies are needed to confirm these data and answer the multitude of open questions in this field.
Collapse
Affiliation(s)
- Torsten Konrad
- II. Medical Clinic, Department of Electrophysiology, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany,
| | | | | | | | | |
Collapse
|
42
|
Gutbrod SR, Sulkin MS, Rogers JA, Efimov IR. Patient-specific flexible and stretchable devices for cardiac diagnostics and therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:244-51. [PMID: 25106701 DOI: 10.1016/j.pbiomolbio.2014.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Abstract
Advances in material science techniques and pioneering circuit designs have led to the development of electronic membranes that can form intimate contacts with biological tissues. In this review, we present the range of geometries, sensors, and actuators available for custom configurations of electronic membranes in cardiac applications. Additionally, we highlight the desirable mechanics achieved by such devices that allow the circuits and substrates to deform with the beating heart. These devices unlock opportunities to collect continuous data on the electrical, metabolic, and mechanical state of the heart as well as a platform on which to develop high definition therapeutics.
Collapse
Affiliation(s)
- Sarah R Gutbrod
- Biomedical Engineering, Washington University in St Louis, USA
| | | | - John A Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - Igor R Efimov
- Biomedical Engineering, Washington University in St Louis, USA.
| |
Collapse
|